

Accelerated Environmental Aging Effects and In-Situ Functional Testing of Commercial Photovoltaic Modules

T. Lai¹, R. Biggie¹, W.J. Huang², B.G. Potter, Jr.^{2,3} and K. Simmons-Potter^{1,3}

¹Electrical and Computer Engineering, ²Materials Science and Engineering, ³Optical Sciences The University of Arizona, Tucson, AZ 85721

Introduction and Motivation

- Degradation in PV modules is commonly investigated through methods such as stress tests and field-based life-cycle analysis.
- Accelerated lifecycle testing provides more rapid evaluation of module operational and performance evolution under fieldconsistent application environments.
- > The present program, performed in cooperation with Tucson Electric Power, evaluates commercial solar module temperature and time-dependent performance under accelerated lifecycle test conditions (temperature, humidity, irradiance) typical of Tucson, AZ over a full year.

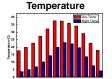
Experimental Details

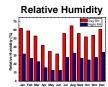
Environmental Testing Chamber

- Custom Envirotronics chamber
- Internal workspace of 99" L x 85" W x 83.75" H
- > Temperature range of -30°C to +85°C ± 1.1°C
- Relative humidity range of 20% to 95% ± 5% via integrated steamer and/or atomizer.

Solar Irradiance

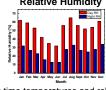
- Four Atlas metal halide arc lamps provide calibrated solar-spectrum irradiance over a 2.0m x 1.3m area with an average irradiance of 1000 W/m2 over the module.
- Irradiance measured throughout test period via two pyranometers mounted on top and bottom edges of module.


Photovoltaic Module


- Module under examination is Hanwha SolarOne HSL72P-PA-0-295K
- 1.985m L x 0.999m W
- > 72 poly-Si cells with a total cell area of 1.752m²
- ► STC Ratings: V_{oc} =45.0 V, I_{sc} =8.67 A, V_{mo} =36.3 V, I_{mo} =8.14 A, η = 15.3%
- Temp. Coeffs: P (-0.43%/°C), V (-0.31%/°C), I (+0.05%/°C)

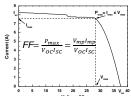
In-situ Performance Measurement

- > Current-voltage characteristics measured at 30 minute intervals throughout testing period. Open-circuit voltage (V_{oc}), short-circuit current (I_{sc}) , voltage and current at the maximum power point (V_{mp}, I_{mp}) , fill factor (FF), maximum power output (P_{max}) measured/computed in-situ.
- Environment (ambient) temperature and module front and backside temperature also monitored throughout test cycle.

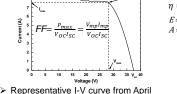

Environmental Lifecycle Conditions

- > Monthly average day- and night-time temperatures and relative humidities, combined with average monthly hours of peak solar irradiance in Tucson, AZ were used to define environmental conditions for accelerated lifecycle testing [1].
- daytime soak period. Night duration held at 0.75 hours

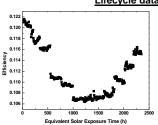
- > Excerpt from month of April showing representative three Ambient temperature closely approximates setpoint while to follow rapid changes in RH in temperature and dewpoint conditions.



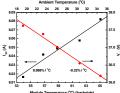
- > Primary degradation processes assumed to occur during throughout test period.

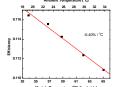

Environmental cycling: month of April

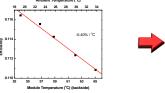
day-night environmental cycles. inherent limitations of chamber between day and night evident due to corresponding changes > Effective time acceleration of


Results: Environmental Effects on Module Performance

Key performance metrics indicated.


Lifecycle data: Efficiency = f(Temp and Time)


> Module performance variation with environment cycling and accumulated solar exposure integrates both temperaturedependence of efficiency for the module as well as timedependent degradation in module performance that is associated with aging effects.



Efficiency Degradation - Time only

Module Temperature Response

- Temperature-dependent module performance can be extracted from the total timetemperature degradation behavior to examine time-dependent aging.
- > The experimentally determined temperature coefficients for I-V metrics were found to be consistent with manufacturer's module specifications [2].

500 1000

- > Temperature coefficients can be used to correct for month-to-month variation in module daytime temperature and extract time dependence of module degradation.
- Results indicate a 2.1% relative degradation in module efficiency over the 12 month accelerated lifecycle test.

Conclusions

- > Accelerated lifecycle testing of commercial solar module integrated time, temperature, humidity and solar irradiance effects approximating Tucson, AZ climate conditions was performed.
- > In-situ monitoring of module function and ambient conditions confirmed module temp response.
- Module efficiency evolution with lifecycling was analyzed to isolate temperature and time-related contributions - time-dependent degradation (aging effect only) in efficiency of 2.1% (relative) was observed after the first 12 month period (Jan - Dec climate conditions).
- > Results consistent with typical first-year, field-based degradation observed for new polycrystalline Si modules under similar conditions [3].

References

[1] NREL. "30-Year Average of Monthly Solar Radiation." Internet: http://rredc.nrel.gov/solar/old_data/nsrdb/1961 90/redbook/sum2/state.html, 1990 [Oct., 2012].

1304. A Control of the Control of th

Acknowledgements

Equivalent Solar Exposure Time (h)

This work was supported by the Arizona Research Institute for Solar Energy (AzRISE) and by Tucson Electric Power Corp.