

DEGRADATION STUDY OF FIELDED PV MODULES FROM DIFFERENT CLIMATES IN CHINA

Dec 8th, 2015

Xian Dong

Shunde SYSU Institute for Solar Energy

Outlin

1.9 Introduction

- 2. Work about reliability of PV modules
- **3. Degradation mechanism**
- 4. Summary&Outlook

1. Introduction

Collaboration platforms

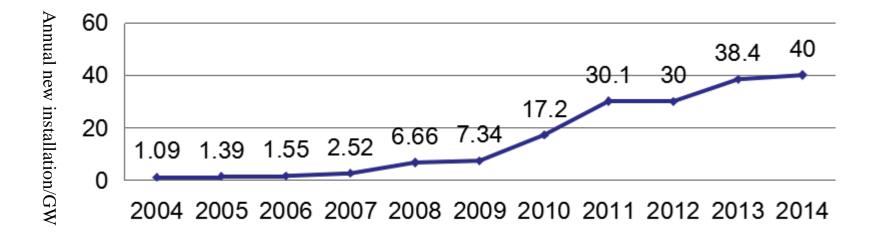
State Key Laboratory of Optoelectronic Materials and Technologies

South China Branch of NERCRE (National Engineering Research Center of Renewable Energy)

Guangdong Provincial Key Laboratory of Photovoltaic Technologies

Cooperation Base of CPVT (National Center of Supervision and Inspection on Solar Photovoltaic Products Quality) and Sun Yat-Sen University

Key Laboratory of Solar Energy of Education Department, Guangdong Province


Cooperating with multiple enterprises

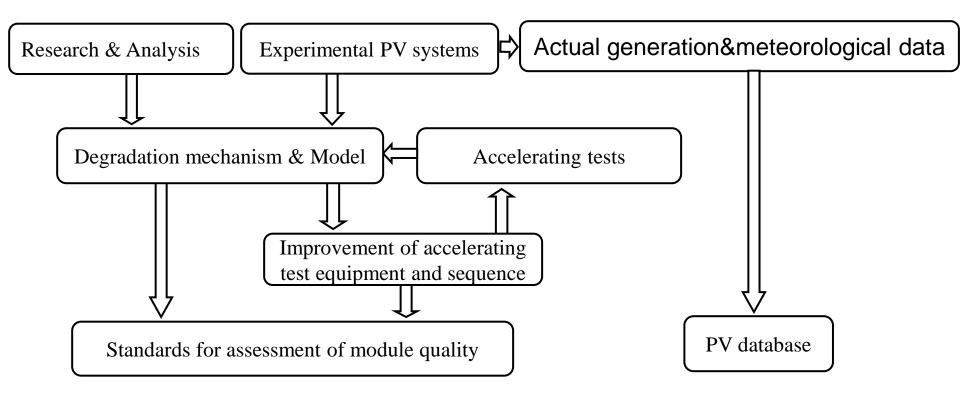
SYSU Solar 2. Work about reliability of PV modules

- > Why and how we do these work
- Distribution of experimental systems
- Collections of fielded PV modules
- Re-installation of fielded modules

۳۶۵ SYSU Solar 2. Work about reliability of PV modules

The Global PV market progressed in 2014: after three years of 30's GW of installation annually, reached 40 GW in 2014. (EPIA)

China is the world's biggest PV market now!



Why and how we do these work

Reliability and Life-cycle of modules are key points for PV systems

Scheme of quality assessment for PV modules

Set up a performance appraisal system for PV products

Distribution of experimental PV modules SYSU Solar

6	No.	Module	Location
7	1	Poly-Si	Guanghzou
Heilongijang	2	Amorphous	Guanghzou
S 2 12 Viena	3	Mono-Si	Guanghzou
	4	CIGS	Guanghzou
S Visiting	5	CdTe	Guanghzou
Gansu Inner Mongolia Hebei	6	HIT	Guanghzou
Ningxia Beijing Tianjin	7	Poly-Si	Guanghzou
Qinghai	X	mono,double glass	Guanghzou
Libet Z Henan	9	a-Si (5%)	Guanghzou
Tibet Sichuan Chongging	10	a-Si (25%)	Guanghzou
	11	a-Si (25%)	Guanghzou
Guizhou 14 1,2,3 tujian	12	Poly-Si	Qiqihaer
Yunnan 91040	13	Mono/Poly	Xining
Guange Hig.17,18 Taiwan	14	Mono-Si	Guilin
Taiwan Guangxi Guangdorig Kong Hainan	15	Poly-Si	Xichang
Hainan	16	Poly-Si	Shunde
	17	Poly-Si	Shunde
	18	Poly-Si	Shunde

Comparison of different technologies

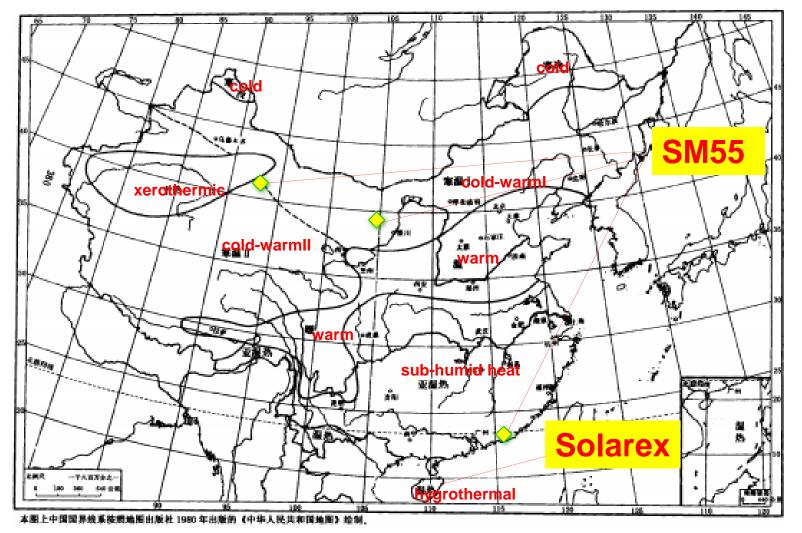
BIPV installation at SYSU(east campus)

Appearance of Kyocera module systems

Re-installation of fielded Solarex moduels

Xining,Qinghai (2011-)

Xichang, Sichuan (2013 -)


Qiqihaer, Heilongjiang (2011-)

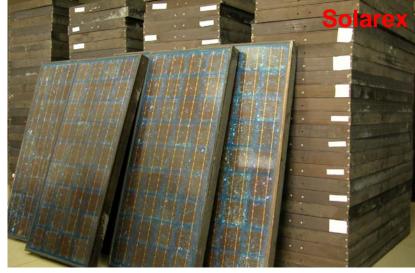
Guilin, Guangxi (2012-)

Distribution of 6 climates types in China SYSU Solar

(cold- xerothermic - cold-warm - warm- sub-humid heat - hygrothermal)

(From: GB/T 4797.1-2005 Environmental conditions appearing in nature of electric and electronic products-Temperature and humidity)

Collection of fielded PV modules


Module information						testing method					
Туре	Model	Location	Qty	Age	IV ^{1*}	IV ^{2*}	EL	IR	Material test	Notes	
Poly	Solarex	Haikou	177	30	V		V	٧	V	re-used	
	BP270	Shenzhen	50	28	V		V	V	V	re-used	
	SM55	Shenzhen	2051	20	V		٧	٧	V	re-used	
	M75	Dunhuang	100+	23	V	V	٧	٧			
	SP75	Dunhuang	10	15		V	٧				
Mon	M75	Haixi	112	23	V	V	٧				
0	SP75	Zhangye	96	15		V		٧			
	S(M)55	Baiyin	80	18		V		٧			
	SM55	Longnan ¹	64	17		V		٧			
	SM55	Longnan ²	60	17		V		٧			
	Shell 85-P	Longnan ²	20	15		V		٧			

(*IV*^{1*}:STC test; *IV*^{2*}:outdoor test)

Re-installation of Siemens modules

Modules of the same batch worked in different climates were studied.
 13 PV systems would be re-installed with these 17-year-old modules in typical climate locations.

3. Degradation mechanism

- Failure from terminal connection
- > Failure from Al-frame, silicone sealant
- Degradation from pollutant
- Degradation from encapsulant material-2 cases
 case 1: Tracking degradation of Solarex modules
 case 2: Compare of Siemens modules from different climates

Failure from terminal connection

Statistical analysis of appearance defects for 177 Solarex modules in 2009

Appearance defects	Ratio (%)	Remarks
Appearance crack, bending or broken	79.7	including backsheet crack
Broken cells	1.7	-
Cell cracks	63.3	possible crack or snail trails
Junction box rusty	12.4	3.4% without output
Delaminated of EVA	57.6	bubbles inside EVA
Cable failures	2.8	no cable or without outer plastic
		protect
Diode failures	2.8	
Yellow/brown appearance	100	encapsulation material aging
Dirt or dust on the surface glass	100	part of them could be cleaned

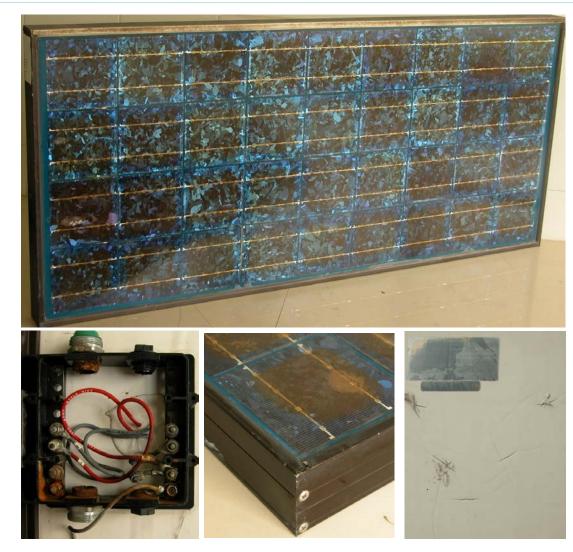
Degradation of encapsulant material Sealability of J-box

6/177 modules failed for bad terminal connection-Solarex module produced in 1982 Improvement of quality and process for J-box after 1990s.

Diodes and J-box failure-PVQAT

DC1500V module

Failure from AI-frame and silicone sealant



Degradation from pollutant

Case1:Tracking degradation of Solarex modules

Poly module Glass: 3.2mm **≻**EVA ▶laminated ► Backsheet: Tedlar only Solar cell: thckness $425\mu m$, size 101×101 mm \triangleright Rated value: P=42.6Wp Voc=20.8V Isc=3.04AVm=15.1V Im=2.82A

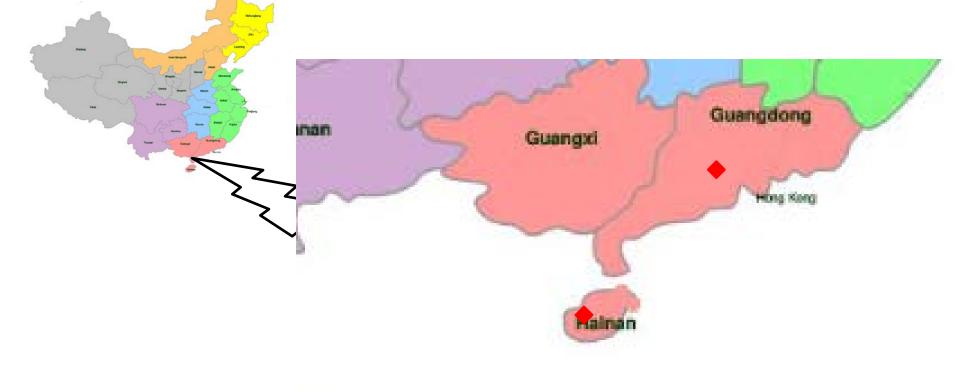
Hainan(1985-2008, off-grid)

Guangzhou(2010-, on-grid)

HISTORY

- Procuce: 1982 Installation:1985 Location:Hainan(1985-2008) 18 ° 23'~18° 50'N, 108° 36'~109° 05'E
- Sub-tropic climate
- ➢ sub-humid heat climate

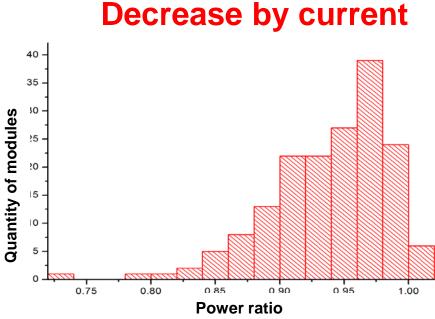
Location:Guangzhou(2010-) 23 ° 3'N,


- 113 ° 22′E
- Sub-tropic climate
- Sub-humid heat climate

144 modules re-installed in Guangzhou

Historical meteorological data of the two places

Place	7 (°C)	(°C)	<u></u> <i>T</i> (°C)	R (%)	<u>5</u> (hour)	year
HK	24.2	28.0	21.3	84	2070	1971-2000
GZ	22.1	26.7	19.3	78	1617	2001-2010



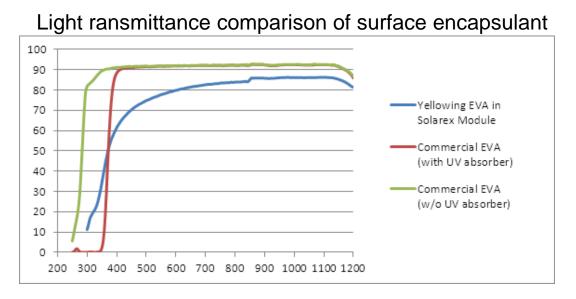
Degradation of 22-year-old multi-crystalline Si modules(1986-2008)

	Pm/W	Im/A	Vm/V	lsc/A	Voc/V	FF
Rated values	42.6	2.82	15.1	3.02	20.8	0.68
Actual values	39.7	2.50	15.9	2.8	20.3	0.7
Relative ratio	93.9	88.7	105.2	92.1	97.5	103.9

(171 modules, for 6 modules with rusty-broken junction-box leading to no electrical output)

144 selected modules were tested in 2009, 2014, 2015 at standard test condition

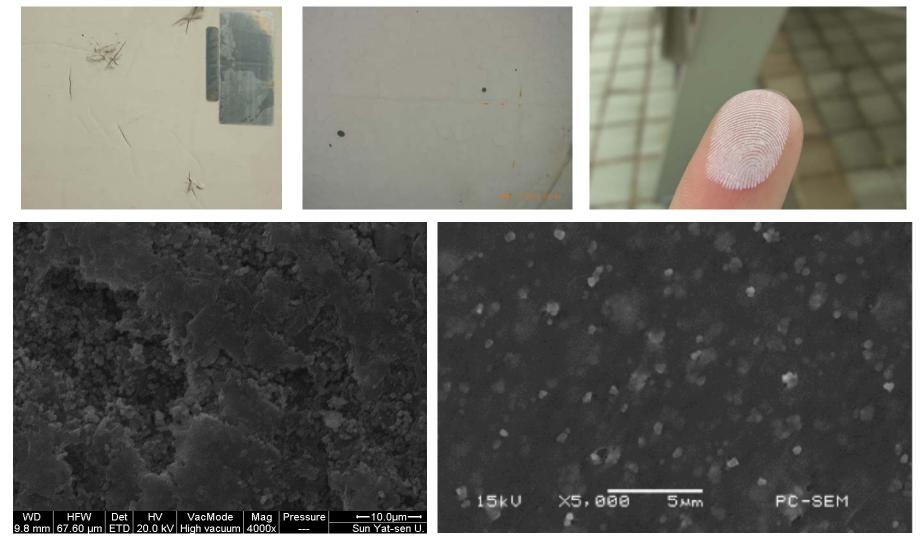
Degradation Ratio to the rated value											
Test time	Pm	Im	Vm	Isc	Voc						
2009	0.96	0.88	1.1	0.91	0.98						
2014	0.95	0.86	1.1	0.89	0.99						
2015	0.94	0.86	1.1	0.89	0.99						


tion Datia to the rated value

EVA Analysis

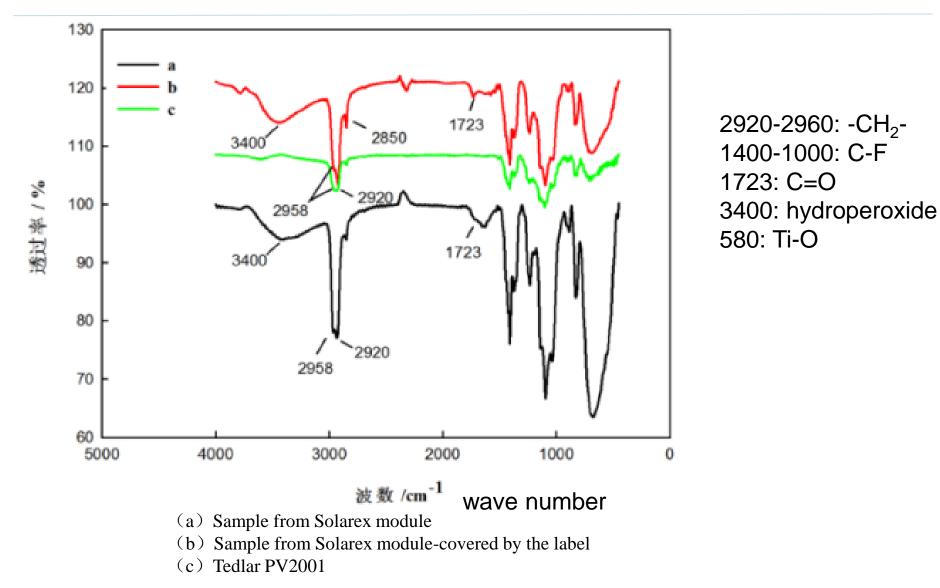
	method	reference	aged module
crosslinking-degree	exylene extraction	80-90	73 (marginal part)
light transmittance	ultraviolet spectrophotometer	91-93	<80
melting point	DSC	62-72	71
heat of solidification	DSC	5	0.54
VA content	TGA	28-33	33
РН	PH meter	5.69	5.09
yellowness index	colorimeter	0.9	11.5
tensile strength	Electronic Pull and	18	3
breakage elongation	Push Strength Caculator	800	697
IR	IR spectrophotometer	-	acetic acid

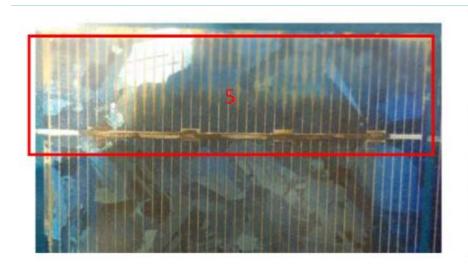
Crosslink degree of EVA from different parts in the module

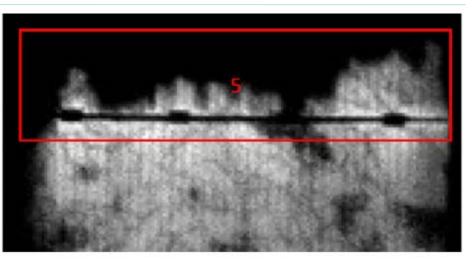

Back-sheet analysis Solarex/BP270/SM55

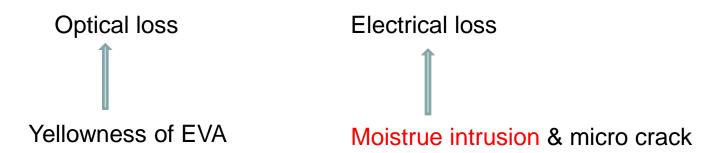
		Solarex	BP270	SM55
WVT (gm/[m ² -day])		8.21	3.98	3.64
Thickness (um)		108	177	174
Thickness of fluride film (un	n)	96.8	40.3	40.5
Structure	ls	moistur	e critica	
Tensile strenth (Mpa)	MD	46.52	93.52	95.06
Tensne suenui (Mpa)	TD	73.18	110.65	127.59
brookage alongation (%)	MD	184.45	165.45	178.4
breakage elongation (%)	TD	122.92	116.34	80.56
breakdown-voltage (kV)	breakdown-voltage (kV)		15.66	15.83
volume resistivity		$1.964*10^{16}$	$1.266^{*}10^{16}$	$1.364*10^{16}$

WVT is at least 3 times as much as the reference value.


Backsheet pulverization


Sample from Solarex module


New backsheet-Tedalar PV2001



Degradation mechanism:

SYSU Solar Case2:Compare of Siemens modules from different climates

Mono module

- ≻Glass 3.2mm, EVA laminated
- Pruduce/installation time:1992-1998
- ➢Back-sheet: Tedlar/PET/Tedlar
- ≻Cell thickness 320µm, size 101×101mm
- Rated value: P = 55 Wp, Voc = 21.7 V,

Isc =
$$3.45 \text{ A}$$
, Vm = 17.4 V , Im = 3.15 A

HISTORY SM55

- Procuce and installation: 1995
- Location:Shenzhen(1995-2014) 18 ° 23'N, 108 ° 36'E
- Sub-humid heat climate
- > Nearby the sea(<1000m)

M75

- Procuce and installation: 1992
- Location:Shenzhen(1992-2015)
 38° 79'N, 93° 35'E
- Cold-warm climate
- Desert

Siemens modules produced during 1992-1998

Climates covers cold-warml, cold-warmll and warm area

Dunhuang

Zhangye

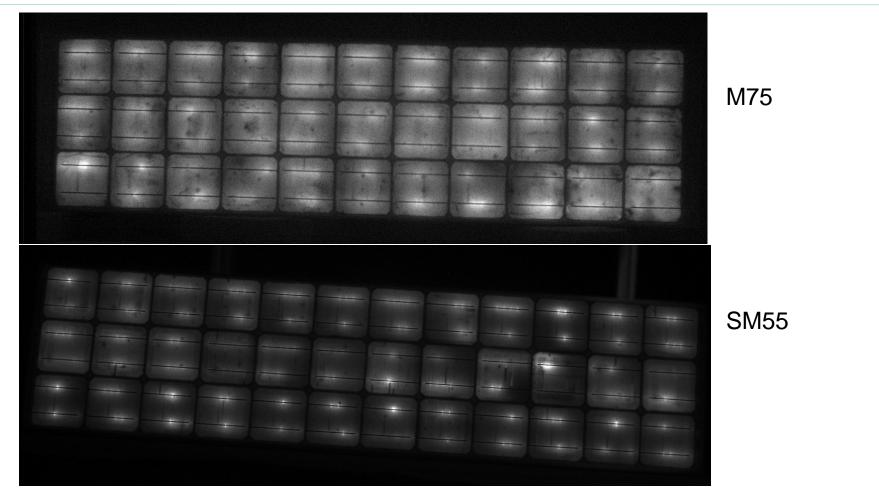
Longnan¹

Degradation compare of modules from different climates(STC)

SM55	Age	Qty	Pm/W	Im/A	Vm/V	Isc/A	Voc/V	FF
Rated val	ue		55	3.15	17.4	3.45	21.7	0.73
Storage		1	51.6	3.03	17.0	3.35	21.6	0.71
Shenzhen	20	500	41.3	2.77	14.8	3.19	21.2	0.61

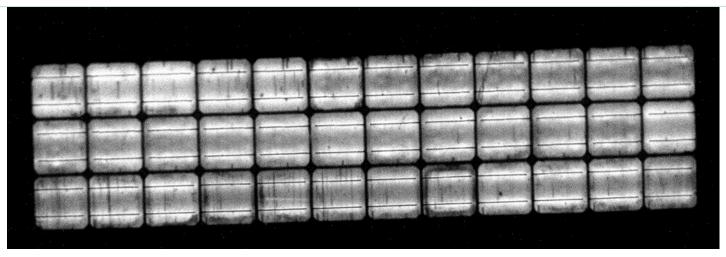
6%	25%			79	6		13%	
M75	Age	Qty	Pm/W	Im/A	Vm/V	Isc/A	Voc/V	FF
Rated Value			48	3.02	15.9	3.35	19.8	0.72
Dunhang	23	61	44.6	2.92	15.3	3.25	19.7	0.70
Haixi	23	41	41.8	2.77	15.1	3.14	19.6	0.68

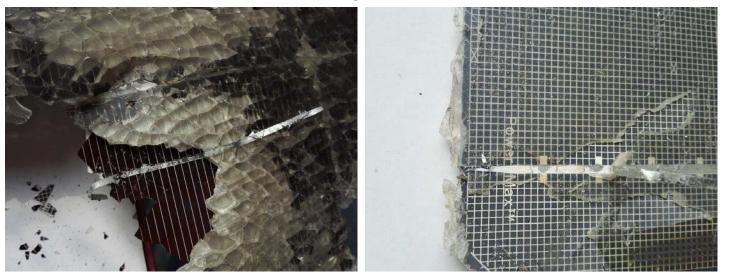
Relationship between degradation and climates?



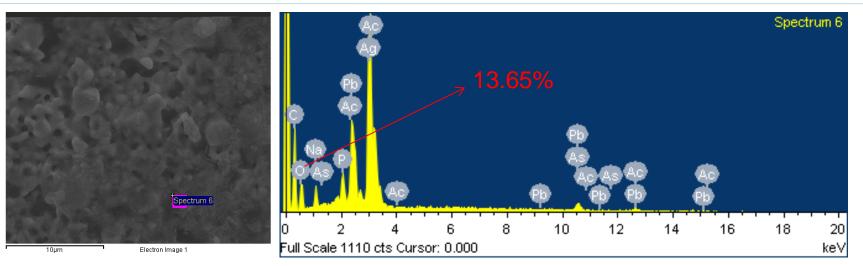
Big deviation beween STC and outdoor testing result

Dunhuang	Pmax	Voc	Vmpp	Impp	Isc	FF
Rated	48	19.80	15.90	3.02	3.35	0.72
STC	44.6	19.68	15.29	2.92	3.25	0.70
Outdoor	31.1	17.61	13.29	2.34	2.62	0.67
					-	
Haixi	Pmax	Voc	Vmpp	Impp	Isc	FF
Rated	48	19.80	15.90	3.02	3.35	0.72
STC	41.8	19.63	3.14	15.09	2.77	0.68
Outdoor	30.4	18.31	13.45	2.26	2.63	0.63

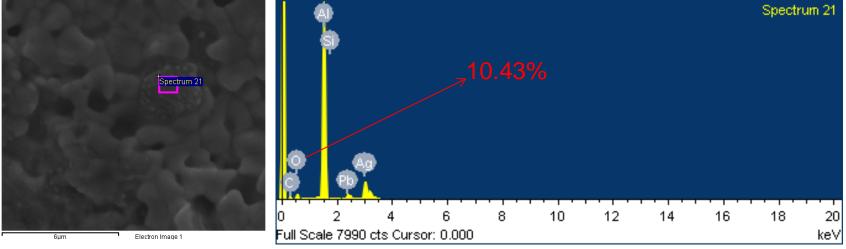

Deviation: 30%



Why high series resistance?



SM55 Storage indoor



Structrue of electron connection in front surface and back surface

Ag fingers on the front surface of solar cell

Fingers on the back surface of solar cell

Degradation mechanism:

Bad contact between solar cell and ribbon

AI-Ag paste/Soldering process/severe climate

4. Summary

- Degradation are caused by complex reasons, so it's hard to reach a conclusion. More data should be collected from different typical climates to study the effect of humidity, temperature and UV dose, salt mist, etc. to modules.
- The Solarex modules were firstly degraded by degradation of EVA(for loss of light transmittance), then by the crosion of fingers and ribbons. Power degradation of fielded modules is less than 10% for 28-year outdoor operation. Poly-Si modules show lower degradation rate than mono-Si modules.
- Accelerating test procedures should be optimized according to practice.New analysis method should be developed to test modules without damage.
- During work of reliability, it's important to announce the testing condition for it would cause big deviation.
- Lack of original information of PV modules and test conditions are great obstacles we met during study of degradation. So our test result could only supply a reference.

Outlook

1. How to define module's life rationally? It's quite different from business warranty.

2. Select modules according to local circumstances. Meanwhile, standards of accelerating tests should be localization and detailed.

3. Mono-Si and poly-Si modules?

4. We are building a living fossil of fielded modules in order to track the degradate trend, it would be a reference to the testing dose and sequence.

5. No snail trails were found in these Siemens modules. Semiconductor is very stable theoritically, but is there any relationship between the module performance and cell thickness?

Thanks for your attention!

Name: Xian Dong Email: xiandong00@163.com Tel: +86 18929971580