Information Theoretic Evaluation of Data Processing Systems

Dr Michael B. Hurley

NIST Data Science Symposium

4-5 March 2014

This work is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Outline

- Performance metrics overview
 - Information theoretic performance evaluations
 - Multi-target tracker evaluation
 - Classifier evaluation
 - Error estimation and significance testing
 - Current research focus
 - Challenges
 - Summary

Common Performance Measures

- Physical measures
 - "Size, Weight, and Power (SWaP)"
 - Time / latency
 - Compute measures
 - Memory and data storage (size or space)
 - CPU (power)
 - Data rates / throughput
 - Scalability / extensibility
 - Algorithmic efficiency / computational complexity

- ...

- Utility measures
 - Cost / Benefit
 - Risk
 - Return on investment
 - ..

- Information theoretic measures are appropriate when data are used for critical decision making
- Quantitatively measure the uncertainty in estimates and decisions from automated decision systems (trackers, classifiers, etc.)
 - Entropy (uncertainty)
 - Mutual information (information common to a pair of data sets)
 - Conditional entropy (information unique to one of a pair of data sets)
- If truth is available, algorithms can be assessed on how well they extract information from data
 - Relative evaluations are the most meaningful
 - Can determine statistical significance of assessments with error analysis
- These measures can assess the impact of incommensurate physical measures on information content

Outline

- Performance metrics overview
- Information theoretic performance evaluations
 - Multi-target tracker evaluation
 - Classifier evaluation
 - Error estimation and significance testing
 - Current research focus
 - Challenges
 - Summary

Existing tracker metrics partially measure performance with correlations between pairs of metrics.

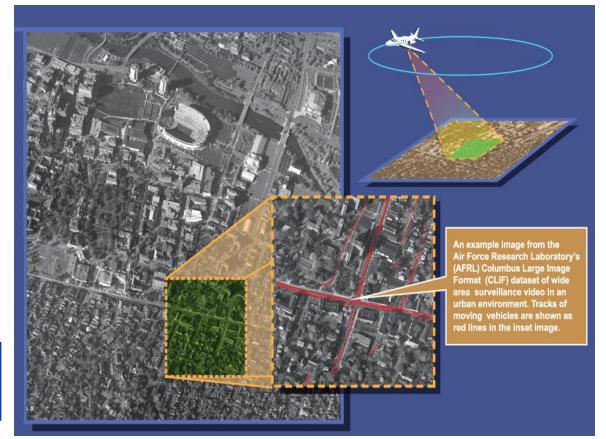
No standard method to combine measures for a holistic evaluation.

Sample List of Metrics

Most common

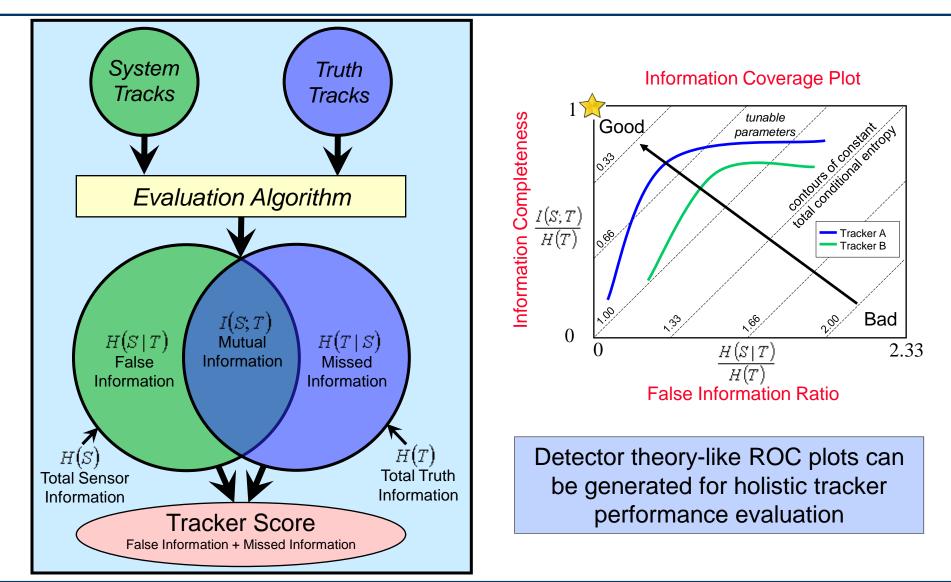
Truth completeness (recall) Track completeness (precision) Truth continuity Track continuity Number of swaps Number of breaks Track lifetime

A literature review has identified 145 different tracking and classification metrics

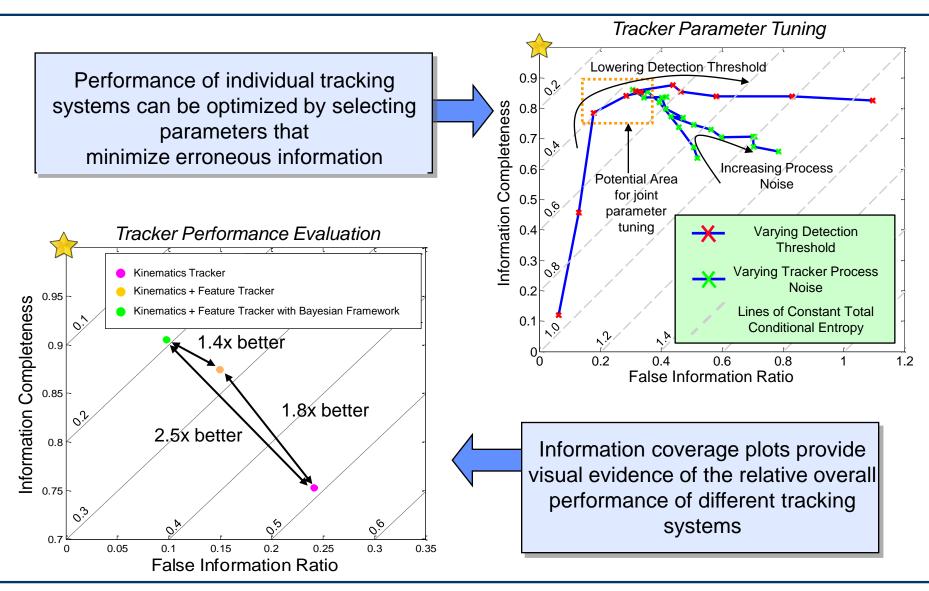


https://www.sdms.afrl.af.mil/datasets/clif2007/

Tracker Performance Evaluation Information Theoretic Measures



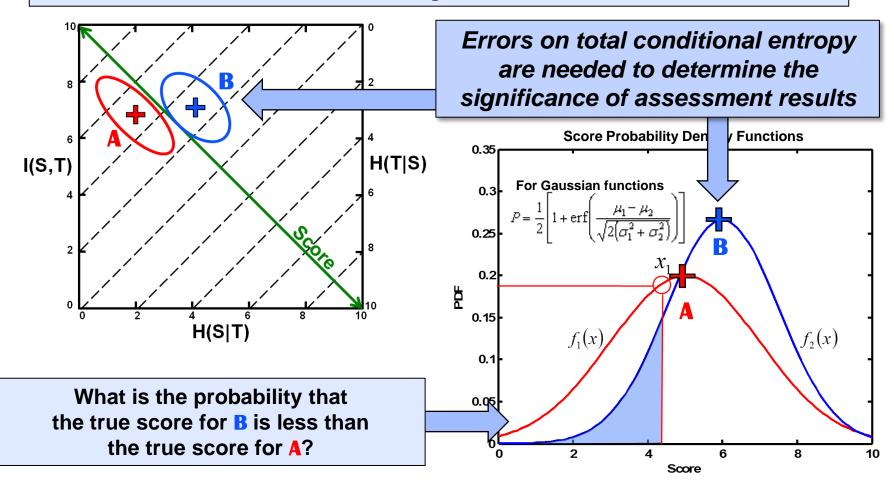
Parameter Tuning & Performance Evaluation



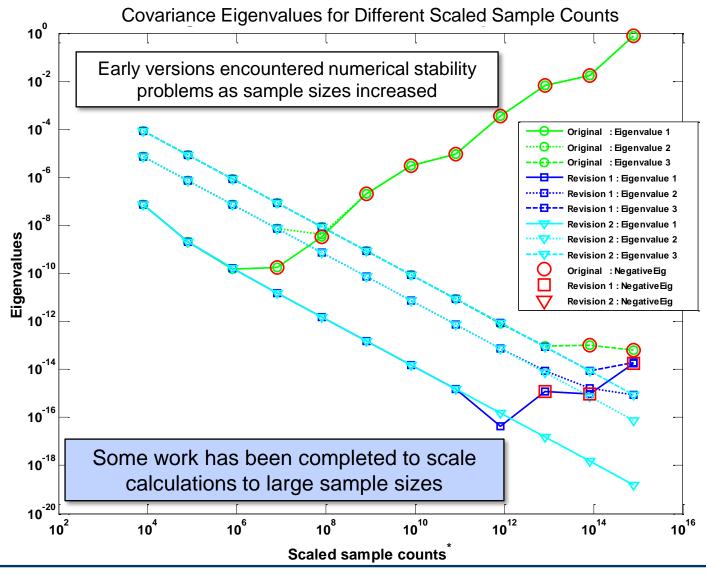
Outline

- Performance metrics overview
- Information theoretic performance evaluations
 - Multi-target tracker evaluation
 - Classifier evaluation
- Error estimation and significance testing
 - Current research focus
 - Challenges
 - Summary

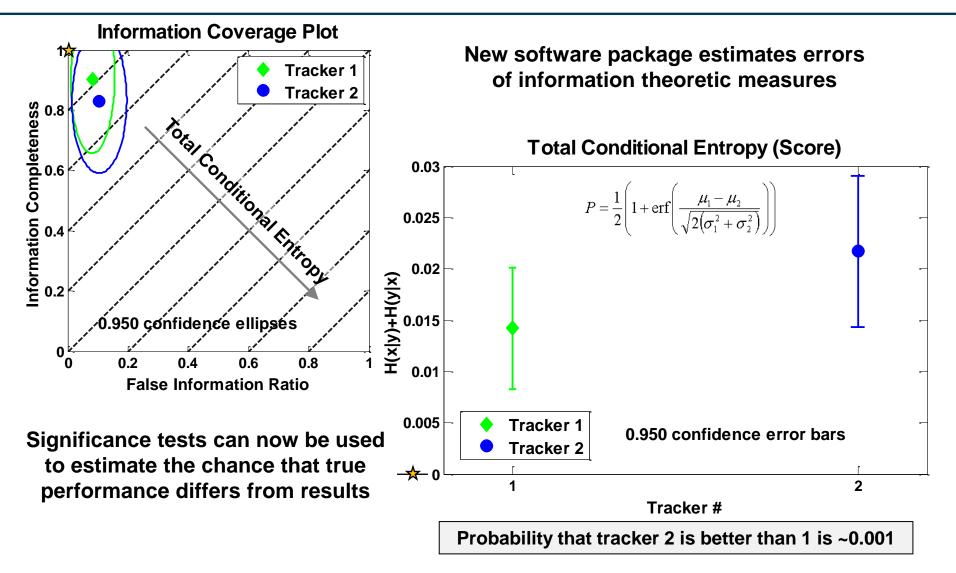
Early applications of information theory to multi-target trackers and classifiers did not estimate the significance of the results



Stability of Different Code Versions of the Wolpert and Wolf equations



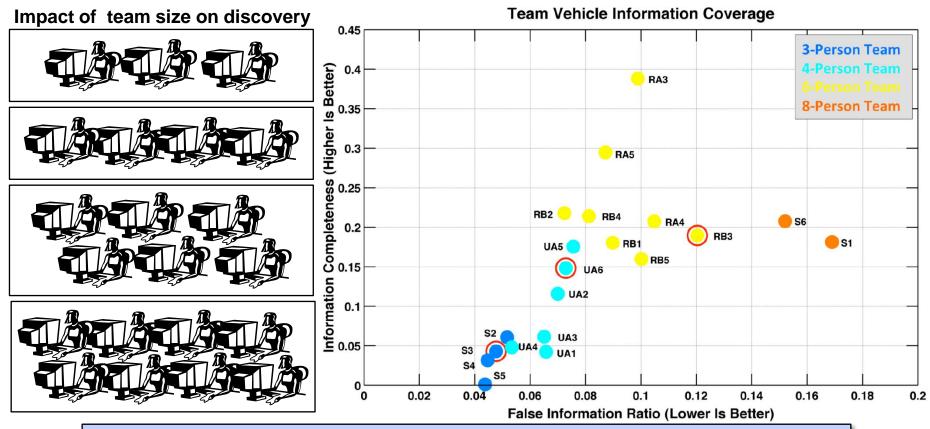
Significance of Test Results



Outline

- Performance metrics overview
- Information theoretic performance evaluations
 - Multi-target tracker evaluation
 - Classifier evaluation
- Error estimation and significance testing
- Current research focus
 - Challenges
 - Summary

Red / Blue games pit teams against each other to learn how they solve decision problems



Research is beginning to examine relationships between different forms of information, team behaviors, and game objectives

Big Data Science Challenges With Information Theoretic Measures

- Data processing
 - Pro: Not all data may be needed to obtain statistically significant results
 - Con: Potentially a large amount of data to process for assessments
- Information theoretic correlation measures
 - Generating accumulation matrices
 - Covariance accuracy with large-dimension accumulation matrices
- Assessment without truth data
 - Potential to use mutual information measures between systems
- Potential solutions
 - Convert software from MATLAB to a compiled language (C,C++)
 - Parallel processing
 - Optimization of hypergeometric functions and other infinite series
 - Use continued fractions for infinite series

- Information theoretic measures provide additional performance metrics for the assessment of data processing and decision systems
- "Little data" may be sufficient for some evaluations of big data systems
- The primary challenge with information theoretic metrics for big data will be solving computation issues

A MATLAB software package (InfoMetrics3) is available To request, send email to hurley@ll.mit.edu

Classifier Evaluation

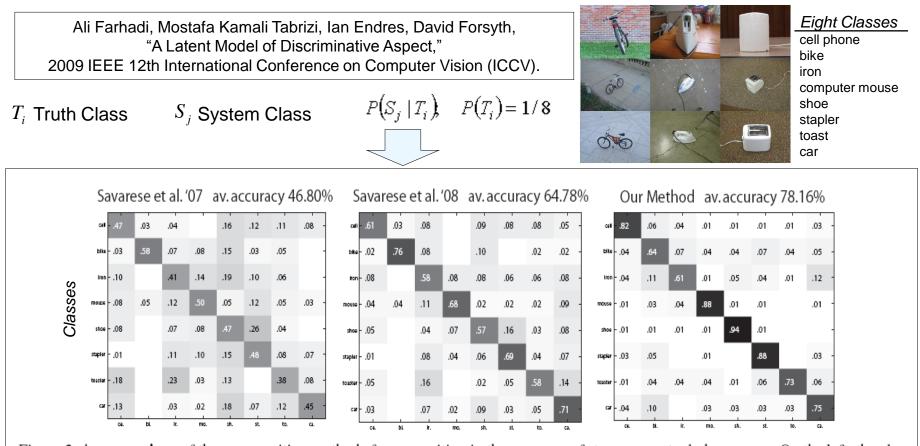
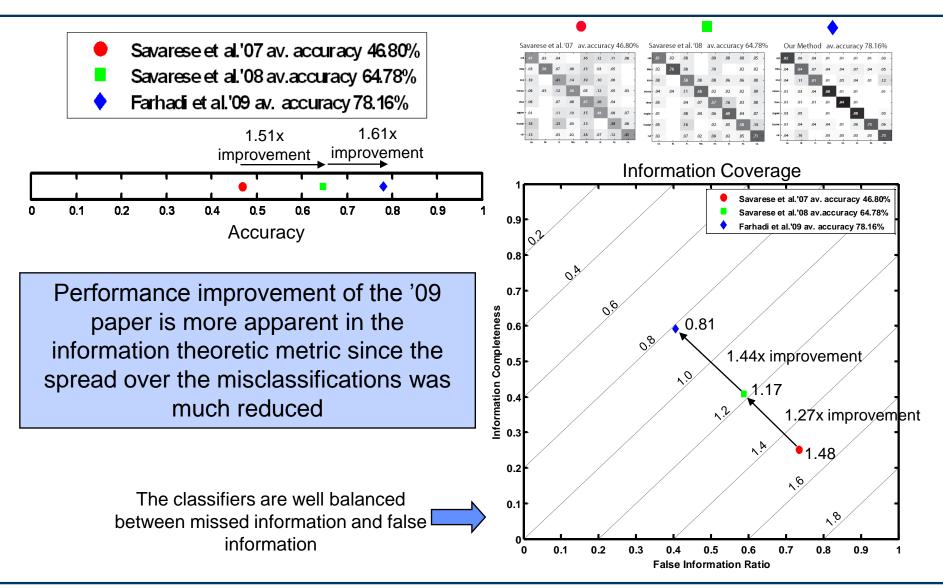
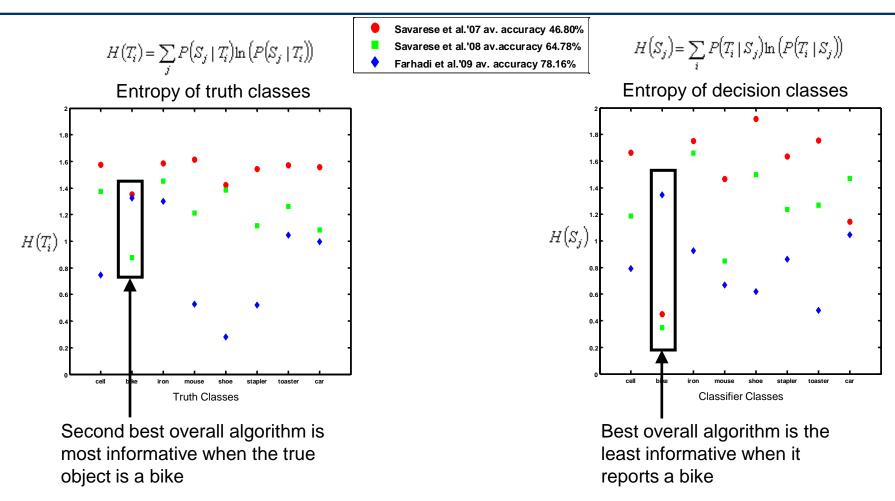


Figure 2. A comparison of three recognition methods for recognition in the presence of strong aspectual phenomena. On the left, the class confusion matrix for the method of Savarese et al [24], where the recognizer possesses instances of each class at each aspect. In the center, the class confusion matrix for the work of Savarese et al [23], where the recognizer possesses instances of each class at most aspects, but must interpolate models to cover some aspects. On the right, the class confusion matrix for our method, where the recognizer has no example of a test image's class at the view we want to recognize. Our model of aspect offers a substantial gain.

Information Theoretic Performance Measures

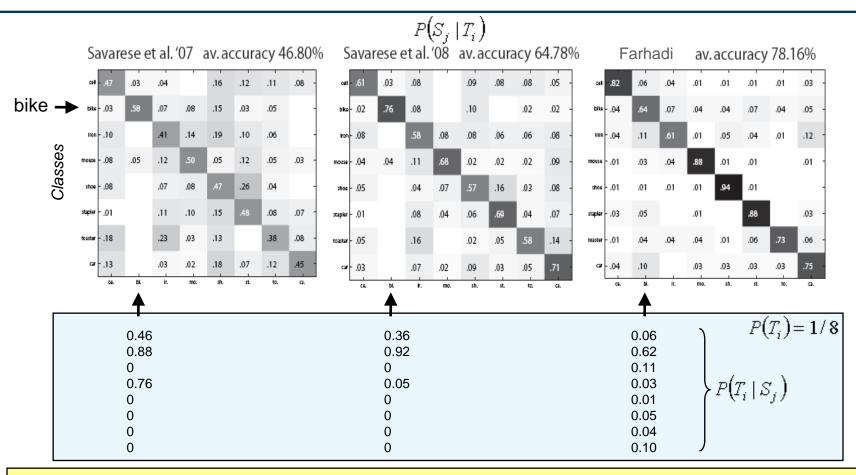


More In-depth Information Theoretic Analysis



Other information measures can be used to perform more indepth analysis of classifier performance

Probability Comparison



Conversion of the original confusion matrix terms to conditional probabilities of decisions given the truth shows that the best overall method is least confident when objects are classified as bikes

Entropy Equations (Wolpert and Wolf)

Total Entropy $E(H(x,y)) = E\left(-\sum_{i,j} p_{ij} \ln(p_{ij}) \middle n\right) = -\sum_{i,j} \frac{v_{ij}}{v} \Delta \Phi^{(1)}(v_{ij} + 1, v + 1)$ Truth Entropy $E(H(x)) = E\left(\sum_{i} - p_{i\bullet} \ln(p_{i\bullet}) \middle n\right) = -\sum_{i} \frac{v_{i\bullet}}{v} \Delta \Phi^{(1)}(v_{i\bullet} + 1, v + 1)$ Algorithm Entropy $E(H(y)) = E\left(-\sum_{j} p_{\bullet j} \ln(p_{\bullet j}) \middle n\right) = -\sum_{j} \frac{v_{\bullet j}}{v} \Delta \Phi^{(1)}(v_{\bullet j} + 1, v + 1)$	Mutual Information E(I(x,y)) = E(H(x)) + E(H(y)) - E(H(x,y)) Conditional Entropies E(H(y x)) = E(H(x,y)) - E(H(x)) $E(H(x y)) = E(H(x,y)) - E(H(y))$	
Counts (<i>n</i>) and priors (<i>r</i>)	Special functions	
$v_{ij} = n_{ij} + r_{ij}$ $v = \sum_{i} \sum_{j} v_{ij}$ $v_{i\bullet} = \sum_{i} v_{ij}$ $v_{\bullet j} = \sum_{i} v_{ij}$	$\Delta \Phi^{(n)}(z_1, z_2) = \Phi^{(n)}(z_1) - \Phi^{(n)}(z_2)$ $\Phi^{(n)}(z_1) = \Psi^{(n-1)}(z)$ $\Psi^{(n)}(z) = \partial_z^{n+1} \ln(\Gamma(z))$	

Wolpert and Wolf's Bayesian analysis of entropy measures for finite data samples provides first- and second-order moment estimates

IttforDS- 21
MBH 03/04/14David H. Wolpert and David R. Wolf, 'Estimating functions of probability distributions
from a finite set of samples,' Phys. Rev. E, V 52, n 6, pp. 6841-6854

Entropy Covariance Equations

$$\begin{split} \mathscr{E}_{\overline{IJMN}} &= E\left[\sum_{i,j,m,n} p_{ij} \ln(p_{ij}) p_{mn} \ln(p_{mn}) | \mathbf{n}\right] \\ &= \sum_{i,j} \sum_{m,n \neq i,j} \frac{v_{ij} v_{mn}}{v(v+1)} \left\{ \Delta \Phi^{(1)}(v_{ij}+1,v+2) \Delta \Phi^{(1)}(v_{mn}+1,v+2) - \Phi^{(2)}(v+2) \right\} \\ &+ \sum_{ij} \frac{v_{ij}(v_{ij}+1)}{v(v+1)} \left\{ \left[\Delta \Phi^{(1)}(v_{ij}+2,v+2) \right]^2 + \Delta \Phi^{(2)}(v_{ij}+2,v+2) \right\} , \\ \mathscr{E}_{\overline{IM}} &= E\left[\sum_{i,m} p_i . \ln(p_i .) p_m . \ln(p_m .]) \mathbf{n} \right] \\ &= \sum_i \sum_{m \neq i} \frac{v_i . v_m .}{v(v+1)} \left\{ \Delta \Phi^{(1)}(v_i .+1,v+2) \Delta \Phi^{(1)}(v_m .+1,v+2) - \Phi^{(2)}(v+2) \right\} \\ &+ \sum_i \frac{v_i . (v_i .+1)}{v(v+1)} \left\{ \left[\Delta \Phi^{(1)}(v_i .+2,v+2) \right]^2 + \Delta \Phi^{(2)}(v_i .+2,v+2) \right\} \end{split}$$

(to find $\mathscr{E}_{\overline{JN}}$ substitute v_{i} for v_{i} and v_{m} for v_{m} in the expression for $\mathscr{E}_{\overline{IM}}$),

$$\begin{split} \mathcal{E}_{\overline{IJM}} &= E\left[\sum_{ij} \sum_{m} p_{ij} \ln(p_{ij}) p_{m} \cdot \ln(p_{m}.) | \mathbf{n}\right] \\ &= \sum_{ij} \sum_{m \neq i} \frac{v_{ij} v_{m}}{v(v+1)} \left\{ \Delta \Phi^{(1)}(v_{ij}+1,v+2) \Delta \Phi^{(1)}(v_{m}.+1,v+2) - \Phi^{(2)}(v+2) \right\} \\ &+ \sum_{i,j} \frac{v_{ij}(v_{i}.+1)}{v(v+1)} \left\{ \left[\Delta \Phi^{(1)}(v_{i}.+2,v+2) \right]^{2} + \Delta \Phi^{(1)}(v_{ij}+1,v_{i}.+1) \Delta \Phi^{(1)}(v_{i}.+2,v+2) + \Delta \Phi^{(2)}(v_{i}.+2,v+2) \right\} \end{split}$$

(to find $\mathscr{E}_{\overline{UN}}$ substitute $v_{.m}$ for $v_{m.}$ in the expression for $\mathscr{E}_{\overline{UM}}$),

$$\begin{split} \mathcal{E}_{\overline{IN}} &= E\left[\sum_{i}\sum_{n}p_{i}.\ln(p_{i}.)p_{.n}\ln(p_{.n})|\mathbf{n}\right] \\ &= \sum_{i,n}\frac{\overline{v}_{in}(\overline{v}_{in}+1)}{v(v+1)}\left\{\left\{\left[\Delta\Phi^{(1)}(\overline{v}_{in}+2,v+2)\right]^{2} + \Delta\Phi^{(2)}(\overline{v}_{in}+2,v+2)\right\} \\ &\times \left[1 - \frac{v_{i}.+v_{.n}-2v_{in}}{\overline{v}_{in}_{n}} + \frac{(v_{i}.-v_{in})(v_{.n}-v_{in})}{\overline{v}_{in}(\overline{v}_{in}+1)}\right] \right] \\ &+ \Delta\Phi^{(1)}(\overline{v}_{in}+2,v+2)\sum_{r=0}^{\infty}\frac{\mathcal{Q}_{1}(r,1)}{r!}\left[\frac{(v_{.n}-v_{in})_{r}}{(\overline{v}_{in})_{r}}\left[--\frac{v_{i}.-v_{in}}{\overline{v}_{in}+r}\right] + \frac{(v_{i}.-v_{in})_{r}}{(\overline{v}_{in})_{r}}\left[--\frac{v_{.n}-v_{in}}{\overline{v}_{in}+r}\right] \\ &+ \sum_{r=0}^{\infty}\sum_{s=0}^{\infty}\frac{(v_{i}.-v_{in})_{r}(v_{.n}-v_{in})_{s}}{(\overline{v}_{in})_{r+s}}\frac{\mathcal{Q}_{1}(r,1)}{r!}\frac{\mathcal{Q}_{1}(s,1)}{s!}\right], \end{split}$$

Other Covariance Terms

Terms	I(x, y)	$H(x \mid y)$	$H(y \mid x)$	$H(x \mid y) + H(y \mid x)$
H(x, y)	S _{TRA} + S _{TRA} - S _{TRAN}	ธ ี – ธี	Б ₇₈₄₁₁ – Б ₇₈₄	25 ₇₈₄₁₁ - 5 ₇₈₁ - 5 ₇₈₄
H(x)	$S_{\overline{Rd}} + S_{\overline{Rd}} - S_{\overline{Rd}}$	5 7767 - 5777	S _{IRI} - S _{RI}	$2S_{\overline{IR}\overline{I}} - S_{\overline{R}\overline{I}} - S_{\overline{R}\overline{I}}$
H(y)	$\overline{\delta_{\overline{JN}}} + \overline{\delta_{\overline{JN}}} - \overline{\delta_{\overline{JN}}}$	5 ₇₇₈ – 5 ₇₈	5 ,,,, -5,,,	$2\delta_{\overline{N}} - \delta_{\overline{N}} - \delta_{\overline{N}}$
I(x,y)	$\begin{split} & \delta_{\overline{j,\overline{j,\overline{0}}}\overline{i}} + \delta_{\overline{j,\overline{0}}} + \delta_{\overline{j,\overline{0}}} \\ & - 2 \left(\delta_{\overline{j,\overline{j,\overline{0}}}} + \delta_{\overline{j,\overline{0}}} - \delta_{\overline{j,\overline{0}}} \right) \end{split}$	$-S_{\overline{JJ}\overline{0}\overline{0}}+2S_{\overline{J}\overline{0}\overline{0}}$ $+S_{\overline{J}\overline{0}\overline{0}}-S_{\overline{J}\overline{0}}-S_{\overline{J}\overline{0}}$	$- S_{\overline{JJ}\overline{0}\overline{0}\overline{0}} + 2S_{\overline{J}\overline{J}\overline{0}\overline{0}} + S_{\overline{J}\overline{0}\overline{0}}$ $- S_{\overline{J}\overline{0}} - S_{\overline{J}\overline{0}\overline{0}}$	$\begin{aligned} &-2\delta_{\overline{IRN}}+3\delta_{\overline{IRI}}+3\delta_{\overline{IRI}}\\ &-2\delta_{\overline{N}}-\delta_{\overline{N}}-\delta_{\overline{RI}}\end{aligned}$
$H(x \mid y)$		$\delta_{\overline{IRN}} + \delta_{\overline{N}} - 2\delta_{\overline{IN}}$	$\delta_{\overline{IRM}} - \delta_{\overline{IR}} - \delta_{\overline{IR}} + \delta_{\overline{R}}$	$2\delta_{\overline{JJW}} + \delta_{\overline{JW}} - 3\delta_{\overline{JW}} \\ - \delta_{\overline{JJW}} + \delta_{\overline{JW}}$
$H(y \mid x)$			$S_{\overline{IRdN}} + S_{\overline{Rd}} - 2S_{\overline{IRd}}$	$\frac{2\overline{s}_{\overline{17000}} + \overline{s}_{\overline{100}} - 3\overline{s}_{\overline{1700}}}{-\overline{s}_{\overline{1700}} + \overline{s}_{\overline{100}}}$
$H(x \mid y) + H(y \mid x)$				$\begin{aligned} &4 \overline{s_{\overline{JJHN}}} - 4 \overline{s_{\overline{JJN}}} - 4 \overline{s_{\overline{JJH}}} \\ &+ \overline{s_{\overline{JH}}} + 2 \overline{s_{\overline{JN}}} + \overline{s_{\overline{JN}}} \end{aligned}$

Formulation accounts for statistical significance of data and accepts prior probabilities

where Q_1 is given by

$$Q_1(j,\eta_1) \equiv [1 - \theta(j - \eta_1 - 1)] \frac{(-1)^j}{(\eta_1 - j)!} \sum_{r=0}^{j-1} \frac{1}{\eta_1 - r} \\ + \theta(j - \eta_1 - 1)(-1)^{\eta_1 + 1} \Gamma(j - \eta_1)$$

ItforDS- 22 David H. Wolpert and David R. Wolf, 'Estimating functions of probability distributions from a finite set of samples,' Phys. Rev. E, V 52, n 6, pp. 6841-6854

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY