Predictive and Semi-gSEM Models of Poly(Ethylene-Terephthalate) under Multi-Factor Accelerated Weathering Exposures

> Abdulkerim Gok¹, David K. Ngendahimana², Cara L. Fagerholm¹, Laura S. Bruckman¹, Jiayang Sun², Roger H. French¹

¹Case Western Reserve University, SDLE Research Center, 10900 Euclid Avenue, Cleveland, USA, 44106 ²Case Western Reserve University, Center for Statistical Research, Computing & Collaboration (SR2c), Department of Epidemiology and Biostatistics, 10900 Euclid Avenue, Cleveland, USA, 44106

> 3rd Annual NIST/Atlas PV Polymers Workshop 12/8/2015

Motivation

Degradation Science¹ Of Complex Materials Systems Under Multi-factor Exposures

Develop Data-driven Analysis and Modeling

- Exploratory Data Analysis
- Predictive Modeling
- Diagnostic Modeling for Degradation Mechanisms and Pathways

Using Un-biased Analysis, based in Statistical Significance

• That Complements Hypothesis-driven Physical & Chemical Modeling

PET Films Case Study

NSTITUTE


- Longitudinal Weathering Study
- Under 4 Accelerated Exposure Conditions

1. Roger H. French, et al., Degradation science: Mesoscopic evolution and temporal analytics of photovoltal energy materials" Current Opinion in Solid State and Material Science, doi:10.1016/j.cossms.2014.12.008

SDLE Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2012

December 11, 2015, VuGraph 2

Current Opinion in Solid State and Materials Science

journal homepage: www.elsevier.com/locate/cossms

Degradation science: Mesoscopic evolution and temporal analytics of photovoltaic energy materials

Roger H. French^{a,b,c,d,*}, Rudolf Podgornik^{b,e}, Timothy J. Peshek^{a,b,d}, Laura S. Bruckman^{a,b}, Yifan Xu^{f,g}, Nicholas R. Wheeler^{a,c}, Abdulkerim Gok^{a,b}, Yang Hu^{a,b}, Mohammad A. Hossain^{a,h}, Devin A. Gordon^{a,b}, Pei Zhao^{a,i}, Jiayang Sun^{f,g,1}, Guo-Qiang Zhang^{i,j,1}

ARTICLE INFO

Article history: Received 10 December 2014 Accepted 20 December 2014 Available online xxxx

Keywords: Photovoltaics Degradation Mesoscopic evolution Real-world Data science Epidemiology Reliability

ABSTRACT

Based on recent advances in nanoscience, data science and the availability of massive real-world datastreams, the temporal evolution of mesoscopic energy materials can now be more fully studied. The temporal evolution is vastly complex in time and length scales and is fundamentally challenging to scientific understanding of degradation mechanisms and pathways responsible for energy materials evolution over lifetime. We propose a paradigm shift towards mesoscopic evolution modeling, based on physical and statistical models, that would integrate laboratory studies and real-world massive datastreams into a stress/mechanism/response framework with predictive capabilities. These epidemiological studies encompass the variability in properties that affect performance of material ensembles. This mesoscopic evolution modeling is shown to encompass the heterogeneity of these materials and systems, and enables the discrimination of the fast dynamics of their functional use and the slow and/or rare events of their degradation. We delineate paths forward for degradation science.

© 2015 Elsevier Ltd. All rights reserved.

Lifetime

GREAT LAKES ENERGY INSTITUTE Roger H. French, et al., <u>Degradation science: Mesoscopic evolution and temporal analytics of</u> <u>photovoltaic energy materials" Current Opinion in Solid State and Material</u> <u>Science</u>, <u>doi:10.1016/j.cossms.2014.12.008</u>

olid state & materials so

Longitudinal Weathering Study of PET Grades

The three PET grades used:

GREAT LAKES ENERGY

- Unstabilized (Dupont-Teijin Melinex 454, 3 mil)
- UV stabilized (Dupont-Teijin Tetoron HB3, 2 mil)
- Hydrolytically stabilized (Mitsubishi 8LH1, 5 mil)

A lab-based, completely randomized, longitudinal study design

- Followed over time with repeated measurements.
 - Step size is one week (168 hours) for a total of 7 weeks (1176 hours)
 - Retained Sample Library: Retain one sample at each time step

More Generally:

December 11, 2015, VuGraph 4

SDLE Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2012 http://sdle.case.edu

Exposure Conditions

Heat and humidity exposures

Environmental test chambers Temperature and humidity control

1) DampHeat

Constant exposure at 85°C and 85%RH per IEC 61215

2) FreezeThaw

20 hrs of 70 °C at 85% RH plus 0.5 hrs of -40 °C at 0 % RH

UVA light exposures

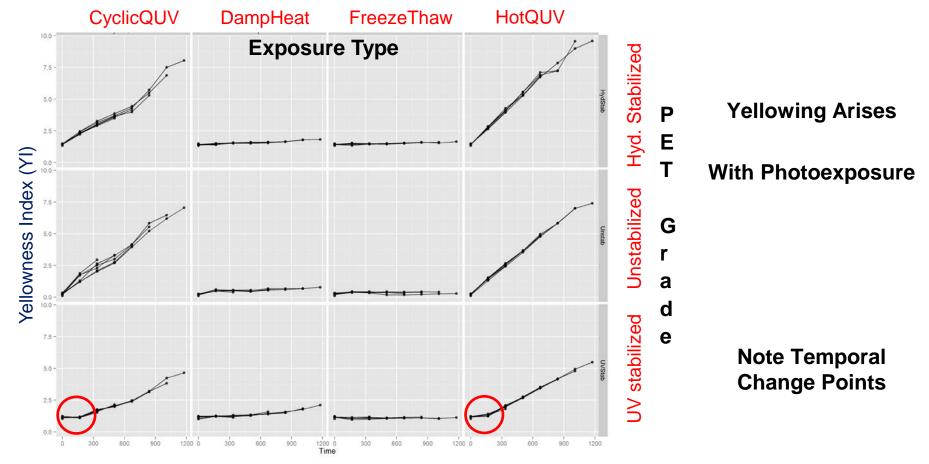
Fluorescent weathering tester Outfitted with UVA 340 lamps and water spray

3) ASTM G154 Cycle 4 (CyclicQUV)

8 hrs of 1.55 W/m² @ 340 nm light at 70 °C plus 4 hrs of condensing humidity in dark at 50 °C

4) ASTM G154 Cycle 4 without the condensing humidity (HotQUV)

Constant UVA light at 1.55 W/m² @ 340 nm at 70°C



Performance Response: Yellowness Index (YI)

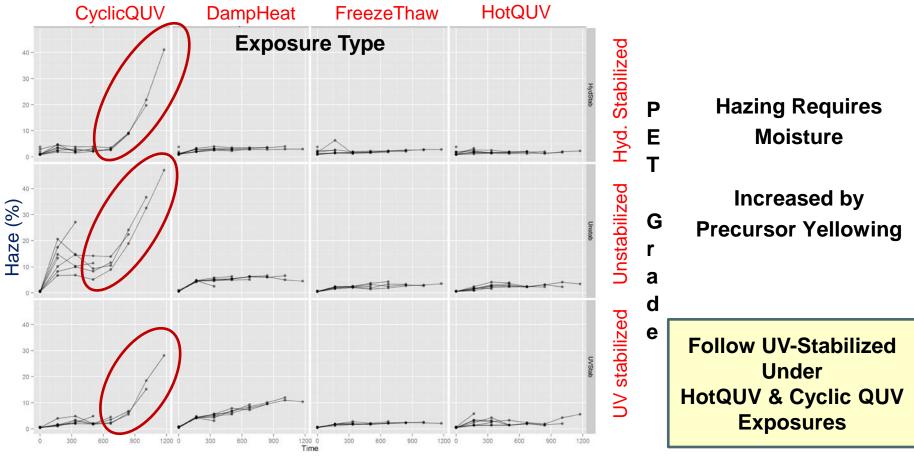
Humidity only, did not result in significant yellowing.

In UV stabilized grade, change point in YI after first exposure step.

SDLE Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2012 http://adl

GREAT LAKES ENERGY INSTITUTE

Performance Response: Haze (%)

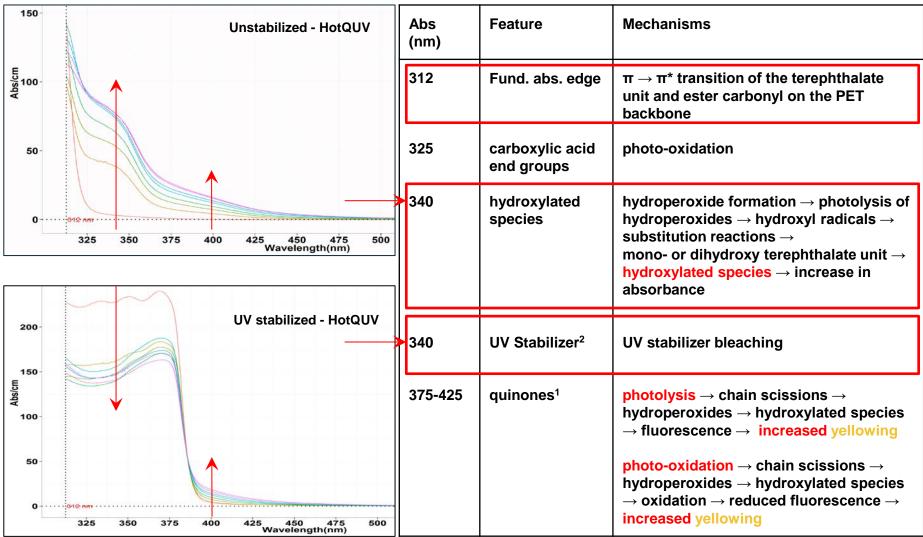

Humidity only did not result in significant hazing.

No hazing observed with light only

• Even with high level of yellowing.

Marked Hazing in CyclicQUV exposure in presence of light & moisture.

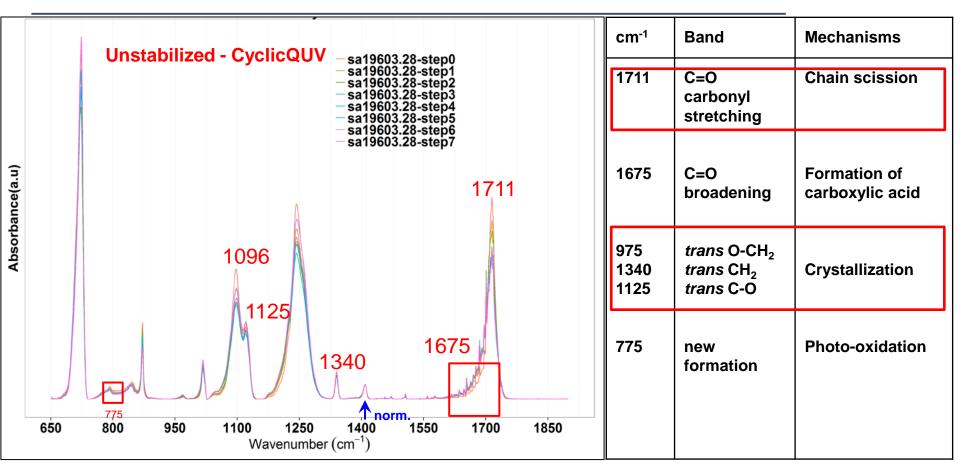
• Increased hazing in unstabilized grade than in UV stabilized grade.



GREAT LAKES

SOLAR DURABILITY AN

Mechanistic: PET UV-Vis Spectral Features


Choose 2 UV Mechanisms

- 312 nm: Fundamental Absorption Edge
- 340 nm: UV Stabilizer Bleaching For Stabilized PET

CASE S | GREAT LAKE VESTERN ENERGY RESERVE INSTITUTE [1] Yang, Poly. Degr.Stab., 95(1):53–58,2010, Tabankia, Poly. Degr,Stab., 14(4):351–365, 1986, Fechine, J. App. Poly. Sci.,104(1):51–57, 2007
[2]From UV Spectra of the UV stabilizer (Cyasorb 3638)
SDLE Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2012
<u>Intro-Adheneering</u>
<u>December 11, 2015, VuGraph 8</u>

Mechanistic: PET FTIR Spectral Features

Normalized to the internal reference band at 1410 cm⁻¹

Changes in the rotational isomers Formation of end groups and degradation byproducts

GREAT LAKES [1] Sammon, Poly. Degr.Stab., 67(1):149–158, 2000. Andanson Macr. Symposia, 265:195–204, 2008. Zhu Polymer, 46(20):8883–8891, 2005 ENERGY

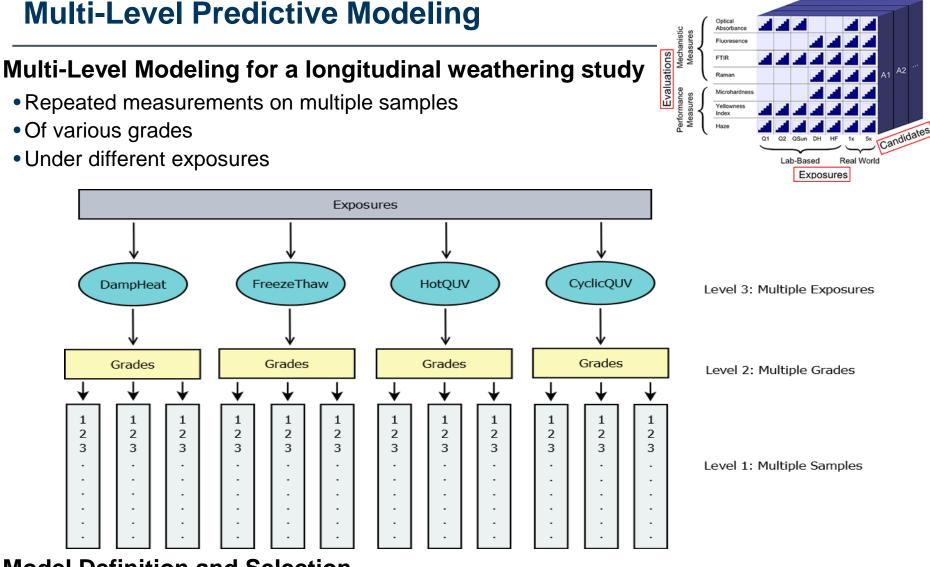
SDLE Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2012 http://sdie.com/

December 11, 2015, VuGraph 9

Time	3.2 3.6 4.0		0.10 0.13		0.55 0.70 0.8	5	975		un Stab	-CyclicG	UV-ftir		1125		1340		25 30 35	1	6 7 5	-171 ⁻	1
		-0.26	-0.86	-0.79	-0.94	-0.53	0.96	0.28	0.89	-0.68	-0.45	0.75	0.86	-0.61	0.80	0.33			0.77	-0.80	8
32 38		0.66	0.60	0.64	0.32	0.53	**	0.82		0.75	0.75	-0.65	-0.36	0.73	14	0.49	-0.47	-0.44	-0.49	0.46	
₩₩	منجب ا	tir775	0.61	0.58	0.32	1.0		0.40	***	0.42	0.51	-0.30	C3	0.43	0.02				-	0.32	8
0.0 1.0 1.0		and the second	ftir793	0.96	0.85	0.69	-0.79	27	-0.79	0.86	0.67	-0.88	-0.87	0.80	-0.51		-0.50	-0.29	-0.83	0.82	
, , , , , , , , , , , , , ,		Price Print	فمستعن		0.76	0.78	-0.70	0.25	-0.79	0.84	0.65	-0.88	-0.87	0.80	-0.46	20	-0.41	-0.41	-0.83	0.75	0.14 0.18
210 201 210 201 201 201 201 201 201 201 201 201 201		<u></u>	1 martine	a start and		0.49	-0.90	•	-0.78	0.72	0.58	-0.72	-0.75	0.65	-0.66	-0.41			-0.70	<mark>0.85</mark>	,
	-	\sim			····		-0.50	0.35	-0.58	0.76	0.45	- 0 .86	- 0 .74	0.71	-0.39	0.40	-0.62	-0.63	-0.84	0.58	0.008 0.013
i i i i i i i i i i i i i i i i i i i	<u> </u>	\sim	non the	~ <u>_</u>		1		0.27	0.92	-0.69	-0.48	0.76	0.88	-0.64	0.82	0.28	•••		0.80	-0.85	
	مستغنيتهم	سيجنب	·	- <u></u>	~~	م سمبيل ا	\checkmark			0.49	0.60	*0.24		0.53	0.55	0.72	-0.54	-0.52	•		0.32 0.40
100 P00		××/	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		a second		· / ·			-0.71	-0.51	0.76	0.96	-0.70	0.72		0.32	0.32	0.86	-0.84	1
		\sim				***	\				0.89	- <mark>0.94</mark>	-0.82	0.98	-0.31	0.28	-0.48	-0.45	-0.91	0.89	101
			م بن الم م	- <u>-</u>		ו•			نيب (مربع	A CONTRACT		-0.68	-0.58	0.93	-	0.59	-026	43	-0.67	0.83	
				<u> </u>				\sim	1				0.89	-0.88	0.53	-0.28	0.59	0.56	0.95	-0.80	80 850
H H					·····				· · · · ·		<u> </u>			-0.80	0.68	•••	0.50	0.49	0.95	-0.84	
		~				¥.			-	<u>s</u>					cai tir1340	0.33	-0.48	-0.45	-0.88	0.90	16 20
23 13			·····	·····		***				<u> </u>				· · · ·		0.37 ftir1370	-	-	0.54	-0.44	1100
		~~	· · · · ·			di na											-0.88	-0.89	-029		
×		<u>~</u>														A veria	5ir1340.ftir1370	0.99	0.59	•	1 TE
					. .						<u>~~</u>					•••			0.57	••	0.79
			<u> </u>							· · ·	\					<u> </u>				-0.86	9
		0.080 0.095	and the second second	0.14 0.17 0.20	م مرجعين	0.008 0.012		0.32 0.38	. Th	1.0 1.2 1.4	and the second	0.58 0.64 0.70		1.6 1.9	<u>/}_</u>	0.007 0.010	\sim	0.79 0.82 0.85	<u> </u>		16 2

Statistical Modeling Approaches

1. Multi-Level Predictive Modeling


And

2. Semi-Supervised Generalized Structural Equation (semi-gSEM) <u>Diagnostic Modeling</u>

GREAT LAKES ENERGY NSTITUTE

Model Definition and Selection

• Overfitting & Predictive R²

GREAT LAKES

SFRVF

Model Validation using Leave-one-out Cross-validation

SOLAR DURABILITY AND

SDLE Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2012 http://sdle.

December 11, 2015, VuGraph 12

Overfitting & Predictive R²

Overfitting When

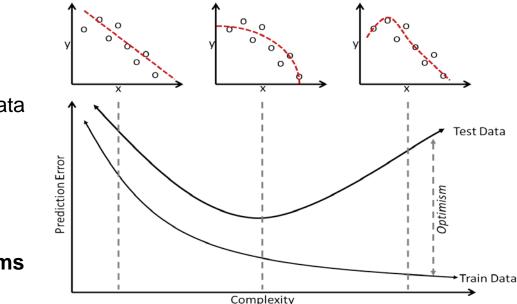
- Complexity of your model increases Too many predictors to obtain the best fit
- You Train model without testing on new data

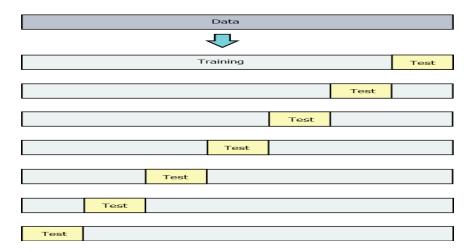
Optimism Needs to be Small for

- Smaller "true" prediction error
- Greater prediction power

Always Check Assumptions on Error Terms

• Homoscedasticity, Linearity, Normality


Model Validation Is Essential

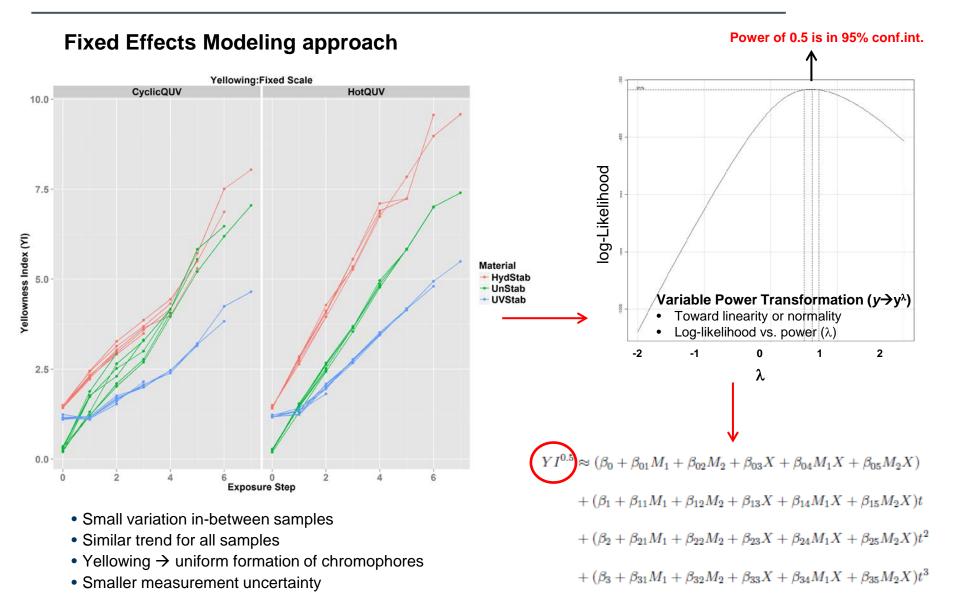

Using Leave-one-out Cross-validation Apply your model to both

• training data and testing data

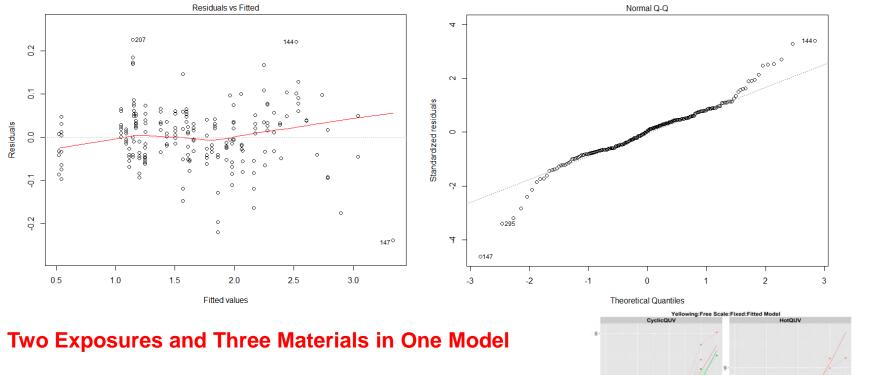
Predictive R² gives model fit to testing data

Spanning the cross-validation datasets

Multi-Level Predictive Modeling


Yellowing & Hazing Under HotQUV and CyclicQUV Exposures

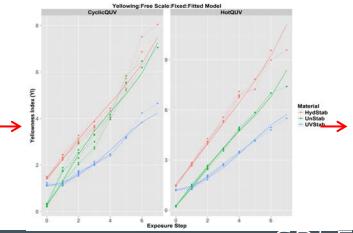
Yellowing Model: under HotQUV & CyclicQUV Exposures


SDLE Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2012 http://sdb.case.cdu December 11, 2015, VuGraph 15

GREAT LAKES ENERGY

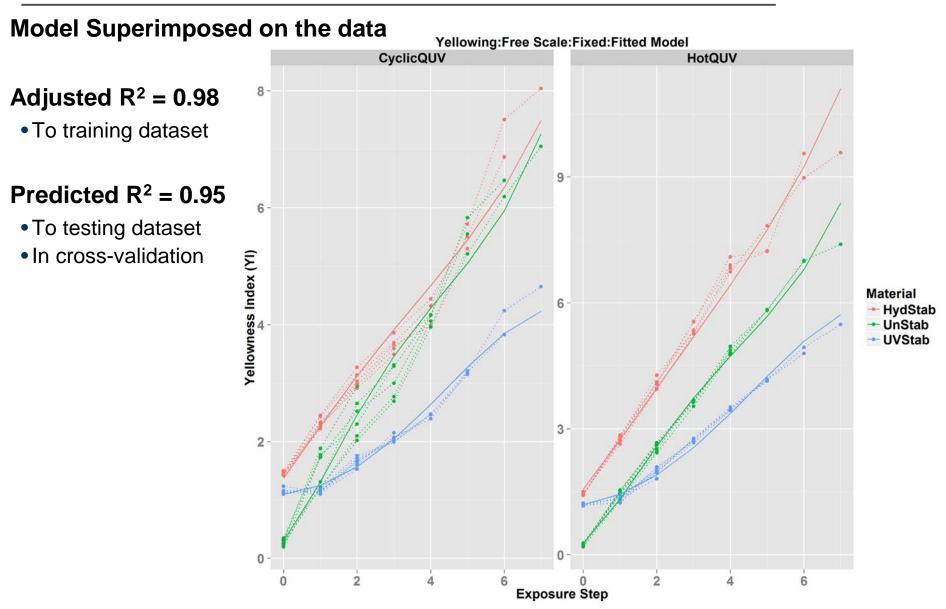
Yellowing Model: under HotQUV & CyclicQUV Exposures

Diagnostics: Residuals vs. Fitted and Normal Quantile-Quantile

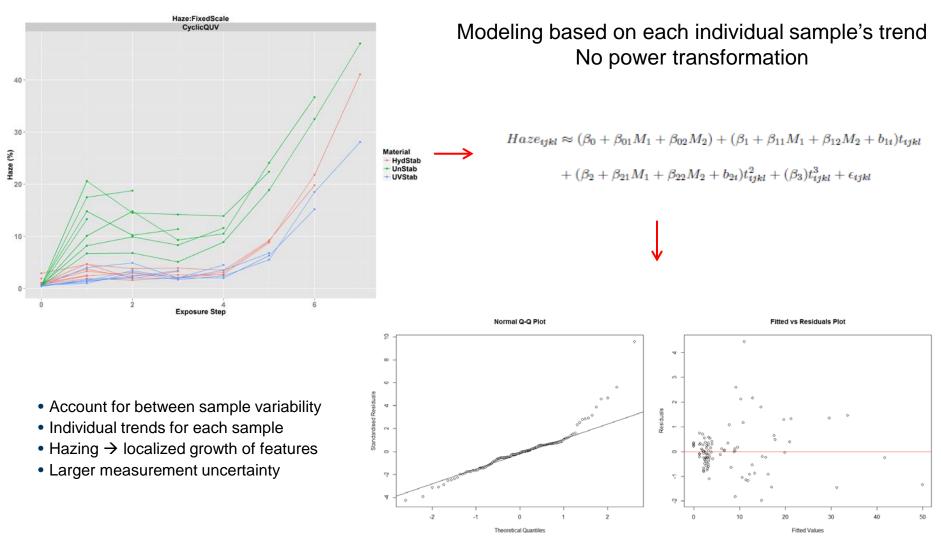

• Model satisfies the regression assumption reasonably well.

$$YI^{0.5} \approx (1.170 - 0.626M_1 - 0.122M_2 + 0.078X - 0.100M_1X - 0.035M_2X)$$

$$+ (0.377 + 0.330M_1 - 0.349M_2 + 0.073X - 0.042M_1X - 0.032M_2X)t$$


 $+ (-0.046 - 0.067M_1 + 0.092M_2)t^2 + (0.003 + 0.004M_1 - 0.007M_2)t^3$

Yellowing Model: under HotQUV & CyclicQUV Exposures


SDLE Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2012 http://sdle.case.edu

GREAT LAKES ENERGY

December 11, 2015, VuGraph 17

Hazing Model: Hazing under CyclicQUV Exposure

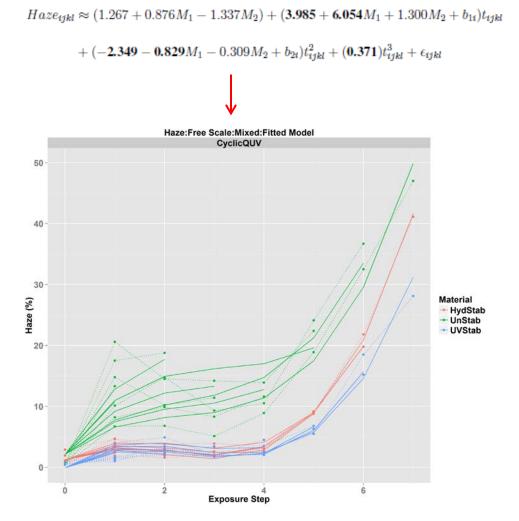
Mixed Effects Modeling approach: Fixed Effects + Random Effects

SDLE Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2012 http://sdle.case.edu

GREAT LAKES ENERGY

December 11, 2015, VuGraph 18

Hazing Model: Hazing under CyclicQUV Exposure


Model Superimposed on the data Fitted $R^2 = 0.95$ Predictive $R^2 = 0.82$

Mixed effects = Fixed + Random

- Marginal → variance explained by the fixed effects
- Conditional → variance explained by both fixed effects and random effects

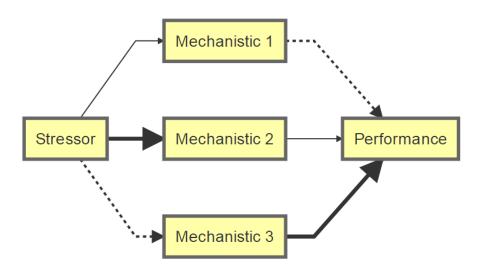
Marginal $R^2 = 0.88$ Conditional $R^2 = 0.94$

Including random effects increased the variance explained by the fixed effects

Great lakes Energy

Statistical Modeling Approaches

2. Semi-Supervised, Generalized Structural Equation (semi-gSEM) <u>Diagnostic Modeling</u>


Diagnostic Modeling: Degradation Pathways Using semi-gSEM

Stress | mechanism | response framework (S|M|R)

- Stressors (applied)
- Mechanistic (intermediate, observed-measured or latent) variables
- Performance level responses

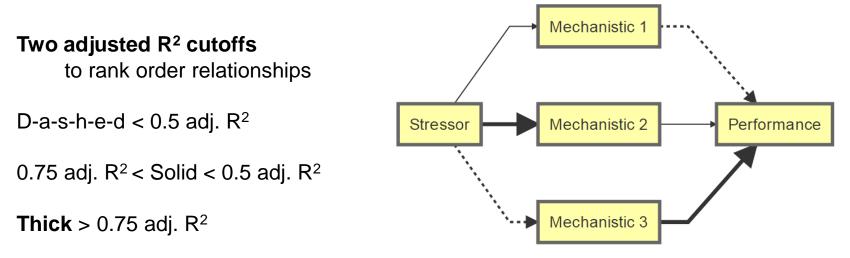
Functional Forms among Variables

- Simple linear: $y \sim b_0 + b_1 x$
- Simple quadratic: $y \sim b_0 + b_1 x^2$
- Quadratic: $y \sim b_0 + b_1 x + b_2 x^2$
- Logarithmic: $y \sim b_0 + b_1 \log(x)$
- Exponential: $y \sim b_0 + b_1 \exp(x)$

Combination of Metrics for Statistically Significant Relationships

• R², Adjusted-R²

Goodness & quality of fit of the observed relationships between variables


Principles in semi-gSEM

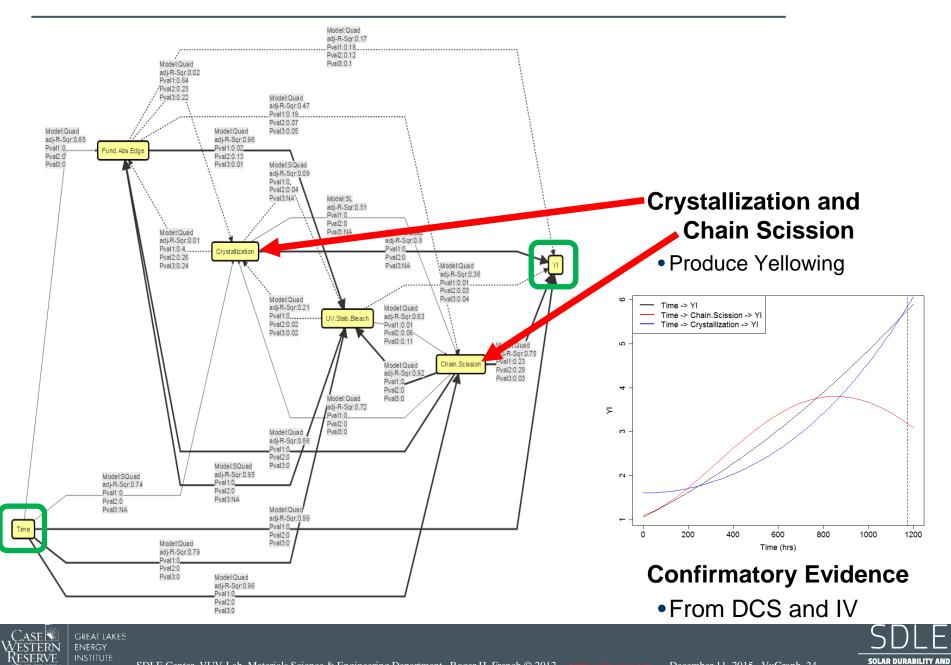
- Principle1: Univariate relationships (Markov. spirit, prior events don't affect current variables)
- Principle2: Multivariate relationships (additive model that accounts for variable interactions)

Variables & Statistical Significance in semi-gSEM Analysis

Variables	Mechanisms	In semi-gSEM analysis
Time	As a proxy to exposures	Main stresssor
abs/cm at 312 nm	Degradation of the polymer backbone	Mechanistic variable
abs/cm at 340 nm	UV stabilizer bleaching	Mechanistic variable
IR band at 975 cm ⁻¹	Change in morphology (Crystallization)	Mechanistic variable
IR band at 1711 cm ⁻¹	Chain scissions	Mechanistic variable
Yellowness index (YI)	Photolytic and hydrolytic degradation	Performance level response
Haze (%)	Hydrolytic degradation	Performance level response

semi-gSEM Degradation Pathway Models

UV stabilized PET


yellowing under HotQUV
yellowing under CyclicQUV
hazing under CyclicQUV

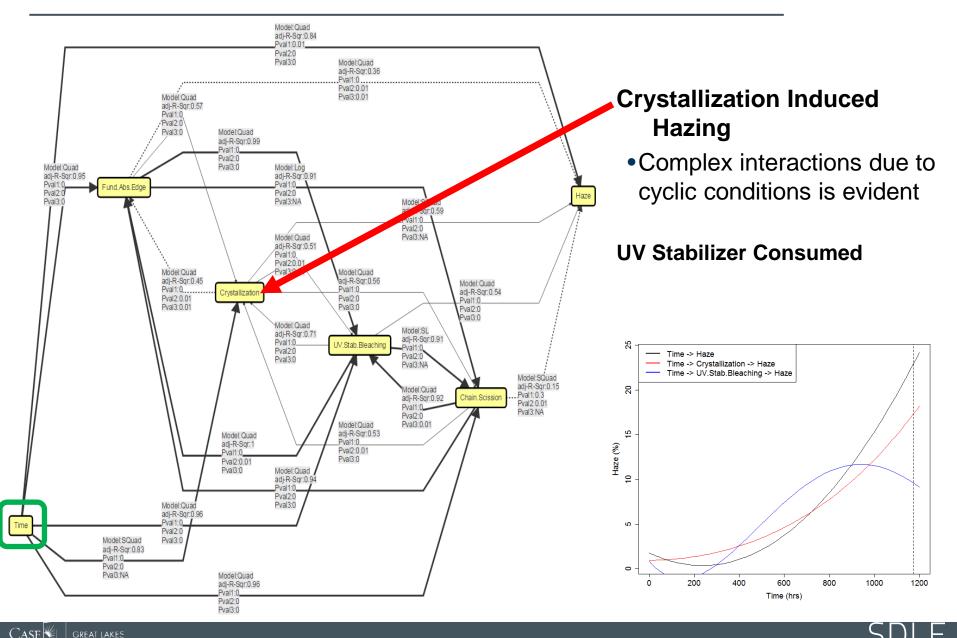
Yellowing sgSEM: UV stabilized PET under HotQUV Exposures

SDLE Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2012 http://sdle.o

I INIVERSITY

December 11, 2015, VuGraph 24

Yellowing sgSEM: UV stabilized PET under CyclicQUV Exposure



SDLE Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2012

December 11, 2015, VuGraph 25

Hazing sgSEM: UV Stabilized PET under CyclicQUV Exposure

VESTERN ENERGY RESERVE INSTITUTE

I INIVERSITY

SDLE Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2012 http://sdle.cnsc.

December 11, 2015, VuGraph 26

SOLAR DURABILITY AND

Confirmatory Results: Direct Measures of Mechanistic Variables

Catalyst trace analysis Change in crystallinity via DSC Intrinsic viscosity and molecular weight Carboxyl end group (CEG) analysis

2FAT LAKES

NSTITUTE

Change in Crystallinity via DSC (UV Stabilized)

256.66°C

250

300

Universal V4 54 TA

243.50°C 58.92J/g 42.06 % crystallized

SDLE Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2012

200

Degradation Causes

- Decrease in melting point (T_m)
- Decrease in intrinsic viscosity and Mw
- Increase in chain scission
- Increase in CEG content

2

0

Exo Down

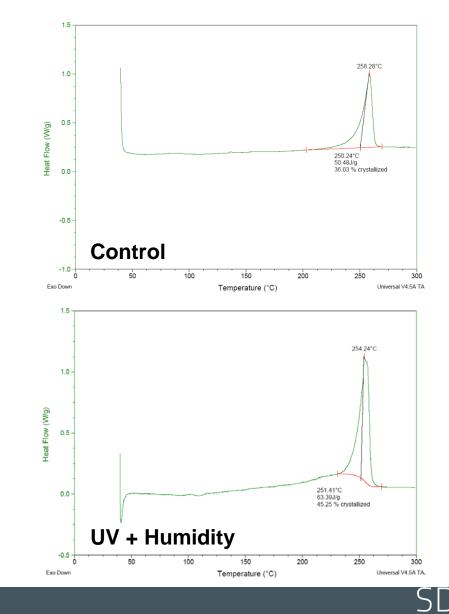
RV

ENERGY

UV only

50

100


150

Temperature (°C)

Heat Flow (W/g)

Crystallinity increased from 36%

- to 42% During UV Exposure
- to 45% During UV+Humidity Exposure

December 11, 2015, VuGraph 28 SOLAR DURABILITY AND

M_w & CEG analysis: Incr. Chain Scission, CEGs, Decr. Mw

Intrinsic viscosity (IV) to determine molecular weight (M_w)

- The degree of degradation
 - i.e., increased chain scission, formation of end groups, and reduced molecular weight
- IV measurement via glass capillary viscometer (ASTM 4603-03)
- Decrease in IV and Molecular Weight (M_n)
- Increase in total end groups and chain scission per molecule

Grade - Exposure	$IV(\eta)$	$\overline{\mathrm{M}}_{\mathrm{n}}$	Total end groups	Chain scissions
Hyd. stabilized - Baseline	0.648	20,635	97	0
Hyd. stabilized - HotQUV*	0.593	18,544	108	0.11
Hyd. stabilized - CyclicQUV	0.495	14,917	135	0.38
Unstabilized - Baseline	0.564	17,457	115	0
Unstabilized - HotQUV*	0.375	10,676	188	0.64
Unstabilized - CyclicQUV	0.457	13,548	148	0.29
UV stabilized - Baseline	0.573	17,793	114	0
UV stabilized - HotQUV	0.503	15,208	132	0.17
UV stabilized - CyclicQUV	0.497	14,990	136	0.19

Carboxylic acid end group (CEG) analysis

- CEGs play a major role in PET's hydrolytic stability i.e., autocatalytic effect of CEGs in hydrolysis reactions
- Direct measure of CEG conc. (ASTM D7409-15)
- Increase in CEG concentration under both UV and UV+Humidity

Grade - Exposure	KOH (ml)	CEG (mmol/Kg)	Ave. CEG (mmol/Kg)
Hyd. stabilized - Baseline	1.30	19.3	20.2±1.21
Hyd. stabilized - Baselille	1.40	21.0	20.2±1.21
Hvd. stabilized - HotQUV*	9.85	192.6	192.6 ± 0.05
Hyd. stabilized - HotQOV	9.80	192.5	152.0±0.05
Hyd. stabilized - CyclicQUV	8.55	166.7	166.0 ± 0.94
Tiyu. stabilized - CyclicQOV	8.65	165.3	100.0±0.54
Unstabilized - Baseline	1.70	27.6	29±0.60
Unstabilized - Daseillie	1.75	28.5	28 ± 0.69
Unstabilized - HotQUV*	10.75	214.8	213.1±2.43
Unstabilized - HotQUV	10.85	211.4	213.1 ± 2.43
Unstabilized - CyclicQUV	10.15	198.6	198.6 ± 0.01
Unstabilized - CyclicQOV	10.05	198.6	158.0±0.01
UV stabilized - Baseline	2.35	40.2	40.9±1.03
OV stabilized - Baseline	2.40	41.7	40.9±1.03
UV stabilized - HotQUV	7.50	146.6	146.6
UV stabilized - CyclicQUV	6.00	114.1	114.1

Conclusions

Longitudinal Weathering Study of PET in 4 Exposures: Epidemiology

- Yellowing most strongly induced by UV light Moisture enhanced yellowing was evident
- Hazing was predominantly from hydrolysis

Develop Data-driven Analysis and Modeling

• Using Un-biased Analysis, based in Statistical Significance

Multi-Level Modeling Predicted Experimental Responses Very Closely

• Predictive R² aides Model Selection and Cross-validation

In the semi-gSEM pathway Models, Mechanistic Contributions

- Chain scission common mechanism under HotQUV & CyclicQUV exposures.
- Change-points along the Temporal Degradation Pathway UV Stabilizer Bleaching Hazing Onset under Humidity, After Chromophore Development

Multi-variate and Multi-stressor semi-gSEM Development is in Progress.

Acknowledgements

Research Faculty & Associates

• Tim Peshek, Laura Bruckman, Yifan Xu

Graduate Students

• Nick Wheeler, Devin Gordon

Undergraduates (research team)

Cara Fagerholm

Undergraduates (editing team)

- Cara Fagerholm, Matt Randall,
- Olga Eliseeva, Justin Fada,
- Marc Sahlani, Elizabeth Hodges

SDLE Staff

Chris Littman, Rich Tomazin

3M

David Burns

Research Advisor

• Roger H. French

Thesis Committee

- James McGuffin Cawley, David Schiraldi, Emily Pentzer
- Laura Bruckman, Tim Peshek

Supports:

RN Energy VE institute

GREAT LAKES

SDLE Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2012 http://sdle.case.odu December 11, 2015, VuGraph 31

GREAT LAKES ENERGY INSTITUTE

