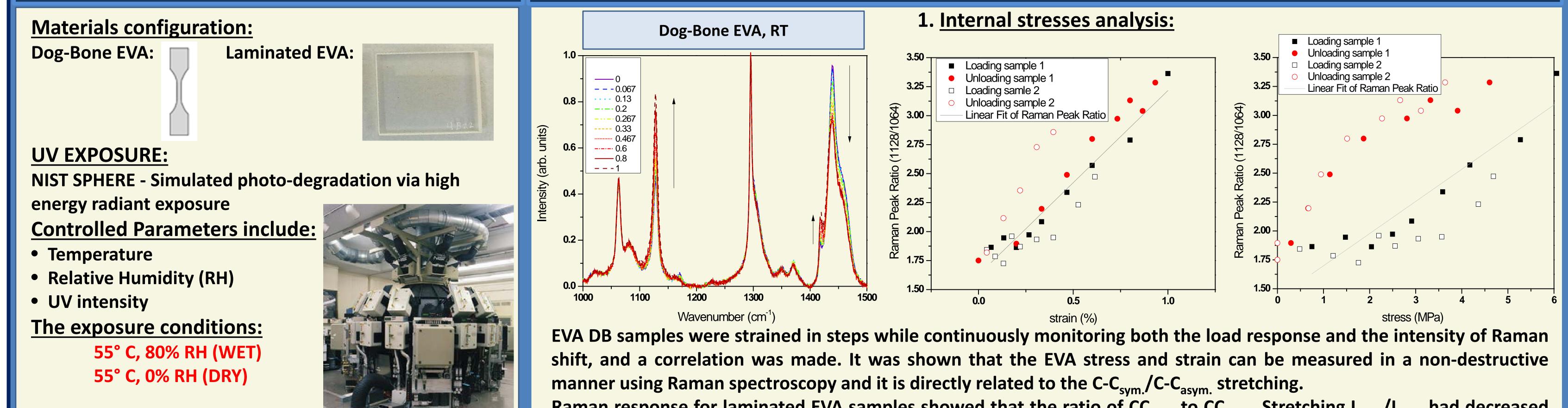

Raman Spectroscopy Application to Characterize EVA after UV Exposure

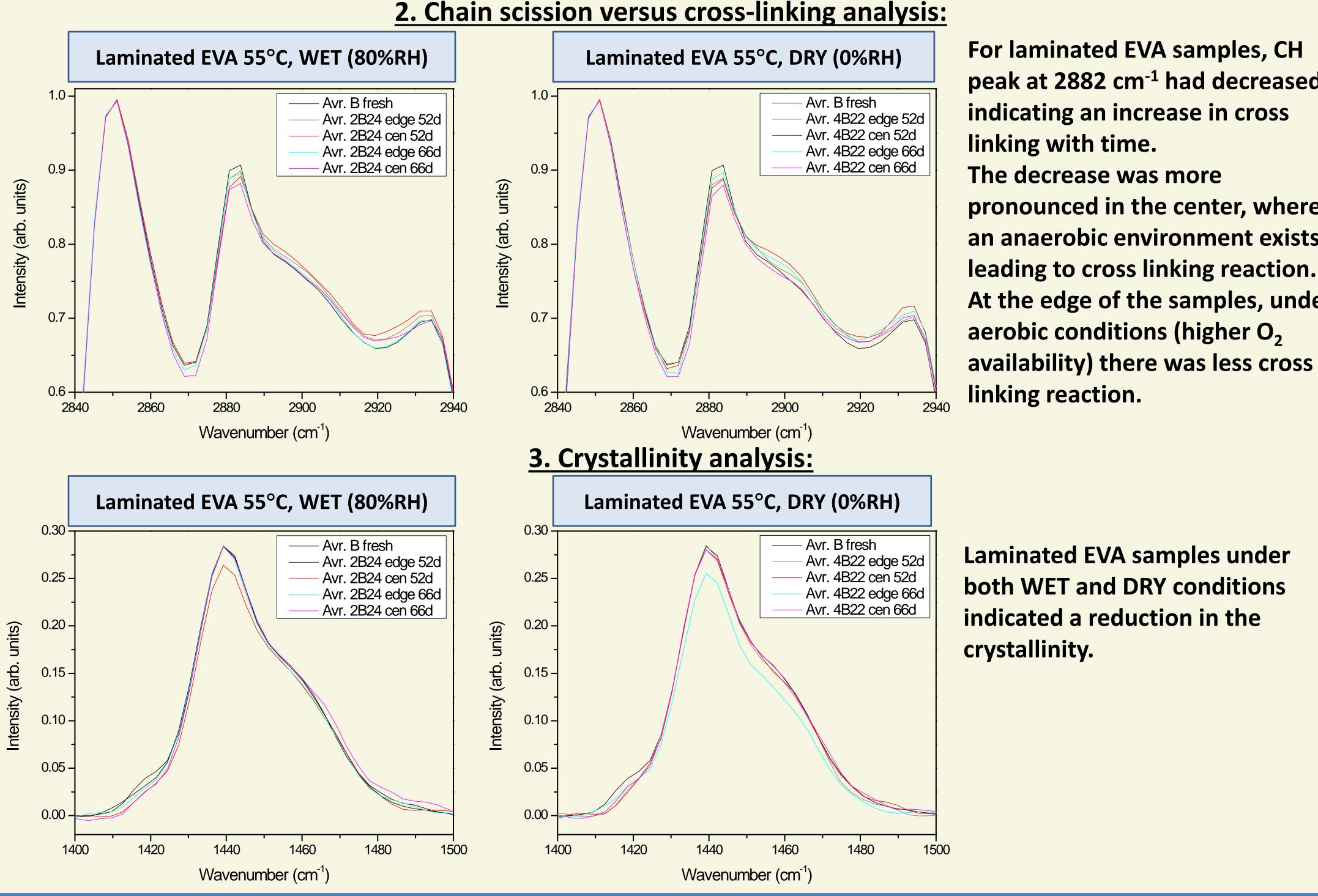
Sari Katz, Aaron Urbas, Stephanie S. Watson, Xiaohong Gu


INTRODUCTION	TYPICAL EVA RAMAN BAND SHIFTS DESCRIPTION			
The most commonly used photovoltaic (PV) encapsulant	Wavenumber (cm ⁻¹)	Chemical Bond	Description	References
material is ethylene-vinyl acetate (EVA) co-polymer.	629	O-C=O	VA CO stretching	1. Chernev B. S. et al.,
The encapsulant role is to provide protection to the	869	0-0	peroxide	(2013). 2. Peike C. et al., (2014). 3. Ren Y. et al., (1999). 4. Shimoyama M. et al., (1997).
brittle solar cell from different external stresses.	1020	C-C	Stretching due to vinyl	
It binds the backsheet, usually based on polyethylene	1060	C-C	Ethylene asymmetric stretching	
terephthalate (PET), which serves as a mechanical	1080	C-C	Ethylene asymmetric stretching-Amorphous	
support to the solar cell, through the solar cell and	1127	C-C	Ethylene symmetric stretching	
eventually to the front glass.	1170	C-H	CH ₂ rocking-Crystallinity	
The encapsulant properties requirements include: resistance to water/humidity absorption, good	1298	C-O-C and C-C	Acetate asymmetric stretching and polyethylene skeletal vibration	
adhesion, optical transparence, electrical insulator, and	1340	C-H	CH ₂ wagging	
to withstand UV.	1370	C-H	CH ₂ wagging	
The EVA that is generally used in PV has around 26%-	1416	C-H	PE CH ₂ wagging crystalline band	
34% vinyl acetate (VA).	1440	C-H	CH ₂ bending crystalline band	
Glass	1740	C=O	VA stretching	
	2854	C-H	Aliphatic CH stretching	
	2863	C-H	Ethylene asymmetric stretching	
C Back sheet PET	2885	C-H	symmetric stretching	
H ₃ C O	2913	C-H	Ethylene symmetric stretching	

UV EXPOSURE

EVA CHEMICAL DEGRADATION BY RAMAN SPECTROSCOPY

Chin et al, Review of Scientific Instruments (2004), 75, 4951; Martin and Chin, U.S. Patent 6626053


CONCLUSION

Raman spectroscopy was found to be a powerful and a non destructive tool to investigate PV EVA encapsulant material degradation with UV exposure. Three aspects of EVA modifications due to UV exposure were analyzed using the Raman:

1. Internal stresses analysis:

Raman response for laminated EVA samples showed that the ratio of CC_{sym.} to CC_{asym.} Stretching I₁₁₂₈/I₁₀₆₄ had decreased with time at the center of the sample, which is an indication of compressional stresses inside the EVA of about 45% more than the fresh sample. At the edge of the sample these stresses are relaxed and the compression is only 8% after 66 days

in comparison to the fresh sample.

For laminated EVA samples, CH peak at 2882 cm⁻¹ had decreased indicating an increase in cross pronounced in the center, where an anaerobic environment exists leading to cross linking reaction. At the edge of the samples, under

The ratio between the C-C symmetric stretching at 1128 cm⁻¹ to the C-C asymmetric stretching at 1063 cm⁻¹ was changing, due to strain induced alignment. For laminated EVA I_{1128}/I_{1064} had decreased.

2. Chain scission versus cross-linking analysis:

CH peak ratio I_{2882}/I_{2854} had indicated that UV exposure of laminated EVA samples caused additional cross linking under anaerobic conditions and that under aerobic conditions there was also chain scission competitive reaction leading to a lower reduction of CH peak ratio (I_{2882}/I_{2854}) .

3. Crystallinity analysis:

Raman band shift at 1416 cm⁻¹ which is related to PE orthorhombic vibration mode, is a fingerprint for EVA crystallinity. For laminated EVA there is a reduction in the crystallinity.