

## The challenges in understanding CIGS thin film cell and module reliability

Rajalakshmi Sundaramoorthy Dave Metacarpa, Jim Lloyd, and Pradeep Haldar

# **Discussion topics**

- PVMC Introduction
- **CIGS Device reliability-** Failure modes/Mechanisms
  - Device/Unit film metrology,, TCO engineering
- Module level reliability
  - Field failures- Failure modes
  - Indoor Accelerated Lifetime Tests
  - Select examples-Failure mechanisms
    - Combinatorial stress
    - Interconnect
- System level failures
  - Modeling
- Integrated database
- Challenges and opportunities summarized



# The U.S. Photovoltaic Manufacturing Consortium – Program Overview

- Manufacturing scale research through industry led consortium for collaborative and proprietary activities at a pilot line and manufacturing development facility
- Overall investment of \$300 M over 5 years from DOE, Industry, NY State.
- Focus on leading thin film solar PV technology and manufacturing methods
- Expertise of primary partners SEMATECH, CNSE in consortium management, technology development, manufacturing productivity, and workforce development
- Breadth of support partnership with ~60 companies and organizations throughout thin film PV industry supply chain







## **Strategic Objectives of PVMC**

#### **TWG- Technical Working Groups**



## PVMC Multi-Year Strategy: 3 year and beyond

|                                 | Yr1 | Yr2 | Yr3 | Yr4 | Yr5 | Partners                                                      | Objectives/Tasks                                                          |
|---------------------------------|-----|-----|-----|-----|-----|---------------------------------------------------------------|---------------------------------------------------------------------------|
| (FEOL) PV Cell<br>Manufacturing |     |     |     |     |     | Equipment/Material<br>Metrology/Suppliers,<br>R&D Companies   | Manufacturing<br>Productivity, Cost<br>Model, Metrology                   |
| (BEOL) Module<br>Manufacturing  |     |     |     |     |     | Equipment/Suppliers,<br>PV and Roofing<br>Manufacturers       | Effectiveness, Life cycle,<br>Reliability, Metrology<br>Testing, Quality, |
| Roof<br>Integration             |     | 2   |     |     |     | Architects, Installers,<br>Roofers, Contractors,<br>Utilities | Design, Standards,<br>Testing, Installation,<br>Reliability, BOS          |
| LPV<br>Deployment               |     |     |     |     |     | Utilities, Installer, End<br>Users , Building<br>Owners       | Commercialization,<br>Field Test, System Cost,<br>Grid Integration        |





# **Challenges in CIGS Reliability**

#### To develop reliable PV modules

Understand potential failure mechanisms driving a failure mode Reliability of a PV product depends on Manufacturing methods Types of packaging Flat panel (Glass-Glass)-Monolithic Glass/Backsheet Flexible modules (LPV) CPV Used condition (climates)

#### **Observe failure modes (identify mechanisms) in outdoor PV field**

**Need to wait for 25 years** – NOT a solution!

### Develop accelerated stress tests-(and formulate Qualification tests) to observe the failure mechanisms in a short period of time to predict lifetime of the module

CIGS Device reliability Associated Failure modes/Mechanisms Device/Unit film metrology TCO Engineering



## **CIGS device stack - Deposition methods and materials**

| Window layer                 |
|------------------------------|
| i-ZnO/(ITO or AZO)           |
| Buffer Layer – CdS           |
| Absorber - CIGS              |
| Back Contact – Mo            |
| Substrate – Glass or<br>foil |

| Co-evaporation example                                                             | Alternatives                             |
|------------------------------------------------------------------------------------|------------------------------------------|
| Grids: Evaporation                                                                 | Grids/ Screen print/wire                 |
| Ni (150-500A) Ag (5000-6000A)                                                      | overlay/ tab and string                  |
| Al(2-3μ);                                                                          | diff interconnects                       |
| <b>Window layer: Sputter</b><br>Resistive: i-ZnO-0.112µ;<br>Conductive:AZO- 0.115µ | Window layer: MoCVD<br>Zno:B; InZnO; ITO |
| Buffer Layer: Chemical bath                                                        | Buffer Layer: Chemical bath              |
| deposition (CBD)                                                                   | deposition (CBD)/Sputter:                |
| CdS, ~20-80nm;                                                                     | Zn(O,S); ~20-80nm;                       |
| CIGS: 1stage/2 stage /3 stage                                                      | CIGS: Reactive sputtering, Ink           |
| Cu, In, Ga are co-evaporated in                                                    | deposition/ coating,                     |
| Se overpressure CIGS- ~1-2µ                                                        | Selenization, Co-evaporation             |
| Molybdenum-Sputter; ~0.3-1µ                                                        | Na barrier/ Se barrier/                  |
| Barrier layers:Cr/Nitride                                                          | Oxide barrier                            |
| Glass:2mm or 3.2mm                                                                 | Aluminum                                 |
| Stainless foil: ~25µ                                                               | Polyimide                                |

In-depth analysis using different characterization techniques is required to understand the interfacial properties-Include Na incorporation



## **Device efficiency-** Moisture and Temperature/Light Effects



2

## **Recombination and lifetime- correlation**

#### **Before DH**

After DH



PL- Dark spots indicate increased recombination after DH

Influence of damp-heat in electrical, optical and morphological properties of encapsulated CIGS devices -R.Sundaramoorthy et.al.37<sup>th</sup> IEEE-PVSC

#### PL image after re-fabrication of the DH exposed device



TRPL measurements after DH exposure

| Back sheet             | Lifetime $\tau_1$ (ns) |  |  |
|------------------------|------------------------|--|--|
| N/A, stored in ambient | 6.25                   |  |  |
| Glass                  | 8                      |  |  |
| ТРАТ                   | 8.56                   |  |  |
| ТРТ                    | 8.87                   |  |  |
| Tefzel                 | 1.85                   |  |  |

| DH Exposure<br>Time (h)  | V <sub>oc</sub> (V) | J <sub>sc</sub><br>(mA/cm²) | FF<br>(%) | Efficiency<br>(%) |
|--------------------------|---------------------|-----------------------------|-----------|-------------------|
| 0                        | 0.69                | 32.8                        | 78        | 17.7              |
| 1                        | 0.64                | 28.1                        | 58        | 10.4              |
| 784                      | 0.65                | 19.9                        | 59        | 7.6               |
| N/A, after refabrication | 0.56                | 28.4                        | 60.9      | 9.68              |

JV parameters before and after DH exposure and re-fabrication indicate absorber is intact; while TCO has degraded.



26-Nov-13

## Material level –Identification of failure mechanisms

#### Oxygen 1s core level peak for samples encapsulated in





# **TCO Engineering- device level**

One approach for CIGS devices for improving device performance in DH

Alternative TCO which is DH stable IZO (InZnO) for CIGS Conductive layer (i-ZnO/c-InZnO) Bi-layer(i-InZnO/c-InZnO)

#### Barrier layers on CIGS (TCOs and PTMO)

**Un exposed** 



R. Sundaramoorthy et.al 34<sup>th</sup> IEEE-PVSC Comparable efficiencies with alternative conducting TCO which is DH stable



PTMO protects the CIGS device Extends the life time of the bare device- By how many hrs? How is it related to lifetime during outdoor exposure

PL Image

after

**DH** exposure



# **Unit film Engineering**



Order of decreasing stability: ITO ~ InZnO >>B:ZnO >>>AI:ZnO ~ BZO

- 1) R. Sundaramoorthy et al, SPIE 2010
- 2) Pern et al, SPIE 2011



#### **Important properties of TCO for DH stability**

- Thickness of the film, Sheet Rho
- Grain boundaries
- Bias conditions, (Processing parameters)
- Multi-layers of same or different films has profound effect on the stability of the TCO



#### Understand Long term reliability- CdS diffusion in CIGS failure mechanisms



- Diffusion via lattice (volume)
- Diffusion via grain boundary
- SIMS analysis
  - affected by Surface roughness
- Polish CIGS /Deposit CdS



LaClaire's analysis  $s\delta D_b = 1.32(D/t)^{1/2}(\partial ln\bar{c}/\partial z^{6/5})^{-5/3}$ 





Region 1 – Volume diffusion from the surface
Region 2 – Volume and grain boundary diffusion
Region 3 – Grain boundary diffusion
Region 4 – Background noise level

$$\ln\left(\frac{D_b}{\sqrt{D}}\right) = \ln\left(\frac{D_{b0}}{\sqrt{D_0}}\right) + \frac{1}{T}\left(\frac{\frac{1}{2}\Delta E - \Delta E_b}{k}\right)$$

The activation energy for volume diffusion of cadmium in CIGS is ~1 eV [2] Thus  $\Delta E_b$  is ~0.7 eV ; Equation necessarily suggests  $\Delta E_b > \frac{1}{2}\Delta E$ 

**PVMC** 

Module level reliability Field failures Indoor Accelerated Lifetime Tests (ALT's) Interconnect reliability Modeling



# CIGS Module (Rigid/Flexible)

17



| Deposition method       | Company                                  |
|-------------------------|------------------------------------------|
| Co-evaporation          | Wurth, GSE, Ascent,<br>Solibro           |
| Selnenization           | Solar frontier, Avancis,<br>STION , TSMC |
| Sputtering              | Miasole                                  |
| Nanoparticle            | Nanosolar, ISET,-Pioneer<br>products     |
| Electroplating          | Solopower/NEXCIS                         |
| FASST and other process | Heliovolt                                |

Different ways of fabricating CIGS





## History of Qualification Tests –Certification Standards

|                    | c-Si                                | PVB encapsulan<br>Corrosion of met | ts- with glass<br>allization | IEC 61215                    | EVA                            | _                                                 |
|--------------------|-------------------------------------|------------------------------------|------------------------------|------------------------------|--------------------------------|---------------------------------------------------|
| Test               | ו<br>1975                           | II<br>1976                         | III<br>1977                  | IV<br>1978                   | V<br>1979                      |                                                   |
| Thermal<br>Cycles  | 100<br>-40 to +90                   | 50<br>-40 to +90                   | 50<br>-40 to +90             | 50<br>-40 to +90             | 200<br>-40 to + 90             | <b>IEEE 1262</b>                                  |
| Humidity           | 70C,90%<br>68 hrs                   | 5 cycles<br>40 to 23C<br>90%       | 5 cycles<br>40 to 23C<br>90% | 5 cycles<br>54 to 23C<br>90% | 10 cycles<br>85 to -40C<br>85% | Thin film                                         |
| HOT<br>SPOT        | Silicone<br>encapsula<br>- no glass | Int Moc                            | ules<br>eserts               |                              | 3 cells<br>100 hrs             | IEC 61646                                         |
| Mechanical<br>Load |                                     | 100 cycles<br>2400 Pa              | 100 cycles<br>2400 Pa        | 10000<br>2400 Pa             | 10000<br>2400 Pa               | Qual test for<br>Thin film PV                     |
| Hail               |                                     | <15 A                              | < 50                         | 9 impacts<br>3⁄4" -45 mph    | 10 impacts<br>1" – 52 mph      | modules built around<br>c-Si PV failure<br>modes. |
| nigit Pot          |                                     | 1500 V                             | 1500 V                       | 1500 V                       | 2*Vs+1000                      | PVMRW2010-                                        |

Qualification testing is confused with reliability testing Incorporates pass/fail criteria- DOES NOT PREDIT PRODUCT LIFE TIME Stress levels and durations-limited- to minimize time and cost Goal: significant # of modules will pass the criteria- Production modules will be built the same way test modules are built.

# Where does the failure occur in TF-PV?



New generation modules ('05-'07)- DH failure rate 70%

#### Lessons learnt (07-09) :

- Brought down the DH failure rate down to 30%
- New failure modes observed.

#### Questions:

How do we replicate these failures in the lab?

TUV 1997-2011 Failure Rate Analysis of Module Design Qualification Testing - IV: 1997-2005 vs. 2005-2007 vs. 2007-2009 vs. 2009-2011; G. TamizhMani, et.al. TUV Rheinland PTL



# **Design differences**



#### 18-24 Years Modules, Ispra, Italy (Source ESTI)

Design differences in modules can lead to different types of failure s in the field: ( Data from field : 203 modules and 53 designs) Hard failures (-20% to -85%) Pmax change due to FF Substring failure: (Voc loss) Delamination (Isc loss) Cell related loss and non-cell related loss Soft failures (10 to-20% ) Pmax change due to FF No dearth for interesting and useful topics to work on! Design differences in current CIGS module manufacturing approach



Tab and string

Wire method

CNSE : Roof top Array

Monolithically integrated



# **Indoor Accelerated Lifetime Tests**

- Junction degradation
- Packaging
- Interconnect degradation
- Barrier layers

# Cell Cell Colored Colo

#### Need to establish

- Standard structure for a failure mechanism.
- ALT's beyond normal acceleration-combinatorial tets
  - Chamber options((DH/Dry)- with Light/ HALT/ HASS)
- Protocols for measurements (Combinatorial/Stress order/ Load/In-situ/ Normal Operating Cell Temperature (NOCT)/Standard Testing Conditions (STC)
- Protocols for combinatorial stress factors (RH, T, Bias, Mechanical) + Pre conditioning)



## Effect of light, temperature and moisture

<u>Indoor:</u> Light Soak after DH exposure for 1000hrs <u>Outdoor</u>: Enhancement in efficiency by outdoor light soaking for 3-4 hrs after fabrication

<u>Probable reason:</u> Changes in the buffer layer due to the presence of moisture and heat could be the reason for decreased and improved performance the efficiency- failure mechanisms worth investigating



#### Effects of light on modules in DH chamber



Effects of Temperature cycling / HF cycles



Indoor : DH exposure with and without light exposure Degradation in the presence of light

> is less than degradation in Dark -Damp heat

Humidity freeze and Temperature cycles with no humidity shows similar changes in performance.

#### **Future experiments**

Isolate Temp. and Moisture and perform indoor tests with and without light to understand electrical performance and compare the results with outdoor performance

### Indoor ALT's – Stress conditions- Multiple failure modes



## Interconnect degradation Failure modes/mechanisms



## Finger prints-outdoor metrology & modeling



Common Failure Modes for Thin-Film Modules and Considerations Toward Hardening CIGS Cells to Moisture -A "Suggested" Topic Kent Whitfield, Dir. Reliability

Outdoor metrology Finger prints

#### Failure mode and effect analysis Junction box, potting and busbar – stress/strain amplitude

Establishing a reliability methodology for thermal- cycle failure modes for CIGS modules-Kent Whitfield et.al.





Correlation of metalling mixing corresponds to bond strength at the weld. a)Sharp b)smooth transitions in metal mixing

Welded joints analyzed using EDRX measurements .

"Deformation of the top bend is primarily driven by large expansion and contraction of the potting compound coupled with volumetric constraint offered by junction-box enclosure"



## **Opportunities moving forward in CIGS reliability**

- Standards
  - Develop standards ( light soak, Indoor tests- Find acceleration factors)
  - Develop standard test structures for analyzing different failure mechanisms
- Indoor ALT's -Identify Failure modes and mechanisms
  - Junction degradation (Relate Cell- Module reliability)
  - Interconnect (monolithic/cell based)
  - Packaging (Edge seal, EVA- Moisture ingress, PID)
  - Develop accelerated model
- Modeling
  - Thermal cycling, Mechanical failures
- Outdoor field performance :
  - Systematic metrology to understand field failures
  - Outdoor test individual modules and string outdoors in different climates and compare with field data
- Relate Indoor testing Outdoor testing- bridge the gap.
- Develop a web based reliability- bankability comprehensive database



# Acknowledgment

- U.S. DOE's Sun shot Initiative
- College of Nanoscale Science and Engineering (Albany)
- Photovoltaic Manufacturing consortium
  - Solar Energy development center (at Halfmoon NY)

THANK YOU FOR YOUR ATTENTION!

