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Non Contact Electrical Characterization of PV Films 

 Review of conductivity/dielectric/insulation resistance testing 
• Direct Current (DC) Insulation Resistance Standard Test  

(IEC 62788-1-2, 2014 developed for PV insulators)  
• Alternating Current (AC) Insulation Resistance Test  

(ASTM D149 modified for printed circuit boards dielectrics)   
• Brief intro to polarization and conduction processes in dielectrics 
• real and imaginary AC conductivity  
• correlation between DC and AC conductivity 

 Non-contact AC conductivity measurement using a 7 GHz resonant  cavity 

• AC conductivity of PET – effect of exposure to environmental conditions 
• Estimation of the corresponding  insulation resistance change 

 

Jan Obrzut, NIST, MML, Div 642 (jan.obrzut@nist.gov) 

Contributors: Xiaohong Gu, NIST, EL   

 3rdAtlas/NIST Workshop on Photovoltaic Materials Durability December 8 and 9, 2015  
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International Standards for PV modules 

IEC 61215 (crystalline silicon), IEC 61646 (thin films) 

Requirements for the design qualification and approval of terrestrial 
photovoltaic modules suitable for long-term operation in general open 
air climates   

Insulation resistance passing criteria 
a) the degradation of maximum output power does not exceed the prescribed limit after 

each test nor 8 % after each test sequence; 
b) no sample has exhibited any open circuit during the tests; 
c) there is no visual evidence of a major defect, as defined in Clause 7; 
d) the insulation test requirements are met after the tests; 

R >= 400 MΩ if area < 0.1 m2, Dielectric withstanding voltage 1000 V  for 1min 
R *area >= 40 MΩ m2  at  500 V if  area  > 0.1 m2 

e) the wet leakage current test requirements are met at the beginning and the end of each 
sequence and after the damp heat test; 

f) specific requirements of the individual tests are met. 
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HV DC Insulation resistance test (  IEC 62788-1-2, 2014) 
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Pros: 
• Simple instrumentation, easy visualization 
•  Widely accepted  
• Large data base of performance (failure rate) in commercial applications  

(oldest  standards , R. Bartnikas, 1982 ) 

HV Direct Current  Insulation Resistance Test 

Cons: 
• Long testing (electrification) time to read the steady state leakage current is-∝ = 

V0/Rs  
• Arbitrary acceptance criteria, often based on historic performance (R> 400 MΩ) 
•  All signals are transient until the steady state conditions are reached, then vs = V0   
• Test results are difficult to link with the physical mechanism of aging and reliability 

projection   
(the current decay and kinetics of charging are consequence of several  processes 
acting simultaneously: dipolar polarization, charge transport, space charge ) 

Step voltage stimulus – current decay response in time domain 
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Alternating Current (AC)  Insulation Resistance Test 
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Waveform Measurements in Time and Frequency Domain 

• Time domain - transient response, visualization 
• Frequency domain - steady state phasor 

transforms are convenient for calculating 
materials property from  complex conductivity 

• Non-linear response – harmonics 
early indicator of dielectric-breakdown 
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determine physical mechanism of aging 

J. Obrzut, Phys.Rev. B,  76, 195420 (2007), Phys.Rev. B,  80, 195211 (2009) 
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Couplers rotated 89° 
(cross-polarized) create 
impedance termination  
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Conductive loss causes the 
resonant peak to broaden and 
decrease the quality factor Q. 

c

sc

f
ff −Frequency shift in position of the resonant 

peak is proportional to the specimen dielectric 
constant. 

The specimen conductivity and permittivity can be determined from the measured 
change in Q-factor and frequency shift. 

Non Contact Measurement of AC Conductivity by the 
Microwave Resonant Cavity Technique 

partial insertion:  
Vx = w  t  hx 

IEC TS 62607-6-4 “Graphene – Surface conductance measurement  using resonant cavity” J. Obrzut 2015 
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fo103 = 7.3191125 GHz ± 50 kHz,  
 frequency resolution 10-6 ! 

small changes in the specimen conductivity can be easily detected 

Non Contact Measurement of Conductivity by the Microwave 
Resonant Cavity Technique 
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partial insertion:  
Vx = w  t  hx 
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Effect of environmental exposure on MW conductivity of PET  
(ambient RH, T, sunlight exposure)  

• MW Conductivity increases with 
duration of the environmental stress 

•  DC conductivity too small to measure  

Specimen size: 
5 mm × 295 µm × 10 mm  

(Eq. 1) 

IEC TS 62607-6-4 “Graphene – Surface conductance measurement  using resonant cavity” J. Obrzut 2015 
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Days   σ (µS/cm) στ/σ0  
0 54   1 
184 60  1.11 
392 63  1.16 
510 66  1.22 
τfailure   1.4 S/cm       2.5 x104 

Projected degradation of  HV  DC resistivity 

(Rs-min-field = 4 x 108 Ω, ) ≈ 8.6 x 1012 Ωcm  

Effect of environmental exposure on MW conductivity of PET  

HV DC Insulation resistance test  
(per   IEC 62788-1-2, 2014) 

Days  ρ (Ω cm)  
0   2.2 × 1017  
184   2.0 × 1017 
392   1.9 × 1017 

510   1.8 × 1017 
τfailure    8.6 × 1012 

AC (7GHz) conductivity increase 

There is no indication that the environmental 
exposure would compromise  

HV DC insulation resistance minimum 
requirements 
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MW Conductivity of PET, after UV and Temp accelerated stress test 
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Measurement: Plots of Quality factor change in conductivity notation (Eq. 1)  
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MW Conductivity of PET, after exposure to UV, Temp and  
60% RH 
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Tensile  test results 
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• Direct Current (DC) High Voltage Insulation Resistance Test: 
step voltage – current decay in time domain 
 easy to visualize, commonly used 
 

• Alternating Current (AC) Insulation Resistance Test 
phasor transform in frequency domain  
 
 
fast, physical mechanism of charge transport 
at high frequencies eliminates ambiguity with ionic current (redox 
process) 

•  Demonstrated non-contact resonant  cavity test method for conductivity 
of PET samples. The method operates at 7 GHz and is sensitive to 
aging effects caused by the UV, T, RH ambient and accelerated stress. 
No direct correlation with the life test. 

• sensitive, fast, non-invasive, small specimens (New IEC std developed 
at NIST). 
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