

Moving the PV Industry to a Quantitative Adhesion Test Method

Nick Bosco National Renewable Energy Laboratory

3rd Altas/NIST Workshop on PV Materials Durability December 8-9, 2015

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

program

Scientific Approach to Reducing PV Module Material Costs While Increasing Durability

Nick Bosco, David Miller, Michael Kempe and John Wohlgemuth National Renewable Energy Laboratory

Reinhold Dauskardt Stanford University

Jayesh Bokria Specialized Technology Resources (STR)

Task I: Metrology Development

Develop metrology for material and module level evaluation

Task II: Historical Survey

Locate historical modules and measure identified material properties with developed metrology

Task III: Exposures, Modeling and Test Development

Physically model degradation Use developed physical models to

- develop new, lower cost materials
- design equivalent lifetime tests
- compose international test standards
- complete quality control guidelines

limitations of common adhesion tests

lap shear

peel test

fracture mechanics approach

sample and test modification

single cantilever beam

glass/EVA

 $G = \frac{6P^2a^2}{b^2h^3E}$ analytical solution

single cantilever beam

0% silane

- Load reversals to measure compliance with crack extension
- produce linear fit of compliance with crack extension
- Evaluate toughness at each crack length

$$G = \frac{P^2}{2b} \frac{dC}{da} = \frac{P_n^2}{2b} 3ma_n^2$$

experimental solution

single cantilever beam, coupon level

0% silane EVA on glass

2mm

0.8 mm Ti beam

1.5 mm Ti beam

Calculate fracture toughness for each crack extension

single cantilever beam, module level

0% silane

corner adhesion test

- Change in compliance becomes independent of crack length
- Crack will extend at a constant, critical load

corner adhesion test, coupon level

corner adhesion test, module level

corner adhesion test, module level

applied to module cell

applied to module backsheet

NATIONAL RENEWABLE ENERGY LABORATORY

corner adhesion test- tab inset

FEM simulation

Tab inset leads to an inaccurate measurement

validation- tab offset

Application of the load at the beams tip is required for an accurate analytical solution. 1.2×10^{-3} experiment **FEM** 1.0 E-B compliance (m/N) 8.0 0.6 0.4 - $\left(\frac{dC}{dA}\right)$ 0.2 $=\frac{3}{Eh^3\tan(\theta/2)^2}$ 0.0 0.4 0.8 1.2×10^{-3} 0.0 crack area (m²)

experimental-loading link

 Addition of an articulating link in the loading train is required to minimize inplane tractions on the beam's tip and ensure an accurate analytical solution.

TESTING. NATIONAL RENEWABLE ENERGY LABORATORY

validation- tab offset

 Two solutions offset tab

- Tab location ensures an analytically correct measurement.
- Reusable tab fastened to beam is not depended on a secondary adhesive for testing.

offset beam

Backsheet

- 3mm polycarbonate/acrylic beam
- Loctite 495 adhesive (applied on beam)
- Loctite 7452 accelerator (applied to backsheet)
- Section around beam with a sharp blade

sample prep and experimental

- Remove backsheet and cell metalization
 - Heat-gun, razor and elbow grease
 - Wet sand in a solvent
- Adhere beam and section cell
 - 0.86 o6 1.6mm Ti beam
 - 3M DP420 adhesive
 - Diamond or carbide tip scribe
- Apply a constant displacement rate and monitor load response
 - Tab attached to beam with a 0-80 fastener
- Use plateau load for G_{ic} calculation

experimental measurement SMUD Arco module- exposed backsheet

SMUD Arco module- unexposed EVA/glass

experimental measurement SMUD Arco module- exposed EVA/glass

SMUD Arco module- EVA

SMUD Arco module- backsheet

EVA subcritical

direction

- Ongoing NREL scientific work is focused on applying the FM method to characterization for all PV interfaces
- We will develop protocols for applying this technique to all relevant material systems
- This work will provide the scientific basis for incorporating these techniques into future revisions of international standards