IUPAC-NIST Solubility Data Series 69. Ternary Alcohol–Hydrocarbon–Water Systems

Adam Skrzecz^{a)}

Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland

David Shaw

Institute of Marine Sciences, University of Alaska, Fairbanks, Alaska, U.S.A.

Andrzej Maczynski

Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland

Contributor and Evaluator

Adam Skrzecz

Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland

Received September 12, 1998

The mutual solubilities of ternary systems containing alcohols, hydrocarbons and water are reviewed. An exhaustive search of the literature was attempted for numerical data on all alcohols and hydrocarbons which are liquid at STP. Data were found for alcohols with up to nine carbon atoms, but mostly with fewer than four carbons. Data for a variety of hydrocarbon structural types were found including alkane, alkene, and arene. A total of 205 original studies treating 116 ternary systems which have been published through 1992 are compiled. For 47 systems sufficient data were available to allow critical evaluation. All solubility data are expressed as mass and mole fractions as well as the originally reported units. Similar reviews of the related binary systems have previously been prepared for the Solubility Data Series. © *1999 American Institute of Physics and American Chemical Society*. [S0047-2689(99)00304-9]

Key words: aqueous solutions; hydrocarbons; solubility alcohols.

Contents

1.	Preface to the Volume	987
	1.1. References to the Preface	988
2. Introduction to the Solubility Data Series.		
	Solubility of Liquids in Liquids	988
	2.1. Nature of the Project	988
	2.2. Compilations and Evaluations	988
	2.2.1. Compilations	988
	2.2.2. Evaluations	989
	2.3. Quantities and Units Used in Compilation	
	and Evaluation of Solubility Data	99(
	2.3.1 Mixtures, Solutions, and Solubilities	99(
	2.3.2 Physicochemical Quantities and Units.	99(
	2.4. References to the Introduction	992

©1999 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. This copyright is assigned to the American Institute of Physics and the American Chemical Society. Reprints available from ACS; see Reprints List at back of issue.

3.	Methanol+Water	993
5.		993
	F	
	3.2. + Butane	993
	3.3. + 2-Methyl-1,3-butadiene	994
	3.4. + Benzene*	995
	3.5. + Cyclohexene*	1002
	3.6. + Cyclohexane*	1004
	3.7. + 1-Hexene	1008
	3.8. + Hexane*	1008
	3.9. + Toluene*	1011
	3.10. + 1-Heptene	1014
	3.11. + Heptane*	1015
	3.12. + p-Xylene*	1018
	3.13. + Xylene	1020
	3.14. + 2,2,4-Trimethylpentane*	1021
	3.15. + Octane*	1023
	3.16. + Mesitylene	1025
	3.17. + Nonane	1026
	3.18. + 1-Methylnaphthalene	1027
4.	Ethanol+Water.	1027
	4.1. + Benzene [*]	1027
		1027

^{a)}Electronic mail: skrzecz@ichf.edu.pl

	4.2. + Cyclohexene*	1043
	4.3. + Cyclohexane*	1045
	4.4. $+$ 2,2-Dimethylbutane	1052
	4.5. + Hexane*	1053
	4.6. + Toluene*	1059
	4.7. + Methylcyclohexane	1066
	4.8. + 1-Heptene	1066
	4.9. + Heptane*	1067
	$4.10. + m - Xylene^*$	1072
	4.11. + <i>o</i> -Xylene*	1077
	4.12. + <i>p</i> -Xylene*	1080
	4.13. + 2,4,4-Trimethyl-1-pentene	1084
	4.14. + 1-Octene	1084
	4.15. + 2,2,4-Trimethylpentane*	1085
	4.16. + Octane.	1088
	4.17. + Mesitylene*	1089
	4.18. + Nonane	1092
	4.19. + 2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene	1092
	4.20. + Decahydronaphthalene (cis+trans)	1093
	4.20. + Decanyuronaphthatene (ers + trans) 4.21. + Decane	1095
5.	1-Propanol+Water	1094
5.	5.1. + Benzene*	1095
	5.1. + Benzene 5.2. + Cyclohexane*	1095
	5.2. + Cyclonexane*	
		1103
	5.4. + Toluene*	1109
	5.5. + 1-Heptene	1113
	5.6. + Heptane*	1114
	5.7. $+ p$ -Xylene	1119
	5.8. + Octane*	1120
	5.9. + Mesitylene	1122
	5.10. + Nonane*	1123
	5.11. + Decane*	1126
6.	2-Propanol+Water.	1130
	6.1. + Benzene*	1130
	6.2. + Cyclohexene.	1138
	$6.3. + Cyclohexane^*$	1139
	6.4. + Hexane*	1145
	6.5. + Toluene*	1148
	6.6. + 1-Heptene	1153
	6.7. + Heptane [*]	1153
	6.8. + m -Xylene	1156
	6.9. + <i>o</i> -Xylene	1157
	6.10. + p-Xylene	1158
	6.11. + Ethylbenzene	1159
	6.12. + 1,7-Octadiene	1160
	6.13. + 2,2,4-Trimethylpentane	1161
	6.14. + Octane	1162
	6.15. + Mesitylene	1163
	6.16. + Nonane	1164
7.	2-Methyl-1-propanol+Water	1165
	7.1. + Benzene*	1165
	7.2. + Cyclohexane*	1167
	7.3. + Toluene	1170
	7.4. + 1-Heptene	1171
	7.5. $+ p$ -Xylene	1171
	7.6. + Mesitylene	1172
8.	2-Methyl-2-propanol+Water	1173
	· · · ·	

	8.1. + 1-Butene	1173
	8.2. + Benzene*	1174
	8.3. + Cyclohexane*	1176
	8.4. + Toluene	1179
	8.5. + 1-Heptene	1180
	8.6. + Heptane	1181
	8.7. $+ p$ -Xylene	1181
	8.8. $+$ 2,4,4-Trimethylpentene	1182
	8.9. + 2,2,4-Trimethylpentane	1183
	8.10. + Mesitylene	1185
	8.11. + Tetradecane	1186
9.	1-Butanol+Water.	1186
	9.1. + Benzene*	1186
	9.2. + Cyclohexane*	1189
	9.3. + Hexane*	1191
	9.4. + Toluene*	1194
	9.5. + 1-Heptene.	1198
	9.6. + Heptane	1198
	9.7. + <i>p</i> -Xylene	1199
	9.8. + Mesitylene	1199
10	2-Butanol+Water.	1200
10.	10.1. + Butane.	1200
	$10.2. + Benzene^*$	1200
	$10.3. + \text{Cyclohexane}^*$	1201
	10.4. + Toluene*	1205
	10.5. + 1-Heptene	1200
	10.6. + Heptane	1209
	10.7. + p-Xylene.	120)
	10.8. + Mesitylene	1210
11	3-Methyl-3-buten-1-ol+Water.	1211
11.	11.1. + 2-Methyl-1,3-butadiene.	1212
12.	1-Pentanol+Water.	1212
12.	12.1. + Benzene	1212
	$12.1. + \text{Benzene}^*$.	1212
	12.2. + Hexane	1215
13	2-Pentanol+Water	1210
15.	13.1. + Heptane	1210
14	1-Hexanol+Water	1210
17.	14.1. + Heptane	1217
15	Benzyl alcohol+Water.	1217
15.	15.1. + Hexane	1217
	15.2. + Toluene	1217
	15.3. + Heptane	1210
	15.4. + 1,2,3,4-Tetrahydronaphthalene	1219
16	α -Methyl-benzenemethanol+Water	1220
10.	16.1. + Ethylbenzene.	1221
17	2-Ethyl-1-hexanol+Water.	1221
17.	17.1. + Hexane	1221
	17.2. + Decahydronaphthalene (cis+trans)	1222
18.		1222
10.	18.1. + Pentane	1222
	18.2. + Benzene	1222
	18.3. + Hexane*	1223
	18.4. + Heptane.	1225
19.	1-Nonanol+Water.	1225
-/-	19.1. + Naphthalene.	1226
20.	System Index.	1227
	•	

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999 This article is copyrighted as indicated in the article. Power

ted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

IUPAC-NIST SOLUBILITY DATA SERIES

21. Registry Number Index	1231
22. Author Index	1232
Note: an asterisk () indicates presence of a Critical E	Evalu-

List of Tables

ation

1.	Interconversions between quantities used as	
	measures of solubilities.	991
2.	Summary of experimental data for the system	
	methanol-benzene-water.	995
3.	Characteristic points on the binoidal curve of the	
	system methanol-benzene-water	995
4.	Calculated compositions along the saturation	
	curve at 293.2 K	995
5.	Summary of experimental data for the system	
	methanol-cyclohexene-water	1002
6.	Summary of experimental data for the system	100
0.	methanol-cyclohexane-water	1004
7.	Calculated compositions along the saturation	1001
/.	curve at 298.2 K.	1004
8.	Summary of experimental data for the system	1004
0.	methanol-hexane-water	1008
9.	Calculated compositions along the saturation	1000
9.	curve at 293.2 K (hexane-poor phase)	1008
10.	Summary of experimental data for the system	1000
10.	methannol-toluene-water	1011
11		1011
11.	Calculated compositions along the saturation	1012
10	curve at 298.2 K.	1012
12.	Summary of experimental data for the system	1015
10	methanol-heptane-water.	1015
13.	Summary of experimental data for the system	1010
1.4	methanol- <i>p</i> -xylene-water.	1018
14.	Calculated compositions along the saturation	1010
	curve at 298.2 K	1018
15.	Summary of experimental data for the system	
	methanol-2,2,4-trimethylpentane-water	1021
16.	Summary of experimental data for the system	
	methanol-octane-water.	1023
17.	Summary of experimental data for the system	
	ethanol-benzene-water.	1027
18.	Characteristic points on the binoidal curve of the	
	system ethanol-benzene-water.	1028
19.	Calculated compositions along the saturation	
	curve at 298.2 K	1028
20.	Summary of experimental data for the system	
	ethanol-cyclohexene-water	1043
21.	Summary of experimental data for the system	
	ethanol-cyclohexane-water	1045
22.	Calculated compositions along the saturation	
	curve at 298.2 K	1045
23.	Summary of experimental data for the system	
	ethanol-hexane-water	1053
24.	Calculated compositions along the saturation	
	curve at 298.2 K	1053
25.	Summary of experimental data for the system	
	ethanol-toluene-water	1059
26.	Characteristic points on the binoidal curve of the	

	system ethanol-toluene-water	1059
27.	Calculated compositions along the saturation	
	curve at 298.2 K	1059
28.	Summary of experimental data for the system	
	ethanol-heptane-water.	1067
29.	Calculated compositions along the saturation	
	curve at 298.2 K	1068
30.	Summary of experimental data for the system	
	ethanol- <i>m</i> -xylene-water	1072
31.	Calculated compositions along the saturation	
011	curve at 298.2 K.	1072
32	Characteristic points on the binoidal curve of the	1072
52.	system ethanol- <i>m</i> -xylene-water	1072
33	Summary of experimental data for the system	1072
55.	ethanol- <i>o</i> -xylene-water.	1077
24	Calculated compositions along the saturation	1077
54.	curve at 298.2 K.	1077
25		1077
35.	Summary of experimental data for the system	1000
26	ethanol– <i>p</i> -xylene–water.	1080
36.	Calculated compositions along the saturation	1000
~ =	curve at 298.2 K	1080
37.	Summary of experimental data for the system	
	ethanol-2,3,4-trimethylpentane-water	1085
38.	Calculated compositions along the saturation	
	curve at 298.2 K	1085
39.	Summary of experimental data for the system	
	ethanol-mesitylene-water	1089
40.	Calculated compositions along the saturation	
	curve at 298.2 K	1089
41.	Summary of experimental data for the system	
	1-propanol-benzene-water.	1095
42.	Calculated compositions along the saturation	
	curve at 298.2 K	1095
43.	Characteristic points on the binoidal curve of the	
	system 1-propanol-benzene-water	1095
44.	Summary of experimental data for the system	
	1-propanol-cyclohexane-water.	1100
45	Calculated compositions along the saturation	1100
101	curve at 298.2 K.	1100
46	Summary of experimental data for the system	1100
10.	1-propanol—hexane—water.	1104
17	Calculated compositions along the saturation	1104
47.	curve at 298.2 K.	1104
10	Summary of experimental data for the system	1104
40.		1100
40	1-propanol-toluene-water.	1109
49.	Calculated compositions along the saturation	1100
50	curve (hydrocarbon-rich phase) at 298.2 K	1109
50.	Summary of experimental data for the system	
	1-propanol-heptane-water.	1114
51.	Calculated compositions along the saturation	
	curve at 298.2 K	1114
52.	Summary of experimental data for the system	
_	1-propanol-octane-water.	1120
53.	Summary of experimental data for the system	
	1-propanol-nonane-water	1123
54.	Summary of experimental data for the system	
	1-propanol-decane-water	1126

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

SKRZECZ, SHAW, AND MACZYNSKI

55.	Calculated compositions along the saturation	
	curve at 293.2 K	1126
56.	Summary of experimental data for the system	
	2-propanol-benzene-water.	1130
57	Calculated compositions along the saturation	
01.	curve at 298.2 K.	1130
50	Experimental plait points for the system	1150
50.		1121
-	2-propanol-benzene-water.	1131
59.	Summary of experimental data for the system	
	2-propanol-cyclohexane-water	1139
60.	Calculated compositions along the saturation	
	curve at 298.2 K	1139
61.	Summary of experimental data for the system	
	2-propanol-hexane-water.	1145
62.	Summary of experimental data for the system	
	2-propanol-toluene-water.	1148
63	Calculated compositions along the saturation	1110
05.	curve at 298.2 K.	1148
C 1		1140
04.	Summary of experimental data for the system	
	2-propanol-heptane-water	1153
65.	Calculated compositions along the saturation	
	curve at 298.2 K	1154
66.	Summary of experimental data for the system	
	2-methyl-1-propanol-benzene-water	1165
67.	Summary of experimental data for the system	
	2-methyl-1-propanol-cyclohexane-water	1167
68	Calculated compositions along the saturation	
00.	curve at 298.2 K.	1167
60	Summary of experimental data for the system	1107
09.	2-methyl-2-propanol-benzene-water.	1174
70		1174
70.	Summary of experimental data for the system	
	2-methyl-2-propanol-cyclohexane-water	1176
71.	Calculated compositions along the saturation	
	curve at 298.2 K	1176
72.	Summary of experimental data for the system	
	1-butanol-benzene-water	1186
73.	Summary of experimental data for the system	
	1-butanol-cyclohexane-water.	1189
74.	Calculated compositions along the saturation	
,	curve at 298.2 K (organic-rich phase)	1189
75	Summary of experimental data for the system	1107
15.	1-butanol-hexane-water	1191
76		1191
/6.	Calculated compositions along the saturation	1100
	curve at 298.2 K	1192
77.	Summary of experimental data for the system	
	1-butanol-toluene-water	1194
78.	Summary of experimental data for the system	
	2-butanol-benzene-water	1201
79.	Summary of experimental data for the system	
	2-butanol-cyclohexane-water	1203
80.	Calculated compositions along the saturation	
	curve at 298.2 K	1203
81	Summary of experimental data for the system	1200
01.	2-butanol-toluene-water.	1206
ຊາ	Calculated compositions along the saturation	1200
02.		1204
02	curve at 298.2 K (organic-rich phase)	1206
ð3.	Summary of experimental data for the system	

	1-pentanol-hexane-water	1213
84.	Summary of experimental data for the system	
	1-octanol-hexane-water	1223

List of Figures

List of Figures		
1.	Phase diagram of the system methanol (1)-	
	benzene (2)-water (3) at 293.2 K	996
2.	Phase diagram of the system methanol (1)–	
2	cyclohexene (2)–water (3) at 293.2 K	1002
3.	Phase diagram of the system methanol (1) –	1005
4.	cyclohexane (2)–water (3) at 298.2 K Phase diagram of the system methanol (1)–	1005
4.	hexane (2)–water (3) at 293.2 K	1009
5.	Phase diagram of the system methanol (1) –	1009
5.	toluene (2)–water (3) at 298.2 K.	1012
6.	Phase diagram of the system methanol (1)–	1012
0.	heptane (2)–water (3) at 293.2 K	1015
7.	Phase diagram of the system methanol (1)–	
	<i>p</i> -xylene (2)–water (3) at 298.2 K	1018
8.	Phase diagram of the system methanol (1)–	
	2,2,4-trimethylpentane (2)-water (3) at 293.2 K	1021
9.	Phase diagram of the system methanol (1)-	
	octane (2)-water (3) at 293.2 K	1023
10.	Phase diagram of the system ethanol (1)–	
	benzene (2)-water (3) at 298.2 K	1029
11.	Phase diagram of the system ethanol (1)–	
10	cyclohexene (2)-water (3) at 298.2 K	1043
12.	Phase diagram of the system ethanol (1) –	1046
12	cyclohexane (2)–water (3) at 298.2 K Phase diagram of the system ethanol (1)–hexane	1046
15.	(2)-water (3) at 298.2 K. \dots	1054
14	Phase diagram of the system ethanol (1)–toluene	1054
1 1.	(2)-water (3) at 298.2 K	1060
15.	Phase diagram of the system ethanol (1)–	1000
	heptane (2)–water (3) at 298.2 K.	1068
16.	Phase diagram of the system ethanol (1)–	
	<i>m</i> -xylene (2)–water (3) at 298.2 K	1073
17.	Phase diagram of the system ethanol (1)-	
	<i>o</i> -xylene (2)–water (3) at 298.2 K	1078
18.	Phase diagram of the system ethanol (1)–	
	<i>p</i> -xylene (2)–water (3) at 298.2 K	1081
19.	Phase diagram of the system ethanol (1) –	1000
20	2,2,4-trimethylpentane (2)–water (3) at 298.2 K	1086
20.	Phase diagram of the system ethanol (1) –	1000
21	mesitylene (2)-water (3) at 298.2 K Phase diagram of the system 1-propanol (1)-	1090
21.	benzene (2)–water (3) at 293.2 K.	1096
22	Phase diagram of the system 1-propanol (1)–	1070
22.	cyclohexane (2)–water (3) at 298.2 K	1101
23.	Phase diagram of the system 1-propanol (1)–	
	hexane (2)–water (3) at 298.2 K	1105
24.	Phase diagram of the system 1-propanol (1)-	
	toluene (2)-water (3) at 298.2 K	1110
25.	Phase diagram of the system 1-propanol (1)-	
	heptane (2)-water (3) at 298.2 K.	1115
26.	Phase diagram of the system 1-propanol (1)–	
	octane (2)-water (3) at 298.2 K	1120

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999 This article is copyrighted as indicated in the article. Data

ed in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 129.6.105.191 On: Fri, 05 Sep 2014 17:51:55

27.	Phase diagram of the system 1-propanol (1)-	
	nonane (2)-water (3) at 298.2 K.	1124
28	Phase diagram of the system 1-propanol (1)–	1121
20.	decane (2)–water (3) at 293.2 K.	1127
29	Phase diagram of the system 2-propanol (1)–	1121
2).	benzene (2)–water (3) at 298.2 K.	1130
30	Phase diagram of the system 2-propanol (1)–	1150
50.	cyclohexane (2)–water (3) at 298.2 K	1140
31	Phase diagram of the system 2-propanol (1)–	1140
51.	hexane (2)–water (3) at 298.2 K.	1146
32	Phase diagram of the system 2-propanol (1)–	11+0
52.	toluene (2)–water (3) at 298.2 K.	1149
22	Phase diagram of the system 2-propanol (1)–	1147
55.	heptane (2)–water (3) at 298.2 K.	1154
24	Phase diagram of the system 2-methyl-1-propanol	1154
54.		1165
25	(1)-benzene (2)-water (3) at 298.2 K	1165
35.	Phase diagram of the system 2-methyl-1-propanol (1) such a sector (2) strates (2) at 208.2 K	1167
20	(1)-cyclohexane (2)-water (3) at 298.2 K	1167
30.	Phase diagram of the system 2-methyl-2-propanol (1) has a second system (2) at 2008 2 K	1174
27	(1)-benzene (2)-water (3) at 298.2 K	1174
37.	Phase diagram of the system 2-methyl-2-propanol (1) = 12 km (2) = 4.208.2 Km	1170
20	(1)-cyclohexane (2)-water (3) at 298.2 K	1176
38.	Phase diagram of the system 1-butanol (1)–	1107
20	benzene (2)-water (3) at 298.2 K	1187
39.	Phase diagram of the system 1-butanol (1) –	1100
10	cyclohexane (2)-water (3) at 298.2 K	1189
40.	Phase diagram of the system 1-butanol (1)–	1100
	hexane (2)-water (3) at 298.2 K.	1192
41.	Phase diagram of the system 1-butanol (1)–	
	toluene (2)-water (3) at 298.2 K	1195
42.	Phase diagram of the system 2-butanol (1)–	
	benzene (2)-water (3) at 303.2 K	1201
43.	Phase diagram of the system 2-butanol (1)-	
	cyclohexane (2)-water (3) at 298.2 K	1203
44.	Phase diagram of the system 2-butanol (1)–	
	toluene (2)-water (3) at 298.2 K	1206
45.	Phase diagram of the system 1-pentanol (1)–	
	hexane (2)-water (3) at 298.2 K.	1214
46.	Phase diagram of the system 1-octanol (1)–	
	hexane (2)-water (3) at 293.2 K	1223

1. Preface to the Volume

This volume of IUPAC Solubility Data Series on ternary alcohol-hydrocarbon-water systems is the continuation of previous works on binary systems. Alcohol-water systems were presented as Vol. 15 of the Series, Ref. 1; hydrocarbon-water systems were presented as Vols. 37 and 38 of the Series, Refs. 2 and 3 and alcohol-hydrocarbon systems were presented as Vol. 56 of the Series, Ref. 4.

This volume surveys solubility data (along saturation curve and phases in equilibrium) which have been published in the open literature up to the end of 1992. The alcohols are those to nine carbon atoms, the most common are methanol, ethanol, propanols, and butanols. The hydrocarbons include those with three or more carbon atoms and of all structural types (aliphatic, aromatic, unsaturated, etc.) which are liquids at room temperature and pressure.

A total of 205 original studies of 116 ternary systems are compiled. Components of these systems were always welldefined substances. From these, it has been possible to make critical evaluations for 47 systems. Only numerical data are given because data published originally in graphical form are inherently imprecise, especially given the high precision of the tabulated data for many systems. The literature contains a large amount of imprecise and conflicting data. Where possible, recommended or tentative values of composition along saturation curves and for phases in equilibrium are given, but and in many cases this cannot be done because of insufficient information. This volume is the result of a careful search of the chemical literature. The goal of that search was to include all published data for the systems indicated in the title. Each Critical Evaluation includes a closing date for the literature for that system, generally December, 1992. In spite of these efforts, some published measurements may have been missed. The editors will appreciate having their attention brought to any omitted source of solubility data for inclusion in future volumes.

For purposes of comparison, all original results are expressed in mass and mole fraction as well as in the units given by the original investigators. Conversions, where they have been made, are clearly attributed to the compiler and the sources of any data not provided by the original investigators are specified. Definitions of mass and mole fraction as well as their relation to other common measures of solubility are given in the Introduction to the Solubility Data Series: Solubility of Liquids in Liquids in this volume. A table of conversion formulas is included at the end of the Introduction.

The reported ternary data often form miscibility gaps with one pair of partially miscible components (type 1) e.g., ethanol-hydrocarbon-water or propanol-hydrocarbonwater systems or miscibility gap with two pairs of partially miscible components (type 2) e.g., methanol-hydrocarbonwater or 1-butanol-hydrocarbon-water systems. In this volume the alcohol is reported always as the first component, the hydrocarbon as the second, and water as the third. For each group (alcohols, hydrocarbons), substances are ordered by increasing number of carbon atoms. In brackets, after each compound name synonyms are given. Each system begins on a separate page; first, the critical evaluation is presented together with a graphical representation of the system at one selected temperature. This is followed by compilation of original papers. Critical evaluations are presented only for systems where two or more independent determinations of solubility allow comparison of experimental data. The concentration along the saturation curve as well as the concentration of phases in equilibrium are always expressed in mole and mass fractions of alcohol and hydrocarbon. Concentration of water may be calculated from the mass balance (sum of concentration is always equal 1.0). The indexes ' and " express the phase number; ' describes organic-rich or hydrocarbon-rich phase, while " describes water-rich or

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/terr

hydrocarbon-poor phase. Among the references in several evaluations occurs the Russian compilation of Kafarov (ed.), "Spravochnik po Rastvorimosti,"⁵ which contains only numerical data without any explanatory text; the English translation of this compilation was published as a handbook on solubility.⁶

The editors would like to thank Andrzej Bok (Thermodynamics Data Center, Warsaw, Poland) for preparing computer programs for presentation of the tables; Professor John W. Lorimer (Ontario, Canada) for valuable discussions and for preparing the addresses of translated Russian papers and all members of IUPAC Commission on Solubility Data (Vol. 8) for discussions.

1.1. References to the Preface

¹A. F. M. Barton, ed., *Solubility Data Series*, Vol. 15, Alcohols with Water (Pergamon, New York, 1984).

- ²D. G. Shaw, ed., *Solubility Data Series*, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C_5 to C_7 (Pergamon, New York, 1989).
- ³D. G. Shaw, ed., *Solubility Data Series*, Vol. 38, Hydrocarbons with Water and Seawater, Part II: Hydrocarbons C_8 to C_{36} (Pergamon, New York, 1989).
- ⁴D. G. Shaw, A. Skrzecz, J. W. Lorimer, and A. Maczynski, eds., *Solubility Data Series*, Vol. 56, Alcohols with Hydrocarbons (Pergamon, New York, 1994).
- ⁵V. V. Kafarov, ed., Spravochnik po Rastvorimosti, Vol. 2, Troinye, Mnogokomponentnye Sistemy, Kniga II (Izd. Akademii Nauk SSSR, Moskva, 1963).
- ⁶H. Stephen and T. Stephen, eds., *Solubilities of Inorganic and Organic Compounds* (Pergamon, New York, 1963).

2. Introduction to the Solubility Data Series. Solubility of Liquids in Liquids

2.1. The Nature of the Project

The Solubility Data project (SDP) has as its aim a comprehensive review of published data for solubilities of gases, liquids, and solids in liquids or solids. Data of suitable precision are compiled for each publication on data sheets in a uniform format. The data for each system are evaluated and, where data from independent sources agree sufficiently, recommended values are proposed. The evaluation sheets, recommended values, and compiled data sheets are published on consecutive pages.

This series is concerned primarily with liquid–liquid systems, but a limited number or related solid–liquid, fluid– fluid, and multicomponent (organic-water-salt) systems are included where it is considered logical and appropriate. Solubilities at elevated and low temperatures and at elevated pressures have also been included, as it is considered inappropriate to establish artificial limits on the data presented if they are considered relevant or useful.

For some systems, the two components may be miscible in all proportions at certain temperatures and pressures. Data on reported miscibility gaps and upper and lower critical solution temperatures are included where appropriate and when available.

2.2. Compilations and Evaluations

The formats for the compilations and critical evaluations have been standardized for all volumes. A description of these formats follows.

2.2.1. Compilations

The format used for the compilations is, for the most part, self-explanatory. A compilation sheet is divided into boxes, with detailed contents described below.

Components

Each component is listed according to IUPAC name, formula, and Chemical Abstracts (CA) Registry Number. The Chemical Abstracts name is also included if this differs from the IUPAC name, as are trivial names if appropriate. IUPAC and common names are cross-referenced to Chemical Abstracts names in the System Index.

The formula is given either in terms of the IUPAC or Hill¹ system and the choice of formula is governed by what is usual for most current users: i.e., IUPAC for inorganic compounds, and Hill system for organic compounds. Components are ordered on a given compilation sheet according to:

(a) saturating components;

(b) nonsaturating components in alphanumerical order;

(c) solvents in alphanumerical order.

The saturating components are arranged in order according to the IUPAC 18-column periodic table with two additional rows:

Columns 1 and 2: H, alkali elements, ammonium, alkaline earth elements

Columns 3 to 12: transition elements

Columns 13 to 17: boron, carbon, nitrogen groups; chalcogenides, halogens

Column 18: noble gases

Row 1: Ce to Lu

Row 2: Th to the end of the known elements, in order of atomic number.

Organic compounds within each Hill formula are ordered in the following succession:

(a) by degree of unsaturation

(b) by order of increasing chain length in the parent hydrocarbon

(c) by order of increasing chain length of hydrocarbon branches

(d) numerically by position of unsaturation

(e) numerically by position by substitution

(f) alphabetically by IUPAC name.

Example:

C_5H_8	cyclopentane
	2-methyl-1,3-butadiene
	1,4-pentadiene
	1-pentyne
$C_{5}H_{10}$	cyclopentane
	3-methyl-l-butene
	2-methyl-2-butene

	1-pentene
	2-pentene
$C_{5}H_{12}$	2,2-dimethylpropane
	2-methylbutane
	pentane
$C_5H_{12}O$	2,2-dimethyl-l-propanol
	2-methyl-l-butanol
	2-methyl-2-butanol
	3-methyl-l-butanol
	3-methyl-2-butanol
	1-pentanol
	2-pentanol
	3-pentanol
$C_6H_{12}O$	cyclohexanol
	4-methyl-l-penten-3-ol
	1-hexen-3-ol
	4-hexen-3-ol

Deuterated (²H) compounds follow immediately the corresponding H compounds.

Original Measurements

References are abbreviated in the forms given by Chemical Abstracts Service Source Index (CASSI). Names originally in other than Roman alphabets are given as transliterated by Chemical Abstracts. In the case of multiple entries (for example, translations) an asterisk indicated the publication used for compilation of the data.

Variables

Ranges of temperature, pressure, etc., are indicated here.

Prepared by

The names of all compilers are given here.

Experimental Data

Components are described as (1), (2), etc., as defined in the "Components" box. Data are reported in the units used in the original publication, with the exception that modern names for units and quantities are used; e.g., mass percent for weight percent; mol dm⁻³ for molar; etc. In most cases, both mass and molar values are given. Usually, only one type of value (e.g., mass percent) is found in the original paper, and the compiler has added the other type of value (e.g., mole percent) from computer calculations based on 1989 atomic weights.² Temperatures are expressed as t/°C, t/°F, or T/K as in the original; if necessary, conversions to T/K are made, sometimes in the compilations, and always in the critical evaluation. However, the author's units are expressed according to IUPAC recommendations³ as far as possible.

Errors in calculations, fitting equations, etc., are noted, and where possible corrected. Material inserted by the compiler is identified by the word "compiler" or by the compiler's name in parentheses or in a footnote. In addition, compilercalculated values of mole or mass fractions are included if the original data do not use these units. If densities are reported in the original paper, conversions from concentrations to mole fractions are included, but otherwise this is done in the evaluation, with the values and sources of the densities being quoted and referenced.

Details of smoothing equations (with limits) are included if they are present in the original publication and if the temperature or pressure ranges are wide enough to justify this procedure and if the compiler finds that the equations are consistent with the data.

The precision of the original data is preserved when derived quantities are calculated, if necessary by the inclusion of one additional significant figure. In some cases graphs have been included, either to illustrate presented data more clearly, or if this is the only information in the original. Full grids are not usually inserted as it is not intended that users should read data from the graphs.

Method

The apparatus and procedure are mentioned briefly. Abbreviations used in Chemical Abstracts are often used here to save space, reference being made to sources of further detail if these are cited in the original paper.

Source and Purity of Materials

For each component, referred to as (1), (2), etc., the following information (in this order and in abbreviated form) is provided if available in the original paper: source and specified method of preparation; properties; degree of purity.

Estimated Error

If estimated errors were omitted by the original authors, and if relevant information is available, the compilers have attempted to estimate errors (identified by "compiler" or the compiler's name in parentheses or in a footnote) from the internal consistency of data and type of apparatus used. Methods used by the compilers for estimating and reporting errors are based on Ku and Eisenhart.⁴

Comments and/or Additional Data

Many compilations include this section which provides short comments relevant to the general nature of the work or additional experimental and thermodynamic data which are judged by the compiler to be of value to the reader.

References

The format for these follows the format for the Original Measurements box, except that final page numbers are omitted. References (usually cited in the original paper) are given where relevant to interpretation of the compiled data, or where cross-reference can be made to other compilations.

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip 129.6.105.191.On: Fri. 05 Sep 2014 17:51:55

2.2.2. Evaluations

The evaluator's task is to assess the reliability and quality of the data, to estimate errors where necessary, and to recommend "best" values. The evaluation takes the form of a summary in which all the data supplied by the compiler have been critically reviewed. There are only three boxes on a typical evaluation sheet, and these are described below.

Components

The format is the same as on the Compilation sheets.

Evaluator

The name and affiliation of the evaluator(s) and date up to which the literature was checked.

Critical Evaluation

(a) Critical text. The evaluator checks that the compiled data are correct, assesses their reliability and quality, estimates errors where necessary, and recommends numerical values based on all the published data (including theses, reports, and patents) for each given system. Thus, the evaluator reviews the merits or shortcomings of the various data. Only published data are considered. Documented rejection of some published data may occur at this stage, and the corresponding compilations may be removed.

The solubility of comparatively few systems is known with sufficient accuracy to enable a set of recommended values to be presented. Although many systems have been studied by at least two workers, the range of temperatures is often sufficiently different to make meaningful comparison impossible.

Occasionally, it is not clear why two groups of workers obtained very different but internally consistent sets of results at the same temperature, although both sets of results were obtained by reliable methods. In such cases, a definitive assessment may not be possible. In some cases, two or more sets of data have been classified as tentative even though the sets are mutually inconsistent.

(b) Fitting equations. If the use of a smoothing equation is justifiable the evaluator may provide an equation representing the solubility as a function of the variables reported on all the compilation sheets, stating the limits within which it should be used.

(c) Graphical summary. In addition to (b) above, graphical summaries are often given.

(d) Recommended values. Data are recommended if the results of at least two independent groups are available and they are in good agreement, and if the evaluator has no doubt as to the adequacy and reliability of the applied experimental and computational procedures. Data are reported as tentative if only one set of measurements is available, or if the evaluator considers some aspect of the computational or experimental method as mildly undesirable but estimates that it should cause only minor errors. Data are considered as doubtful if the evaluator considers some aspect of the com-

putational or experimental method as undesirable but still considers the data to have some value where the order of magnitude of the solubility is needed. Data determined by an inadequate method or under ill-defined conditions are rejected. However, references to these data are included in the evaluation together with a comment by the evaluator as to the reason for their rejection.

(e) References. All pertinent references are given here, including all those publications appearing in the accompanying compilation sheets and those which, by virtue of their poor precision, have been rejected and not compiled.

(f) Units. While the original data may be reported in the units used by the investigators, the final recommended values are reported in SI units³ when the data can be converted accurately.

2.3. Quantities and Units Used in Compilation and Evaluation of Solubility Data

2.3.1. Mixtures, Solutions and Solubilities

A *mixture*^{5,6} describes a gaseous, liquid or solid phase containing more than one substance, where the substances are all treated in the same way.

A *solution*^{5,6} describes a liquid or solid phase containing more than one substance, when for convenience one of the substances, which is called the *solvent*, and may itself be a mixture, is treated differently than the other substances, which are called *solutes*. If the sum of the mole fraction of the solutes is small compared to unity, the solution is called a *dilute solution*.

The *solubility* of a solute 1 (solid, liquid or gas) is the analytical composition of a saturated solution, expressed in terms of the proportion of the designated solute in a designated solvent.⁷

"Saturated" implies equilibrium with respect to the processes of dissolution and demixing; the equilibrium may be stable or metastable. The solubility of a substance in metastable equilibrium is usually greater than that of the same substance in stable equilibrium. (Strictly speaking, it is the activity of the substance in metastable equilibrium that is greater.) Care must be taken to distinguish true metastability form supersaturation, where equilibrium does not exist.

Either point of view, mixture or solution, may be taken in describing solubility. The two points of view find their expression in the reference states used for definition of activities, activity coefficients and osmotic coefficients. Note that the composition of a saturated mixture (or solution) can be described in terms of any suitable set of thermodynamic components.

2.3.2. Physicochemical Quantities and Units

Solubilities of solids have been the subject of research for a long time, and have been expressed in a great many ways, as described below. In each case, specification of the temperature and either partial or total pressure of the saturating gaseous component is necessary. The nomenclature and units

IUPAC-NIST SOLUBILITY DATA SERIES

	x _i	Wi	m_i	c _i
<i>x</i> _{<i>i</i>} =	<i>x</i> _i	$\frac{1}{1+\frac{M_i}{M_c} \left\{\!\frac{1}{w_i}\!-\!1+\sum_{j\neq 1}^{c-1} \left(\!\frac{M_c}{M_j}\!-\!1\right)\!\frac{w_j}{w_i}\!\right\}}$	$\frac{1}{1 + \frac{1}{m_i M_c} + \sum_{j \neq i}^{c-1} \frac{m_j}{m_i}}$	$\frac{1}{1 + \frac{1}{M_c} \left(\frac{\rho}{c_i} - M_i\right) + \sum_{j \neq i}^{c-1} \frac{c_j}{c_i} \left(1 - \frac{M_j}{M_c}\right)}$
<i>w</i> _{<i>i</i>} =	$\frac{1}{1 + \frac{M_c}{M_i} \left\{ \frac{1}{x_i} - 1 + \sum_{j \neq i}^{c-1} \left(\frac{M_j}{M_c} - 1 \right) \frac{x_j}{x_i} \right\}}$	Wi	$\frac{1}{1+\frac{1}{m_iM_i}\left(1+\sum_{j\neq i}^{c-1}m_jM_j\right)}$	$rac{c_i M_i}{ ho}$
$m_i =$	$\frac{1}{M_c\left(\frac{1}{x_i}-1-\sum_{j\neq i}^{c-1}\frac{x_j}{x_i}\right)}$	$\frac{1}{M_i \left(\frac{1}{w_i} - 1 - \sum_{j \neq i}^{c-1} \frac{w_j}{w_i}\right)}$	m _i	$\frac{1}{\frac{1}{c_i}\left(\rho - \sum_{j \neq i}^{c-1} c_j M_j\right) - M_i}$
<i>c</i> _{<i>i</i>} =	$\frac{\rho}{M_i + M_c \left\{ \frac{1}{x_i} - 1 + \sum_{j \neq i}^{c-1} \left(\frac{M_j}{M_c} - 1 \right) \frac{x_j}{x_i} \right\}}$	$rac{ ho w_i}{M_i}$	$\frac{\rho}{\frac{1}{m_i}\left(1+\sum_{j\neq i}^{c-1}m_jM_j\right)+M_j}$	c_i

TABLE 1. Interconversions between quantities used as measures of solubilities c-component systems containing c-1 solutes i and single solvent c (ρ —density of solution; M_i —molar masses of i. For relations for two-component systems, set summations to 0.)

follow, where possible, IUPAC *Green Book*.³ A few quantities follow the ISO standards⁸ or the German standard;⁹ see a review by Cvitas¹⁰ for details.

A note on nomenclature

The nomenclature of the IUPAC *Green* $Book^3$ calls the solute component B and the solvent component A. In compilations and evaluations, the first-named component (component 1) is the solute, and the second (component 2 for a two-component system) is the solvent. The reader should bear these distinctions in nomenclature in mind when comparing equations given here with those in the *Green Book*.

1. *Mole fraction* of substance 1, x_1 or x (1) (condensed phases), y_1 (gases):

$$x_1 = n_1 \bigg/ \sum_{s=1}^c n_s \tag{1}$$

where n_s is the amount of substance of *s*, and *c* is the number of distinct substances present (often the number of thermodynamic components in the system). *Mole percent* of substance 1 is 100 x_1 .

2. *Ionic mole fractions* of salt i, x_{i+}, x_{i-} :

For a mixture of *s* binary salts *i*, each of which ionizes completely into v_{s+} cations and v_{s-} anions, with $v_s = v_{s+} + v_{s-}$ and a mixture of *p* nonelectrolytes *j*, of which some may be solvent components, a generalization of the definition in Ref. 11 gives

$$x_{i+} = \frac{v_i + x_i}{1 + \sum_{i=1}^{s} (v_i - 1)x_s}, \quad x_{i-} = \frac{v_i - x_{i+}}{v_{i+}} \quad i = 1...s$$
(2)

$$x'_{j} = \frac{x_{j}}{1 + \sum_{i=1}^{s} (v_{i} - 1)x_{i}}, \quad j = (s+1), \dots, p.$$
(3)

The sum of these mole fractions is unity, so that, with c = s + p,

$$\sum_{i=1}^{s} (x_{i+} + x_{i-}) + \sum_{i=s+1}^{c} x_i' = 1.$$
 (4)

General conversions to other units in multicomponent systems are complicated. For a three-component system containing nonelectrolyte 1, electrolyte 2, and solvent 3,

$$x_1 = \frac{v_{2+}x_1'}{v_{2+} - (v_2 - 1)x_{2+}}, \quad x_2 = \frac{x_{2+}}{v_{2+} - (v_2 - 1)x_{2+}}.$$
 (5)

These relations are used in solubility equations for salts, and for tabulation of salt effects on solubilities of gases (see below).

3. *Mass fraction* of substance 1, w_1 or w(1):

$$w_1 = g_1 \bigg/ \sum_{s=1}^c g_s \tag{6}$$

where g_s is the mass of substance *s*. Mass percent of substance 1 is 100 w_1 . The equivalent terms weight fraction, weight percent, and g(1)/100 g solution are no longer used.

4. Molality of solute 1 in a solvent 2, m_1 :

$$m_1 = n_1 / n_2 M_2 \tag{7}$$

SI base units: mol kg⁻¹. Here, M_2 is the molar mass of the solvent.

5. Aquamolality, Solvomolality of substance 1 in a mixed solvent with components, 2, 3, ${}^{12} m_1^{(3)}$:

$$m_1^{(3)} = m_1 \bar{M} / M_3$$
 (8)

SI base units: mol kg⁻¹. Here, the average molar mass of the solvent is

$$\bar{M} = x_2' M_2 + (1 - x_2') M_3 \tag{9}$$

and x'_2 is the solvent mole fraction of component 2. This term is used most frequently in discussing comparative solubilities in water (component 2) and heavy water (component 3) and in their mixtures.

6. Amount concentration if solute 1 in a solution of volume V, c_1 :

$$c_1 = [\text{formula of solute}] = n_1 / V$$
 (10)

SI base units: mol m⁻³. The symbol c_1 is preferred to [formula of solute], but both are used. The old terms *molarity*, *molar*, and *moles per unit volume* are no longer used.

7. *Mass concentration* of solute 1 in a solution of volume V, r_1 : SI base units: kg m⁻³.

$$\rho_1 = g_1 / V. \tag{11}$$

8. *Mole ratio*, $r_{A,B}$ (dimensionless)¹⁰

$$r_{\rm A,B} = n_1 / n_2.$$
 (12)

Mass ratio, symbol $\zeta_{A,B}$, may be defined analogously.¹⁰

Mole and mass fractions are appropriate to either the mixture or the solution point of view. The other quantities are appropriate to the solution point of view only. Conversions between pairs of these quantities can be carried out using the equations given in Table 1 at the end of this Introduction. Other useful quantities will be defined in the prefaces to individual volumes or on specific data sheets.

9. Density, ρ :

$$\rho = g/V \tag{13}$$

SI base units: kg m⁻³. Here *g* is the total mass of the system.

10. Relative density, $d = \rho/\rho^\circ$: the ratio of the density of a mixture at temperature *t*, pressure *p* to the density of a reference substance at temperature *t'*, pressure *p'*. For liquid solutions, the reference substance is often water at 4 °C, 1 bar. (In some cases 1 atm is used instead of 1 bar.) The term *specific gravity* is no longer used.

Thermodynamics of Solubility

Thermodynamic analysis of solubility phenomena provides a rational basis for the construction of functions to represent solubility data, and thus aids in evaluation, and sometimes enables thermodynamic quantities to be extracted. Both these aims are often difficult to achieve because of a lack of experimental or theoretical activity coefficients. Where thermodynamic quantities can be found, they are not evaluated critically, since this task would involve examination of a large body of data that is not directly relevant to solubility. Where possible, procedures for evaluation are based on established thermodynamic methods. Specific procedures used in a particular volume will be described in the Preface to this volume.

2.4. References for the Introduction

¹E. A. Hill, J. Am. Chem. Soc. **22**, 478 (1990).

- ²IUPAC Commission on Atomic Weights and Isotopic Abundances, Pure Appl. Chem. **63**, 975 (1980).
- ³I. Mills et al., eds., Quantities, Units and Symbols in Physical Chemistry (The Green Book). (Blackwell Scientific Publications, Oxford, UK, 1993).
- ⁴H. H. Ku, p. 73; C. Eisenhart, p. 69; in H. H. Ku, ed., Precision Measurement and Calibration, *NBS Special Publication 300*, Vol. 1 (Washington, 1969).
- ⁵J. Regaudy and S. P. Klesney, *Nomenclature of Organic Chemistry* (IU-PAC) (The *Blue Book*) (Pergamon, Oxford, 1979).
- ⁶V. Gold *et al.*, eds., *Compendium of Chemical Technology* (The Gold Book) (Blackwell Scientific Publications, Oxford, UK, 1987).
- ⁷H. Freiser and G. H. Nancollas, eds., *Compendium of Analytical Nomenclature* (The *Orange Book*) (The Blackwell Scientific Publications, Oxford, UK, 1987), Sect. 9.1.8.
- ⁸ISO Standards Handbook, *Quantities and Units* (International Standards Organization, Geneva, 1993).
- ⁹German Standard, DIN 1310, *Zusammungsetzung von Mischphasen* (Beuth Verlag, Berlin, 1984).
- ¹⁰T. Cvitaŝ, Chem. Int. **17**, 123 (1995).
- ¹¹R. A. Robinson and R. H. Stokes, *Electroyte Solutions* (Butterworths, London, 1959), 2nd ed.
- ¹²J. W. Lorimer, in R. Cohen-Adad and J. W. Lorimer, Alkali Metal and Ammonium Chlorides in Water and Heavy Water (Binary Systems), IU-PAC Solubility Data Series, Vol. 47 (Pergamon, Oxford, UK, 1991), p. 495.

This section was written by:

A. F. M. Barton	Perth, WA, Australia				
G. T. Hefter	Perth, WA, Australia				
F. W. Getzen	Raleigh, NC, USA				
D. G. Shaw	Fairbanks, AK, USA				
December, 1995					

3. Methanol + Water

Components: Original Measurements: (1) Methanol (methyl alcohol); CH₄O; [67-56-1] K. Noda, K. Sato, K. Nagatsuka, and K. Ishida, J. Chem. Eng. (2) Propane (n-propane); C₃H₈; [74-98-6] Jpn. 8, 492-3 (1975). (3) Water; H₂O; [7732-18-5] Variables: Compiled by: T/K = 273 - 293A. Skrzecz

3.1. Methanol + Water + Propane

Experimental Data

		x'_1	x'_3	x_1''	x_2''	w'_1	w'_2	w'3	w_1''	w_2''
	T/K (compiler)	ph	ic-rich ase piler)	ph	r-rich ase piler)		organic-rich phase	1		r-rich ase
0.0	273.2	0.004	0.995	0.397	0.005	0.003	0.997	0.0002	0.537	0.009
		0.007	0.992	0.510	0.010	0.005	0.995	0.0003	0.643	0.01
		0.019	0.979	0.677	0.023	0.014	0.985	0.0008	0.772	0.03
		0.038	0.960	0.754	0.036	0.028	0.971	0.001	0.818	0.05
		0.147	0.848	0.851	0.099	0.112	0.886	0.002	0.838	0.134
20.0	293.2	0.007	0.992	0.276	0.003	0.005	0.994	0.0006	0.402	0.00
		0.015	0.983	0.458	0.010	0.011	0.988	0.0008	0.594	0.01
		0.019	0.978	0.493	0.014	0.014	0.985	0.001	0.624	0.02
		0.035	0.961	0.639	0.041	0.026	0.972	0.0015	0.730	0.06
		0.066	0.929	0.718	0.115	0.049	0.949	0.002	0.740	0.16

Auxiliary Information

Method/Apparatus/Procedure:

The analytical method was used, similar to that reported in Ref. 1. Samples of each phase were analyzed by glc on a 3 mm diameter by 3 m long column packed with Poropak R and using H₂ as a carrier gas. Each sample was injected several times and the composition was determined from chromatogram areas. Care was taken to avoid contamination by the surroundings, especially water vapor.

Source and Purity of Materials:

(1) source not specified, commercially available; guaranteed reagent; used as received.

(2) Takachiho Chemical Industry Co., Ltd; standard reagent; used as received. (3) distilled.

Estimated Error:

Not reported.

References:

¹K. Ishida, Bull. Chem. Soc. Jpn. 29, 956 (1956).

Components:

(1) Methanol (methyl alcohol); CH₄O; [67-56-1] (2) Butane (*n*-butane); C₄H₁₀; [106-97-8] (3) Water; H₂O; [7732-18-5]

Original Measurements:

K. Noda, K. Sato, K. Nagatsuka, and K. Ishida, J. Chem. Eng. Jpn. 8, 492-3 (1975).

Variables: Compiled by: T/K = 273 - 293A. Skrzecz

3.2. Methanol + Water + Butane Experimental Data

Compositions of coexisting phases

		x'_1	x'_3	x_1''	x_2''	w'_1	w'2	w' ₃	w_1''	w_2''	
t/°C	<i>T</i> /K (compiler)	ph	organic-rich phase (compiler)		water-rich phase (compiler)		organic-rich phase			water-rich phase	
0.0	273.2	0.011	0.988	0.584	0.007	0.006	0.994	0.0003	0.707	0.015	
		0.020	0.979	0.729	0.019	0.011	0.989	0.0004	0.805	0.039	
		0.037	0.961	0.811	0.044	0.021	0.978	0.0006	0.834	0.082	
		0.063	0.934	0.843	0.073	0.036	0.963	0.0007	0.824	0.13	
		0.100	0.897	0.835	0.123	0.058	0.941	0.0008	0.772	0.20	
		0.105	0.892	0.834	0.131	0.061	0.938	0.0008	0.764	0.21	
20.0	293.2	0.007	0.991	0.270	0.001	0.004	0.996	0.0004	0.396	0.00	
		0.014	0.984	0.510	0.005	0.008	0.991	0.0006	0.644	0.01	
		0.020	0.978	0.626	0.010	0.011	0.988	0.0007	0.737	0.02	
		0.023	0.974	0.650	0.013	0.013	0.986	0.0008	0.753	0.02	
		0.041	0.956	0.723	0.023	0.023	0.976	0.001	0.797	0.04	
		0.060	0.937	0.759	0.056	0.034	0.965	0.001	0.787	0.10	
		0.082	0.914	0.783	0.092	0.047	0.951	0.0015	0.768	0.16	
		0.121	0.873	0.751	0.177	0.071	0.927	0.002	0.675	0.28	

Auxiliary Information

Method/Apparatus/Procedure:

The analytical method was used, similar to that reported in Ref. 1. Samples of each phase were analyzed by glc on a 3 mm diam by 3 m long column packed with Poropak R and using H2 as a carrier gas. Each sample was injected several times and the composition was determined from chromatogram areas. Care was taken to avoid contamination by the surroundings, especially water vapor.

Source and Purity of Materials:

(1) source not specified, commercially available; guaranteed reagent; used as received. (2) Takachiho Chemical Industry Co., Ltd; standard reagent; used as received. (3) distilled

Estimated Error:

Not reported.

References:

¹K. Ishida, Bull. Chem. Soc. Jpn. 29, 956 (1956).

IUPAC-NIST SOLUBILITY DATA SERIE

S

Variables:

T/K = 288

t/°C 15.0

(1) Methanol (methyl alcohol); CH₄O; [67-56-1] (2) Isoprene (2-methyl-1,3-butadiene, isopentadiene); C5H8; [78-79-5] (3) Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

A. Skrzecz

T. M. Lesteva, S. K. Ogorodnikov and V. I. Morozova, Zh. Prikl. Khim. (Leningrad) 39, 2134-6 (1966). [Eng. transl. Russ. J. Phys. Appl. Chem. (Leningrad) 39, 2002-5 (1966)].

3.3. Methanol + Water + 2-Methyl-1, 3-butadiene **Experimental Data**

Compositions along the saturation curve

T/K	<i>x</i> ₁	x_2		
(compiler)	(com	piler)	w_1	w_2
288.2	0.0000	0.0002	0.0000	0.0008
	0.0595	0.0006	0.101	0.002
	0.1241	0.0006	0.201	0.002
	0.1652	0.0006	0.260	0.002
	0.2809	0.0010	0.409	0.003
	0.2709	0.0010	0.397	0.003
	0.3490	0.0010	0.487	0.003
	0.0646	0.0011	0.109	0.004
	0.1824	0.0015	0.283	0.005
	0.2768	0.0023	0.403	0.007
	0.3443	0.0037	0.479	0.011
	0.3690	0.0045	0.505	0.013
	0.4245	0.0090	0.557	0.025
	0.5098	0.0152	0.630	0.040
	0.5679	0.0227	0.671	0.057
	0.5197	0.0225	0.630	0.058
	0.5560	0.0318	0.650	0.079
	0.6050	0.0384	0.682	0.092
	0.6077	0.0393	0.683	0.094
	0.6351	0.0530	0.688	0.122
	0.6575	0.0720	0.683	0.159
	0.6653	0.0930	0.666	0.198
	0.6647	0.0936	0.665	0.199
	0.6780	0.1026	0.665	0.214
	0.6685	0.1090	0.652	0.226
	0.6694	0.1251	0.637	0.253
	0.6825	0.1346	0.637	0.267
	0.6675	0.1443	0.618	0.284
	0.6602	0.1724	0.589	0.327
	0.6434	0.1772	0.574	0.336
	0.6473	0.2106	0.551	0.381
	0.6263	0.2383	0.518	0.419
	0.5841	0.3033	0.452	0.499
	0.5807	0.3105	0.446	0.507
	0.5204	0.3991	0.368	0.600
	0.5060	0.4103	0.355	0.612
	0.4833	0.4388	0.331	0.639
	0.4546	0.4758	0.302	0.672
	0.3983	0.5478	0.250	0.731
	0.3991	0.5579	0.248	0.737
	0.3464	0.6294	0.204	0.788
	0.2448	0.7232	0.136	0.854
	0.1909	0.7957	0.101	0.895
	0.0000	0.9989	0.0000	0.9997

			Co	ompositions of	f coexisting ph	ases			
		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	rich	carbon- phase piler)	ph	r-rich ase piler)	2	carbon- phase		er-rich aase
15.0	288.2	0.0000	0.9962	0.0406	0.0003	0.000	0.999	0.070	0.001
		0.0000	0.9925	0.0917	0.0006	0.000	0.998	0.152	0.002
		0.0000	0.9888	0.1551	0.0003	0.000	0.997	0.246	0.001
		0.0063	0.9899	0.1796	0.0003	0.003	0.996	0.280	0.001
		0.0063	0.9862	0.2203	0.0006	0.003	0.995	0.334	0.002
		0.0147	0.9779	0.4678	0.0081	0.007	0.991	0.600	0.022
		0.0412	0.9478	0.5592	0.0169	0.020	0.977	0.671	0.043
		0.0614	0.9314	0.5904	0.0264	0.030	0.968	0.685	0.065
		0.2587	0.7252	0.2587	0.7252	0.143	0.852	0.143	0.852 ^a

^aCritical point of solution estimated by the authors.

Auxiliary Information

Method/Apparatus/Procedure:

The standard titration method was used to construct the binodal curve. Refractive indexes and densities of points on the binodal curve were measured. Ternary mixtures of known composition were shaken in the thermostat for 1 h. After separation, refractive indexes and densities of both phases were measured and concentrations were calculated from calibration curves prepared during solubility measurements. The results of the analysis of the water-rich phase were checked for a few points by redistillation and further analysis of distillate by glc and the Karl Fischer methods.

Source and Purity of Materials:

(1) source not specified; distilled several times on laboratory columns; purity 99.85%-99.90%. (2) source not specified; distilled several times on laboratory columns; purity 99.85%-99.90%. (3) not specified.

Estimated Error: temp. ±0.1 °C.

Methanol (methyl alcohol); CH₄O; [67-56-1]
 Benzene: C₆H₆; [71-43-2]
 Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.05)

3.4. Methanol + Water + Benzene

Critical Evaluation:

A survey of reported compositions along the saturation curves (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system methanol-benzene-water is given in Table 2.

TABLE 2. Summary of experimental data for the system methanol-benzene-water

Author(s), year	T/K	Type of data ^a	Ref.
Bancroft, 1895	293	sat. (8)	1
Holmes, 1918	288	sat. (1)	2
Perrakis, 1925	293	sat. (11)	3
Barbaudy, 1926	298	Eq. (3)	4
Ormandy et al., 1934	288	sat. (5)	5
Sata and Niwase, 1937	292-304	sat. (15)	6
Leikola, 1940	299	sat. (8)	7
Staveley et al., 1951	288-341	sat. (49)	8
Francis, 1954	295	sat. (16)	9
Udovenko and Mazanko, 1963	289-341	sat. (82), Eq. (44)	10
Bundantseva et al., 1976	293	sat. (5), Eq. (10)	11
Triday, 1984	293	sat. (27), Eq. (10)	12
Letcher et al., 1990	298	sat. (13), Eq. (5)	13

^aNumber of experimental points in parentheses.

Saturation curves

The ternary system methanol-benzene-water forms a miscibility gap of type 1. The system was the object of 13 studies over the temperature range 288-341 K. This critical evaluation is based on the original papers with the exception of data of Bancroft, ¹ Ormandy, et al.,⁵ and Leikola,⁷ which were taken from the handbook of Kafarov;¹⁴ these data sets were also taken into account during evaluation but are not reported as compilation sheets because they do not contribute further to knowledge of the system. Data of Perrakis³ at 293 K show a larger miscibility gap than other studies; maximum mole fraction of methanol is larger by about 0.1 than any other data at this temperature. Data of Bancroft¹ were reported in volume % and were not recalculated. Therefore these data are rejected and are not reported as a compilation table. All experimental data of Letcher et al.¹³ were presented only in graphical form and therefore were not reported as a separate compilation sheet. Data of Francis⁹ at 295 K show a slightly smaller miscibility gap than data at 293 K (in agreement with general expectations), while data published during the period 1918-40 are all very close to the binodal curve describing saturation at 293 K, even though they were measured over the range 288-299 K. Of the three related binary systems, only benzene-water shows partially miscibility. The data for this system were reported, compiled, and critically evaluated in a previously published SDS volume.¹⁵ The recommended values of mutual solubility at 293.2 K, from Ref. 15, are: $x'_2 = 0.9975$ and $x''_2 = 0.000$ 406. Only the papers of Budantseva et al.¹¹ and Triday¹² reported mutual solubility of the binary system. These values at 293.2 K¹¹ and at 293.0 K¹² are the same in both references: $x'_2 = 0.9974$, $x''_3 = 0.0004$ and are in excellent agreement with recommended data, Ref. 15. Characteristic points on the binodal curve of the system methanol-benzene-water at selected temperatures, reported in literature, are presented in Table 3. At the point of maximum methanol concentration the errors estimated by the evaluator are 0.005 and 0.015 mole fraction of methanol and benzene, respectively. The composition of plait points at 293 K reported in Refs. 11 and 12, differed by 0.04 mole fraction of methanol and benzene (the plait point reported by Triday¹² was calculated by Hand's method).¹⁶

TABLE 3. Characteristic points on the binodal curve of the system methanol-benzene-water

	Max. CH ₃ OH concentration				points		
T/K	<i>x</i> ₁	<i>x</i> ₂	Ref.	<i>x</i> ₁	<i>x</i> ₂	Ref.	
293.0	0.6181	0.1371	12	0.406	0.523	12	
293.2	0.6320	0.1462	11	0.441	0.482	11	
298.2	_	_		0.4743	0.4106	4	
298.2	0.62	0.14	13	0.47	0.44	13	
303.2	0.5949	0.1499	10	0.470	0.420	10	
318.2	0.5662	0.1542	10	0.467	0.389	10	
333.2	0.5345	0.1082	10	0.465	0.357	10	

The temperature 293 K was selected for presentation of the behavior of the system. (The temperature difference between 293.2 and 293.0 K was neglected in binodal curve parameters calculations.) All together 72 experimental points on the saturation $curve^{11,12}$ (the water-rich and benzene-rich branches were treated together) were used to construct the fitting equation:

$x_1 = 0.96828 + 0.11825 \ln(x_2) - 0.852 77x_2 - 0.122 05x_2^2$

The standard error of estimate was 0.0421. The compositions on the saturation curve calculated by the fitting equation are presented in the Table 4 for selected concentrations of benzene. The results of calculations (solid line) are presented graphically in Fig. 1 together with all experimental data reported at 293.2 K.

TABLE 4. Calculated compositions along the saturation curve at 293.2 K

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.0000	0.000 406 Ref. 15	0.4294	0.5000
0.1506	0.0010	0.4145	0.5200
0.4152	0.0100	0.3993	0.5400
0.4886	0.0200	0.3839	0.5600
0.5533	0.0400	0.3682	0.5800
0.5840	0.0600	0.3523	0.6000
0.6006	0.0800	0.3361	0.6200
0.6095	0.1000	0.3197	0.6400
0.6135	0.1200	0.3031	0.6600
0.6140	0.1400	0.2864	0.6800
0.6120	0.1600	0.2694	0.7000
0.6080	0.1800	0.2522	0.7200
0.6025	0.2000	0.2348	0.7400
0.5957	0.2200	0.2172	0.7600
0.5878	0.2400	0.1995	0.7800
0.5790	0.2600	0.1816	0.8000
0.5694	0.2800	0.1635	0.8200
0.5591	0.3000	0.1452	0.8400
0.5482	0.3200	0.1268	0.8600
0.5367	0.3400	0.1082	0.8800
0.5247	0.3600	0.0895	0.9000
0.5122	0.3800	0.0706	0.9200
0.4993	0.4000	0.0515	0.9400
0.4860	0.4200	0.0323	0.9600
0.4723	0.4400	0.0130	0.9800
0.4584	0.4600	0.0032	0.9900
0.4440	0.4800	0.0000	0.9975 Ref. 15

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system methanol-benzene-water were reported in five references as 6 isotherms, Refs. 4, 10, 11, 12, 13, over the temperature range 293-333 K. The tie lines cover the full area of the miscibility gap. There is a large difference of mole fraction of methanol between the benzene-rich and water-rich phases. The reported data are consistent within each data set. Changes of tie line direction were observed with temperature. With decreasing temperature the water concentration in the benzene-poor phase also decreased for a similar composition of benzene-rich phase. This may be observed in data reported in Refs. 10, 11, 12. At 293 K equilibrium data of Budantseva et al.¹¹ and Triday¹² differ one from the other. For similar composition of benzene-rich phase the measured composition of water-rich phase reported by Triday¹² contains much more methanol than the equivalent mixture reported by Budantseva et al.¹¹ All equilibrium data are considered tentative. The experimental plait points reported in literature are presented above in Table 2. The experimental points at 293.2 K, both saturation and equilibrium data, Refs. 11 and 12, are presented in Fig. 1.

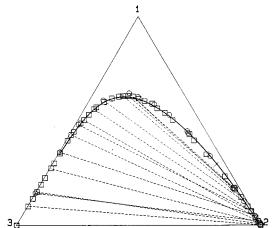


FIG. 1. Phase diagram of the system methanol (1)-benzene (2)-water (3) at 293.2 K. Solid line-calculated saturation curve, O-experimental data, Ref. 11, D-experimental data, Ref. 12, dashed lines-experimental tie lines, Refs. 11 and 12.

References:

- ¹W. D. Bancroft, Phys. Rev. 3, 205 (1895).
- ²J. Holmes, J. Chem. Soc. 113, 263 (1918).
- ³N. Perrakis, J. Chim. Phys. Phys. Chim. Biol. 22, 280 (1925).
- ⁴J. Barbaudy, C. R. Hebd, Seances Acad. Sci. 182, 1279 (1926).
- ⁵W. R. Ormandy, T. W. M. Pond, and W. R. Davies, J. Inst. Petrol. Technol. 20, 308 (1934).
- ⁶N. Sata and Y. Niwase, Bull. Chem. Soc. Jpn. 12, 86 (1937).
- ⁷E. Leikola, Suomen Kemistil B. 13, 13 (1940).
- ⁸L. A. K. Staveley, R. G. S. Johns, and B. C. Moore, J. Chem. Soc. 2516 (1951).
- ⁹A. W. Francis, Ind. Eng. Chem. 46, 205 (1954).
- ¹⁰V. V. Udovenko and T. E. Mazanko, Zh. Fiz. Khim. 37, 2324 (1963).
- ¹¹L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Dep. Doc. VINITI 438-76, 1 (1976).
- ¹²J. O. Triday, J. Chem. Eng. Data 29, 321 (1984).
- ¹³T. M. Letcher, J. Sewry, and S. Radloff, S. Afr. J. Chem. 43, 56 (1990).
- 14V. V. Kafarov, ed., Spravochnik po Rastvorimosti Vol. 2, Troinye, Mnogokomponentnye Sistemy, Kniga II (Izd. Akademii Nauk SSSR, Moskva, 1963).
- 15 D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).
- ¹⁶D. B. Hand, J. Phys Chem. 34, 1961 (1930).

Components:

(1) Methanol (methyl alcohol); CH₄O; [67-56-1] (2) Benzene; C₆H₆ [71-43-2] (3) Water; H₂O; [7732-18-5]

Original Measurements: J. Barbaudy, C. R. Hebd. Seances Acad. Sci. 182, 1279-81 (1926).

Variables: Compiled by: T/K = 298A. Skrzecz

			Cor	Experime npositions of	ntal Data coexisting pha	ises			
		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	rich	arbon- phase piler)	rich	ter- phase piler)	2	carbon- phase		nter- phase
25.00	298.15	0.0925 0.0961	0.8961 0.8918	0.5192 0.5377	0.0343 0.0409	0.0405 0.0422	0.9567 0.9548	0.6080 0.6150	0.0980 0.1140
		0.0933 0.4743	0.8953 0.4106	0.5240 0.4743	0.0359 0.4106	0.0409 0.3080	0.9563 0.6500	0.6100 0.3080	0.1020 ^a 0.6500 ^b

^aEqual density of both phases (interpolated by the author). ^bPlait point.

Auxiliary Information

Method/Apparatus/Procedure:

The analytical method was used. After separation, density and refractive index of each phase were measured. Compositions of coexisting phases were determined as intersections of constant density and constant refractive index lines. Nine tie lines are presented graphically. Only two of them and critical point are reported as numerical values and presented above. The procedure was described for ethanol-benzene-water system in Ref. 1.

Source and Purity of Materials: (1) source not specified. (2) source not specified. (3) source not specified.

Estimated Error:

Not reported.

References:

¹J. Barbaudy, Bull. Soc. Chim. Fr. 49, 371 (1926).

26.0

30.0

19.0

23.5

24.0

28.0

31.0

30.0 25.5

22.0

30.0

25.0

29.0

30.0

Method/Apparatus/Procedure:

mixture until one layer was obtained.

(1) Methanol (methyl alcohol); Ch_4O ; [67-56-1] (2) Benzene: C H. [71-43-2]

299.2

303.2

292.2

296.7

297.2

301.2

304.2

303.2

298.7

295.2

303.2

298.2

302.2

303.2

Alcohol was added to a known amount of water-benzene

Original Measurements:

N. Sata and Y. Niwase, Bull. Chem. Soc. Jpn. 12, 86-95 (1937).

0.2520

0.2510

0.3225

0.3221

0.3217

0.3213

0.3209

0.3200

0.3820

0.3810

0.3810

0.4690

0.4680

0.4670

(1) Merck, "very pure," without acetone; used as received.

(2) Benzene; $C_6 H$ (3) Water; H_2O ;				
Variables: <i>T</i> /K=292-304			Compiled by: A. Skrzecz	
			ental Data the saturation curve	
	T/K	<i>x</i> ₁	<i>x</i> ₂	
t/°C	(compiler)	(con	piler)	<i>w</i> ₁
23.0	296.2	0.4282	0.5026	0.2530

0.4249

0.4198

0.4996

0.4986

0.4969

0.4952

0.4934

0.4906

0.5491

0.5460

0.5449

0.6089

0.6059

0.6029

Auxiliary Information

Components:

 w_2 0.7240

0.7230

0.7200

0.6445

0.6444

0.6436

0.6428

0.6419

0.6410

0.5740

0.5730

0.5720

0.4700

0.4690

0.4680

(1) Methanol (methyl alcohol); CH₄O; [67-56-1] (2) Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5]

Variables: T/K = 288 - 341

Experimental Data Compositions along the saturation curve

Original Measurements:

Soc. 2516-23 (1951).

Compiled by:

A. Skrzecz

L. A. K. Staveley, R. G. S. Johns, and B. C. Moore, J. Chem.

	<i>T</i> (17			w1	w_2
t/°C	T/K (complier)	<i>x</i> ₁	<i>x</i> ₂	(com	piler)
26.0	299.15	0.0113	0.985 63	0.004 68	0.994 6
33.5	306.65	0.0113	0.984 74	0.004 68	0.994 4
37.7	310.85	0.0113	0.984 08	0.004 68	0.994 2
46.1	319.25	0.0113	0.982 52	0.004 69	0.993 8
60.1	333.25	0.0113	0.979 245	0.004 70	0.993 0
20.0	293.15	0.0226	0.974 52	0.009 42	0.989 9
32.4	305.55	0.0226	0.972 89	0.009 43	0.989 5
42.0	315.15	0.0226	0.971 19	0.009 44	0.989 1
49.8	322.95	0.0226	0.968 53	0.009 46	0.988 4
56.4	329.55	0.0226	0.967 60	0.009 47	0.988 2
28.7	301.85	0.0332	0.962 65	0.013 94	0.985 0
34.5	307.65	0.0332	0.961 72	0.013 95	0.984 8
40.1	313.25	0.0332	0.960 72	0.013 96	0.984 6
47.9	321.05	0.0332	0.959 03	0.013 98	0.984 1
56.5	329.65	0.0332	0.956 62	0.014 00	0.983 5
28.4	301.55	0.0412	0.954 49	0.017 40	0.981 5
32.2	305.35	0.0412	0.954 075	0.017 41	0.981 4
44.6	317.75	0.0412	0.951 375	0.017 44	0.980 8
52.0	325.15	0.0412	0.949 68	0.017 47	0.980 3
62.8	335.95	0.0412	0.946 52	0.017 51	0.979 5
22.5	295.65	0.0458	0.950 13	0.019 37	0.979 6
41.1	314.25	0.0458	0.946 76	0.019 42	0.978 8
47.4	320.55	0.0458	0.945 03	0.019 45	0.978 3
64.1	337.25	0.0458	0.940 09	0.019 53	0.977 0
67.6	340.75	0.0458	0.939 11	0.019 54	0.976 8
23.7	296.85	0.0568	0.936 79	0.024 23	0.974 2
31.6	304.75	0.0568	0.935 31	0.024 26	0.973 8
37.9	311.05	0.0568	0.933 89	0.024 29	0.973 4
47.8	320.95	0.0568	0.931 49	0.024 33	0.972 8
50.7	323.85	0.0568	0.930 69	0.024 35	0.972 6
22.2	295.35	0.0781	0.913 62	0.033 81	0.964 1
32.7	305.85	0.0781	0.911 27	0.033 87	0.963 5
46.2	319.35	0.0781	0.908 42	0.033 95	0.962 7
53.1	326.25	0.0781	0.906 59	0.034 00	0.962 2
61.6	334.75	0.0781	0.903 74	0.034 08	0.961 4
15.0	288.15	0.1047	0.885 86	0.046 13	0.951 5
22.2	295.35	0.1047	0.884 48	0.046 18	0.951 1
35.6	308.75	0.1047	0.880 67	0.046 33	0.950 0
43.7	316.85	0.1047	0.878 85	0.046 40	0.949 5

997

0.5001

0.4939

0.4095

0.4092

0.4078

0.4064

0.4049

0.4031

0.3384

0.3368

0.3356

0.2503

0.2491

0.2478

(3) not specified.

Estimated Error: Not reported.

Source and Purity of Materials:

(2) source not specified; used as received.

Auxiliary Information

Method/Apparatus/Procedure:

The synthetic method was used. Mixtures were prepared in sealed tubes; water was added from a weighed pipette to a known mass of alcohol-benzene mixture.

Source and Purity of Materials:

(1) source not specified; dried by refluxing over freshly ignited lime, and then with magnesium, distilled. (2) source not specified; chemically purified, crystallized, distilled, dried over phosphoric anhydride. (3) not specified.

Estimated Error:

composition <0.2%; temp. <0.2 °C.

Components:

Variables:

T/K = 295

(1) Methanol (methyl alcohol); CH₄O; [67-56-1] (2) Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5]

Original Measurements:

A. W. Francis, Ind. Eng. Chem. 46, 205-7 (1954).

Compiled by: A. Skrzecz

Experimental Data Compositions along the saturation curve

	T/K	x_1	<i>x</i> ₂		
t/°C	(compiler)	(com	piler)	w_1	w ₂
22	295	0.120	0.001	0.195	0.005
		0.244	0.004	0.360	0.015
		0.407	0.011	0.535	0.035
		0.524	0.036	0.610	0.102
		0.561	0.052	0.620	0.140
		0.585	0.072	0.613	0.185
		0.599	0.077	0.618	0.194
		0.603	0.144	0.550	0.320
		0.589	0.205	0.489	0.415
		0.574	0.254	0.445	0.480
		0.474	0.411	0.308	0.650
		0.356	0.565	0.200	0.775
		0.253	0.678	0.130	0.850
		0.161	0.794	0.076	0.912
		0.112	0.868	0.050	0.945
		0.094	0.894	0.041	0.956

Auxiliary Information

Source and Purity of Materials:

(1) source not specified.

(2) source not specified.

(3) source not specified.

Estimated Error: temp. ±1 °C.

Method/Apparatus/Procedure:

The experimental procedure was not reported. Temperature was reported to be in the range 21-23 °C. Data were presented as a part of quaternary data of methanol-benzene-aniline-water system.

						31.51	304.66	0.0587	0.0006	0.099
						38.69	311.84	0.0587	0.0007	0.099
mponents:			Original Measuren	nents:		46.03	319.18	0.0588	0.0008	0.099
	hyl alcohol); CH ₄ O; [67-5	56-1]		l T. F. Mazanko, Zh. Fiz.	Khim. 37, 2324–7	54.00	327.15	0.0587	0.0009	0.099
Benzene; C ₆ H			(1963).			61.40	334.55	0.0588	0.0011	0.099
Water; H ₂ O; [7732-18-5]					23.00	296.15	0.1032	0.0007	0.169
riables:			Compiled by:			30.64	303.79	0.1032	0.0008	0.169
X = 289 - 341			A. Skrzecz			41.51	314.66	0.1032	0.0011	0.1693
R 207 541			TI. BRIECE			47.38	320.53	0.1031	0.0012	0.1692
		Ennovin	ental Data			54.80	327.95	0.1031	0.0014	0.1691
			the saturation curve			62.05	335.20	0.1031	0.0015	0.1690
		compositions along	, lie suurunon eurre			20.85	294.00	0.1792	0.0013	0.2786
		<i>x</i> ₁	<i>x</i> ₂	<i>w</i> ₁	w2	32.40	305.55	0.1791	0.0016	0.2783
	T/K					39.54	312.69	0.1791	0.0019	0.2780
t∕°C	(compiler)	(com	npiler)	(con	npiler)	45.00	318.15	0.1791	0.0021	0.2778
5.79	298.94	0.2862	0.6652	0.1479	0.8380	53.23	326.38	0.1790	0.0024	0.2775
0.42	303.57	0.2862	0.6622	0.1479	0.8369	58.40	331.55	0.1790	0.0027	0.2772
).42	313.70	0.2849	0.6582	0.1477	0.8354	19.20	292.35	0.2437	0.0020	0.3623
6.52	319.67	0.2816	0.6544	0.1472	0.8334	33.98	307.13	0.2435	0.0028	0.3613
6.60	329.75	0.2791	0.6486	0.1472	0.8340	39.80	312.95	0.2434	0.0036	0.3603
3.20	336.35	0.2773	0.6446	0.1465	0.8303	45.83	318.98	0.2432	0.0042	0.3595
5.00	298.15	0.4065	0.5001	0.2422	0.7265	52.45	325.60	0.2430	0.0050	0.3584
9.89	303.04	0.4036	0.4966	0.2422	0.7248	65.40	338.55	0.2427	0.0065	0.3565
8.63	311.78	0.3973	0.4889	0.2403	0.7210	16.26	289.41	0.3407	0.0052	0.4725
9.00	322.15	0.3886	0.4783	0.2385	0.7156	30.19	303.34	0.3398	0.0079	0.4682
0.78	333.93	0.3806	0.4684	0.2368	0.7104	45.82	318.97	0.3389	0.0103	0.4643
1.27	294.42	0.5579	0.2973	0.4090	0.5313	57.20	330.35	0.3379	0.0134	0.4595
26.42	299.57	0.5532	0.2947	0.4076	0.5294	65.85	339.00	0.3372	0.0156	0.4562
36.80	309.95	0.5419	0.2887	0.4041	0.5249	22.60	295.75	0.4511	0.0138	0.5742
46.25	319.40	0.5323	0.2836	0.4011	0.5209	30.82	303.97	0.4500	0.0163	0.5697
52.52	325.67	0.5199	0.2770	0.3971	0.5157	38.00	311.15	0.4489	0.0188	0.5653
51.09	334.24	0.5065	0.2698	0.3926	0.5099	45.15	318.30	0.4477	0.0216	0.5605
23.20	296.35	0.5844	0.2304	0.4675	0.4492	50.63	323.78	0.4467	0.0238	0.5567
31.20	304.35	0.5734	0.2260	0.4635	0.4453	55.10	328.25	0.4445	0.0284	0.5487
40.24	313.39	0.5597	0.2206	0.4584	0.4404	60.62	333.77	0.4430	0.0316	0.5433
6.24	319.43	0.5495	0.2266	0.4545	0.4367	20.27	293.42	0.5396	0.0395	0.6184
54.41	327.56	0.5341	0.2105	0.4485	0.4309	25.24	298.39	0.5372	0.0439	0.6106
63.81	336.96	0.5168	0.2037	0.4415	0.4242	36.51	309.66	0.5331	0.0512	0.5979
24.18	297.33	0.6028	0.1828	0.5157	0.3812	44.55	317.70	0.5277	0.0607	0.5817
31.22	304.37	0.5918	0.1794	0.5111	0.3778	56.85	330.00	0.5190	0.0763	0.5565
40.45	313.60	0.5756	0.1745	0.5042	0.3727	63.33	336.48	0.5120	0.0889	0.5372
50.23	323.38	0.5579	0.1691	0.4965	0.3669					
56.07	329.22	0.5453	0.1654	0.4908	0.3628					
60.00	333.15	0.5366	0.1627	0.4868	0.3598					
22.80	295.95	0.6103	0.1125	0.5866	0.2636					
26.28	299.43	0.6034	0.1112	0.5830	0.2620					
31.00	304.15	0.5862	0.1080	0.5739	0.2578					
2.40	315.55	0.5622	0.1036	0.5607	0.2519					
54.65	327.80	0.5339	0.0984	0.5445	0.2446					
67.40	340.55	0.5027	0.0926	0.5258	0.2362					
24.85	298.00	0.5735	0.0607	0.6186	0.1595					
28.20	301.35	0.5596	0.0592	0.6094	0.1572					
35.15	308.30	0.5427	0.0574	0.5980	0.1542					
47.83	320.98	0.5113	0.0541	0.5761	0.1486					
59.22	332.37	0.4820	0.0510	0.5548	0.1430					
1 40		0.0500	0.0000	0.0000	0.0001					

0.0024

0.0998

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

21.40

294.55

0.0588

0.0006

		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''
/°C	<i>T</i> /K (compiler)	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		hydrocarbon- rich phase		water- rich phase	
30	303.2	0.0133	0.9846	0.0303	0.0006	0.0055	0.9940	0.0525	0.0025
		0.0228	0.9730	0.0589	0.0007	0.0095	0.9895	0.1000	0.0030
		0.0345	0.9592	0.1088	0.0008	0.0145	0.9840	0.1780	0.0030
		0.0459	0.9457	0.1738	0.0016	0.0195	0.9785	0.2710	0.0060
		0.0595	0.9301	0.2712	0.0040	0.0255	0.9720	0.3940	0.0140
		0.0739	0.9138	0.3631	0.0082	0.0320	0.9650	0.4930	0.0270
		0.0913	0.8965	0.4460	0.0170	0.0400	0.9570	0.5650	0.052
		0.1104	0.8756	0.5049	0.0311	0.0490	0.9475	0.6000	0.090
		0.1186	0.8655	0.5432	0.0482	0.0530	0.9430	0.6100	0.132
		0.1328	0.8495	0.5734	0.0742	0.0600	0.9355	0.6020	0.190
		0.2167	0.7502	0.5938	0.1123	0.1050	0.8860	0.5750	0.265
		0.2297	0.7305	0.5949	0.1499	0.1130	0.8760	0.5390	0.331
		0.3671	0.5692	0.5599	0.2622	0.2050	0.7750	0.4310	0.492
		0.4696	0.4197	0.4696	0.4197	0.3020	0.6580	0.3020	0.658
45	318.2	0.0145	0.9813	0.0273	0.0006	0.0060	0.9930	0.0475	0.002
		0.0227	0.9709	0.0589	0.0007	0.0095	0.9890	0.1000	0.003
		0.0356	0.9560	0.1103	0.0013	0.0150	0.9830	0.1800	0.005
		0.0491	0.9363	0.1684	0.0024	0.0210	0.9755	0.2630	0.009
		0.0646	0.9149	0.2611	0.0056	0.0280	0.9670	0.3800	0.020
		0.0862	0.8896	0.3130	0.0082	0.0380	0.9560	0.4380	0.028
		0.1110	0.8575	0.4030	0.0154	0.0500	0.9420	0.5250	0.049
		0.1290	0.8360	0.4317	0.0187	0.0590	0.9320	0.5490	0.058
		0.1326	0.8287	0.4856	0.0341	0.0610	0.9290	0.5790	0.099
		0.1559	0.8023	0.5133	0.0466	0.0730	0.9250	0.5770	0.130
		0.2059	0.8023	0.5518	0.0400	0.1000	0.8880	0.5650	0.130
		0.2039	0.7301		0.0921		0.8880	0.5850	
		0.2727	0.5634	0.5662 0.5507	0.1342	0.1400 0.2030	0.8430	0.3130	0.342 0.475
		0.4670	0.3893	0.3507	0.3893	0.2030	0.6340	0.4350	0.475
50	333.2	0.0144	0.3893	0.0212	0.3893	0.0060	0.0340	0.0370	0.003
50	555.2		0.9729	0.0212	0.0007	0.0000	0.9910	0.0370	
		0.0238							0.005
		0.0491	0.9343	0.1038	0.0015	0.0210	0.9750	0.1700	0.006
		0.0534	0.9259	0.1614	0.0026	0.0230	0.9720	0.2530	0.010
		0.0751	0.8965	0.2187	0.0046	0.0330	0.9600	0.3280	0.017
		0.0899	0.8781	0.2978	0.0087	0.0400	0.9520	0.4200	0.030
		0.1065	0.8580	0.3344	0.0123	0.0480	0.9430	0.4570	0.041
		0.1082	0.8525	0.3764	0.0178	0.0490	0.9410	0.4950	0.057
		0.1303	0.8273	0.4250	0.0262	0.0600	0.9290	0.5330	0.080
		0.1866	0.7618	0.4706	0.0417	0.0900	0.8960	0.5560	0.120
		0.2220	0.7242	0.4900	0.0540	0.1100	0.8750	0.5580	0.150
		0.2380	0.7021	0.5186	0.0747	0.1200	0.8630	0.5580	0.196
		0.2668	0.6615	0.5346	0.1082	0.1390	0.8400	0.5350	0.264
		0.3610	0.5239	0.5271	0.1948	0.2120	0.7500	0.4550	0.410
		0.4099	0.4615	0.5020	0.2607	0.2550	0.7000	0.3950	0.500
		0.4648	0.3566	0.4648	0.3566	0.3240	0.6060	0.3240	0.606

^aCritical point of solubility.

Method/Apparatus/Procedure:

by Alekseev's method.1

Solubility was measured by Alekseev's method.1 Seven

were constructed. Phase equilibrium was determined by

comparison of density with calibration curves obtained for

saturation solutions. Critical points of solubility were obtained

solubility temperature curves of constant alcohol-benzene ratio and another seven curves of constant alcohol-water ratio

Source and Purity of Materials:

(1) source not specified; b.p=63.85 °C at 750 Torr, d(30 °C,4 °C)=0.7832, n(25 °C,D)=1.3267.
(2) source not spcified; b.p.=79.00 °C at 752 Torr, d(30 °C,4 °C)=0.8680, n(25 °C,D)=1.4980.
(3) not specified.

Estimated Error:

Not reported.

References:

¹V. F. Alekseev, Gornyi Zh. 2, 385 (1885).

Methanol (methyl alcohol); CH₄O; [67-56-1]
 Benzene; C₆H₆; [71-43-2]
 Water; H₂O; [7732-18-5]

Original Measurements:

L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Dep. Doc. VINITI 438-76, 1–12 (1976).

(5) (1400), 1120, [,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Variables: T/K=293			Compiled by: A. Skrzecz	
			ental Data the saturation curve	
	T (T)	<i>x</i> ₁	<i>x</i> ₂	<i>w</i> ₁
t/°C	T/K (compiler)	(con	npiler)	(compiler)
20	293.2	0.331	0.626	0.176

20	293.2	0.331	0.626	0.176	0.811
		0.450	0.474	0.273	0.701
		0.528	0.362	0.359	0.599
		0.578	0.276	0.434	0.505
		0.614	0.191	0.516	0.392

	Compositions of coexisting phases								
		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	2	carbon- phase	water- rich phase		hydrocarbon- rich phase (compiler)		water- rich phase (compiler)	
20	293.2	0.0000	0.9974	0.0000	0.0004	0.0000	0.9994	0.0000	0.0017
		0.0192	0.9782	0.1538	0.0003	0.0080	0.9914	0.2441	0.0012
		0.0450	0.9508	0.3498	0.0015	0.0190	0.9800	0.4871	0.0051
		0.0674	0.9243	0.4814	0.0128	0.0290	0.9690	0.6040	0.0392
		0.1145	0.8711	0.5972	0.0560	0.0510	0.9454	0.6430	0.1470
		0.1775	0.7941	0.6320	0.1462	0.0834	0.9091	0.5678	0.3202
		0.4410	0.4820	0.4410	0.4820	0.2658	0.7081	0.2658	0.7081 ^a

Auxiliary Information

^aCritical point of solubility.

Method/Apparatus/Procedure:

The titration method was used to determine binodal curve. The synthetic method was used to determine phase equilibria. The mole fraction of hydrocarbon in the charge before separation was about 0.30. After separation phases were analyzed by glc to determine methanol and hydrocarbon; concentration of water was determined by the Karl Fischer method.

Source and Purity of Materials: (1) source not specified.

(1) source not specified;
(2) source not specified; distilled; purity>99.9%.
(3) not specified.

Estimated Error: Not reported.

Components:

Variables:

T/K = 293

Methanol (methyl alcohol); CH₄O; [67-56-1]
 Benzene; C₆H₆; [71-43-2]
 Water; H₂O; [7732-18-5]

Original Measurements:

J. O. Triday, J. Chem. Eng. Data 29, 321-4 (1984).

Compiled By: A. Skrzecz

Experimental Data Compositions along the saturation curve

T/K				w_1	w2
t/°C	(compiler)	<i>x</i> ₁	<i>x</i> ₂	(com	piler)
24.8	293.0	0.0000	0.0004	0.0000	0.0017
		0.1277	0.0025	0.2050	0.0098
		0.1956	0.0028	0.2995	0.0105
		0.2271	0.0029	0.3404	0.0106
		0.2973	0.0042	0.4246	0.0146
		0.3445	0.0047	0.4772	0.0159
		0.4055	0.0055	0.5406	0.0179
		0.4473	0.0105	0.5751	0.0329
		0.4867	0.0187	0.6006	0.0563
		0.5284	0.0316	0.6196	0.0903
		0.5644	0.0443	0.6325	0.1210
		0.5896	0.0632	0.6280	0.164
		0.6063	0.0862	0.6128	0.2124
		0.6151	0.1117	0.5909	0.2610
		0.6181	0.1371	0.5671	0.3066
		0.6060	0.1977	0.5057	0.4022
		0.5940	0.2282	0.4751	0.4450
		0.5816	0.2665	0.4417	0.4934
		0.5595	0.2965	0.4104	0.5302
		0.5378	0.3386	0.3754	0.576
		0.5025	0.3880	0.3328	0.6264
		0.4357	0.4897	0.2607	0.7142
		0.3392	0.6072	0.1834	0.8003
		0.2884	0.6698	0.1483	0.8396
		0.2337	0.7341	0.1145	0.8767
		0.0895	0.8992	0.0391	0.958
		0.0000	0.9974	0.0000	0.9994

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C (compiler)	T/K	2	carbon- phase		water-rich rich phase		ph	ater-rich phase ompiler)	
24.8	293.0	0.0007	0.9967	0.0914	0.0020	0.0003	0.9991	0.1508	0.0080
		0.0055	0.9915	0.1603	0.0026	0.0023	0.9970	0.2515	0.0099
		0.0114	0.9852	0.2734	0.0036	0.0047	0.9945	0.3970	0.0127
		0.0199	0.9760	0.4322	0.0073	0.0083	0.9908	0.5649	0.0233
		0.0371	0.9574	0.5033	0.0245	0.0156	0.9831	0.6075	0.0721
		0.0667	0.9249	0.5547	0.0400	0.0287	0.9693	0.6303	0.1108
		0.1339	0.8500	0.6182	0.1279	0.0604	0.9355	0.5763	0.2907
		0.1708	0.8080	0.6187	0.1496	0.0793	0.9151	0.5556	0.3275
		0.1789	0.7986	0.6161	0.1698	0.0837	0.9104	0.5355	0.3598
		0.406	0.523	0.406	0.523	0.2359	0.7409	0.2359	0.7409 ^a

^aAuthor's plait point.

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used to determine the binodal curve. Binary homogeneous samples of known composition were titrated in a thermostated glass-stoppered bottle with the small portions of the third component from Kimax microburette (with an accuracy of 0.01 cm³). The mass of the titrant was calculated from its volume and density. Liquid–liquid equilibrium was measured in the thermostated cell of 250 cm³ capacity with magnetic stirrer for the mixtures resulting equal volumes of both phases. After separation, both phases were analyzed by measuring the refractive indexes and comparing results with a calibration curve obtained earlier for saturated mixtures. Plait point was calculated by the author by the Hand's method.¹

Source and Purity of Materials:

 AnalaR; distilled in a high-efficiency packed column; ρ(293 K)/(g cm⁻³)=0.7911, n(293 K)=1.3290.
 Merck, analytical-grade; certificated purity > 99.5%; used as received; ρ(293 K)/(g cm⁻³)=0.8790, n(293 K)=1.5011.
 de-ionized and distilled.

Estimated Error:

temp. ±0.1 K; composition ±0.0005 mole fraction.

References:

¹D. B. Hand, J. Phys. Chem. **34**, 1961 (1930).

Components:

Methanol (methyl alcohol); CH₄O; [67-56-1]
 Cyclohexene; C₆H₁₀; [110-83-8]
 Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1996.04)

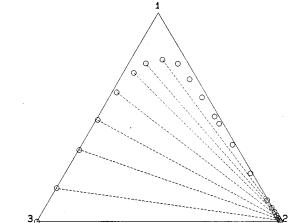
3.5. Methanol + Water + Cyclohexene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system methanol-cyclohexene-water is given in Table 5.

TABLE 5. Summary of experimental data for the system methanol-cyclohexene-water

Author(s)	T/K	Type of data ^a	Ref.
Washburn et al., 1940	298	sat. (16), eq. (7)	1
Budantseva et al., 1976	293	sat. (6), eq. (9)	2


^aNumber of experimental points in parentheses.

Saturation curve

The system methanol-cyclohexene-water forms a large miscibility gap of type 1 covering the majority of the concentration triangle. Compositions along the saturation curves reported in both references were obtained by the titration method. Experimental data within each data set, measured at various temperatures, as well as between data sets, are consistent. Only one binary system, cyclohexene-water, forms miscibility gap. Binary data of this system were compiled and critically evaluated in a previously published SDS volume.³ The recommended, Ref. 3, values of mutual solubility at 298 K are: x'_2 =0.9983 and x''_2 =0.000 035. Budantseva *et al.*² report data of mutual solubility at 298 K are: x'_2 =0.000 05. The saturation curves for both temperatures are located very closely to one to another, a temperature difference 5 K is not significant. Maximum methanol concentration on saturation curve is observed at the region close to x_1 =0.78, x_2 =0.14. All experimental data, reported at 293 and 298 K in the two references are treated as tentative.

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system methanol–cyclohexene–water were reported in both references. After separation, phases in equilibrium were analyzed. Washburn *et al.*¹ reported that the hydrocarbon-rich phase did not contain water, which presumably was the result of analytical limitations (self constructed refractive index–composition curve). Budantseva *et al.*² used more precise analytical methods (glc—for methanol and cyclohexene and the Karl Fischer—for water). Their results seem more reliable. The plait point of the system reported at 293.2 K,¹ was $x_1=0.504$, $x_2=0.477$. The miscibility gap of the binary cyclohexene– methanol system may exist at temperatures below 270 K, but this region was not studied in Ref. 4. The equilibrium data are treated as tentative. Experimental data of Budantseva *et al.*² at 293.2 K are presented in Fig. 2.

References:

¹E. R. Washburn, C. L. Graham, G. B. Arnold, and L. F. Transue, J. Am. Chem. Soc. 62, 1454 (1940).

²L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Dep. Doc. VINITI 438-76, 1 (1976).

 3 D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

⁴D. G. Shaw, A. Skrzecz, J. W. Lorimer, and A. Maczynski, eds., *Solubility Data Series*, Vol. 56, Alcohols with Hydrocarbons (Pergamon, New York, 1994).

Components:

Methanol (mel alcohol); CH₄O; [67-56-1]
 Cyclohexene; C₆H₁₀; [110-83-8]
 Water; H₂O; [7732-18-5]

Original Measurements:

E. R. Washburn, C. L. Graham, G. B. Arnold, and L. F. Transue, J. Am. Chem. Soc. **62**, 1454–7 (1940)

(3) water, n₂0, [7/32-18-5] Variables: Compiled by: T/K=298 A. Skrzecz

	70.07	<i>x</i> ₁	<i>x</i> ₂		
t/°C	T/K (compiler)	(com	piler)	w_1	w_2
25.0	298.15	0.2372	0.7585	0.1086	0.8903
		0.3974	0.5937	0.2065	0.7909
		0.5341	0.4514	0.3143	0.6809
		0.6426	0.3366	0.4235	0.5688
		0.7308	0.2317	0.5430	0.4413
		0.7866	0.1397	0.6631	0.3020
		0.7761	0.0731	0.7404	0.1787
		0.7333	0.0401	0.7611	0.1067
		0.6709	0.0231	0.7436	0.0657
		0.6007	0.0117	0.7079	0.0352
		0.5175	0.0064	0.6456	0.0205
		0.4196	0.0025	0.5587	0.0087
		0.3429	0.0013	0.4796	0.0048
		0.2497	0.0005	0.3712	0.0020
		0.1574	0.0002	0.2492	0.0010
		0.0923	0.0001	0.1531	0.0005

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
/°C	T/K (compiler)	2	bon-rich ompiler)		r-rich compiler)	-	carbon- phase		ter- phase
25.0	298.15	0.0026	0.9974	0.0563	0.0000	0.001	0.999	0.096	0.000
		0.0051	0.9949	0.1086	0.0002	0.002	0.998	0.178	0.001
		0.0051	0.9949	0.1723	0.0002	0.002	0.998	0.270	0.001
		0.0077	0.9923	0.2018	0.0003	0.003	0.997	0.310	0.001
		0.0102	0.9898	0.2734	0.0008	0.004	0.996	0.400	0.003
		0.0302	0.9698	0.6373	0.0171	0.012	0.988	0.728	0.050
		0.0521	0.9479	0.7252	0.0372	0.021	0.979	0.760	0.100

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, as described in Ref. 1, was used. The titrant, from a weighed pipette, was added to the weighed binary mixture of known composition and the mixture was kept in a thermostated bath. To confirm that the end-point was reached the mixture was shaken automatically for at least 15 min and then reexamined. The plot of refractive index against composition was then used to find compositions of equilibrium phases. The refractive indexes were determined at the temperature of 30.0° C to eliminate an opalescence.

Source and Purity of Materials:

(1) Eastman Kodak Company, commercial grade; dried by refluxing over active lime, twice distilled; $d(25 \,^{\circ}\text{C}, 4 \,^{\circ}\text{C}) = 0.7866$, $n(25 \,^{\circ}\text{C}, \text{D}) = 1.326$ 59. (2) Eastman Kodak Company, commercial grade; distilled in an atmosphere of purified N₂, collected in dried nitrogen-filled

atmosphere of purified N₂, collected in dried nitrogen-filled bottles; d(25 °C, 4 °C) = 0.8056, n(25 °C, D) = 1.4434. (3) not specified.

Estimated Error:

temp. ±0.05 °C.

References:

¹E. R. Washburn and A. E. Beguin, J. Am. Chem. Soc. **62**, 579 (1940).

T/K = 293

Components: (1) Methanol (methyl alcohol); CH₄O; [67-56-1] (2) Cyclohexene; C₆H₁₀; [110-83-8] (3) Water; H₂O; [7732-18-5]

; CH₄O; [67-56-1]

(3) Water; H₂O; [7732-18-5]

Experimental Data Compositions along the saturation curve

Original Measurements:

Compiled by:

A. Skrzecz

VINITI 438-76, 1-12 (1976).

L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Dep. Doc.

	T/K			w_1	w_2
t/°C	(compiler)	x_1	<i>x</i> ₂	(com	piler)
20	293.2	0.230	0.761	0.105	0.892
		0.368	0.618	0.188	0.808
		0.469	0.513	0.261	0.733
		0.595	0.380	0.376	0.615
		0.680	0.287	0.474	0.513
		0.754	0.202	0.582	0.399

Compositions	of	coexisting	phases
--------------	----	------------	--------

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	t/°C (compiler)	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		hydrocarbon- rich phase		water- rich phase	
20	293.2	0.0000	0.9981	0.0000	0.00005	0.0000	0.9996	0.0000	0.00023
		0.0045	0.9937	0.1603	0.0005	0.0018	0.9978	0.2531	0.0020
		0.0103	0.9877	0.3437	0.0019	0.0040	0.9955	0.4797	0.0068
		0.0165	0.9813	0.4885	0.0058	0.0065	0.9930	0.6202	0.0189
		0.0284	0.9690	0.6185	0.0190	0.0113	0.9881	0.7101	0.0559
		0.0447	0.9522	0.7107	0.0435	0.0180	0.9813	0.7400	0.1161
		0.0655	0.9306	0.7561	0.0700	0.0267	0.9724	0.7317	0.1737
		0.1004	0.8945	0.7736	0.1295	0.0419	0.9569	0.6669	0.2862
		0.5040	0.4770	0.5040	0.4770	0.2901	0.7038	0.2901	0.7038 ^a

^aCritical point of solubility.

Method/Apparatus/Procedure:

The titration method was used to determine binodal curve. The synthetic method was used to determine phase equilibria. The mole fraction of hydrocarbon in the charge before separation was about 0.30. After separation phases were analyzed by glc to determine methanol and hydrocarbon; concentration of water was determined by the Karl Fischer method.

Auxiliary Information

Source and Purity of Materials: (1) source not specified. (2) source not specified; distilled; purity > 99.9%. (3) not specified.

Estimated Error: Not reported.

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1996.04)

3.6. Methanol + Water + Cyclohexane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.), compositions of coexisting phases in equilibrium (eq.) and distribution of methanol between phases (dist.) for the system methanol-cyclohexane-water is given in Table 6.

TABLE 6. Summary of experimental data for the system methanol-cyclohexane-water

Author(s)	T/K	Type of data ^a	Ref.	
Washburn and Spencer, 1934	298	sat. (16), dist. (6)	1	
Budantseva et al., 1976	293	eq. (10)	2	
Letcher et al., 1991	298	sat. (12), eq. (3)	3	
Plackov and Stern, 1992	298	sat. (14), eq. (7)	4	

^aNumber of experimental points in parentheses.

(1) Methanol (methyl alcohol); CH₄O; [67-56-1]

(2) Cyclohexane; C₆H₁₀; [110-82-7]

(3) Water; H₂O; [7732-18-5]

Components:

Saturation curves

The system methanol–cyclohexane–water forms a large miscibility gap of type 2 covering the majority of the concentration triangle. Two binary systems, cyclohexane–water and cyclohexane–methanol, form miscibility gaps. The data of these binary systems were compiled and critically evaluated in previously published SDS volumes, Refs. 5 and 6, respectively. The recommended values⁵ of mutual solubility of the cyclohexane–water system at 298.2 K are: $x_2^{\prime}=1.2 \cdot 10^{-5}$ and $x_3^{\prime}=3.7 \cdot 10^{-4}$. The mutual solubility at 298.2 K and upper critical solubility temperature of the methanol–cyclohexane system calculated on the basis of Ref. 6 are: $x_1^{\prime}=0.128$ and $x_1^{\prime}=0.822$ and 318.7 K. Reported data on the saturation curves describe mainly the cyclohexane-poor phase; there are few experimental points in the cyclohexane-rich region. Data for both temperatures are in agreement with one another with the exception of the Washburn and Spencer data¹ in the cyclohexane-poor phase^{1,3,4} were described by the equation:

$x_1 = 1.07468 + 0.05543 \ln(x_3) - 1.07833x_3$.

The parameters were calculated by the least-squares method and the standard error of estimate was 0.0030. The equation is valid in the region of $0.02 < x_3 < 0.50$. The points on the saturation curve calculated by the above equation for the selected concentrations of water in the mixture together with the recommended data of binary systems are presented in Table 7 and in Fig. 3 as solid line.

TABLE 7. Calculated compositions along the saturation curve at 298.2 K

<i>x</i> ₁	<i>x</i> ₃	<i>x</i> ₁	<i>x</i> ₃
0.822	0.178 Ref. 6	0.6844	0.3000
0.8363	0.0200	0.6665	0.3200
0.8531	0.0400	0.6483	0.3400
0.8540	0.0600	0.6299	0.3600
0.8484	0.0800	0.6113	0.3800
0.8392	0.1000	0.5926	0.4000
0.8278	0.1200	0.5737	0.4200
0.8147	0.1400	0.5547	0.4400
0.8006	0.1600	0.5356	0.4600
0.7855	0.1800	0.5164	0.4800
0.7698	0.2000	0.4971	0.5000
0.7535	0.2200	0.0000	0.999988 Ref. 5
0.7368	0.2400	0.0000	0.00037 Ref. 5
0.7197	0.2600	0.128	0.0000 Ref. 6
0.7022	0.2800		

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system methanol–cyclohexane–water were reported in Refs 2, 3, and 4. In Ref. 1 the distribution of methanol between two phases (hydrocarbon-rich and hydrocarbon-poor) was reported. The lines reported by Letcher *et al.*³ were measured at the pressure of 94.7 kPa, but the influence of such pressure difference (6.6 kPa) on liquid–liquid equilibria may be neglected. The experimental tie lines of Budantseva *et al.*, Ref. 2, even they were measured at 293.2 K, are in agreement with tie lines of Plackov and Stern,⁴ measured at a little higher temperature of 298.2 K. The three tie lines presented by Letcher *et al.*³ were measured with the accuracy 0.01 mole fraction, as was reported in the paper and are not consistent with data of Ref. 4. Therefore data of Plackov and Stern,⁴ in the opinion of evaluator, appear reliable and are considered as tentative. They are presented in Fig. 3.

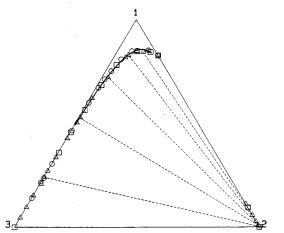


FIG. 3. Phase diagram of the system methanol (1)—cyclohexane (2)—water (3) at 298.2 K. O—experimental data, Ref. 1, □—experimental data, Ref. 3, △—experimental data, Ref. 4, dashed lines—tie lines, Ref. 4.

References:

¹E. R. Washburn and H. C. Spencer, J. Am. Chem. Soc. 56, 361 (1934).

²L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Dep. Doc. VINITI 438-76, 1 (1976).

³T. M. Letcher, P. Siswana, and S. E. Radloff, S. Afr. J. Chem. 44, 118 (1991).

⁴D. Plackov and I. Stern, Fluid. Phase Equilib. 71, 189 (1992).

⁵D. G. Shaw, ed., *Solubility Data Series*, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon New York, 1989).

⁶D. G. Shaw, A. Skrzecz, J. W. Lorimer, and A. Maczynski, eds., *Solubility Data Series*, Vol. 56, Alcohols with Hydrocarbons (Pergamon, New York, 1994).

Components:

 $\begin{array}{l} (1) \mbox{ Methanol (methyl alcohol); CH_4O; [67-56-1]} \\ (2) \mbox{ Cyclohexane; C_6H_{12}; [110-82-7]} \\ (3) \mbox{Water; $H_2O; [7732-18-5]} \end{array}$

Original Measurements:

E. R. Washburn and H. C. Spencer, J. Am. Chem. Soc. 56, 361-4 (1934).

Variables:

Variables: Compiled by: T/K=298 A. Skrzecz

Experimental Data Compositions along the saturation curve

	TU	<i>x</i> ₁	<i>x</i> ₂	<i>w</i> ₁	w_2	
t/°C	T/K (compiler)	(com	piler)	(compiler)		
25.0	298.2	0.1398	0.0002	0.2241	0.0010	
		0.2372	0.0005	0.3556	0.0019	
		0.3058	0.0008	0.4383	0.0031	
		0.4663	0.0025	0.6043	0.0086	
		0.5979	0.0056	0.7156	0.0176	
		0.6699	0.0100	0.7645	0.0301	
		0.7106	0.0151	0.7857	0.0437	
		0.7504	0.0219	0.8018	0.0614	
		0.8072	0.0340	0.8188	0.0906	
		0.8464	0.0580	0.8041	0.1448	
25.0	298.2	0.8491	0.0780	0.7754	0.1872	
		0.8501	0.1237	0.7145	0.2731	
		0.8264	0.1736	0.6445	0.3555	
		0.0935	0.9065	0.0378	0.9622	
		0.0395	0.9406	0.0157	0.9799	
		0.0233	0.9683	0.0091	0.9891	

Distribution of methanol in methanol-cyclohexane-water system

t/°C	T/K (compiler)	w'_1 hydrocarbon- rich phase	w ₁ " water- rich phase
25.0	298.2	0.0005	0.032
		0.0025	0.151
		0.0040	0.268
		0.0050	0.349
		0.0065	0.388
		0.0070	0.418

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used to obtain points on the saturation curve. A flask containing weighted amounts of two liquids was suspended in a temperature controlled water bath and the third liquid added by means of a glass dropper which was thrust through a cork stopper. The flask was shaken after each addition of the third liquid and sufficient time allowed for equilibrium to be reached. In order to ensure complete saturation near the end-point, the bath was warmed a few tenths of a degree so that complete solution occurred and then cooled to 24.8 °C. The refractive index of each saturated mixture was measured. The tie lines were determined as recorded in Refs. 1 and 2. Refractive indexes and concentrations of methanol in phases in equilibrium were reported in the paper.

Source and Purity of Materials:

(1) synthetic from Merck Co.; refluxed over freshly ignited lime, distilled, d(25 °C, 4 °C) = 0.78673, n(25 °C, D) = 1.32660. (2) Eastman Kodak Co., "best grade;" crystallized, distilled, dried over Na, distilled; $d(25 \degree C, 4 \degree C) = 0.77354$, $n(25 \degree C, D)$ = 1.423 70, f.p. = 6.10 °C. (3) distilled.

Estimated Error:

temp. ±0.1 °C (estimated by the compiler).

References:

¹E. R. Washburn, V. Hnizda, and R. D. Vold, J. Am. Chem. Soc. 53, 3237 (1931).

²R. D. Vold and E. R. Washburn, J. Am. Chem. Soc. 54, 4217 (1932).

Components:

(1) Methanol (methyl alcohol); CH₄O; [67-56-1] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water; H₂O; [7732-18-5]

Original Measurements: L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Dep. Doc. VINITI 438-76, 1-12 (1976).

Variables: T/K = 293

Experimental Data Compositions of coexisting phases

Compiled by:

A. Skrzecz

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
/°C T/K(compiler)		hydrocarbon- rich phase		hydrocarbon- poor phase		hydrocarbon- rich phase (compiler)		hydrocarbon- poor phase (compiler)	
20	293.2	0.0000	0.999 53	0.0000	0.000 015	0.0000	0.999 90	0.0000	0.000 070
		0.0030	0.9965	0.1935	0.0000	0.0011	0.9987	0.2991	0.0002
		0.0058	0.9937	0.3605	0.0005	0.0022	0.9977	0.4999	0.0018
		0.0086	0.9909	0.4990	0.0020	0.0033	0.9966	0.6358	0.0067
		0.0130	0.9861	0.6310	0.0062	0.0050	0.9948	0.7413	0.0191
		0.0181	0.9810	0.7284	0.0130	0.0070	0.9928	0.8023	0.0376
		0.0268	0.9723	0.8000	0.0253	0.0104	0.9894	0.8293	0.0689
		0.0394	0.9597	0.8409	0.0461	0.0154	0.9844	0.8200	0.1181
		0.0798	0.9193	0.8717	0.0808	0.0320	0.9678	0.7849	0.1911
		0.1390	0.8610	0.8570	0.1430	0.0579	0.9421	0.6953	0.3047

Auxiliary Information

Method/Apparatus/Procedure:

The synthetic method was used. The mole fraction of hydrocarbon in the charge before separation was about 0.30. After separation phases were analyzed by glc to determine methanol and hydrocarbon; concentration of water was determined by the Karl Fischer method.

Source and Purity of Materials:

(1) source not specified. (2) source not specified; distilled; purity >99.9%. (3) not specified. Estimated Error: Not reported.

 $t/^{\circ}C$ (compiler)

25.0

(1) Methanol (methyl alcohol); CH₄O; [67-56-1] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water; H₂O; [7732-18-5]

Original Measurements:

T. M. Letcher, P. Siswana, and S. E. Radloff, S. Afr. J. Chem. 44, 118-21 (1991).

Variables: T/K=298	Compiled by: A. Skrzecz

Experimental Data Compositions along the saturation curve								
			w_1					
T/K	<i>x</i> ₁	<i>x</i> ₂	(compile	r				
298.2	0.000	0.000	0.000					
	0.212	0.001	0.323					
	0.360	0.002	0.497					
	0.457	0.003	0.595					

	0.00-		
0.457	0.003	0.595	0.010
0.565	0.006	0.687	0.019
0.682	0.016	0.763	0.047
0.780	0.029	0.809	0.079
0.845	0.080	0.770	0.191
0.842	0.136	0.695	0.295
0.825	0.175	0.642	0.358
0.093	0.907	0.038	0.962
0.000	0.999	0.0000	0.9998

			Co	mpositions of	coexisting ph	ases			
		x'_1 x'_2		x_1''	x_2''	w'_1	w2	w_1''	w_2''
t/°C (compiler)	T/K	-	carbon- phase	hydrocarbon- poor phase		hydrocarbon- rich phase (compiler)		hydrocarbon- poor phase (compiler)	
25.0	298.2	0.025 0.051 0.074	0.974 0.949 0.926	0.323 0.533 0.737	0.001 0.005 0.023	0.010 0.020 0.030	0.990 0.980 0.970	0.458 0.661 0.790	0.004 0.016 0.065

Auxiliary Information

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the titration method, as described in Ref. 1. The formation of a cloudy mixture was observed visually on shaking after addition of a known mass of the third component; syringes were precisely weighed. Tie line compositions were determined by the refractive index method,² and a complementary method using the Karl Fischer titration.³ Measurements were made at pressure of 94.7 kPa.

Source and Purity of Materials:

(1) Merck; AR grade; refluxed with Mg and I2, distilled; purity >99.9 mole % by glc. (2) BDH; Gold label grade; used as received; purity >99.9 mole % by glc. (3) not specified.

Estimated Error:

composition \pm 0.005 mole fraction (binodal curve), \pm 0.01 mole fraction (tie lines).

References:

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037 (1986).

²S. W. Briggs and F. W. Comings, Ind. Eng. Chem. 35, 411 (1993).

³T. M. Letcher, P. Siswana, P. van der Watt, and S. Radloff, J. Chem. Thermodyn. 21, 1053 (1989).

Components:

(1) Methanol (methyl alcohol); CH₄O; [67-56-1] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

A. Skrzecz

D. Plackov and I. Stern, Fluid Phase Equilib. 71, 189-209 (1992).

Variables:

 W_2

0.000

0.004 0.007 T/K = 298

Experimental Data Compositions along the saturation curve

	T/K			w_1	w_2
t/°C	(compiler)	<i>x</i> ₁	<i>x</i> ₂	(com	piler)
25	298.2	0.1114	0.8886	0.0456	0.9544
		0.8250	0.1750	0.6422	0.3578
		0.8495	0.1195	0.7194	0.2658
		0.8462	0.0760	0.7766	0.1832
		0.8158	0.0472	0.8023	0.1219
		0.6196	0.0091	0.7270	0.0280
		0.5050	0.0033	0.6391	0.0110
		0.4289	0.0019	0.5689	0.0066
		0.3365	0.0010	0.4729	0.0037
		0.2713	0.0005	0.3978	0.0019
		0.2149	0.0004	0.3270	0.0016
		0.1524	0.0003	0.2421	0.0013
		0.0961	0.0003	0.1589	0.0013
		0.0454	0.0002	0.0779	0.0009

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''
<i>T</i> /K t/°C (compiler)		hydrocarbon- rich phase		hydrocarbon- poor phase		hydrocarbon- rich phase (compiler)		hydrocarbon- poor phase (compiler)	
25	298.2	0.0006	0.9988	0.100	0.000	0.0002	0.9996	0.165	0.000
		0.0019	0.9975	0.242	0.001	0.0007	0.9991	0.361	0.004
		0.0047	0.9948	0.369	0.001	0.0018	0.9981	0.508	0.004
		0.0064	0.9931	0.529	0.005	0.0024	0.9974	0.658	0.016
		0.0097	0.9898	0.719	0.025	0.0037	0.9962	0.774	0.071
		0.0276	0.9720	0.828	0.053	0.0107	0.9892	0.801	0.135
		0.0567	0.9430	0.843	0.106	0.0224	0.9776	0.733	0.242

Auxillary Information

Method/Apparatus/Procedure:

Binodal compositions were determined by titration with the corresponding, less-soluble component until the appearance of turbidity.1 The analytical method was used for determination of tie-lines. This was based on refractive indexes and densities of the samples, Ref. 1, combined with the oxidation of the alcohol with an excess of potassium dichromate and determination of unreduced dichromate with Na₂S₂O₂. Alcohol in the organic layer was determined after extraction with water.

Source and Purity of Materials:

(1) Kemika (Zagreb); analytical grade; presumably used as received; n = 1.3624, $\rho(25 \text{ °C}) = 787.7 \text{ kg/m}^3$, b.p. = 64.6 °C. (2) Kemika (Zagreb); purity not specified; presumably used as received; n = 1.4232, $\rho(25 \text{ °C}) = 773.9 \text{ kg/m}^3$, b.p. = 80.0 °C. (3) twice distilled in the presence of KMnO₄.

Estimated Error:

composition < 0.0005 mass fraction, binodal, (relative); composition \pm 2%, tie line.

References:

¹D. Plackov and I. Stern, Fluid Phase Equilib. 57, 327 (1990)

Variables:

T/K = 293

Components: (1) Methanol (methyl alcohol);CH₄O; [67-56-1] (2) 1-Hexene; C₆H₁₂; [592-41-6] (3) Water; H₂O; [7732-18-5] Original Measurements:

L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Dep. Doc. VINITI **438-76**, 1–12 (1976).

Compiled by: A. Skrzecz

3.7. Methanol + Water + 1-Hexene

Experimental Data Compositions along the saturation curve

	T/K			<i>w</i> ₁	w_2
t/°C	(compiler)	<i>x</i> ₁	<i>x</i> ₂	(com	piler)
20	293.2	0.229	0.762	0.102	0.895
		0.392	0.593	0.200	0.795
		0.513	0.465	0.294	0.699
		0.614	0.357	0.392	0.598
		0.690	0.275	0.482	0.504
		0.746	0.203	0.570	0.408

Compositions of coexisting phases

				composition	s of coexisting	phases			
		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
	T/K (compiler)	hydrocarbon- rich phase		water- rich phase		hydrocarbon-rich phase (compiler)		water- rich phase (compiler)	
20	293.2	0.0000	0.9984	0.0000	0.000 01	0.0000	0.999 66	0.0000	0.000 05
		0.0049	0.9937	0.1564	0.0000	0.0019	0.9978	0.2479	0.0002
		0.0120	0.9866	0.3359	0.0004	0.0046	0.9951	0.4730	0.0015
		0.0194	0.9792	0.4973	0.0021	0.0075	0.9922	0.6341	0.0070
		0.0359	0.9623	0.6227	0.0088	0.0140	0.9856	0.7300	0.0271
		0.0566	0.9407	0.7250	0.0218	0.0224	0.9770	0.7841	0.0619
		0.0830	0.9134	0.7703	0.0421	0.0334	0.9658	0.7810	0.1121
		0.1469	0.8468	0.7885	0.1038	0.0619	0.9366	0.7030	0.2431
		0.1988	0.7931	0.7736	0.1529	0.0869	0.9111	0.6359	0.3301
		0.5200	0.4580	0.5200	0.4580	0.2997	0.6932	0.2997	0.6932 ^a

^aCritical point of solubility.

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used to determine binodal curve. The synthetic method was used to determine phase equilibria. The mole fraction of hydrocarbon in the charge before separation was about 0.30. After separation phases were analyzed by glc to determine methanol and hydrocarbon; concentration of water was determined by the Karl Fischer method.

Source and Purity of Materials: (1) source not specified. (2) source not specified; distilled; purity >99.9%. (3) not specified.

Estimated Error:

Not reported.

Components:

Methanol (methyl alcohol); CH₄O; [67-56-1]
 Hexane (*n*-hexane); C₆H₁₄; [110-54-3]
 Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1996.04)

3.8. Methanol + Water + Hexane

Critical Evaluation

A survey of reported in the literature compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system methanol-hexane-water is given in Table 8.

TABLE 8.	Summary	of exp	perimental	data	for t	he s	ystem	methanol-	-hexane-	water

Author(s)	T/K	Type of data ^a	Ref.
Bonner, 1909	273	sat. (11)	1
Suhrmann and Walter, 1951	311-323	sat. (7)	2
Kogan et al., 1956	283,293	Eq. (9)	3
Budantseva et al., 1976	293	Eq. (10)	4

^aNumber of experimental points in parentheses.

Saturation curve

The system methanol–hexane–water forms a large miscibility gap of type 2 covering the majority of the concentration triangle. Two binary systems, hexane–water and hexane–methanol, are partially miscible at the reported temperatures. The data for these binary systems were compiled and critically evaluated in previously published SDS volumes, Refs. 5 and 6, respectively. The recommended, values⁵ of mutual solubility for the hexane water system at 293.2 K are: $x'_2 = 0.999$ 47 and $x''_2 = 2.5 \cdot 10^{-6}$. The binary data reported in Ref. 4, $x'_2 = 0.999$ 63 and $x''_2 = 3 \cdot 10^{-6}$, are in very close agreement. The recommended upper critical solution temperature and mutual solubilities at 293.2 K of the methanol–hexane system calculated on the basis of Ref. 6 are: 306.8 K and $x'_1 = 0.210$, $x''_1 = 0.822$. These recommended solubilities are exactly the mean value of experimental data reported in Refs. 3 and 4 which were also used in evaluation of the binary system. Concentration differences, in mole fraction, in hexane-rich phase are about 0.03 and in hexane-poor phase—0.006 and 0.02. Measurements along the saturation curve only were reported by Bonner¹ at 273 K and Suhrmann and Walter² in the range 311–323 K. This last paper shows the influence of water on the upper critical solution curve. The data for the hydrocarbon-poor phase in equilibrium were presented which may also be treated as points on saturation curve. The data for the hydrocarbon-poor phase on the saturation curve $^{3.4}$ in the region $x_3 < 0.33$ were described by the equation:

$x_1 = 1.08162 + 0.04830 \ln(x_3) - 1.09286x_3$.

The least-squares method was used and the standard error of estimate was 0.0026. For the selected concentrations of water in the mixture this part of saturation curve was calculated and the results are presented in Table 9 and in Fig. 4 as solid line. The part of the saturation curve (hydrocarbon-poor branch) in the region of $x_1 < 0.65$ presents very low concentration of hydrocarbon and on the basis of reported papers the relationship between concentrations of methanol and hexane may be treated as linear. The maximum concentration of methanol in hexane-poor phase of saturation curve, estimated on the basis of Ref. 4, is $x_1=0.88$ and $x_2=0.08$ within an accuracy 0.01 mole fraction. The experimental points of hexane-rich branch of saturation curve contain a very small amount of water and therefore were not described (concentration of water was smaller than 0.0001 mass fraction, Ref. 3).

TABLE 9.	Calculated	compositions	along the	saturation	curve at	293.2 K	(hexane-poor	phase)

<i>x</i> ₁	<i>x</i> ₃	x_1	<i>x</i> ₃
0.210	0.0000 Ref. 6	0.8021	0.1800
0.822	0.0000 Ref. 6	0.7853	0.2000
0.8483	0.0100	0.7681	0.2200
0.8708	0.0200	0.7504	0.2400
0.8824	0.0400	0.7324	0.2600
0.8802	0.0600	0.7141	0.2800
0.8722	0.0800	0.6956	0.3000
0.8611	0.1000	0.6769	0.3200
0.8481	0.1200	0.0000	0.999 997 5 Ref. 5
0.8337	0.1400	0.0000	0.000 53 Ref. 5
0.8183	0.1600		

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system methanol-hexane-water were reported in Refs. 3 and 4 at 283.2 and 293.2 K, respectively. The phases, when equilibrium was reached, were separated and then analyzed in various ways: methanol was determined by reaction with phthalic anhydride, Ref. 3, or by glc, Ref. 4; water was determined by the Karl Fischer reaction.^{3,4} The compositions of phases in equilibrium reported in both Refs. 3 and 4 are consistent with one another. They are presented in Fig. 4.

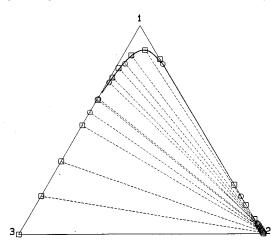


FIG. 4. Phase diagram of the system methanol (1)—hexane (2)—water (3) at 293.2 K. Solid line—calculated saturation curve, O—experimental data, Ref. 3, D—experimental data, Ref. 4, dashed lines—experimental tie lines, Refs. 3 and 4.

References:

¹W. D. Bonner, J. Phys. Chem. **14**, 738 (1909–1910).

²R. Suhrmann and R. Walter, Abh. Braunschw. Wiss. Ges. 3, 135 (1951).

³V. B. Kogan, I. V. Deizenrot, T. A. Kulbyaeva, and V. M. Fridman, Zh. Prikl. Khim (Leningrad) 29, 1387 (1956).

⁴L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsoy, Dep. Doc. VINITI 438-76, 1 (1976).

⁵D. G. Shaw, ed., *Solubility Data Series*, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

⁶D. G. Shaw, A. Skrzecz, J. W. Lorimer, and A. Maczynski, eds., *Solubility Data Series*, Vol. 56, Alcohols with Hydrocarbons (Pergamon, New York, 1994).

Components:

Methanol (methyl alcohol); CH₄O; [67-56-1]
 Hexane (*n*-hexane); C₆H₁₄; [110-54-3]
 Water; H₂O; [7732-18-5]

Original Measurements:

W. D. Bonner, J. Phys. Chem. 14, 738-89 (1909-1910).

Variables:

Variables: Compiled by: T/K=273 A. Skrzecz

Experimental Data Compositions along the saturation curve										
	T/K	<i>x</i> ₁	<i>x</i> ₂	<i>w</i> ₁	w2					
t/°C	(compiler)	(com	piler)	(compiler)						
0.0	273.2	0.9018	0.0731	0.8106	0.1767					
		0.8950	0.0549	0.8358	0.1379					
		0.8762	0.0394	0.8510	0.1030					
		0.8674	0.0303	0.8619	0.0809					
		0.8540	0.0245	0.8642	0.0667					
		0.8288	0.0172	0.8619	0.0481					
		0.8256	0.0163	0.8615	0.0457					
		0.7857	0.0106	0.8459	0.0308					
		0.7650	0.0096	0.8337	0.0283					
		0.7040	0.0064	0.7964	0.0193					
		0.5004	0.0017	0.6375	0.0058					

Auxiliary Information

Method/Apparatus/Procedure:

In a tube 1 cm diameter and 12 cm long known amount, by weight, of hydrocarbon and water were placed into a temperature controlled bath. The contents of the tube were stirred and alcohol was added gradually until a homogeneous solution was obtained. Observations were made visually through the telescope of a cathetometer. The samples were always weighed immediately before and after each experiment. Concentrations were reported as weight of water in 1 g of binary water-hydrocarbon mixture and the weight of alcohol necessary to make a homogenous solution. The mass of binary water-hydrocarbon mixture was about 1 g; the mass of alcohol—up to 5 g.

Source and Purity of Materials: (1) Kahlbaum; presumably dried and distilled; *n*(14 °C)

= 1.330 70. (2) Kahlbaum; presumably dried and distilled; n(14 °C)= 1.383 82. (3) not specified.

Estimated Error:

accuracy of weighing 0.0001 g.

IUPAC-NIST SOLUBILITY DATA SERIES

Components:

(1) Methanol (methyl alcohol);CH₄O; [67-56-1] (2) Hexane (n-hexane); C₆H₁₄; [110-54-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

R. Suhrmann and R. Walter, Abh. Braunschw. Wiss. Ges. 3, 135-52 (1951).

Variables: <i>T</i> /K=311-323			Comj A. Sk	biled by: rzecz							
Experimental Data Compositions along the saturation curve											
	T/K		x_1	<i>x</i> ₂	<i>w</i> ₁	w_2					
t/°C	(compiler)	vol% of $\rm H_2O$	(com	piler)	(compiler)						
38.1	311.25	0.173	0.5299	0.4680	0.2961	0.7033					
40.0	313.15	0.276	0.5293	0.4675	0.2960	0.7030					
42.0	315.15	0.378	0.5286	0.4669	0.2958	0.7028					
44.1	317.25	0.476	0.5280	0.4664	0.2957	0.7025					
48.0	321.15	0.667	0.5268	0.4653	0.2955	0.7020					
48.1	321.25	0.680	0.5267	0.4652	0.2955	0.7019					
50.1	323.25	0.778	0.5261	0.4647	0.2954	0.7017					

Auxiliary Information

Method/Apparatus/Procedure:

To the binary methanol-hexane mixture of constant composition (74.1 vol. % of hexane) known amounts of water were added and the turbidity temperature was measured. A linear relationship was obtained for change of turbidity temperature with number of moles of water in 1000 moles of methanol.

Source and Purity of Materials:

(1) Riedel de Haen and Merck, pure for analysis grade; dried over CaO for 2 weeks, distilled over Mg(ClO₄)₂; b.p. =64.78 °C, n(18 °C,D)=1.3292, d(16.3 °C,4 °C) = 0.7950 - 0.7955.(2) Ruhrchemie Holten; distilled three times; b.p. = 68.8 °C,

 $d(20 \ ^{\circ}C, 4 \ ^{\circ}C) = 0.6608.$ (3) not specified.

Estimated Error: temp. ±0.1 °C.

Components:

(1) Methanol (methyl alcohol); CH₄O; [67-56-1] (2) Hexane (n-hexane); C₆H₁₄; [110-54-3] (3) Water; H₂O; [7732-18-5]

Original Measurements: V. B. Kogan, I. V. Deizenrot, T. A. Kulbyaeva, and V. M. Fridman, Zh. Prikl. Khim. (Leningrad) 29, 1387-92 (1956).

Variables: Compiled by: T/K = 283 - 293A. Skrzecz **Experimental Data** Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t∕ °C	T/K (compiler)	hydrocarbon- rich phase (compiler)		hydrocarbon- poor phase (compiler)		hydrocarbon- rich phase		hydrocarbon- poor phase	
10.0	283.15	0.1217	0.8783	0.8748	0.1252	0.049	0.951	0.722	0.278
		0.0342	0.9658	0.8236	0.0201	0.013	0.987	0.853	0.056
		0.0251	0.9749	0.7303	0.0067	0.0095	0.9905	0.815	0.020
		0.0064	0.9936	0.5840	0.0000	0.0024	0.9976	0.714	0.000
20.0	293.15	0.1811	0.8189	0.8157	0.1843	0.076	0.924	0.622	0.378
		0.0520	0.9480	0.8177	0.0278	0.020	0.980	0.835	0.0763
		0.0470	0.9530	0.7270	0.0080	0.018	0.982	0.810	0.024
		0.0316	0.9684	0.6480	0.0032	0.012	0.988	0.760	0.010
		0.0186	0.9814	0.5829	0.0006	0.007	0.993	0.712	0.002

Auxiliary Information

Method/Apparatus/Procedure:

The analytical method was used. The two phase mixture was periodically shaken in a thermostated burette with water jacket for several hours. The phases were removed for analysis after separation. Methanol was determined by reaction with phthalic anhydride; water was determined by the Karl Fischer method. Water concentration in hydrocarbon-rich phase was smaller than 0.01-0.02%.

Source and Purity of Materials:

(1) source not specified, pure grade; distilled; contained <0.01% of water; $n(20 \circ C) = 1.3391$. (2) source not specified; used as received; b.p. = 68.7 °C, n(20 °C)=1.3753.

(3) not specified. **Estimated Error:**

temp. ± 0.05 °C; soly. $\leq \pm 1\%$ (relative error of methanol concentration).

Methanol (methyl alcohol); CH⁴O; [67-56-1]
 Hexane (*n*-hexane); C₆H₁₄; [110-54-3]
 Water; H₂O; [7732-18-5]

Variables:

Original Measurements:

L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Dep. Doc. VINITI 438-76, 1–12 (1976).

T/K = 293

Compiled by: A. Skrzecz

Experimental Data Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/ °C	T/K (compiler)	-	carbon- phase	2	ocarbon- r phase	rich	carbon- phase npiler)	poor	ocarbon- r phase mpiler)
20	293.2	0.0000	0.99963	0.0000	0.000003	0.0000	0.99992	0.0000	0.000014
		0.0051	0.9944	0.1847	0.0000	0.0019	0.9980	0.2872	0.0001
		0.0099	0.9896	0.3497	0.0001	0.0037	0.9962	0.4887	0.0004
		0.0160	0.9835	0.5206	0.0008	0.0060	0.9939	0.6575	0.0027
		0.0246	0.9749	0.6428	0.0025	0.0093	0.9906	0.7572	0.0079
		0.0362	0.9629	0.7513	0.0091	0.0138	0.9860	0.8252	0.0269
		0.0444	0.9547	0.7958	0.0126	0.0170	0.9828	0.8489	0.0362
		0.0718	0.9268	0.8576	0.0336	0.0280	0.9717	0.8498	0.0895
		0.1394	0.8590	0.8822	0.0785	0.0569	0.9427	0.7909	0.1893
		0.2360	0.7640	0.8390	0.1610	0.1030	0.8970	0.6596	0.3404

Auxiliary Information

Method/Apparatus/Procedure:

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

The synthetic method was used. The mole fraction of hydrocarbon in the charge before separation was about 0.30. After separation phases were analyzed by glc to determine methanol and hydrocarbon; concentration of water was determined by the Karl Fischer method.

Source and Purity of Materials: (1) source not specified. (2) source not specified; distilled; purity >99.9%. (3) not specified.

Estimated Error: Not reported.

Components:

Methanol (methyl alcohol); CH₄O; [67-56-1]
 Toluene (methylbenzene); C₇H₈; [108-88-3]
 Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.03)

3.9. Methanol + Water + Toluene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.), compositions of coexisting phases in equilibrium (eq.) and distribution of methanol between phases (distr.) for the system methanol-toluene-water is given in Table 10.

TABLE 10. Summary	of experimental	data for the system	methanol-toluene-water
-------------------	-----------------	---------------------	------------------------

Author(s)	T/K	Type of data ^a	Ref.
Mason and Washburn, 1937	298	sol. (13), distr. (7)	1
Leikola, 1940	293	sol. (8)	2
Letcher and Siswana, 1992	298	sol. (14), Eq. (6)	3

^aNumber of experimental points in parentheses.

Saturation curve

The system methanol-toluene-water forms a miscibility gap of type 1. Only one binary system, toluene-water, is partially miscible. Data for this system were compiled and critically evaluated in a previously published SDS volume.⁴ The recommended values of mutual solubility of toluene-water system at 298.2 K are: $x'_2 = 0.9972$ and $x''_2 = 0.000104$, by Ref. 4. This critical evaluation is based on the original papers with the exception of data of Leikola,² which were taken from the handbook of Kafarov;⁵ this data set was also taken into account during evaluation but is not reported as a compilation sheet because it does not contribute further to knowledge of the system. The end points of saturation curve³ were reported to be $x_2 = 0.999$ and pure water which is inconsistent with recommended values but within the accuracy of experimental measurements (0.001 mole fraction) stated by the authors. The experimental saturation data reported in Refs. 1 and 3 at 298.2 K show similar behavior of the system with differences in the most difficult to measure region, close to the plait point. In this region, $0.15 < x_3 < 0.6$, Mason and Washburn¹ reported a slightly larger miscibility gap (about 0.04 mole fraction of water) than did Letcher and Siswana.³ Leikola² at 293.2 K presents a smaller solubility gap than Ref. 1, but a little larger than Ref. 3. It seems, that results of Letcher and Siswana.³ at 298 K are the most reasonable. Therefore only data of Ref. 3 presenting saturation and equilibrium data were used to derive the equation:

$x_1 = 1.0652 + 0.1260 \ln(x_2) - 1.1183x_2 + 0.0591x_2^2$.

The parameters were calculated by the least-squares method and the standard error of estimate was 0.0070. The equation is valid in the region of $0.02 < x_2 < 0.94$. Selected points on the saturation curve, calculated by this equation together with the "best" values of Ref. 4 are presented in Table 11 and as solid line in Fig. 5. The water-rich branch of saturation curve contains only a small amount of toluene ($x_2 < 0.0001$) and toluene was not detected in either study. These experimental points are not described by any model. The maximum methanol concentration observed on the saturation curve at 298 K was $x_1 = 0.68 \pm 0.01$.

<i>x</i> ₁	<i>x</i> ₂	х	<i>x</i> ₂
0.0000	0.000 104 Ref. 4	0.4335	0.500
0.5499	0.020	0.4173	0.520
0.6150	0.040	0.4009	0.540
0.6438	0.060	0.3844	0.560
0.6579	0.080	0.3678	0.580
0.6638	0.100	0.3511	0.600
0.6647	0.120	0.3343	0.620
0.6621	0.140	0.3175	0.640
0.6569	0.160	0.3005	0.660
0.6498	0.180	0.2835	0.680
0.6411	0.200	0.2664	0.700
0.6313	0.220	0.2493	0.720
0.6204	0.240	0.2321	0.740
0.6087	0.260	0.2148	0.760
0.5963	0.280	0.1976	0.780
0.5833	0.300	0.1803	0.800
0.5698	0.320	0.1629	0.820
0.5559	0.340	0.1456	0.840
0.5415	0.360	0.1282	0.860
0.5269	0.380	0.1108	0.880
0.5119	0.400	0.0933	0.900
0.4966	0.420	0.0759	0.920
0.4811	0.440	0.0584	0.940
0.4654	0.460	0.0000	0.9972 Ref.
0.4496	0.480		

TABLE 11. Calculated compositions along the saturation curve at 298.2 K

Phases in equilibrium

Compositions of coexisting phases in equilibrium of the ternary system methanol-toluene-water were reported only in Ref. 3. The tie lines are consistent with one another. They are considered tentative. Experimental tie lines together with all experimental saturation points at 298.2 K are presented in Fig. 5. The calculated plait point of the system at 293.2 K, Ref. 3, was $x_1 = 0.43$, $x_2 = 0.50$.

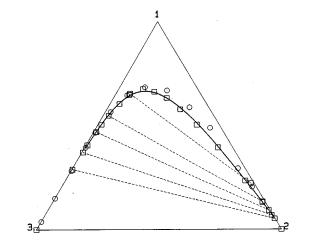


FIG. 5. Phase diagram of the system methanol (1)-toluene (2)-water (3) at 298.2 K. Solid line-calculated saturation curve, O-experimental data, Ref. 1, D-experimental data, Ref. 3, dashed lines-experimental tie lines, Ref. 3.

References:

¹L. S. Mason and E. R. Washburn, J. Am. Chem. Soc. 59, 2076 (1937).

²E. Leikola, Suomen Kemistil. B 13, 13 (1940).

³T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203 (1992).

⁴D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon New York, 1989).

⁵V. V. Kafarov, ed., Spravochnik po Rastvorimosti, Vol. 2, Troinye, Mnogokomponentnye Sistemy, Kniga II (Izd. Akademii Nauk SSSR, Moskva, 1963).

(1) Methanol (methyl alcohol); CH₄O; [67-56-1] (2) Toluene (methylbenzene); C₇H₈; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

L. S. Mason and E. R. Washburn, J. Am. Chem. Soc. 59, 2076-7 (1937).

Variables:	Compiled by:	
T/K=298	A. Skrzecz	

Experimental Data Compositions along the saturation curve								
	T/K	<i>x</i> ₁	<i>x</i> ₂					
t/ °C	(compiler)	(com	(compiler)		w_2			
25	298.2	0.2040	0.7785	0.0832	0.9128			
		0.2937	0.6766	0.1302	0.8624			
		0.4869	0.4675	0.2622	0.7240			
		0.5867	0.3343	0.3684	0.6037			
		0.6686	0.2021	0.5056	0.4394			
		0.6841	0.1033	0.6215	0.2699			
		0.6454	0.0491	0.6735	0.1472			
		0.5648	0.0215	0.6573	0.0720			
		0.4657	0.0077	0.5940	0.0283			
		0.3948	0.0035	0.5312	0.0137			
		0.2828	0.0012	0.4106	0.0050			
		0.1510	0.0003	0.2400	0.0014			
		0.0389	0.0001	0.0672	0.0006			

Distribution of methanol in methanol-toluene-water system

 w'_1

hydrocarbon-

rich phase

0.000

0.001

0.002

0.002

0.004 0.008

0.022

Components:

Variables:

T/K = 298

(1) Methanol (methyl alcohol); CH4O; [67-56-1] (2) Toluene (methylbenzene); C₇H₈; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements: T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203-

17 (1992).

Experimental Data Compositions along the saturation curve

Compiled by:

A. Skrzecz

	<i>m</i> (17			w_1	w_2
$t/^{\circ}C$	T/K (compiler)	<i>x</i> ₁	<i>x</i> ₂	(con	piler)
25.0	298.2	0.000	0.000	0.000	0.000
		0.405	0.006	0.538	0.023
		0.504	0.014	0.618	0.049
		0.604	0.038	0.660	0.119
		0.648	0.057	0.663	0.168
		0.675	0.100	0.620	0.264
		0.662	0.153	0.549	0.365
		0.632	0.219	0.470	0.468
		0.577	0.301	0.382	0.573
		0.502	0.406	0.292	0.678
		0.393	0.546	0.197	0.786
		0.234	0.736	0.099	0.894
		0.130	0.857	0.050	0.947
		0.000	0.999	0.000	0.9998

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''
t∕°C	T/K (compiler)	2	carbon- phase	wate	r-rich ase	rich	carbon- phase npiler)	ph	r-rich ase piler)
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000
		0.051	0.946	0.290	0.002	0.018	0.981	0.418	0.008
		0.068	0.926	0.372	0.004	0.025	0.974	0.507	0.01
		0.092	0.902	0.469	0.010	0.034	0.965	0.593	0.03
		0.133	0.856	0.547	0.022	0.051	0.946	0.642	0.074
		0.222	0.765	0.653	0.057	0.091	0.906	0.666	0.167

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used. Water was added to binary alcohol-toluene mixtures of known composition until the saturation point was reached. The refractive indexes of these mixtures were determined with an immersion refractometer and then were used to construct the refractive index/ composition curve, which was used further to find compositions of equilibrium phases.

T/K

(compiler)

298.2

Source and Purity of Materials:

(1) synthetically prepared; dried over lime, distilled; d(25 °C, 4 °C) = 0.78672, n(25 °C, D) = 1.326 60.(2) Mallinckrodt, reagent grade; dried over Na, distilled; d(25 °C, 4 °C) = 0.862 16, n(25 °C, D) = 1.493 75.(3) distilled from KMnO4.

 w''_1

water-

rich phase

0.025

0.101

0.154

0.220 0.322

0.406

0.428

Estimated Error:

Not reported.

IUPAC-NIST SOLUBILITY DATA SERIES

 $t/^{\circ}C$

Auxiliary Information

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of a known mass of one component to a mixture of known masses of the other two components. Precision weighing syringes were used as described in Ref. 1. Tie line compositions were determined by the refractive index method reported in Ref. 2 and a complementary method using the Karl Fischer titrations as reported in Ref. 3.

Source and Purity of Materials:

(1) Merck, AR grade; distilled, dried by refluxing with Mg and I₂; purity better than 99.6 mole % by glc; d=0.786 88, n = 1.3265.

(2) BDH; used as received; purity better than 99.6 mole % by glc.

(3) not specified.

Estimated Error:

estimated comp. 0.005 mole fraction on the binodal curve and 0.01 mole fraction for tie lines (estimated by the authors).

References:

 ¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. 18, 1037 (1986).
 ²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. 35, 411

(1943).

³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff, J. Chem. Thermodyn. **21**, 1053 (1989).

Components:

Methanol (methyl alcohol); CH₄O; [67-56-1]
 1-Heptene; C₇H₁₄; [592-76-7]
 Water; H₂O; [7732-18-5]

Original Measurements: T. M. Letcher, B. C. Bricknell, J. D. Sewry, and S. E. Radloff, J.

1. M. Letcher, B. C. Bricknell, J. D. Sewry, and S. E. Radloff, J Chem. Eng. Data **39**, 320–3 (1994).

Variables: Compiled by: T/K=298 A. Skrzecz

3.10. Methanol + Water + 1-Heptene Experimental Data

Compositions along the saturation curve

	T/K			w_1	w2
t/°C	(compiler)	x_1	<i>x</i> ₂	(com	piler)
25.0	298.2	0.000	1.000	0.000	1.000
		0.264	0.731	0.105	0.894
		0.454	0.539	0.215	0.783
		0.601	0.390	0.334	0.664
		0.707	0.283	0.448	0.549
		0.772	0.210	0.542	0.451
		0.805	0.165	0.606	0.381
		0.834	0.102	0.705	0.264
		0.827	0.053	0.782	0.154
		0.750	0.020	0.797	0.065
		0.554	0.012	0.664	0.044
		0.396	0.010	0.521	0.040
		0.239	0.006	0.351	0.027
		0.049	0.001	0.084	0.005
		0.000	0.000	0.000	0.000

Compositions of coexisting phases $\frac{x_1' \quad x_2'}{x_1' \quad x_2'} \quad \frac{x_1'' \quad x_2''}{x_1'' \quad x_2''} \quad \frac{w_1' \quad w_2'}{w_1'' \quad w_2'} \quad \frac{w_1''}{w_1''}$ T/K bydrocarbon water rich rich phase

t/°C	T/K (compiler)	2	carbon- phase		r-rich ase	rich	phase piler)	1	ase piler)
25.0	298.2	0.375	0.618	0.690	0.301	0.165	0.833	0.427	0.570
		0.240	0.754	0.805	0.165	0.094	0.905	0.606	0.381
		0.184	0.811	0.757	0.020	0.069	0.930	0.802	0.065
		0.116	0.881	0.571	0.017	0.041	0.958	0.668	0.061

Auxiliary Information

Method/Apparatus/Procedure:

The experimental methods have been described in Ref. 1. No more details were reported in the paper.

Source and Purity of Materials:

(1) source not specified. (2) Aldrich; distilled; purity >99.8 mole % by glc., ρ = 0.692 65 g cm^{-3}. (3) not specified.

Estimated Error: Not reported.

References:

¹T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. **74**, 203 (1992).

 w_2''

water-rich

Methanol (methyl alcohol); CH₄O; [67-56-1]
 Heptane (*n*-heptane); C₇H₁₆; [142-82-5]
 Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.03)

3.11. Methanol + Water + Heptane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system methanol-heptane-water is given in Table 12.

TABLE 12. Summar	y of experimental	I data for the system	methanol-heptane-water

Author(s)	T/K	Type of data ^a	Ref.
Bonner, 1909	273	sat. (7)	1
Kogan et al., 1956	283, 293	Eq. (8)	2
Budantseva et al., 1976	293, 313	Eq. (19)	3
Letcher et al., 1986	298	sat. (8), Eq. (3)	4

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system methanol–heptane–water forms a very large miscibility gap of type 2 covering the majority of the concentration triangle. The system was studied at five temperatures in the range 273.2–298.2 K. Two binary systems, heptane–water and methanol–heptane form miscibility gap at the reported temperatures. Data for these binaries were compiled and critically evaluated in previously published SDS volumes, Refs. 5 and 6, respectively. In the binary methanol–heptane system the upper critical solution temperature is $224.3\pm0.2 \text{ K}$.⁶ This may be a reason for the large dispersion of solubility reported in the ternary system at temperatures over 300 K. Kogan *et al.*,² Budantseva *et al.*,³ and Letcher *et al.*,⁴ also report mutual solubility data for the binary methanol–heptane system; Refs. 3 and 4 report the same methanol concentration (0.176 mole fraction) at 293 and 298 K, respectively. Recommended solubilities of the binaries differ from those reported for the ternary system. The ternary data lack of one component in the phase. This is the result of very low concentrations (<0.001 mole fraction). The ternary solubilities reported in all data sets are consistent with one another. The data are considered tentative. The temperature 293.2 K was selected for presentation of the system behavior. The experimental saturation curve at 293.2 K is presented in Fig. 6. At this temperature the recommended values of mutual solubility ar $x_1' = 4.3 \cdot 10^{-7}$, $x_3' = 5.0 \cdot 10^{-4}$, Ref. 5, for heptane–water system and $x_1'' = 0.1364$, $x_1' = 0.9037$, Ref. 6, for methanol–heptane system. A fitting equation for the saturation curve was not derived because of the law quality of the experimental data. In a few studies the ternary compositions were reported as the binaries, the concentration of the third component was not detectable by the analytical method used. This situation was observed in hydrocarbon-rich phase as well as in hydrocarbon-poor phase.

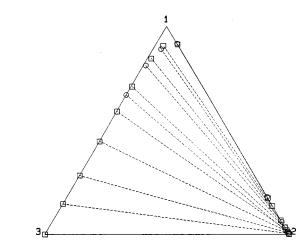


FIG. 6. Phase diagram of the system methanol (1)—heptane (2)—water (3) at 293.2 K. O—experimental data, Ref. 2, D—experimental data, Ref. 3, dashed lines—experimental tie lines, Refs. 2 and 3.

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system methanol-heptane-water were reported in the temperature range 283-313 K. The tie lines cover the whole area of miscibility gap. The reported equilibrium data sets are consistent with one another. All experimental points at 293.2 K, Refs. 2 and 3, are reported in Fig. 6.

References:

¹W. D. Bonner, J. Phys. Chem. **14**, 738 (1909–1910).

²V. B. Kogan, I. V. Deizenrot, T. A. Kulbyaeva, and V. M. Fridman, Zh. Prikl. Khim. (Leningrad) 29, 1387 (1956).

³L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Dep. Doc. VINITI 437-76, 1 (1976).

⁴T. M. Letcher, S. Wootton, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn 18, 1037 (1986).

⁵D. G. Shaw, ed., *Solubility Data Series*, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon New York, 1989).

⁶D. G. Shaw, A. Skrzecz, I. W. Lorimer, and A. Maczynski, eds., *Solubility Data Series*, Vol. 56, Alcohols with Hydrocarbons (Pergamon, New York, 1994).

Methanol (methyl alcohol); CH₄O; [67-56-1]
 Heptane (*n*-heptane); C₇H₁₆; [142-82-5]
 Water; H₂O; [7732-18-5]

Original Measurements:

W. D. Bonner, J. Phys. Chem. 14, 738-89 (1909-1910).

Variables: T/K=273					
			ntal Data the saturation curve		
	T/K	<i>x</i> ₁	<i>x</i> ₂	<i>w</i> ₁	w_2
t/°C	(compiler)	(compiler)		(compiler)	
0.0	273.2	0.9283	0.0600	0.8270	0.1671
		0.9217	0.0434	0.8557	0.1261
		0.9109	0.0363	0.8641	0.1077
		0.9045	0.0263	0.8818	0.0803
		0.9010	0.0210	0.8915	0.0651
		0.8908	0.0155	0.8980	0.0490
		0.8610	0.0112	0.8895	0.0362
		0.8183	0.0077	0.8703	0.0257
		0.6321	0.0026	0.7475	0.0096

Auxiliary Information

Method/Apparatus/Procedure:

In a tube 1 cm diam and 12 cm long known amount, by weight, of hydrocarbon and water were placed into a temperature controlled bath. The contents of the tube were stirred and alcohol was added gradually until a homogeneous solution was obtained. Observations were made visually through the telescope of a cathetometer. The samples were always weighed immediately before and after each experiment. Concentrations were reported as weight of water in 1 g of binary water–hydrocarbon mixture and the weight of alcohol necessary to make a homogeneous solution. The mass of binary water–hydrocarbon mixture was about 1 g; the mass of alcohol–up to 5 g.

Source and Purity of Materials:

(1) Kahlbaum; presumably dried and distilled; $n(14 \degree C) = 1.330$ 70.

(2) Kahlbaum; presumably dried and distilled.(3) not specified.

Estimated Error:

accuracy of weighing 0.0001 g.

Components:

Methanol (methyl alcohol); CH₄O; [67-56-1]
 Heptane (*n*-heptane);C₇H₁₆; [142-82-5]
 Water; H₂O; [7732-18-5]

Original Measurements: V. B. Kogan, I. V. Deizenrot, T. A. Kulbyaeva, and V. M. Fridman, Zh. Prikl. Khim. (Leningrad) 29, 1387–92 (1956).

Compiled by: T/K=283-293 A. Skrzecz

. . .

		x'_1	x'_2	x_1''	x_2''	w'_1	w2	w_1''	w_2''
<i>T</i> /K t/°C (compiler)	hydroc rich j (com	ohase	poor	arbon- phase piler)	2	carbon- phase	2	carbon- phase	
10.0	283.15	0.1099	0.8901	0.9217	0.0783	0.038	0.962	0.790	0.210
		0.0246	0.9754	0.8491	0.0177	0.008	0.992	0.867	0.056
		0.0124	0.9876	0.7706	0.0053	0.004	0.996	0.844	0.018
		0.0093	0.9907	0.6988	0.0025	0.003	0.997	0.799	0.009
20.0	293.15	0.1810	0.8190	0.9159	0.0841	0.066	0.934	0.777	0.223
		0.0600	0.9400	0.8893	0.0322	0.020	0.980	0.860	0.097
		0.0336	0.9664	0.8095	0.0096	0.011	0.989	0.860	0.032
		0.0065	0.9935	0.6672	0.0000	0.0021	0.9979	0.781	0.000

Auxiliary Information

Method/Apparatus/Procedure:

The analytical method was used. The two phase mixture was periodically shaken in a thermostated burette with water jacket for several hours. The phases were removed for analysis after separation. Methanol was determined by reaction with phthalic anhydride; water was determined by the Karl Fischer method. Water concentration in hydrocarbon-rich phase was smaller than 0.01-0.02%.

Source and Purity of Materials:

source not specified, pure grade; distilled; contained <0.01% of water; n(20 °C)=1.3391.
 source not specified; used as received; b.p.=98.4 °C,

(20 °C)=1.3877. (3) not specified.

Estimated Error:

temp. $\pm 0.05~^\circ\text{C};$ soly. $<\pm 1\%$ (relative error of methanol concentration).

Methanol (methyl alcohol); CH₄O; [67-56-1]
 Heptane (*n*-heptane); C₇H₁₆; [142-82-5]
 Water; H₂O; [7732-18-5]

Variables:

T/K = 293 - 313

Compiled By: A. Skrzecz

Original Measurements:

VINITI 437-76, 1-13 (1976).

L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Dep. Doc.

Experimental Data Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
T/K c (compiler)	hydrocarbon- rich phase		hydrocarbon- poor phase		rich	hydrocarbon- rich phase (compiler)		hydrocarbon- poor phase (compiler)	
20	293.2	0.0000	0.9995	0.0000	0.000 003	0.0000	0.999 91	0.0000	0.000 02
		0.0031	0.9964	0.1473	0.000 02	0.0010	0.9989	0.2350	0.000 10
		0.0072	0.9922	0.2841	0.0001	0.0023	0.9976	0.4136	0.0005
		0.0133	0.9861	0.4468	0.0002	0.0043	0.9956	0.5892	0.0008
		0.0215	0.9779	0.5895	0.0009	0.0070	0.9929	0.7166	0.0034
	0.0336	0.9658	0.7075	0.0040	0.0110	0.9889	0.8020	0.0142	
	0.0676	0.9314	0.8431	0.0154	0.0227	0.9771	0.8684	0.0496	
		0.1373	0.8612	0.9053	0.0334	0.0485	0.9512	0.8670	0.1000
		0.1760	0.8240	0.9120	0.0880	0.0639	0.9361	0.7682	0.2318
40	313.2	0.0000	0.9993	0.0000	0.000 01	0.0000	0.999 87	0.0000	0.000 0
		0.0041	0.9950	0.1508	0.000 02	0.0013	0.9985	0.2400	0.000 10
		0.0100	0.9889	0.3119	0.0001	0.0032	0.9966	0.4462	0.0004
		0.0168	0.9819	0.4608	0.0004	0.0054	0.9943	0.6024	0.0016
		0.0281	0.9704	0.5902	0.0017	0.0092	0.9906	0.7154	0.0064
		0.0467	0.9516	0.7382	0.0078	0.0154	0.9842	0.8153	0.0269
		0.0945	0.9036	0.8502	0.0214	0.0323	0.9673	0.8594	0.0676
		0.1400	0.8578	0.8971	0.0416	0.0496	0.9500	0.8450	0.1225
		0.2250	0.7725	0.8845	0.1005	0.0852	0.9143	0.7327	0.2603
		0.2950	0.7050	0.8350	0.1650	0.1180	0.8820	0.6181	0.3819

Auxiliary Information

Method/Apparatus/Procedure: The method was described in Ref. 1. No more details were reported in the paper.

(3) not specified.Estimated Error:

Source and Purity of Materials:

(1) source not specified.

(2) source not specified.

Not reported.

References:

¹L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Zh. Fiz. Khim. **49**, 1849 (1975).

Components:

Variables:

T/K = 298

Methanol (methyl alcohol); CH₄O; [67-56-1]
 Heptane (*n*-heptane); C₇H₁₆; [142-82-5]
 Water; H₂O; [7732-18-5]

Original Measurements:

T. M. Letcher, S. Wootton, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037–42 (1986).

Compiled by: A. Skrzecz

Experimental Data

	Compositions of the saturation curve				
				w ₁	w2
t/°C	T/K (compiler)	<i>x</i> ₁	<i>x</i> ₂		piler)
25	298.2	0.040	0.000	0.069	0.000
		0.144	0.000	0.230	0.000
		0.339	0.001	0.475	0.004
		0.580	0.002	0.706	0.008
		0.848	0.026	0.848	0.081
		0.880	0.038	0.842	0.114
		0.893	0.099	0.740	0.256
		0.176	0.824	0.064	0.936

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	2	carbon- phase	hydrocarbon- poor phase		hydrocarbon- rich phase (compiler)		hydrocarbon- poor phase (compiler)	
25	298.2	0.115	0.885	0.886	0.042	0.040	0.960	0.838	0.124
		0.060	0.940	0.695	0.005	0.020	0.980	0.790	0.01
		0.003	0.997	0.400	0.000	0.001	0.999	0.542	0.00

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, adapted from Ref. 1, was used to determine the coexistence curve. The third component was added from a weighed gas-tight syringe to a weighed mixture of the other two components in 100 mL long-neck flask until one drop (weighing less than 0.01 g) resulted in cloudiness. The flask was immersed in a well controlled water bath and shaken continuously. Refractive indexes of these mixtures were measured at 298.3 K to ensure that separation did not take place. Tie lines were determined from mixtures of known composition in the immiscible region. The flasks were shaken well and the phases allowed to separate. Refractive indexes of samples of both phases were measured and related to compositions on the coexistence curve. Each tie line was checked to ensure that it passed through the composition of the overall mixture. S

Source and Purity of Materials:

(1) Merck, Uvasol grade; dried with magnesium metal activated with iodine, distilled.

(2) Analytical Carbo Erba, purity 99.5 mole %; purified by passing through columns containing silica gel and basic alumina.(3) de-ionized.

Estimated Error:

composition ± 0.005 mole fraction for measured points, ± 0.01 mole fraction for tie-lines extremities in the worst case (authors).

References:

¹S. W. Briggs and E. W. Commings, Ind. Eng. Chem. **35**, 411 (1943).

(1) Methanol (methyl alcohol); CH₄O; [67-56-1] (2) *p*-Xylene (1,4-dimethylbenzene, 1,4-xylene); C₈H₁₀; [106-42-3] (3) Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.03)

3.12. Methanol + Water + *p*-Xylene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.), compositions of coexisting phases in equilibrium (eq.) for the system methanol-*p*-xylene-water is given in Table 13.

TABLE 13. Summary of experimental data for the system methanol-p-xylene-water

Author(s)	T/K	Type of data ^a	Ref.
Leikola, 1940	294	sat. (4)	1
Letcher, et al., 1989	298	sat. (17), Eq. (5)	2

^aNumber of experimental points in parentheses.

Saturation curve

The system methanol-*p*-xylene-water forms a miscibility gap of type 1. Only one binary system, *p*-xylene-water, is partially miscible. The data for this system were compiled and critically evaluated in a previously published SDS volumes, Ref. 3. The recommended values of mutual solubility of *p*-xylene-water system at 298.2 K are: $x'_2 = 0.9974$ and $x''_2 = 0.0000$ 031. The data of Leikola¹ taken from the handbook of Kafarov,⁴ were also taken into account during evaluation but are not reported as compilation sheet because they do not contribute further to knowledge of the system. All experimental saturation data are consistent. The data of Letcher *et al.*² describe the whole binodal curve. The end points of saturation curve, Ref. 2, were reported to be $x_2 = 0.998$ and pure water which is inconsistent with recommended values. Data for the water-rich phase in the range of low methanol concentrations, Ref. 2, were reported to be *p*-xylene free. All these results are within the accuracy of experimental measurements which were stated by the authors to be 0.005 mole fraction. Phase equilibrium data, Ref. 2, were also used to construct the saturation curve with the exception of one point ($x_1=0.058 x_2=0.916$) which appears to contain experimental error. Data at 298.2 K, Ref. 2, presenting both phases (organic-rich and water-rich) were fitted by the equation:

$x_1 = 1.1424 + 0.1264 \ln(x_2) - 1.2561x_2 + 0.1108x_2^2$.

The parameters were calculated by the least-squares method and the standard error of estimate was 0.0194. The points on the saturation curve calculated by this equation for the selected concentrations of p-xylene together with the "best" values of Ref. 3 are presented in Table 14.

TABLE 14. Calculated compositions along the saturation curve at 298.2 K

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.0000	0.000 031 Ref. 3	0.4365	0.5200
0.6228	0.0200	0.4185	0.5400
0.6855	0.0400	0.4004	0.5600
0.7118	0.0600	0.3823	0.5800
0.7234	0.0800	0.3641	0.6000
0.7269	0.1000	0.3458	0.6200
0.7253	0.1200	0.3275	0.6400
0.7202	0.1400	0.3091	0.6600
0.7126	0.1600	0.2907	0.6800
0.7031	0.1800	0.2723	0.7000
0.6922	0.2000	0.2539	0.7200
0.6800	0.2200	0.2355	0.7400
0.6669	0.2400	0.2171	0.7600
0.6530	0.2600	0.1986	0.7800
0.6385	0.2800	0.1802	0.8000
0.6234	0.3000	0.1618	0.8200

0.6078	0.3200	0.1434	0.8400
0.5918	0.3400	0.1250	0.8600
0.5754	0.3600	0.1067	0.8800
0.5588	0.3800	0.0883	0.9000
0.5419	0.4000	0.0700	0.9200
0.5247	0.4200	0.0517	0.9400
0.5074	0.4400	0.0335	0.9600
0.4899	0.4600	0.0153	0.9800
0.4722	0.4800	0.0000	0.9974 Ref. 3
0.4544	0.5000		

Phases in equilibrium

Compositions of coexisting phases in equilibrium of the ternary system methanol–*p*-xylene–water were reported only by Letcher *et al.*² The tie lines are consistent with one another and cover the whole area of the miscibility gap. One point for organic-rich phase $(x_1=0.058, x_2=0.916)$ appears to contain any experimental error. The phase equilibrium data are considered tentative. All experimental saturation points together with experimental tie lines at 298.2 K are presented in Fig. 7. The plait point of the system at 298.2 K, calculated by Letcher and Siswana⁵ was reported to be $x_1=0.46, x_2=0.49$.

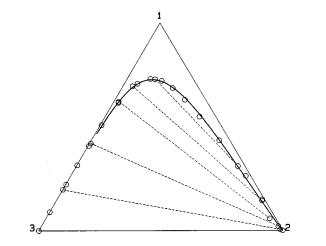


FIG. 7. Phase diagram of the system methanol (1)—p-xylene (2)—water (3) at 298.2 K. Solid line—calculated saturation curve, O—experimental data, Ref. 2, dashed lines—experimental tie lines, Ref. 2.

References:

¹E. Leikola, Suomen. Kemistil. B 13, 13 (1940).

²T. M. Letcher, P. M. Siswana, P. van der Watt, and S. Radloff, J. Chem. Thermodyn. 21, 1053 (1989).

³D. G. Shaw, ed., *Solubility Data Series*, Vol. 38, Hydrocarbons with Water and Seawater, Part II: Hydrocarbons, C₈ to C₃₆ (Pergamon, New York, 1989).

⁴V. V. Kafarov, ed., Spravochnik po Rastvorimosti, Vol. 2, Troinye, Mnogokomponentny e Sistemy, Kniga II (Izd. Akademii Nauk SSSR, Moskva, 1963).

⁵T. M. Letcher, and P. M. Siswana, Fluid Phase Equilib. 74, 203 (1992).

(1) Methanol (methyl alcohol); CH₄O; [67-56-1] (2) *p*-Xylene (1,4-dimethylbenzene, 1,4-xylene); C₈H₁₀; [106-42-3] (3) Water; H₂O; [7732-18-5]

Variables: T/K=298

Compiled by: A. Skrzecz

Original Measurements:

J. Chem. Thermodyn. 21, 1053-60 (1989).

T. M. Letcher, P. M. Siswana, P. van der Watt, and S. Radloff,

Experimental Data Compositions of the saturation curve								
				w_1	w_2			
t/°C	T/K	x_1	<i>x</i> ₂	(com	piler)			
25.0	298.2	0.000	0.998	0.000	0.9997			
		0.150	0.840	0.051	0.947			
		0.263	0.716	0.099	0.896			
		0.433	0.523	0.198	0.791			
		0.548	0.385	0.294	0.685			
		0.629	0.285	0.388	0.582			
		0.686	0.207	0.479	0.479			
		0.721	0.145	0.565	0.376			
		0.730	0.095	0.639	0.275			
		0.707	0.053	0.695	0.173			
		0.615	0.021	0.692	0.078			
		0.508	0.005	0.636	0.021			
		0.407	0.003	0.544	0.013			
		0.315	0.001	0.448	0.005			
		0.224	0.001	0.338	0.005			
		0.090	0.000	0.150	0.000			

		,		1	coexisting ph		,	,,	
		x'_1	x'_2	x_1''	x_2''	w'_1	w'2	w_1''	w_2''
t/°C (compiler)	T/K	-	carbon- phase	water-rich phase		hydrocarbon- rich phase (compiler)		water-rich phase (compiler)	
25.0	298.2	0.310	0.660	0.728	0.115	0.123	0.870	0.608	0.318
		0.144	0.842	0.695	0.039	0.049	0.948	0.714	0.133
		0.058	0.916	0.620	0.019	0.019	0.977	0.700	0.071
		0.021	0.970	0.419	0.005	0.006	0.992	0.552	0.022
		0.005	0.985	0.199	0.000	0.002	0.997	0.306	0.000

Method/Apparatus/Procedure:

The titration method was used to determine binodal curve. A binary mixture of known composition was titrated with the third component until cloudiness was observed. Tie line compositions were related to the coexistence curve; water was determined by the Karl Fischer titration. The methods were described in Ref. 1.

Auxiliary Information

Source and Purity of Materials:

source not specified; used as received.
 source not specified; recrystallized three times.
 not specified.

Estimated Error:

comp. <0.005 mole fraction (estimated authors' precision on binodal curve), <0.01 mole fraction (estimated authors' precision of tie lines).

References:

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. **18**, 1037 (1986).

_
Phys.
Chem.
Ref.
Data,
Vol.
28,
No.
<u>44</u>
1999

	thyl alcohol); CH ₄ O; [67 ire of isomers); C ₈ H ₁₀ ; [1 [7732-18-5]	
Variables: <i>T</i> /K=293-323		
	:	3.13. Meth
		Composit
		<i>x</i> ₁
t/°C	T/K (compiler)	
20	293.2	0.41
		0.69
		0.76
		0.75
		0.72
		0.69
		0.61
		0.35
30	303.2	0.41
		0.68
		0.74

Original Measurements:

J. Hartley, J. Soc. Chem. Ind. (London) 69, 60-1 (1950).

Compiled by: A. Skrzecz

hanol + Water + Xylene

Experimental Data

tions along the saturation curve

	T/K	<i>x</i> ₁	<i>x</i> ₂		
t/°C	(compiler)	(com	piler)	w_1	w_2
20	293.2	0.419	0.553	0.185	0.808
		0.696	0.229	0.465	0.507
		0.765	0.092	0.666	0.264
		0.758	0.062	0.711	0.194
		0.725	0.039	0.735	0.130
		0.696	0.029	0.736	0.100
		0.611	0.013	0.706	0.050
		0.356	0.002	0.492	0.010
30	303.2	0.416	0.548	0.185	0.806
		0.686	0.226	0.462	0.505
		0.749	0.089	0.660	0.260
		0.742	0.061	0.703	0.192
		0.701	0.038	0.721	0.128
		0.680	0.028	0.726	0.099
		0.611	0.014	0.703	0.054
		0.356	0.003	0.491	0.012
50	323.2	0.243	0.719	0.092	0.900
		0.412	0.544	0.184	0.805
		0.708	0.155	0.545	0.396
		0.721	0.102	0.622	0.292
		0.710	0.065	0.675	0.205
		0.671	0.035	0.705	0.121
		0.545	0.009	0.660	0.036
		0.417	0.002	0.556	0.009

		w'2	w"2
t/°C	<i>T</i> /K (compiler)	hydrocarbon- rich phase	water- rich phase
20	293.2	0.983	0.517
		0.982	0.353
		0.977	0.254
		0.965	0.222
30	303.2	0.985	0.525
		0.977	0.351
		0.970	0.256
		0.963	0.217

Concentration of xylene and water in coexisting phases

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used. Binary mixtures of known volumes were titrated with the third component in glass-stoppered bottles until, after vigorously shaking, the mixture became turbid. The equilibrium phases were determined by titrating with water binary methanol-xylene mixtures. The xylene-rich phase was at the beginning the lower layer, but addition of water caused this phase to separate as the upper layer. To determine tie lines, mixtures of known composition were immersed in a thermostat bath, shaken, and after separation one component of each phase was analyzed. Water, in the alcohol-rich phase, was analyzed by the Karl Fischer reagent and xylene, in the hydrocarbon-rich phase, was determined by extraction with water. The results were presented on a Gibbs triangle together with binodal curve.

Source and Purity of Materials:

(1) BDH, sulphur free; distilled; fraction boiling at the range 140-2 °C was used. (2) source not specified; absolute alcohol; used as received. (3) distilled.

Estimated Error:

temp. ±0.5 °C (temperature of the bath).

1020

			Co	ompositions of	f coexisting ph	lases			
		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''
t/°C	T/K (compiler)	rich	carbon- phase piler)	rich	tter- phase apiler)	2	carbon- phase		ter- phase
20	293.2	0.101	0.888	0.636	0.015	0.033	0.965	0.721	0.057
30	303.2	0.106	0.883	0.638	0.018	0.035	0.963	0.715	0.068
50	323.2	0.146	0.833	0.637	0.024	0.050	0.946	0.702	0.088

Evaluated by:

Methanol (methyl alcohol); CH₄O; [67-56-1]
 2,2,4-Trimethylpentane (isooctane); C₈H₁₈; [540-84-1]
 Water; H₂O; [7732-18-5]

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1996.05)

3.14. Methanol + Water +2,2,4-Trimethylpentane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system methanol-2,2,4-trimethylpentane-water is given in Table 15.

TABLE 15. Summary of experimental data for the system methanol-2,2,4-trimethylpentane-water

Author(s)	T/K	Type of data ^a	Ref.
Buchowski and Teperek, 1959	291, 293	sat. (21), eq. (18)	1
Budantseva et al., 1976	293	eq. (6)	2

^aNumber of experimental points in parentheses.

Saturation curve

The system methanol–2,2,4-trimethylpentane–water forms a large miscibility gap of type 2 covering the majority of the concentration triangle. Two binary systems 2,2,4-trimethylpentane–water and 2,2,4-trimethylpentane–methanol are partially miscible. The data for these systems were compiled and critically evaluated in previously, published SDS volumes, Refs. 3 and 4. The recommended values of mutual solubility of 2,2,4-trimethylpentane–water system, Ref. 3, and methanol–2,2,4-trimethylpentane system, Ref. 4, at 293 K are: $x'_2 = 0.9995$, $x''_3 = 3 \cdot 10^{-7}$ and $x'_2 = 0.890$, $x''_2 = 0.224$, respectively. (The mutual solubilities of methanol–2,2,4-trimethylpentane system, reported in both papers^{1,2} were also considered during evaluation of this binary system in Ref. 4.) Compositions along the saturation curve at 291.2 and 293.2 K by Buchowski and Teperek¹ were obtained by the titration method. They are consistent within each data set, as well as with one another. The paper of Budantseva *et al.*² contains information about phases in equilibrium at 293.2 K only. The hydrocarbon-rich phase shows larger solubility² than data of Ref. 1 at the same temperature and than the "best" binary solubilities by Ref. 4. The data of Buchowski and Teperek¹ were well documented (description of the method, description of pure substances properties and purity) while data of Ref. 2 were reported without any auxiliary information. Therefore data of Ref. 1 appear reliable, but all are considered as tentative.

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system methanol-2,2,4-trimethylpentane-water were reported in both references. Tie lines cover nearly the whole range of miscibility gap. In the paper of Buchowski and Teperek¹ the reported hydrocarbon-rich phase did not contain detectable water (water concentration in the hydrocarbon-rich phase was neglected because solubility of water in 2,2,4-trimethylpentane is lower than 0.000 5 mass fraction, Ref. 1). The data from Refs. 1 and 2 show slightly different directions of the tie lines. All of them are considered as tentative. To present system behavior, experimental data along the saturation curve and experimental compositions of coexisting phases in equilibrium at 293.2 K, are presented in Fig. 8.

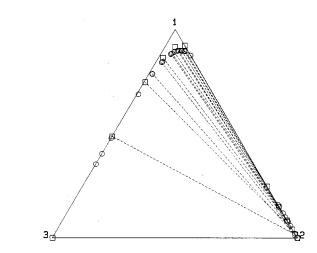


FIG. 8. Phase diagram of the system methanol (1)—2,2,4-trimethylpentane (2)—water (3) at 293.2 K. O—experimental data, Ref. 1 —experimental data, Ref. 2, dashed lines—experimental tie lines, Refs. 1 and 2.

References:

¹H. Buchowski and J. Teperek, Rocz. Chem. 33, 1093 (1959).

²L. S. Budantseva, T.M. Lesteva, and M.S. Nemtsov, Dep. Doc. VINITI 437-76, 1 (1976).

³D.G. Shaw, ed., *Solubility Data Series*, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

⁴D. G. Shaw, A. Skrzecz, J. W. Lorimer, and A. Maczynski, eds., *Solubility Data Series*, Vol. 56, Alcohols with Hydrocarbons (Pergamon, New York, 1994).

									C	ompositions o	of coexisting pl	nases			
Components:			Original Measurer	nents:				x'_1	x'_2	x_1''	x_2''	w'_1	w2	w_1''	w_2''
	yl alcohol); CH ₄ O; [67- pentane (isooctane); C ₈ I 732-18-5]		H. Buchowski and J	J. Teperek, Rocz. Chem	. 33, 1093–8 (1959).	t/°C	T/K (compiler)	rich	pcarbon- phase npiler)	poor	carbon- phase npiler)		carbon- phase		carbon-
Variables:			Compiled by:			18	291.2	0.1773	0.8227	0.8786	0.1214	0.057	0.943	0.670	0.330
T/K = 291 - 293			A. Skrzecz					0.1054	0.8946	0.9025	0.0705	0.032	0.968	0.772	0.215
								0.1524	0.8476	0.9055	0.0775	0.048	0.952	0.760	0.23
			mental Data					0.0869	0.9131	0.9045	0.0519	0.026	0.974	0.812	0.16
		Compositions alo	ng the saturation curve					0.0806	0.9194	0.8971	0.0415	0.024	0.976	0.831	0.13
		<i>x</i> ₁	<i>x</i> ₂					0.0678	0.9322	0.8866	0.0346	0.020	0.980	0.841	0.117
	T/K		<u>-</u>					0.0448	0.9552	0.8535	0.0231	0.013	0.987	0.849	0.082
t/°C	(compiler)	(cc	ompiler)	w 1	w2			0.0415	0.9585	0.8363	0.0197	0.012	0.988	0.847	0.07
10	201.2	0.0504	0.4044	0.480	0.000			0.0000	1.0000	0.7200	0.0060	0.000	1.000	0.804	0.02
18	291.2	0.8786	0.1214	0.670	0.330	20	293.2	0.1580	0.8420	0.8950	0.0940	0.050	0.950	0.724	0.27
		0.9071	0.0780	0.760	0.233			0.1495	0.8505	0.8957	0.0891	0.047	0.953	0.733	0.260
		0.9054	0.0639	0.787	0.198			0.1175	0.8825	0.8961	0.0784	0.036	0.964	0.753	0.23
		0.9002	0.0558	0.801	0.177			0.0993	0.9007	0.8983	0.0649	0.030	0.970	0.781	0.20
		0.8940 0.8880	0.0442	0.823	0.145			0.0838	0.9162	0.8910	0.0501	0.025	0.975	0.808	0.16
		0.8880	0.0350 0.0200	0.841 0.846	0.118 0.072			0.0774	0.9226	0.8848	0.0440	0.023	0.977	0.818	0.145
		0.8359	0.0200	0.846	0.029			0.0581	0.9419	0.8821	0.0415	0.017	0.983	0.822	0.138
		0.6227	0.0073	0.800	0.003			0.0211	0.9789	0.8411	0.0236	0.006	0.994	0.840	0.08
		0.3985	0.0007	0.744	0.003			0.0000	1.0000	0.7860	0.0135	0.000	1.000	0.830	0.051
		0.3076	0.0004	0.441	0.002										
20	293.2	0.8747	0.1253	0.662	0.338					Auxiliary	Information				
20	275.2	0.8988	0.0740	0.763	0.224										
		0.8970	0.0606	0.789	0.190		l/Apparatus/Pro					and Purity of			
		0.8811	0.0408	0.823	0.136		ity was measured of methanol and			nown				boiled with I2 ction was use	
		0.8441	0.0251	0.838	0.089		imethylpentane u			The mass		8, $\rho(20 \text{ °C})=0$		ction was use	J, <i>n</i> (20
		0.7845	0.0135	0.829	0.051		ocarbon was dete							Chemistry Dep	partment
		0.6875	0.0057	0.781	0.023		. To obtain equil							e; distilled onl	
		0.4769	0.0007	0.617	0.003		ients were shaker						14, $\rho(20 \ ^{\circ}\text{C})$ =	= 0.6920 g/cm ³ .	
		0.4033	0.0004	0.545	0.002		ive indexes of the ed and phase con				(3) doub	bly distilled.			
		0.3538	0.0002	0.493	0.001		f the binary meth				Estimat	ed Error:			
						Water of	concentration in t	the hydrocarbo	on-rich phase		temp. ±	0.5 °C.			
						1 .	1.1 .1	1 1 11.							

neglected because the solubility of water in

total composition of starting mixture.

2,2,4-trimethylpentane is lower than 0.000 05 mass fraction.1

Concentration of the water-rich phase was determined

graphically from a large scale ternary diagram from the binodal curve, composition of hydrocarbon-rich phase and

251	0.015	0.907	0.049	0.002
197	0.012	0.988	0.847	0.071
060	0.000	1.000	0.804	0.024
940	0.050	0.950	0.724	0.271
891	0.047	0.953	0.733	0.260
784	0.036	0.964	0.753	0.235
549	0.030	0.970	0.781	0.201
501	0.025	0.975	0.808	0.162
440	0.023	0.977	0.818	0.145
415	0.017	0.983	0.822	0.138
236	0.006	0.994	0.840	0.084
135	0.000	1.000	0.830	0.051
ation				
	nd Purity of			1.14
			tion was used	
	$\rho(20 \ ^{\circ}C)=0$		cion was asee	I, <i>n</i> (20°C)
			hemistry Dep	artment of
			; distilled only	to remove
ater; n(20 °C)=1.391	4, $\rho(20 ^{\circ}\text{C}) =$	0.6920 g/cm3.	

¹A. Weissberger, E. S. Proskauer, I. A. Riddick, and E. E. Toops,

Organic Solvents, 2nd ed. (New York, 1995).

References:

Compositions of coexisting phases

S

0.330 0.215 0.232 0.166 0.137 0.117 0.082 1022

Methanol (methyl alcohol); CH₄O; [67-56-1]
 2,2,4-Trimethylpentane (isooctane); C₈H₁₈; [540-84-1]
 Water; H₂O; [7732-18-5]

Variables:

T/K = 293

Experimental Data

Compiled by:

A. Skrzecz

Original Measurements:

VINITI 437-76, 1-13 (1976).

L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Dep. Doc.

Compositions of coexisting phases	Compositions	of	coexisting	phases
-----------------------------------	--------------	----	------------	--------

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	5	carbon- phase	2	ocarbon- or phase	rich	carbon- phase npiler)	poor	pcarbon- r phase npiler)
20	293.2	0.0000	0.999 56	0.0000	0.000 000 3	0.0000	0.999 931	0.0000	0.000 002
		0.0162	0.9831	0.4855	0.0002	0.0046	0.9953	0.6262	0.0009
		0.0414	0.9579	0.7456	0.0043	0.0120	0.9879	0.8270	0.0170
		0.0836	0.9152	0.8636	0.0180	0.0250	0.9748	0.8685	0.0645
		0.1493	0.8490	0.9158	0.0411	0.0470	0.9527	0.8428	0.1349
		0.2460	0.7540	0.9220	0.0780	0.0838	0.9162	0.7683	0.2317

Auxiliary Information

Method/Apparatus/Procedure:

The method was described in Ref. 1. No more details were reported in the paper.

Source and Purity of Materials: (1) source not specified. (2) source not specified. (3) not specified.

Estimated Error:

Not reported.

References:

¹L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Zh. Fiz. Khim. **49**, 1849 (1975).

Methanol (methyl alcohol); CH₄O; [67-56-1]
 Octane (*n*-octane); C₈H₁₈; [111-65-9]
 Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1996.04)

3.15. Methanol + Water + Octane

Critical Evaluation:

A survey of reported compositions along the saturation curve and compositions of coexisting phases in equilibrium (eq.) for the system methanol-octane-water is given in Table 16.

TABLE 16. Summ	ary of experimental	data for the system	methanol-octane-water
----------------	---------------------	---------------------	-----------------------

Author(s)	T/K	Type of data ^a	Ref.
Kogan et al., 1956	283, 293	eq. (12)	1
Budantseva et al., 1976	293	eq. (10)	2

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system methanol–octane–water forms a large miscibility gap of type 2 covering the majority of the concentration triangle. Compositions along the saturation curves were not reported independently in the references; the saturation curves can be constructed on the bases of equilibrium compositions. Two binary systems, octane–water and octane–methanol, form miscibility gaps. The data for these systems were compiled and critically evaluated in previously published SDS volumes, Refs. 3 and 4, respectively. The recommended, Ref. 3, values of mutual solubility of octane–water system at 293 K⁴ are: $x_2''=9.9 \cdot 10^{-8}$ and $x_2'=0.9995$. The mutual solubility of methanol–octane system at 293 K⁴ are: $x_1''=0.044$ and $x_1'=0.105$. The binary data reported by Budantseva *et al.*² are: x_2'' = 2.0 $\cdot 10^{-7}$, $x_2'=0.9995$ 7 and $x_1''=0.960$, $x_1'=0.155$, respectively.

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system methanol-octane-water were reported in both references. The experimental procedure was reported only in Ref. 1. After separation, methanol was determined by reaction with phthalic anhydride; water—with the Karl Fischer reagent. The compositions of phases in equilibrium reported in Refs. 1 and 2 are consistent with one another, they are treated as tentative and those at 293.2 K are presented in Fig. 9.

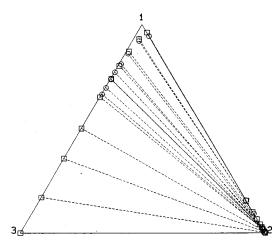


FIG. 9. Phase diagram of the system methanol (1)—octane (2)—water (3) at 293.2 K. O—experimental data, Ref. 1, D—experimental data, Ref. 2, dashed lines—experimental tie lines, Ref. 2.

1023

References:

¹V. B. Kogan, I. V. Deizenrot, T. A. Kulbyaeva, and V. M. Fridman, Zh. Prikl. Khim. (Leningrad) 29, 1387 (1956).

²L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Dep. Doc. VINITI 437-76, 1 (1976).

 3 D. G. Shaw, ed., Solubility Data Series, Vol. 38, Hydrocarbons with Water and Seawater, Part II: Hydrocarbons C₈ to C₃₆ (Pergamon, New York, 1989).

⁴D. G. Shaw, A. Skrzecz, W. Lorimer, and A. Maczynski, eds., *Solubility Data Series*, Vol. 56, Alcohols with Hydrocarbons (Pergamon, New York, 1994).

Components:

Methanol (methyl alcohol); CH₄O; [67-56-1]
 Octane (*n*-octane); C₈H₁₈; [111-65-9]
 Water; H₂O; [7732-18-5]

 x'_1

0.0742

0.0482

0.0245

0.0245

0.1580

0.0931

0.0242

0.0141

0.0141

0.0211

0.0176

0.0176

Water concentration in the hydrocarbon-rich phase was smaller

hydrocarbon-

rich phase

(compiler)

 x'_2

0.9258

0.9518

0.9755

0.9755

0.8420

0.9069

0.9758

0.9859

0.9859

0.9789

0.9824

0.9824

Original Measurements: V. B. Kogan, I. V. Deizenrot, T. A. Kulbyaeva, and V. M. Fridman, Zh. Prikl. Khim. (Leningrad) 29, 1387–92 (1956).

 w'_2

 w_1''

 w_2''

Variables:

T/K = 283 - 293

T/K

(compiler)

283.15

293.15

 $t/^{\circ}C$

10.0

20.0

than 0.01-0.02%.

	carbon- phase	hydrocarbon- poor phase				
22	0.978	0.844	0.156			
14	0.986	0.889	0.0736			
07	0.993	0.866	0.024			
07	0.993	0.795	0.000			
50	0.950	0.823	0.177			
28	0.972	0.878	0.0937			
069	0.9931	0.8840	0.0418			
04	0.996	0.861	0.030			
04	0.996	0.851	0.008			
06	0.994	0.825	0.011			
05	0.995	0.795	0.011			
05	0.995	0.773	0.009			

Method/Apparatus/Procedure:

Source and Purity of Materials:

The analytical method was used. The two phase mixture was periodically shaken in a thermostated burette with water jacket for several hours. The phases were removed for analysis after separation. Methanol was determined by the Karl Fischer method. (1) source not specified, pure grade; distilled; contained <0.01% of water; $n(20 \ ^{\circ}C) = 1.3391$. (2) source not specified; used as received; b.p.=125.4°C, $n(20 \ ^{\circ}C) = 1.3976$. (3) not specified.

Estimated Error:

Compiled by:

 w'_1

0.022

0.014

0.007

0.007

0.050

0.028

0.0069

0.004

0.004

0.006

0.005

0.005

A. Skrzecz

 x_2''

0.0493

0.0211

0.0063

0.0000

0.0569

0.0275

0.0114

0.0079

0.0020

0.0028

0.0027

0.0022

Auxiliary Information

Experimental Data Compositions of coexisting phases

hydrocarbon-

poor phase

(compiler)

 x_1''

0.9507

0.9107

0.8106

0.6856

0.9431

0.9197

0.8602

0.8098

0.7708

0.7368

0.6955

0.6645

temp. $\pm 0.05~^{\circ}\text{C};$ soly. $<\pm 1\%$ (relative error of methanol concentration).

Methanol (methyl alcohol); CH₄O; [67-56-1]
 Octane (*n*-octane); C₈H₁₈; [111-65-9]
 Water; H₂O; [7732-18-5]

Variables:

 $T/\mathrm{K}\!=\!293$

Experimental Data

Compiled by:

A. Skrzecz

Original Measurements:

VINITI 437-76, 1-13 (1976).

L. S. Budantseva, T. M. Lesteva and M. S. Nemtsov, Dep. Doc.

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''
t/°C	T/K (compiler)	hydrocarbon- rich phase		hydrocarbon- poor phase		hydrocarbon- rich phase (compiler)		hydrocarbon- poor phase (compiler)	
20	293.2	0.0000	0.99957	0.0000	0.000 000 2	0.0000	0.999 932	0.0000	0.000 001
		0.0018	0.9975	0.1722	0.000 02	0.0005	0.9994	0.2700	0.000 11
		0.0050	0.9943	0.3554	0.0001	0.0014	0.9985	0.4949	0.0005
		0.0092	0.9901	0.4995	0.0002	0.0026	0.9973	0.6392	0.0009
		0.0182	0.9811	0.6501	0.0009	0.0052	0.9947	0.7652	0.0038
		0.0279	0.9714	0.7390	0.0027	0.0080	0.9919	0.8268	0.0108
		0.0414	0.9579	0.8016	0.0052	0.0120	0.9879	0.8631	0.0200
		0.0671	0.9322	0.8694	0.0109	0.0198	0.9801	0.8912	0.0398
		0.1022	0.8966	0.9283	0.0233	0.0310	0.9688	0.8938	0.0800
		0.1550	0.8450	0.9600	0.0400	0.0489	0.9511	0.8707	0.1293

Auxiliary Information

Method/Apparatus/Procedure:

The method was described in Ref. 1. No more details were reported in the paper.

source not specified. source not specified. not specified.

Source and Purity of Materials:

Estimated Error:

Not reported.

References:

¹L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Zh. Fiz. Khim. **49**, 1849 (1975).

Components:

Methanol (methyl alcohol); CH₄O; [67-56-1]
 Mesitylene (1,3,5-trimethylbenzene); C₉H₁₂; [108-67-8]
 Water; H₂O; [7732-18-5]

0.408

0.573

Original Measurements:

T.M. Letcher and P.M. Siswana, Fluid Phase Equilib. 74, 203–17 (1992).

Compiled By:	
A. Skrzecz	

3.16. Methanol + Water + Mesitylene

Experimental Data Compositions along the saturation curve

	T/K			<i>w</i> ₁	w_2		
t/°C	(compiler)	<i>x</i> ₁	x_2	(con	(compiler)		
25.0	298.2	0.000	0.000	0.000	0.000		
		0.360	0.001	0.498	0.005		
		0.457	0.002	0.595	0.010		
		0.565	0.005	0.684	0.023		
		0.734	0.022	0.770	0.087		
		0.788	0.043	0.755	0.154		
		0.796	0.053	0.737	0.184		
		0.807	0.092	0.668	0.285		
		0.792	0.141	0.583	0.389		
		0.747	0.202	0.487	0.494		
		0.682	0.273	0.394	0.591		
		0.595	0.370	0.297	0.693		
		0.471	0.503	0.199	0.795		
		0.292	0.690	0.101	0.895		
		0.163	0.826	0.050	0.948		
		0.000	0.999	0.000	0.9998		

Compositions of coexisting phases w_2'' x'_1 x'_2 x_1'' x_2'' w'_1 w'_2 w''_1 hydrocarbonhydrocarbon-T/Khydrocarbonhydrocarbonrich phase poor phase $t/^{\circ}C$ (compiler) rich phase poor phase (compiler) (compiler) 25.0 298.2 0.000 0.999 0.000 0.000 0.000 0.9998 0.000 0.000 0.090 0.905 0.533 0.001 0.026 0.973 0.667 0.005 0.140 0.852 0.663 0.010 0.042 0.957 0.750 0.042 0.200 0.790 0.755 0.023 0.063 0.935 0.781 0.089 0.208 0.717 0.800 0.056 0.071 0.915 0.733 0.193

0.135

0.159

0.837

0.593

0.378

0.795

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of a known mass of one component to a mixture of known masses of the other two components. Precision weighing syringes were used as described in Ref. 1. Tie line compositions were determined by the refractive index method reported in Ref. 2 and a complementary method using the Karl Fischer titrations as reported in Ref. 3.

Source and Purity of Materials:

(1) Merck, AR grade; distilled, dried by refluxing with Mg and I₂; purity better than 99.6 mole % by glc; d=0.786 88, n = 1.3265.

(2) BDH; used as received; purity better than 99.6 mole % by glc.

(3) not specified.

Estimated Error:

estimated comp. 0.005 mole fraction on the binodal curve and 0.01 mole fraction for tie lines (estimated by the authors).

References:

¹T. M. Letcher, S. Wooten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. 18, 1037 (1986).

²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. 35, 411 (1943).

³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff, J. Chem. Thermodyn. 21, 1053 (1989).

Components:

(1) Methanol (methyl alcohol); CH₄O; [67-56-1] (2) Nonane (*n*-nonane); C₉H₂₀; [111-84-2] (3) Water; H₂O; [7732-18-5]

V. B. Kogan, I. V. Deizenrot, T. A. Kulbyaeva, and V. M. Fridman, Zh. Prikl. Khim. (Leningrad) 29, 1387-92 (1956).

Original Measurements:

Variables: Compiled by: T/K = 283 - 293A. Skrzecz

3.17. Methanol + Water + Nonane **Experimental Data**

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
<i>T</i> /K <i>t</i> /°C (compiler)	hydrocarbon- lean phase (compiler)		hydrocarbon- rich phase (compiler)		hydrocarbon- lean phase		hydrocarbon- rich phase		
10.0	283.15	0.9615	0.0385	0.0965	0.9035	0.862	0.138	0.026	0.974
		0.9458	0.0183	0.0501	0.9499	0.910	0.0706	0.013	0.987
		0.8957	0.0081	0.0464	0.9536	0.912	0.0329	0.012	0.988
		0.7512	0.0000	0.0236	0.9764	0.843	0.000	0.006	0.994
20.0	293.15	0.9562	0.0438	0.1034	0.8966	0.845	0.155	0.028	0.972
		0.9370	0.0220	0.0861	0.9139	0.894	0.0840	0.023	0.977
		0.9238	0.0138	0.0381	0.9619	0.911	0.0544	0.0098	0.990
		0.7725	0.0009	0.0158	0.9842	0.855	0.004	0.0040	0.996

Auxiliary Information

Method/Apparatus/Procedure:

than 0.01-0.02%.

Source and Purity of Materials:

(1) source not specified, pure grade; distilled; contained <0.01% periodically shaken in a thermostated burette with water jacket of water; $n(20 \circ C) = 1.3391$. (2) source not specified; used as received; b.p. = 150.5 °C, $n(25 \ ^{\circ}C) = 1.4035.$ separation. Methanol was determined by reaction with phthalic (3) not specified.

Estimated Error:

temp. ±0.05 °C; soly. <±1% (relative error of methanol concentration).

1026

The analytical method was used. The two phase mixture was

for several hours. The phases were removed for analysis after

anhydride; water was determined by the Karl Fischer method.

Water concentration in the hydrocarbon-rich phase was smaller

Methanol (methyl alcohol); CH₄O; [67-56-1]
 1-Methylnaphthalene; C₁₁H₁₀; [90-12-0]
 Water; H₂O; [7732-18-5]

Original Measurements

C. F. Prutton, T. J. Walsh, and A. M. Desai, Ind. Eng. Chem. 42, 1210–7 (1950).

Variables:

T/K=298 and 308

A. Skrzecz

Compiled by:

3.18. Methanol + Water + 1-Methylnaphthalene

Experimental Data Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w2	w_1''	w_2''
<i>T/</i> K <i>t</i> /°C (compiler)	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		hydrocarbon -rich phase		water -rich phase		
25.0	298.15	0.0000	1.0000	0.0000	0.0000	0.000	1.000	0.000	0.000
		0.0429	0.9571	0.2726	0.0000	0.010	0.990	0.400	0.000
		0.0511	0.9489	0.3957	0.0000	0.012	0.988	0.538	0.000
		0.0752	0.9248	0.6273	0.0058	0.018	0.982	0.730	0.030
		0.1022	0.8978	0.6928	0.0134	0.025	0.975	0.755	0.065
		0.1207	0.8793	0.7356	0.0242	0.030	0.970	0.752	0.110
		_	_	0.8023	0.0487	_	_	0.728	0.196
		_	_	0.8173	0.0555	_	_	0.720	0.217
		_	—	0.7973	0.1196	_	—	0.580	0.386
		_	—	0.7910	0.1507	_	—	0.530	0.448
35.0	308.15	0.0000	1.0000	0.0000	0.0000	0.000	1.000	0.000	0.000
		0.0511	0.9489	0.3957	0.0000	0.012	0.988	0.538	0.000
		0.0752	0.9248	0.6229	0.0078	0.018	0.982	0.720	0.040
		0.1022	0.8978	0.6885	0.0156	0.025	0.975	0.745	0.075
		_	_	0.7118	0.0188	_	_	0.752	0.088
		_	_	0.7741	0.0389	_	_	0.736	0.164
		—		0.7948	0.0552	_	—	0.707	0.218
		_	—	0.7993	0.0824	_	—	0.649	0.297
		_	—	0.7934	0.1189	_	—	0.579	0.385
		_	—	0.7390	0.1915	_	—	0.454	0.522
		_	_	0.6184	0.3223	_	_	0.297	0.687
		_	_	0.5184	0.4457	_	_	0.206	0.786
		_	_	0.4506	0.5494	_	_	0.156	0.844
		0.2021	0.7979	_	_	0.054	0.946	_	_
		0.3376	0.6624	_	_	0.103	0.897	_	_

Auxiliary Information

Method/Apparatus/Procedure:

The analytical method was used. Samples in 4 oz. oil sample bottles were agitated in a constant temperature bath for at least 12 h before phase separation. Samples of each phase were taken for analysis by a rubber bulb pipette. Water was determined by the Karl Fischer reagent, hydrocarbons as the caustic-insoluble fraction, methanol–by the difference.

Source and Purity of Materials:

(1) Barker C.P. analyzed absolute; purity 99.5%; water-free by the Karl Fischer.

(2) (a) Eastman Kodak Co.; distillation range 238–240 °C, contained about 5% of 2-methylnaphtalene isomer. (b) prepared in the laboratory from the crude material; extracted with NaOH aq., refluxed with Na, distilled; fraction boiling at 240 °C was collected; contained about 10% of 2-methylnaphtalene isomer. (3) not specified.

Estimated Error: temp. \pm 0.01 °C.

4. Ethanol+Water

Components:

Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 Benzene; C₆H₆; [71-43-2]
 Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.05)

4.1. Ethanol + Water + Benzene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.), compositions of coexisting phases in equilibrium (eq.) and distribution of ethanol between phases (distr.) for the system ethanol-benzene-water is given in Table 17.

TABLE 17. Summary of experimental data for the system ethanol-benzene-water

Author(s)	T/K	Type of data ^a	Ref.
Taylor, 1896	298	sat. (14), eq. (6)	1
Lincoln, 1899	298	sat. (13)	2
Bonner, 1909	288	sat. (12)	3
Holmes, 1918	288	sat. (1)	4
Sidgwick and Spurrell, 1920	273-298	sat. (32)	5
Wehrmann, 1921	263-303	sat. (33)	6
Perrakis, 1925	294	sat. (11)	7
Barbaudy, 1926	298	sat. (9)	8
Barbaudy, 1926	298-338	sat. (26), eq. (13)	9
Wright, 1926	284-296	sat. (7)	10
Barbaudy, 1927	338-342	eq. (6)	11
Washburn et al., 1931	298	sat. (16), distr. (9)	12
Tarasenkov and Polozhentseva, 1932	293	eq. (6)	13
Sata and Kimura, 1935	303	sat. (7)	14
Varteressian and Fenske, 1936	298	sat. (10), eq. (14)	15
Bancroft and Hubard, 1942	298	sat. (4), eq. (12)	16
Staveley et al., 1951	274-342	sat. (45)	17
Chang and Moulton, 1953	298	sat. (12), eq. (11)	18
Morachevskii and Belousov, 1958	293-337	eq. (35)	19
Mertslin et al., 1961	299	sat. (20), distr. (12)	20
Ross and Patterson, 1979	293	eq. (9)	21
Brandani et al., 1985	303-328	eq. (34)	22
Letcher et al., 1990	298	sat. (13), eq. (5)	23

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system ethanol-benzene-water forms a miscibility gap of type 1. Data for the system were reported in 23 references over the temperature range 263–342 K. The system is evaluated on the basis of the original papers. Only one binary system, benzene-water, is partially miscible. The data for this system were compiled and critically evaluated in a previously published SDS volume, Ref. 24. These recommended values of mutual solubility at 293 K are x'_2 =0.9975, x''_2 =0.000 406; at 298 K- x'_2 =0.9970, x''_2 =0.0000 534. Only the paper of Barbaudy, Ref. 9 at 333.2 K reported mutual solubility of the binary system: x'_2 =0.9893 and x''_2 =0.0005. This is in agreement with the recommended values, Ref. 24. The results of Taylor,¹ Lincon,² Perrakis,⁷ Tarasenkov and Polozhentseva,¹³ and Letcher *et al.*²³ are not reported as compilation tables. The data of Taylor,¹ and Lincon² at 298.2 K published at 1896 and 1899, were reported as volume ratios. These data were recalculated to mole fractions, and they were taken into account for this evaluation; they are in agreement with other data sets at the same temperature. Data of Perrakis,⁷ at 294 K present a significantly larger miscibility gap than any other data at 293 K and therefore these data are rejected as are other alcohol-benzene-water systems presented in Ref. 7. Data of Tarasenkov and Polozhentseva¹³ were obtained for this evaluation from Tarasenkov and Paulsen.²⁵ These data present a much smaller miscibility gap (at maximum ethanol concentration of about 0.03 mole fraction of C₂H₅OH) which is inconsistent with all other experimental data and an unreasonable large solubility of water in benzene (solubility of benzene in water estimated on the basis of these data seems to rech value x''_2 =0.94). Therefore, this data set is rejected. All experimental data of Letcher

027

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

*et al.*²³ were presented in the paper in graphical form only and therefore were not compiled. The miscibility gap decreased with the increasing temperature. This behavior is observed in all studies at more than one temperature.^{5,6,9,17,19,22} Data reported by Brandani *et al.*²² show a slightly smaller miscibility gap than other data at 303.2 K (Wehrmann, Ref. 6, and Sata and Kimura, Ref. 14) and at 313.2 K (Morachevskii and Belousov, Ref. 19). The reported data are consistent within each data set and for each study. All data on the saturation curve are treated as tentative. Characteristic points on the binodal curve at selected temperatures, reported or estimated for plait points and for maximum ethanol concentration, are presented in Table 18. At the point of maximum ethanol concentration the errors estimated by the evaluator are 0.005 and 0.015 mole fraction for ethanol and benzene, respectively.

TABLE 18. Characteristic points on the binodal curve of the system ethanol-benzene-water

	Ma	x. C2H5OH concentrati	on	Plait		
<i>T</i> /K	<i>x</i> ₁	<i>x</i> ₂	Ref.	<i>x</i> ₁	<i>x</i> ₂	Ref
288.2	0.438	0.198	3	0.389	0.413	3
293.2	0.435	0.195	6	-	-	
298.2	0.418	0.211	16	0.391	0.318	9
298.2	0.416	0.181	15	0.393	0.322	15
298.2	0.419	0.244	18	0.398	0.325	18
298.2	0.40	0.20	23	0.38	0.37	23
299.2	0.425	0.262	20	0.395	0.343	20
303.2	0.385	0.154	22	0.365	0.353	22
303.2	0.412	0.226	6	-	-	
313.2	0.384	0.198	19	0.344	0.330	22
328.2	0.354	0.271	22	0.354	0.271	22
338.2	0.344	0.212	9	0.344	0.212	9

The temperature of 298.2 K, a standard temperature in which various alcohol-hydrocarbon-water systems are presented, was chosen to present the behavior of the system. Saturation and equilibrium data of Refs. 1, 2, 5, 8, 9, 15, 16, and 18, water-rich and hydrocarbon-rich branches were described together by the equation:

 $x_1 = 0.541 \ 21 + 0.062 \ 76 \ \ln(x_2) - 0.083 \ 61x_2 - 0.468 \ 57x_2^2$

The least-squares method was used and the standard error of estimate was 0.0106. The proposed equation is not appropriate for the binodal curve at >0.98 mole fraction of benzene. The compositions on the saturation curve calculated by the proposed equation are presented in Table 19 for selected concentrations of benzene in the mixture. The results of the calculations (solid line) are also presented graphically in Fig. 10 together with selected experimental data, Refs. 5, 8, 9, 15, 16, 18, reported at 298.2 K.

n comfated for plan			
centration the errors	0.1076	0.0010	0.3300
	0.2513	0.0100	0.3208
	0.2938	0.0200	0.3111
	0.3351	0.0400	0.3009
	0.3579	0.0600	0.2903
	0.3730	0.0800	0.2793
Ref.	0.3837	0.1000	0.2678
	0.3914	0.1200	0.2558
3	0.3969	0.1400	0.2435
	0.4008	0.1600	0.2307
9	0.4034	0.1800	0.2175
15	0.4047	0.2000	0.2039
18	0.4051	0.2200	0.1898
23	0.4046	0.2400	0.1753
20	0.4033	0.2600	0.1604
22	0.4012	0.2800	0.1451
	0.3984	0.3000	0.1294
22	0.3950	0.3200	0.1133
22	0.3909	0.3400	0.0967
9	0.3863	0.3600	0.0798
	0.3811	0.3800	0.0625
	0.3753	0.4000	0.0447
esented, was chosen	0.3690	0.4200	0.0265

0.4400

0.4600

0.4800

 x_2

0.000 409 Ref. 24

 x_1

0.0000

0.3622

0.3549

0.3471

TABLE 19. Calculated compositions along the saturation curve at 298.2 K

 x_1

0.3388

0.0080

0.0000

 x_2

0.5000

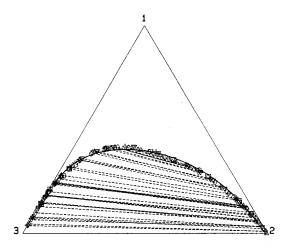
0.5200

0.5400

0.5600 0.5800

0.6000 0.6200 0.6400 0.6600 0.6800 0.7000 0.7200 0.7400 0.7400 0.7600 0.7800 0.8000

0.8200 0.8400 0.8600 0.8800 0.9000 0.9200 0.9400


0.9600

0.9800

0.9970 Ref. 24

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system ethanol–benzene–water were reported in 11 references over the temperature range 293–342 K as 20 data sets (mainly isotherms). The tie lines cover the full area of miscibility gap. Reported data are consistent within each data set. Only data of Tarasenkov and Polozhentseva¹³ were rejected; these tie lines were inconsistent with all others. Vapor–liquid–liquid equilibria or boiling points of two-phase mixtures are reported in the papers of Barbaudy¹¹ at 101 kPa and of Morachevskii and Belousov¹⁹ at temperatures 308.2, 318.2, 328.2, and 337.2 K. These data sets are consistent with other equilibrium data at lower temperatures. Changes of tie line direction are observed with temperature. With increasing temperature the water concentration in benzene-poor phase decreases for similar composition of benzene-rich phase; at temperatures over 333 K the concentration (in mole fraction) of ethanol in both phases in equilibrium reaches nearly the same values. This may be observed in data sets reported in Refs. 9, 11, 19, and 22. The equilibrium compositions of both phases of Ross and Patterson at 293.2 K²¹ (referring also to density and surface tension of phases in equilibrium, are identical with those of Morachevskii and Belousov.¹⁹ The reported experimental plait points are presented in Table 17. All equilibrium data are treated as tentative. Selected experimental points at 298.2 K, both saturation and equilibrium data, are presented in Fig. 10.

References:

- ¹S. F. Taylor, J. Phys. Chem. **1**, 461 (1896–1897).
- ²A. T. Lincoln, J. Phys. Chem. 4, 161 (1899-1900).
- ³W. D. Bonner, J. Phys. Chem. 14, 738 (1909–1910).
- ⁴J. Holmes, J. Chem. Soc. **113**, 263 (1918).
- ⁵N. V. Sidgwick and W. J. Spurrell, J. Chem. Soc. 117, 1397 (1920).
- ⁶F. Wehrmann, Z. Elektrochem. 27, 379 (1921).
- ⁷N. Perrakis, J. Chim. Phys. 22, 280 (1925).
- ⁸J. Barbaudy, Bull. Soc. Chim. Fr. **39**, 371 (1926).
- ⁹J. Barbaudy, Recl. Trav. Chim. Pays-Bas Belg. 45, 207 (1926).
- ¹⁰R. Wright, J. Chem. Soc. **129**, 1203 (1926).
- ¹¹J. Barbaudy, J. Chim. Phys. 24, 1 (1927).
- ¹²E. R. Washburn, V. Hnizda, and R. Vold, J. Am. Chem. Soc. 53, 3237 (1931).
- ¹³D. N. Tarasenkov and E. N. Polozhentseva, Zh. Obshch. Khim. 2, 84 (1932).
- ¹⁴N. Sata and O. Kimura, Bull. Chem. Soc. Jpn. 10, 409 (1935).
- ¹⁵K. A. Varteressian and M. R. Fenske, Ind. Eng. Chem. 28, 928 (1936).
- ¹⁶W. D. Bancroft and S. S. Hubard, J. Am. Chem. Soc. 64, 347 (1942).
- ¹⁷L. A. K. Staveley, R. G. S. Johns, and B. C. Moore, J. Chem. Soc. 2516 (1951).
- ¹⁸Y. C. Chang and R. W. Moulton, Ind. Eng. Chem. 45, 2350 (1953).
- ¹⁹A. G. Morachevskii and V. P. Belousov, Vestn. Leningr. Univ., Ser. 4: Fiz., Khim. 4, 117 (1958).
- ²⁰R. V. Mertslin, N. I. Nikurashina, and L. A. Kamaevskaya, Zh. Fiz. Khim. 35, 2628 (1961).
- ²¹S. Ross and R. E. Patterson, J. Chem. Eng. Data. 24, 111 (1979).
- ²²V. Brandani, A. Chianese, and M. Rossi, J. Chem. Eng. Data 30, 27 (1985).
- ²³T. M. Letcher, J. Sewry, and S. Radloff, S. Afr. J. Chem. 43, 56 (1990).
- 24 D. G. Shaw, ed., Solubility Data Series Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C5 to C7 (Pergamon, New York, 1989).
- ²⁵D. N. Tarasenkov and I. A. Paulsen, Acta Physicochim. URSS 11, 75 (1939).

Components:

Variables:

T/K = 273

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Benzene; C₆H₆; [71-43-2]
 (3) Water; H₂O; [7732-18-5]

Original Measurements:

W. D. Bonner, J. Phys. Chem. 14, 738-89 (1909-1910)

Compiled by: A. Skrzecz Experimental Data

0 3433

0.2920

0.1898

Compositions along the saturation curve x_1 w_1 W2 x_2 T/K $t/^{\circ}C$ (compiler) (compiler) (compiler) 15.0 288.2 0.7412 0.1453 0.8436 0.2165 0.3328 0.5166 0.2625 0.6910 0.3886 0.4126 0.3333 0.6000 plait point 0.4271 0.2906 0.4145 0.4783 0.4381 0.1978 0.4784 0.3662 0.4365 0.1409 0.5192 0.2841 0.4251 0.1019 0.5430 0.2207 0.4003 0.0759 0.5455 0.1755 0.3854 0.5475 0.0599 0.1443

Auxiliary Information

Method/Apparatus/Procedure:

In a tube 1 cm diameter and 12 cm long known amount, by weight, of hydrocarbon and water were placed into a temperature controled bath. The contents of the tube were stirred and alcohol was added gradually until a homogeneous solution was obtained. Observations were made visually through the telescope of a cathetometer. The samples were always weighed immediately before and after each experiment. Concentrations were reported as weight of water in 1 g of binary water-hydrocarbon mixture and the weight of alcohol necessary to make a homogenous solution. The mass of binary water-hydrocarbon mixture was about 1 g; the mass of alcohol—up to 5 g.

Source and Purity of Materials:

Kahlbaum; presumably dried and distilled.
 Kahlbaum; presumably dried and distilled.
 not specified.

0.5305

0.4929

0.3711

0.0944

0.0517

0.0126

Estimated Error:

0.0360

0.0181

0.0038

accuracy of weighing 0.0001 g.

<u>ب</u>

	Components:			Original Measurer	nents:				Compositions along	g the saturation curve			
β Martin (2) β Martin (2) <thβ (2)<="" martin="" th=""> β Martin (2)<</thβ>	(1) Ethanol (ethyl		5]	N. V. Sidgwick and		Soc. 117, 1397–404		T/K	<i>x</i> ₁	<i>x</i> ₂	w1	w ₂	
rm <th></th> <th></th> <th colspan="2"></th> <th>t/°C</th> <th></th> <th>(con</th> <th>npiler)</th> <th colspan="2">(compiler)</th>					t/°C		(con	npiler)	(compiler)				
Formulation curve 0.459 0.458 0.4	Variables:			Compiled by:			0.0	273.2				0.8210	
Interpretation of the interpre	T/K = 272 - 312			A. Skrzecz								0.4308	
<th conversion="" of="" of<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.2759</td></th>	<td></td> <td>0.2759</td>												0.2759
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			•									0.1848	
rK (complet)rk <b< td=""><td></td><td></td><td>Compositions along</td><td>g the saturation curve</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0832</td></b<>			Compositions along	g the saturation curve								0.0832	
TK (compiler) (compiler) (compiler) 0.430 0.437 0.363 0.447 0.0363 0.047 0.0363 0.0470 0.0364 0.037 0.0365 0.017 0.037 0.0365 0.017 0.0377 0.0365 0.017 0.0377 0.037 0			Υ.	r.,	W .	W -	1.0	274.2				0.8235	
C*C longinth longinth <thlonginth< th=""> longinth l</thlonginth<>		T/K		*2	<i>n</i> ₁	W 2							
30.7 30.38 0.106 0.809 0.974 0.875 2.0 272 0.2365 0.017 0.9279 0.08 26.1 299.55 0.1668 0.782 0.1131 0.4755 2.0 275.2 0.238 0.0173 0.4752 0.48 16.1 292.05 0.1764 0.1767 0.1325 0.4534 0.464 0.1448 0.5739 0.134 13.0 243.15 0.2212 0.1764 0.1157 0.838 0.464 0.1458 0.573 0.08 23.1 0.2012 0.7164 0.1152 0.838 0.229 0.7164 0.1553 0.83 23.3 30.14 0.2078 0.571 0.2148 0.7183 0.444 0.2776 0.477 0.434 129 28.65 0.3081 0.359 0.3272 0.483 0.414 0.277 0.436 0.0177 0.526 0.181 129 28.65 0.3036 0.377 0.526 0.136 0.0377	t/°C	(compiler)	(cor	mpiler)	(com	piler)							
bit bit< bit bit bit <td></td>													
base base <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2.0</td><td>275.2</td><td></td><td></td><td></td><td></td></th<>							2.0	275.2					
1.5 2.9 1.0 0.113							2.0	213.2					
nn 2.8.2 0.837 0.837 0.842 0.842 0.842 0.842 0.843 0.942 0.843 0.942 0.843 0.942 0.843 0.942 0.843 0.922 0.523 0.233 0.212 0.714 0.155 0.8318 0.272 0.2259 0.7161 0.153 0.832 2.0 275.15 0.238 0.3771 0.571 0.235 0.738 0.4448 0.225 0.4448 0.225 0.4448 0.927 0.4554 0.937 0.554 0.937 2.7 2.8645 0.3344 0.5179 0.272 0.6893 4.0 277.2 0.238 0.713 0.455 0.843 0.1411 0.444 0.927 0.526 0.666 0.3364 0.129 0.534 0.921 0.357 0.341 0.414 0.443 0.453 0.149 0.453 0.493 0.999 0.521 0.358 0.199 0.3524 0.232 0.414 0.414 0.443 0.4224 0.437 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
12 12 0.10 0.115 0.8318												0.2840	
1 1.0.2 0.11.2 0.010 0.11.7 0.0214 3.0 27.62 0.229 0.703 0.1533 0.82 2.3 301.45 0.2778 0.3781 0.2245 0.738 0.7281 0.448 0.2762 0.4791 0.4551 0.1461 0.5299 0.38 2.7 285.85 0.0717 0.5501 0.240 0.7183 0.2251 0.0451 0.1461 0.5299 0.38 12.9 286.05 0.3246 0.7395 0.7035 0.4251 0.0137 0.556 0.88 4.5 277.65 0.4328 0.4395 0.2922 0.6378 0.4391 0.4277 0.4311 0.428 0.199 0.5284 0.19 32.1 30.25 0.438 0.4395 0.2922 0.6354 0.4287 0.4392 0.446 9.2 282.35 0.438 0.2895 0.4297 0.4113 0.2782 0.429 9.2 282.3 0.438 0.2895 0.2923 0												0.1910	
L3 D1.01 D1.02 D1.04 D1.04 <thd1.04< th=""> <thd1.04< th=""> <thd1.04< th=""> <thd1.04<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>3.0</td><td>276.2</td><td></td><td></td><td></td><td>0.8276</td></thd1.04<<></thd1.04<></thd1.04<></thd1.04<>							3.0	276.2				0.8276	
base base <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>5.0</td><td>270.2</td><td></td><td></td><td></td><td>0.4542</td></th<>							5.0	270.2				0.4542	
17.6 290.7 0.371 0.501 0.2440 0.113 0.324 0.0877 0.554 0.19 12.9 286.05 0.3386 0.3386 0.2590 0.703 0.3361 0.0877 0.556 0.084 4.5 281.65 0.3380 0.3529 0.500 0.2872 0.4311 0.4254 0.4111 0.2772 0.2138 0.4111 0.524 0.0136 0.292 3.2 312.55 0.3547 0.4200 0.3071 0.6166 0.2275 0.3085 0.3777 0.3111 0.574 0.0396 0.0331 0.528 0.039 9.2 282.35 0.4138 0.3262 0.447 0.0892 0.554 0.19 9.2 282.35 0.4138 0.3262 0.4470 0.437 0.4247 0.0892 0.554 0.036 9.2 282.35 0.4338 0.2523 0.4430 0.714 0.437 0.438 0.227 0.7145 0.1527 0.439 0.4329 0.439												0.2885	
1129 26605 0.2370 0.2360 0.2360 0.0105 0.361 0.0371 0.266 0.008 8.5 281.65 0.3404 0.5179 0.2672 0.683 4.0 277.2 0.2338 0.7130 0.156 0.82 8.5 277.65 0.3529 0.5000 0.2805 0.6738 0.4411 0.2767 0.4311 0.645 32.1 305.25 0.347 0.4200 0.3071 0.6166 0.4427 0.0832 0.5258 0.080 9.2 282.35 0.4363 0.2865 0.4234 0.4714 0.360 0.0332 0.5258 0.080 9.2 282.35 0.4463 0.2865 0.4234 0.4714 0.4474 0.0892 0.551 0.437 9.2 28.35 0.4363 0.2865 0.4234 0.4714 0.4474 0.847 0.4522 0.677 1.6 274.75 0.4507 0.2252 0.4419 0.4532 0.1520 0.528 0.229 2.5 30.26 0.4388 0.4801 0.3526 0.380												0.1945	
b.5 28.6 0.344 0.5179 0.267 0.683 4.0 27.2 0.228 0.7130 0.136 0.82 4.5 277.6 0.3329 0.500 0.2805 0.678 0.4411 0.277 0.4311 0.46 39.2 312.35 0.342 0.4395 0.292 0.6352 0.4417 0.0892 0.554 0.199 32.1 0.805 0.347 0.400 0.3071 0.6166 0.4247 0.0892 0.554 0.199 9.2 282.35 0.4188 0.3152 0.361 0.665 5.0 278.2 0.2277 0.7145 0.1597 0.883 5.2 278.35 0.4363 0.2628 0.4470 0.441 0.2847 0.4252 0.464 25.5 30.05 0.3985 0.2238 0.4139 0.4413 0.4520 0.1320 0.523 0.223 20.3 0.345 0.4239 0.0297 0.7439 0.1346 0.355 1.5												0.0868	
a.5. 23.0 0.340 0.349 0.019 0.020 0.0395 0.431 0.4411 0.2787 0.4311 0.463 39.2 312.35 0.3428 0.4395 0.2922 0.6352 0.4356 0.1490 0.5264 0.299 52.1 30355 0.3365 0.3777 0.3411 0.571 0.3616 0.4247 0.0932 0.5258 0.093 9.2 282.35 0.4183 0.3162 0.3961 0.055 5.0 278.2 0.2267 0.7145 0.1527 0.837 9.2 282.35 0.4363 0.2865 0.4244 0.471 0.4374 0.2847 0.4520 0.1527 0.837 5.2 278.35 0.4363 0.2865 0.4243 0.471 0.4374 0.2847 0.4252 0.462 29.5 30.265 0.3985 0.523 0.4139 0.4439 0.4509 0.1520 0.528 0.359 0.359 0.359 0.359 0.359 0.359 0.359 0.359 0.359 0.359 0.359 0.359 0.359 0.359 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>4.0</td><td>277.2</td><td></td><td></td><td></td><td>0.8295</td></t<>							4.0	277.2				0.8295	
32 31.05 0.022 0.033 0.0435 0.0435 0.1490 0.5264 0.293 32.1 30.325 0.3547 0.4300 0.3071 0.6166 0.4247 0.0892 0.554 0.199 32.2 22.35 0.4188 0.3152 0.3961 0.6365 5.0 278.2 0.227 0.7145 0.1527 0.838 5.2 278.35 0.44363 0.2628 0.4470 0.4419 0.4374 0.2847 0.4252 0.466 20.3 20.3 0.2628 0.4139 0.4419 0.4570 0.527 0.528 0.2782 0.268 20.3 20.3 0.385 0.2523 0.4139 0.4433 0.4520 0.1520 0.522 0.469 20.3 20.3 0.385 0.4388 0.1860 0.4832 0.312 0.4339 0.1850 0.521 0.228 0.293 21.5 28.8.5 0.4388 0.1860 0.4832 0.312 0.338 0.0338 0.5250 0.028 21.5 28.8.5 0.4389 0.1464 0.5												0.4618	
32.1 395.25 0.3547 0.4200 0.0371 0.6166 0.4247 0.0892 0.554 0.19 19.6 292.75 0.3805 0.3777 0.3411 0.5741 0.3360 0.0322 0.5287 0.88 5.2 278.35 0.463 0.2855 0.4247 0.4277 0.7145 0.1527 0.88 5.2 278.35 0.4567 0.2628 0.4234 0.4714 0.4374 0.2227 0.7145 0.1527 0.88 5.2 278.25 0.4507 0.2628 0.4437 0.449 0.2477 0.2227 0.7145 0.5228 0.29 20.5 30.265 0.3985 0.2523 0.419 0.4439 0.4439 0.2479 0.209 0.521 0.202 15.2 28.835 0.4338 0.1860 0.4822 0.3512 0.238 0.3388 0.0338 0.521 0.209 17.75 280.90 0.4480 0.1595 0.5138 0.5120 0.288.2 0.1997 0.7439 0.1346 0.855 25.3 298.45 0.40407 <td></td> <td>0.2932</td>												0.2932	
13.6 20.12 0.381 0.031 0.031 0.0330 0.0332 0.528 0.08 9.2 282.35 0.4188 0.3152 0.3961 0.5515 5.0 278.2 0.2277 0.7145 0.1527 0.83 5.2 278.35 0.4363 0.2865 0.4234 0.471 0.4374 0.2847 0.4252 0.646 29.5 302.65 0.3985 0.2523 0.4139 0.4449 0.4374 0.2847 0.4252 0.466 29.5 302.65 0.3985 0.4237 0.4601 0.8823 0.3388 0.0338 0.5250 0.513 0.268 0.1502 0.5228 0.299 0.4480 0.1595 0.513 0.3102 15.0 288.2 0.197 0.7439 0.1346 0.853 3.00 276.15 0.4669 0.1353 0.5434 0.2767 0.4359 0.5418 0.494 0.355 0.306 0.5931 0.228 0.291 0.3366 0.3999 0.5162 0.10									0.4247	0.0892	0.5544	0.1975	
9.2 282.35 0.4188 0.3152 0.3961 0.5055 5.0 278.25 0.2272 0.7145 0.1282 0.835 5.2 278.35 0.4363 0.2865 0.4234 0.4714 0.3508 0.5031 0.2782 0.67 1.6 274.75 0.4507 0.2625 0.4139 0.4419 0.4419 0.4374 0.2847 0.4252 0.64 29.5 302.65 0.3985 0.2523 0.4139 0.4433 0.4433 0.4520 0.1520 0.5228 0.29 20.3 295.45 0.4297 0.2071 0.4601 0.382 0.4338 0.0308 0.5520 0.08 7.75 280.90 0.4480 0.1995 0.5138 0.3102 15.0 288.2 0.1997 0.7439 0.1346 0.859 3.00 276.15 0.4569 0.1464 0.5296 0.229 0.3358 0.0338 0.5520 0.036 2.12 294.35 0.4047 0.1322 0.4977 0.2767 0.3356 0.3081 0.355 0.308 0.5529 0.333 <td></td> <td>0.5258</td> <td>0.0881</td>											0.5258	0.0881	
5.2 278.35 0.4363 0.2865 0.4234 0.4714 0.3508 0.5031 0.2782 0.67 1.6 274.75 0.4507 0.2628 0.4470 0.419 0.4374 0.2847 0.262 0.422 0.422 0.422 0.422 0.422 0.422 0.422 0.422 0.422 0.202 0.522 0.202 0.522 0.202 0.522 0.202 0.522 0.202 0.522 0.202 0.522 0.202 0.522 0.202 0.522 0.202 0.522 0.202 0.522 0.202 0.522 0.202 0.522 0.202 0.523 0.202 0.523 0.202 0.523 0.202 0.523 0.202 0.531 0.202 0.202 0.512 0.228 0.909 0.552 0.203 0.335 0.634 0.255 0.253 0.2364 0.3354 0.4339 0.1858 0.4443 0.555 0.252 0.237 0.336 0.0394 0.552 0.213 0.2767 0.4339 0.1858 0.4343 0.352 0.228 0.4158 0.1858 0.4434							5.0	278.2	0.2227	0.7145	0.1527	0.8305	
1.6 274,75 0.4507 0.2628 0.4470 0.4419 0.4374 0.2847 0.4252 0.46 29.5 302,65 0.3985 0.223 0.419 0.443 0.4520 0.1520 0.5228 0.29 20.3 293,45 0.4227 0.2071 0.4601 0.3823 0.329 0.099 0.5521 0.20 15.2 288,35 0.4338 0.1806 0.4832 0.312 0.3358 0.0338 0.5208 0.098 7.75 280,90 0.4480 0.1595 0.5138 0.3102 15.0 288.2 0.1997 0.7439 0.1346 0.858 3.00 276.15 0.4505 0.1444 0.5296 0.290 0.3235 0.5418 0.2498 0.705 25.3 298.45 0.4047 0.1322 0.4997 0.2767 0.4339 0.188 0.4138 0.0103 0.529 0.2131 0.134 0.5295 0.231 0.134 0.5295 0.2306 0.3336 0.0039 0.5162 0.101 13.5 286.65 0.4169 0.134									0.3508	0.5031	0.2782	0.6765	
29.5 302.65 0.3985 0.2523 0.4139 0.443 0.4520 0.1520 0.5228 0.29 20.3 293.45 0.4227 0.2071 0.4610 0.3823 0.4239 0.0090 0.5521 0.20 15.2 288.35 0.4338 0.1860 0.4832 0.3512 0.3358 0.0338 0.5250 0.00 7.75 280.90 0.4440 0.1595 0.5138 0.3102 15.0 288.2 0.1997 0.7439 0.1346 0.853 3.00 276.15 0.4500 0.1464 0.526 0.2890 0.3354 0.3944 0.3550 0.3644 0.755 25.3 298.45 0.4047 0.1322 0.4997 0.2767 0.3944 0.355 0.4633 0.4834 0.355 21.2 294.35 0.4135 0.1134 0.5229 0.2431 0.336 0.1083 0.5293 0.231 0.336 0.1633 0.523 0.291 25.0 298.2 0.1139 0.771 0.1151 0.87 13.5 28.65 0.4169 0.0587									0.4374	0.2847	0.4252	0.4692	
20.3 293.45 0.4227 0.2071 0.4601 0.3823 0.4239 0.0909 0.5521 0.20 15.2 288.35 0.4338 0.1860 0.4822 0.3512 0.3358 0.0338 0.0399 0.5521 0.20 7.75 280.90 0.4480 0.1595 0.5138 0.3102 15.0 288.2 0.197 0.7439 0.1346 0.85 3.00 276.15 0.4569 0.4609 0.1353 0.5434 0.2704 0.3235 0.5418 0.2498 0.70 -1.25 271.90 0.4609 0.1352 0.5120 0.2767 0.3344 0.3550 0.3604 0.552 25.3 298.45 0.4047 0.1322 0.497 0.2767 0.4339 0.188 0.1083 0.5293 0.233 17.3 290.45 0.4169 0.1058 0.5325 0.2291 25.0 298.2 0.1739 0.7771 0.1151 0.87 13.5 286.65 0.4169 0.1058 0.5325 0.2291 25.0 298.2 0.1739 0.7771 0.1151<									0.4520	0.1520	0.5228	0.2981	
13.2 288.3 0.4430 0.4430 0.1640 0.4632 0.512 150 288.2 0.1997 0.7439 0.1346 0.855 3.00 276.15 0.4550 0.1464 0.5296 0.2890 0.3225 0.5418 0.2498 0.70 -1.25 271.90 0.4609 0.1353 0.5434 0.2704 0.3944 0.3550 0.3604 0.555 25.3 298.45 0.4047 0.1322 0.4997 0.2767 0.4339 0.1858 0.4833 0.5293 0.2323 17.3 290.45 0.4135 0.1134 0.5229 0.2288 0.4158 0.1083 0.5293 0.23 13.5 286.65 0.4109 0.1058 0.5325 0.2291 25.0 298.2 0.1739 0.7771 0.1151 0.87 9.9 283.05 0.4200 0.0992 0.5411 0.2167 0.3366 0.3972 0.3231 0.59 1.95 275.10 0.4263 0.0857 0.5591 0.1906 0.4109 0.2291 0.4370 0.411 1.54 <td>20.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.4239</td> <td>0.0909</td> <td>0.5521</td> <td>0.2008</td>	20.3								0.4239	0.0909	0.5521	0.2008	
1.73280.500.44800.1930.51330.51320.51020.32350.54180.24980.70-1.25271.900.46090.13530.54340.27040.39440.35500.36040.5525.3298.450.40470.13220.49970.27670.43390.18580.48340.3521.2294.350.40940.12200.51200.25880.41580.10330.52930.2317.3290.450.41350.11340.52290.24310.41580.10360.57010.23000.7313.5286.650.41690.10580.52950.229125.0298.20.17390.77710.11510.879.9283.050.42000.09920.54110.21670.30360.57010.23000.736.5279.650.42270.09340.54880.20550.36860.39720.32510.591.95275.100.42630.08570.55910.10630.40090.22910.43700.4115.4288.550.33640.03620.51870.10050.33050.44880.50390.1271.1280.250.33540.03500.52330.09250.1940.0300.38610.012.3275.450.33670.03100.52890.08270.8870.9870.987-0.40272.750.33670.03100.52890.08270.987	15.2	288.35	0.4338	0.1860	0.4832	0.3512			0.3358	0.0338	0.5250	0.0895	
-1.05271.900.46090.13330.54340.2060.18580.39440.35500.36040.5525.3298.450.40470.13320.49970.27670.43390.18580.48340.3521.2294.350.40940.12200.51200.25880.41580.03990.51620.1013.5286.650.41690.10580.53250.229125.0298.20.17390.7710.11510.879.9283.050.42070.09340.54880.20550.36660.39720.32510.591.95275.100.42630.08570.55910.1960.40520.13100.50110.2771.95275.100.33360.04020.51950.10530.40520.13100.50110.2771.15286.350.33340.03820.51870.10050.40520.13100.50110.2771.15285.300.33430.03220.52330.09250.19940.00300.38610.012.3275.450.33630.03220.52720.08560.19940.00300.38610.012.3275.450.33670.03100.52890.08270.08570.19940.0300.38610.012.40.2750.33670.03100.52890.08270.08570.19940.00300.38610.01	7.75	280.90	0.4480	0.1595	0.5138	0.3102	15.0	288.2				0.8505	
1.125 211.00 0.4007 0.1323 0.4947 0.2767 0.4339 0.1858 0.4834 0.35 25.3 298.45 0.4094 0.1220 0.5120 0.2588 0.4158 0.1083 0.5293 0.23 17.3 290.45 0.4169 0.1058 0.5325 0.2291 25.0 298.2 0.1739 0.7771 0.1151 0.87 9.9 283.05 0.4200 0.0992 0.5411 0.2167 0.3036 0.5701 0.2300 0.73 6.5 279.65 0.4227 0.0934 0.5488 0.2055 0.3066 0.3972 0.3251 0.59 1.95 275.10 0.4263 0.0877 0.591 0.1065 0.4009 0.2291 0.4370 0.41 15.4 285.55 0.3364 0.0382 0.5159 0.1053 0.4052 0.1310 0.5011 0.27 12.15 285.30 0.3343 0.0382 0.5159 0.1053 0.3055 0.0488 0.5039 0.12 12.15 285.30 0.3354 0.0350 0.5233 </td <td>3.00</td> <td>276.15</td> <td>0.4550</td> <td>0.1464</td> <td>0.5296</td> <td>0.2890</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.7095</td>	3.00	276.15	0.4550	0.1464	0.5296	0.2890						0.7095	
21.3 294.35 0.404 0.1920 0.5120 0.2588 0.4158 0.1083 0.5293 0.23 17.3 290.45 0.4135 0.1134 0.5229 0.2431 0.3336 0.0399 0.5162 0.10 13.5 286.65 0.4169 0.1058 0.5325 0.2291 25.0 298.2 0.1739 0.7771 0.1151 0.87 9.9 283.05 0.4200 0.0992 0.5411 0.2167 0.3036 0.5701 0.2300 0.73 6.5 279.65 0.4227 0.0934 0.5488 0.2055 0.3686 0.3972 0.3251 0.59 1.95 275.10 0.4263 0.0857 0.5591 0.1906 0.4109 0.2291 0.4305 0.4052 0.1310 0.5011 0.27 12.15 285.30 0.336 0.0402 0.5187 0.1005 0.4052 0.1300 0.5019 0.11 0.27 12.15 285.30 0.3363 0.0322 0.5272 0.0856 0.1994 0.0030 0.3861 0.01 2.3	-1.25	271.90	0.4609	0.1353	0.5434	0.2704						0.5500	
17.2 290.45 0.407 0.1124 0.5162 0.10 17.3 290.45 0.4135 0.1134 0.5229 0.2431 0.3336 0.0399 0.5162 0.10 13.5 286.65 0.4169 0.1058 0.5325 0.2291 25.0 298.2 0.1739 0.7771 0.1151 0.87 9.9 283.05 0.4200 0.0992 0.5411 0.2167 0.3036 0.5701 0.2300 0.73 6.5 279.65 0.4227 0.0934 0.5488 0.2055 0.3686 0.3972 0.3251 0.59 1.95 275.10 0.4263 0.0857 0.5591 0.1063 0.4109 0.2291 0.4370 0.41 15.4 288.55 0.3336 0.0402 0.5159 0.1053 0.4052 0.1310 0.5011 0.27 12.15 285.30 0.3343 0.0322 0.5172 0.0856 0.1994 0.0030 0.3861 0.01 2.3 275.45 0.3363 0.0322 0.5272 0.0856 0.1994 0.0030 0.3861	25.3	298.45	0.4047	0.1322	0.4997	0.2767						0.3510	
11.5 26.65 0.4169 0.1154 0.2227 0.2291 25.0 298.2 0.1739 0.7771 0.1151 0.87 13.5 286.65 0.4169 0.1058 0.5325 0.2291 25.0 298.2 0.1739 0.7771 0.1151 0.87 9.9 283.05 0.4200 0.0992 0.5411 0.2167 0.3036 0.5701 0.2300 0.73 6.5 279.65 0.4227 0.0934 0.5488 0.2055 0.3686 0.3972 0.3251 0.59 1.95 275.10 0.4263 0.0857 0.5591 0.1063 0.4109 0.2291 0.4370 0.41 15.4 288.55 0.3366 0.0402 0.5189 0.1053 0.4052 0.1310 0.5011 0.27 12.15 285.30 0.3343 0.0322 0.5233 0.0925 0.1994 0.0030 0.3861 0.01 2.3 275.45 0.3363 0.0322 0.5272 0.0856 0.1994 0.0030 0.3861 0.01 -0.40 272.75 0.3367	21.2	294.35	0.4094	0.1220	0.5120	0.2588						0.2338	
19.5 283.05 0.4207 0.1059 0.5125 0.2167 0.3036 0.5701 0.2300 0.73 6.5 279.65 0.4227 0.0934 0.5418 0.2055 0.3686 0.3972 0.3251 0.59 1.95 275.10 0.4263 0.0857 0.591 0.196 0.4109 0.2291 0.4370 0.41 15.4 288.55 0.3336 0.0402 0.5159 0.1053 0.4052 0.1310 0.5011 0.27 12.15 285.30 0.3343 0.0382 0.5187 0.1005 0.3305 0.0488 0.5039 0.12 7.1 280.25 0.3363 0.0322 0.5233 0.0925 0.1994 0.0030 0.3861 0.01 2.3 275.45 0.3367 0.3010 0.5289 0.0827	17.3	290.45	0.4135	0.1134		0.2431						0.1047	
1.9 25.0 0.4207 0.0934 0.5488 0.2055 0.3686 0.3972 0.3251 0.59 1.95 275.10 0.4263 0.0857 0.591 0.196 0.4109 0.2291 0.4370 0.41 15.4 285.55 0.3336 0.0402 0.5159 0.1053 0.4052 0.1310 0.5011 0.27 12.15 285.30 0.3354 0.0350 0.5233 0.0925 0.1994 0.0030 0.3861 0.01 2.3 275.45 0.3367 0.0310 0.5289 0.0827 0.0827 0.0827 0.1994 0.0030 0.3861 0.01	13.5	286.65	0.4169	0.1058	0.5325	0.2291	25.0	298.2				0.8722	
1.95 275.10 0.4263 0.0857 0.5591 0.1906 0.4109 0.2291 0.4370 0.41 1.95 275.10 0.4263 0.0857 0.5591 0.1906 0.4052 0.1310 0.5011 0.27 15.4 285.5 0.3364 0.0402 0.5159 0.1053 0.4052 0.1310 0.5011 0.27 12.15 285.30 0.3354 0.0382 0.5187 0.1005 0.3305 0.0488 0.5039 0.12 7.1 280.25 0.3363 0.0322 0.5233 0.0925 0.1994 0.0030 0.3861 0.01 2.3 275.45 0.3367 0.0310 0.5289 0.0827												0.7325	
153 27.16 0.405 0.0057 0.1057 0.1067 0.4052 0.1310 0.5011 0.27 154 288.55 0.3366 0.0402 0.5159 0.1053 0.4052 0.1310 0.5011 0.27 12.15 285.30 0.3343 0.0382 0.5187 0.1005 0.3305 0.0488 0.5039 0.12 7.1 280.25 0.3364 0.0350 0.5233 0.0925 0.1994 0.0030 0.3861 0.01 2.3 275.45 0.3367 0.0310 0.5289 0.0827												0.5941	
12.15 285.30 0.3343 0.0382 0.5187 0.1005 0.3305 0.0488 0.5039 0.12 7.1 280.25 0.3354 0.0350 0.5233 0.0925 0.1994 0.0030 0.3861 0.01 2.3 275.45 0.3363 0.0322 0.5272 0.0856 -0.40 272.75 0.3367 0.0310 0.5289 0.0827												0.4132	
12.15 285.56 0.5545 0.0322 0.167 0.1005 7.1 280.25 0.3354 0.0350 0.5233 0.0925 0.1994 0.0030 0.3861 0.01 2.3 275.45 0.3363 0.0322 0.5272 0.0856 -0.40 272.75 0.3367 0.0310 0.5289 0.0827												0.2746	
1.1 280.23 0.554 0.0350 0.223 0.0325 2.3 275.45 0.3363 0.0322 0.5272 0.0856 -0.40 272.75 0.3367 0.0310 0.5289 0.0827												0.1261	
-0.40 272.75 0.3367 0.0310 0.5289 0.0827									0.1994	0.0030	0.3861	0.0100	
25.0 298.15 0.1994 0.0030 0.3861 0.0100													
	25.0	298.15	0.1994	0.0030	0.3861	0.0100							

1030

SKRZECZ, SHAW, AND MACZYNSKI

Method/Apparents/Procedur:

The apparatus consisted of Beckmann tube with air-jacket, thermometer and stirrer. Known amounts of aqueous alcohol mixture of known composition and benzene were placed in a tube. Aqueous alcohol mixtures were prepared gravimetrically. Components were added from an accurate pipette, which had been carefully graduated by weight. The reported temperatures (the mean of two or three observations) were those at which the liquid separated into two layers. The results, for the round temperatures, were interpolated by the authors from the curves. Concentrations were reported as alcohol mass concentration in alcohol–water mixture used in the experiment and benzene mass concentration in the solution which became turbid. The temperatures at which benzene crystallized from the investigated mixtures of know composition were reported also in the paper.

Source and Purity of Materials:

 source not specified, ordinary "absolute" alcohol; distilled from lime, water concentration was determined from the density using "last edition of Beilstein's Handbuch der Organische Chemie," 99.5% alcohol was obtained by treatment with anhydrous copper sulphate and redistillation.
 source not specified; freed of thiophene by sulphuric acid,

(2) source not specified, need of unophene by suppliance and frozen out seven times, distilled over sodium.(3) not specified.

Estimated Error: Not reported.

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Benzene; C₆H₆; [71-43-2]
 (3) Water; H₂O; [7732-18-5]

Original Meassurement:

F. Wehrmann, Z. Elektrochem. 27, 379-93 (1921).

(3) Water; H ₂ O; [7732-18-5]					
Complied by:					
A. Skrzecz					
	Complied by: A. Skrzecz				

Experimental Data Compositions along the saturation curve

	T/K	<i>x</i> ₁	<i>x</i> ₂	<i>w</i> ₁	w2
t/°C	(compiler)	(com	piler)	(compiler)	
-10	263.2	0.1846	0.0014	0.3653	0.0048
	263.2	0.3298	0.0142	0.5403	0.0394
	263.2	0.4115	0.0433	0.5895	0.1051
	263.2	0.4885	0.1010	0.5955	0.2088
	263.2	0.4579	0.3745	0.3953	0.5481
0	273.2	0.0347	0.0007	0.0839	0.0029
	273.2	0.1022	0.0009	0.2249	0.0035
	273.2	0.1781	0.0026	0.3541	0.0087
	273.2	0.2528	0.0081	0.4550	0.0247
	273.2	0.3176	0.0164	0.5242	0.0459
	273.2	0.3994	0.0538	0.5669	0.1295
	273.2	0.4702	0.1287	0.5562	0.2582
	273.2	0.3772	0.4810	0.3022	0.6534
	273.2	0.1035	0.8871	0.0642	0.9335
10	283.2	0.1785	0.0040	0.3534	0.0135
	283.2	0.3116	0.0191	0.5145	0.0534
	283.2	0.3948	0.0627	0.5536	0.1490
	283.2	0.4554	0.1573	0.5213	0.3053
	283.2	0.3416	0.5314	0.2643	0.6973
20	293.2	0.0346	0.0008	0.0837	0.0032
	293.2	0.1020	0.0024	0.2235	0.0089
	293.2	0.2501	0.0117	0.4477	0.0356
	293.2	0.3088	0.0262	0.5035	0.0725
	293.2	0.3890	0.0803	0.5310	0.1858
	293.2	0.4353	0.1845	0.4853	0.3489
	293.2	0.3150	0.5567	0.2406	0.7210
	293.2	0.0220	0.9760	0.0131	0.9864
30	303.2	0.0703	0.0021	0.1609	0.0083
	303.2	0.1772	0.0075	0.3483	0.0251
	303.2	0.3074	0.0316	0.4962	0.0866
	303.2	0.3869	0.0842	0.5252	0.1939
	303.2	0.4123	0.2257	0.4402	0.4086
	303.2	0.2890	0.6027	0.2135	0.7552

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used. Binary alcohol-water mixtures of known concentration and volume were put into Erlenmayer flasks, immersed in a constant temperature bath and then titrated with benzene until constant cloudiness was observed. Concentrations of alcohol-water mixtures were determined by density measurements. Results were reported in volume percentage.

Source and Purity of Materials:

 source not specified; chemically pure grade; used as received; d(15 °C)=0.8835.
 source not specified.
 not specified.

Estimated Error:

concentration $\pm 0.3\%$ relative error.

1031

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

Components: (1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2)Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5]

Original Measurements:

J. Barbaudy, Bull. Soc. Chim. Fr. 39, 371-82 (1926).

Variables: T/K=298			Compiled by: A. Skrzecz							
Experimental Data Compositions along the saturation curve										
	T/K	<i>x</i> ₁	<i>x</i> ₂	w_1	w_2					
t/°C	(compiler)	(com	piler)	(compiler)						
25.00	298.15	0.4080	0.1360	0.4994	0.2823					
		0.3112	0.0332	0.4988	0.0903					
		0.2774	0.0241	0.4690	0.0691					
		0.2100	0.0046	0.4000	0.015					
		0.3543	0.4403	0.3000	0.6320					
		0.1442	0.0014	0.3000	0.005					
		0.2734	0.6206	0.2000	0.7693					
		0.1551	0.8063	0.1009	0.8893					
		0.0938	0.8861	0.0585	0.9366					

Method/Apparatus/Procedure:

The mixtures were prepared by weight (corrections on weighing in air were taken into account). Densities and refractive indexes of ternary liquid mixtures were measured. No further details were reported in the paper.

Source and Purity of Materials: (1) source not specified; distilled over Na; d(25 °C,4 °C) = 0.785 06, n(25 °C,D) = 1.3592.

(2) Poluenc, without thiophene; b.p. = 80.3 °C, d(25 °C,4 °C) = 0.873 63, n(25 °C,D) = 1.497 95.
(3) not specified.

Estimated Error: Not reported.

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Benzene; C₆H₆; [71-43-2]
 (3) Water; H₂O; [7732-18-5]

Original Measurements: J. Barbaudy, Recl. Trav. Chim. Pays-Bas Belg. 45, 207–13 (1926).

(3) Water; H_2O ; [7732-18-5]	
Variables:	Compiled by:
T/K = 298 - 338	A. Skrzecz

Experimental Data Compositions along the saturation curve

	T/K	<i>x</i> ₁	<i>x</i> ₂		
t/°C	(compiler)	(com	piler)	w_1	w2
25.00	298.15	0.0000	0.9957	0.0000	0.9990
		0.0938	0.8857	0.0585	0.9365
		0.1553	0.8074	0.1009	0.8896
		0.2734	0.6206	0.2000	0.7697
		0.3543	0.4403	0.3000	0.6320
		0.4017	0.2825	0.4000	0.4770
		0.4080	0.1360	0.4994	0.2823
		0.3112	0.0332	0.4988	0.0903
		0.2742	0.0204	0.4690	0.0591
		0.2100	0.0046	0.4000	0.0150
		0.1442	0.0014	0.3000	0.0050
60.0	333.15	0.0000	0.0500	0.0000	0.1858
		0.1919	0.0126	0.3660	0.0407
		0.2287	0.0228	0.4083	0.0690
		0.2638	0.0381	0.4386	0.1074
		0.2977	0.0658	0.4523	0.1695
		0.3227	0.0856	0.4615	0.2076
		0.3413	0.1376	0.4385	0.2997
		0.3576	0.2187	0.4000	0.4147
		0.3566	0.2226	0.3968	0.4200
		0.3559	0.2254	0.3946	0.4238
		0.3531	0.3138	0.3477	0.5240
		0.3340	0.3944	0.3012	0.6030
		0.3180	0.4562	0.2695	0.6556
		0.2439	0.6329	0.1787	0.7861
		0.0000	0.9893	0.0000	0.9975

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K(compiler)	hydrocarbon- rich phase (compiler)		water-rich phase (compiler)		hydrocarbon- rich phase		water-rich phase	
25.00	298.15	0.0226	0.9727	0.0766	0.0000	0.0135	0.9854	0.1750	0.0000
		0.0523	0.9376	0.1484	0.0016	0.0318	0.9658	0.3070	0.0055
		0.0856	0.9004	0.1819	0.0027	0.0529	0.9437	0.3600	0.0090
		0.3337	0.2946	0.4040	0.2698	0.3410	0.5105	0.4085	0.4625
		0.3914	0.3176	0.3914	0.3176	0.3750	0.5160	0.3750	0.5160
65.0	338.15	0.2300	0.6727	0.2171	0.0190	0.1633	0.8097	0.3962	0.0587
		0.2314	0.6507	0.2224	0.0201	0.1676	0.7990	0.4023	0.0618
		0.3082	0.4864	0.2977	0.0667	0.2540	0.6798	0.4515	0.1715
		0.3437	0.3007	0.3384	0.1434	0.3463	0.5136	0.4315	0.3101
		0.3430	0.2970	0.3376	0.1488	0.3474	0.5100	0.4269	0.3191
		0.3490	0.2592	0.3397	0.1718	0.3706	0.4667	0.4132	0.3544
		0.3437	0.2547	0.3424	0.1735	0.3686	0.4630	0.4146	0.3562
		0.3438	0.2121	0.3438	0.2121	0.3920	0.4100	0.3920	0.4100

^aPlait point.

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used to find points on saturation curve. Samples of the binary benzene–ethanol mixture (30 mL at 25 °C and 10 mL in tubes with double walls and air jacket to eliminate heat transfer) were immersed in a thermostat, titrated with aqueous ethanol and refractive indexes were measured until the second phase appeared. The analytical method was used to determine coexisting phases. About 100–150 mL of mixture was placed in a 200 mL flask in a thermostat, agitated for more than 1 h, left for 8–48 h for separation and then density and refractive index of each phase were measured.

Source and Purity of Materials:

source not specified.
 source not specified.
 source not specified.

Estimated Error: Not reported.

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Benzene; C₆H₆; [71-43-2]
 (3) Water; H₂O; [7732-18-5]

Original Measurements:

R. Wright, J. Chem. Soc. 129, 1203-6 (1926).

Variables: T/K=284-296	Compiled by: A. Skrzecz	

Experimental Data

	T/K	<i>x</i> ₁	x_2			
t/°C	(compiler)	(compiler)		w_1	w ₂	
11.2	284.35	0.2767	0.0156	0.477 15	0.0457	
13.2	286.35	0.2765	0.0164	0.4761	0.0478	
15.5	288.65	0.2762	0.0173	0.474 75	0.0505	
18.0	291.15	0.2760	0.0182	0.4735	0.0530	
20.0	293.15	0.2758	0.0189	0.4726	0.0548	
20.2	293.35	0.2757	0.0193	0.471 95	0.0561	
22.6	295.75	0.2753	0.0206	0.470 15	0.0597	

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used. Solubility was determined by adding a weighed quantity of benzene from a burette to a definite weight of alcohol–water mixture (about 12 g of 50% by weight of the aqueous alcohol) in a stoppered tube and raising the temperature until turbidity disappeared.

Source and Purity of Materials:

(2) not specified.(3) not specified.

Estimated Error: temp. ±0.1 °C.

(1) not specified.

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

Components: (1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Benzene; C₆H₆ [71-43-2]
(3) Water; H₂O; [7732-18-5]

Original Meassurement:

J. Barbaudy, J. Chim. Phys. 24, 1-23 (1927).

Variab T/K=3	les: 38-342				Compile A. Skrze				
			Cor	Experiments of	ental Data coexisting ph	nases			
		x'_1	x'_2	x_1''	x_2''	w_1'	w2'	w_1''	w_2''
t/°C	T/K (compiler)	hydrocarbon-rich phase (compiler)		water-rich phase (compiler)		hydrocarbon-rich phase		water-rich phase	
69.0	342.15	0.0007	0.9865	0.0108	0.0007	0.0004	0.9966	0.027	0.003
68.0	341.15	0.0067	0.9805	0.0278	0.0010	0.0040	0.9930	0.068	0.004
67.0	340.15	0.0199	0.9631	0.0481	0.0012	0.0120	0.9840	0.114	0.005
66.0	339.15	0.0458	0.9333	0.0775	0.0016	0.0280	0.9670	0.176	0.006
65.5	338.65	0.0832	0.8881	0.1000	0.0019	0.0520	0.9410	0.220	0.007
65.0	338.15	0.1407	0.8198	0.1609	0.0059	0.0910	0.8990	0.324	0.020

Auxiliary Information

Method/Apparatus/Procedure: Compositions of coexisting phases at boiling temperatures were determined as intersections of boiling isotherms in homogeneous and heterogeneous regions. Boiling temperatures were measured for over 100 ternary mixtures.

Source and Purity of Materials:	
(1) source not specified.	
(2) source not specified.	
(3) not specified.	
Estimated Error:	

Not reported.

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5]

Original Measurements: E. R. Washburn, V. Hnizda, and R. Vold, J. Am. Chem. Soc. 53, 3237-44 (1931).

Variables:		
T/K = 298		

Experimental Data Compositions along the saturation curve

Compiled by:

A. Skrzecz

	<i>T</i> /K (compiler)	<i>x</i> ₁	<i>x</i> ₂			
t/°C		(com	piler)	w_1	w_2	
24.5	297.7	0.1287	0.8432	0.082	0.911	
		0.1537	0.8070	0.100	0.890	
		0.1925	0.7541	0.129	0.857	
		0.2506	0.6564	0.179	0.795	
		0.3235	0.5294	0.253	0.702	
		0.3493	0.4571	0.291	0.646	
		0.3804	0.3728	0.343	0.570	
		0.4158	0.2723	0.416	0.462	
		0.4161	0.2180	0.448	0.398	
		0.4119	0.1345	0.504	0.279	
		0.3991	0.1045	0.518	0.230	
		0.3334	0.0438	0.512	0.114	
		0.2692	0.0174	0.466	0.051	
		0.1934	0.0064	0.374	0.021	
		0.1441	0.0024	0.299	0.0083	
		0.1203	0.0016	0.258	0.0057	

Distribution of ethanol in ethanol-benzene-water system						
t/°C	T/K (compiler)	w'_1 hydrocarbon- rich phase	w ₁ " water- rich phase			
25.0	298.2	0.007	0.025			
		0.012	0.106			
		0.016	0.164			
		0.024	0.243			
		0.039	0.318			
		0.054	0.370			
		0.070	0.405			
		0.084	0.443			
		0.098	0.573			

SKRZECZ, SHAW, AND MACZYNSKI

Method/Apparatus/Procedure:

The titration method was used. Binary alcohol-benzene mixtures of known composition, prepared from calibrated pipettes in 125 mL glass-stoppered bottles, were mixed, and titrated with water to a permanent cloudiness at room temperature (24.5 °C). The amount of water was 0.66-5.77 mL (added from a 10 mL burette graduated to 0.01 mL) and 17.1-112.7 mL (added from a calibrated 50 mL burette). The refractive indexes of mixtures were measured at 25.0 °C by Abbe refractometer and used to construct the plot of refractive index against composition which was further used to find compositions of equilibrium phases. Phase equilibrium data were reported in incomplete form. The mixtures of 25.0 mL of benzene and 25.0 mL of water were shaken and then suspended in the constant temperature bath to reach equilibrium. When the phases were transparent, refractive indexes of each layer were measured and compositions of the phases were calculated.

Source and Purity of Materials:

(1) standard commercial grade of absolute alcohol; dried with CaO and Ca until density measurements showed it to be better than 99.3%.

(2) Mallinckrodt, reagent quality; dried with Na, distilled. (3) redistilled from $KMnO_4$.

Estimated Error:

temp. ± 0.1 °C.

Components:

Variables:

T/K = 303

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Benzene; C₆H₆; [71-43-2]
 (3) Water; H₂O; [7732-18-5]

Original Measurements: N. Sata and O. Kimura, Bull. Chem. Soc. Jpn. 10, 409–20 (1935).

. .

Compiled by:

A. Skrzecz

Experimental Data Compositions along the saturation curve						
	T/K	<i>x</i> ₁	<i>x</i> ₂	<i>w</i> ₁	w2	
r/°C (compiler)	(compiler)		(compiler)			
30	303.2	0.219	0.718	0.150	0.833	
		0.350	0.459	0.291	0.647	
		0.409	0.269	0.413	0.460	
		0.403	0.132	0.498	0.277	
		0.333	0.044	0.511	0.114	
		0.232	0.010	0.426	0.031	
		0.133	0.002	0.280	0.006	

Auxiliary Information

Method/Apparents/Procedure:

Samples of known composition (by volume) were prepared in glass tubes (diameter—15 mm, length—200 mm) and sealed. These were placed in a thermostat and turbidity was observed after some (not reported) time. Eight series of measurements were made. The volume of alcohol was 2.00, 5.00, or 10.00 cm³. The volume of second component was constant in the series, while the volume of the third component differed 0.05–0.02 cm³ from point to point. The results were reported in the paper as the volumes of each component added into the tube.

(3) doubly distilled.

(2) Merck, pure crystallized; distilled over Na.

Estimated Error:

 $d(25 \ ^{\circ}C) = 0.7865.$

Source and Purity of Materials:

sol. ± 0.01 cm³ (authors), $\pm (0.0001 - 0.005)$ mass fraction (compiler).

(1) source not specified, 95% commercial reagent; purified with

KMnO₄, refluxed 1 day with CaO, distilled; purity 99.53%,

Components: (1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5]

Original Measurements:

K. A. Varteressian and M. R. Fenske, Ind. Eng. Chem. 28, 928–33 (1936).

0.2390

0.7170

Variables: Compiled by: T/K = 298A. Skrzecz **Experimental Data** Compositions along the saturation curve x_1 x_2 T/K $t/^{\circ}C$ (compiler) (compiler) w_1 w_2 25.0 298.15 0.0416 0.0002 0.0998 0.0010 0.1150 0.0010 0.2488 0.0036 0.1873 0.0033 0.3677 0.0111 0.2761 0.0193 0.4724 0.0561 0.3280 0.0399 0.5103 0.1052 0.3572 0.0571 0.5230 0.1417 0.0860 0.5224 0.1976 0.3855 0.3222 0.3740 0.5200 0.3930 0.3852 0.3418 0.3595 0.5409

Compositions of coexisting phases

0.5461

0.3086

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''	
T/K t/°C (compiler)		hydrocarbon- rich phase (compiler)		rich	water- rich phase (compiler)		hydrocarbon- rich phase		water- rich phase	
25.0	298.15	0.0101	0.9877	0.0471	0.0003	0.0060	0.9935	0.1120	0.0013	
		0.0308	0.9628	0.0996	0.0007	0.0185	0.9800	0.2200	0.0028	
		0.0576	0.9340	0.1496	0.0015	0.0350	0.9630	0.3090	0.0053	
		0.0725	0.9150	0.1821	0.0030	0.0445	0.9525	0.3600	0.0102	
		0.0733	0.9142	0.1849	0.0033	0.0450	0.9520	0.3640	0.0110	
		0.1171	0.8586	0.2398	0.0109	0.0740	0.9200	0.4350	0.0335	
		0.1192	0.8546	0.2453	0.0121	0.0755	0.9180	0.4410	0.0370	
		0.1320	0.8360	0.2626	0.0162	0.0845	0.9075	0.4590	0.0480	
		0.2034	0.7309	0.3539	0.0548	0.1385	0.8440	0.5220	0.1370	
		0.2452	0.6631	0.3884	0.0898	0.1745	0.8000	0.5215	0.2045	
		0.3162	0.5319	0.4150	0.1693	0.2475	0.7060	0.4800	0.3320	
		0.3247	0.5115	0.4156	0.1813	0.2585	0.6905	0.4720	0.3490	
		0.3489	0.4501	0.4126	0.2265	0.2930	0.6410	0.4400	0.4095	
		0.393	0.322	0.393	0.322	0.374	0.520	0.374	0.520 ^a	

^aCritical composition.

Auxiliary Information

Method/Apparatus/Procedure:

The synthetic method was used. Refractive indexes were measured in saturation as well as equilibrium experiments.

Source and Purity of Materials:

(1) Barrett Co., thiophene-free, boiling range 1 °C: distilled, the middle portion was taken for the next distillation; b.p. = 80.15 °C, d(25 °C,4 °C) = 0.8727, n(25 °C,D) = 1.4976.
(2) U.S. Ind. Alcohol Co.; used as received; purity 99.8–99.9% by density measurements; b.p. = 78.28 °C, d(25 °C,4 °C) = 0.7852, n(25 °C,D) = 1.3598.
(3) doubly distilled; n(25 °C,D) = 1.3326.

Estimated Error: temp. ± 0.05 °C.

=

(1) Ethanol (ethyl alcohol); C_2H_6O ; [64-17-5] (2) Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5]

Variable $T/K = 29$					Compile A. Skrze				
			Com	-	ental Data g the saturation	n curve			
				<i>x</i> ₁	<i>x</i> ₂				
t/°	С	T/K (compiler)		(compiler)			w_1		w_2
25.	.0	298.2		0.1702	0.00	32	0.3411		0.0109
				0.4105	0.13	49	0.5025		0.2799
				0.3919	0.35	09	0.3604		0.5471
				0.3246	0.51	68	0.2570		0.6939
			C	ompositions of	f coexisting ph	ases			
		x'_1	x'_2	x_1''	x_2''	w'_1	w'2	w_1''	w_2''
t/°C	/°C (compiler) /°C		phase	water- rich phase (compiler)		hydrocarbon- rich phase		water- rich phase	
25.0	298.2	0.0101	0.9856	0.0382	0.0005	0.006	0.993	0.092	0.002
		0.0332	0.9583	0.0797	0.0005	0.020	0.978	0.181	0.002
		0.0586	0.9206	0.1298	0.0014	0.036	0.959	0.275	0.005
		0.0912	0.8842	0.1813	0.0039	0.057	0.937	0.358	0.013
		0.1294	0.8347	0.2354	0.0100	0.083	0.908	0.430	0.031
		0.1334	0.8269	0.2407	0.0111	0.086	0.904	0.436	0.034
		0.1609	0.7887	0.2789	0.0183	0.106	0.881	0.477	0.053
		0.1894	0.7462	0.3173	0.0337	0.128	0.855	0.505	0.091
		0.2244	0.6983	0.3551	0.0540	0.156	0.823	0.524	0.135
		0.2622	0.6355	0.3938	0.0958	0.190	0.781	0.521	0.215
		0.2934	0.5810	0.4106	0.1331	0.221	0.742	0.504	0.277
		0.3309	0.5030	0.4177	0.2105	0.265	0.683	0.454	0.388
				Auxiliary	Information				
Method/Apparatus/Procedure:					Source and Purity of Materials:				
The binodal curve was prepared by the titration method in glass-stoppered thermostated flasks. The end-point was taken as the first appearance of cloudiness (when water was the saturating liquid) and the first appearance of tiny drops (when benzene was the saturating liquid). The phase equilibrium data were obtained by the authors' new procedure described in the				distilled.	e not specified	ed; absolute al			

Original Measurements:

(1942).

W. D. Bancroft and S. S. Hubard, J. Am. Chem. Soc. 64, 347-53

Estimated Error: temp. ± 0.1 °C.

homogenization was observed. Then the phase composition was calculated, by trial-and-error method, using the authors References: knowledge about binodal curve. Data reported in Refs. 1 and 2 ¹A. T. Lincoln, J. Phys. Chem. 4, 161 (1990) were included in the description of the saturation curve. ²K. A. Varteressian and M. R. Fenske, Ind. Eng. Chem. 28, 928 (1936).

Components:

(1) Ethanol (ethyl alcohol); C_2H_6O ; [64-17-5] (2) Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5]

L. A. K. Staveley, R. G. S. Johns, and B. C. Moore, J. Chem. Soc. 2516-23 (1951).

Original Measurements:

Compiled by: Variables: T/K = 274 - 342A. Skrzecz

Experimental Data Compositions along the saturation curve							
	T/K	<i>x</i> ₁	<i>x</i> ₂				
t/°C	(compiler)	(con	apiler)	<i>w</i> ₁	w_2		
27.2	300.35	0.006 44	0.990 44	0.003 82	0.995 46		
34.4	307.55	0.006 44	0.989 60	0.003 82	0.995 26		
42.2	315.35	0.006 44	0.988 27	0.003 82	0.994 95		
53.7	326.85	0.006 44	0.985 54	0.003 83	0.994 30		
55.2	328.35	0.006 44	0.985 05	0.003 83	0.994 19		
66.5	339.65	0.006 44	0.981 37	0.003 84	0.993 31		
14.7	287.85	0.0143	0.983 69	0.008 50	0.991 04		
32.6	305.75	0.0143	0.981 60	0.008 51	0.990 54		
37.4	310.55	0.0143	0.980 68	0.008 52	0.990 31		
46.4	319.55	0.0143	0.978 73	0.008 53	0.989 84		
51.6	324.75	0.0143	0.977 38	0.008 54	0.989 52		
68.7	341.85	0.0143	0.971 42	0.008 58	0.988 07		
26.1	299.25	0.0183	0.978 28	0.010 90	0.988 30		
39.1	312.25	0.0183	0.976 145	0.010 92	0.987 78		
45.4	318.55	0.0183	0.974 79	0.010 93	0.987 45		
51.6	324.75	0.0183	0.973 43	0.010 94	0.987 12		
60.6	333.75	0.0183	0.970 83	0.010 97	0.986 49		
67.7	340.85	0.0183	0.968 64	0.010 99	0.985 95		
18.7	291.85	0.024 65	0.971 77	0.014 73	0.984 44		
23.1	296.25	0.024 65	0.971 16	0.014 73	0.984 29		
26.6	299.75	0.024 65	0.970 67	0.014 74	0.984 17		
32.1	305.25	0.024 65	0.969 78	0.014 75	0.983 95		
41.6	314.75	0.024 65	0.968 25	0.014 77	0.983 57		
57.3	330.45	0.024 65	0.965 76	0.014 80	0.982 95		
61.7	334.85	0.024 65	0.964 09	0.014 82	0.982 54		
68.4	341.55	0.024 65	0.962 60	0.014 83	0.982 17		
16.7	289.85	0.029 86	0.965 43	0.017 89	0.981 00		
32.3	305.45	0.029 86	0.963 13	0.017 93	0.980 43		
43.4	316.55	0.029 86	0.961 76	0.017 95	0.980 08		
55.6	328.75	0.029 86	0.959 61	0.017 98	0.979 54		
11.5	284.65	0.042 13	0.951 91	0.025 40	0.973 19		
27.9	301.05	0.042 13	0.949 60	0.025 45	0.972 60		
38.6	311.75	0.042 13	0.948 25	0.025 48	0.972 25		
38.8	311.95	0.042 13	0.948 17	0.025 48	0.972 23		
39.0	312.15	0.042 13	0.947 83	0.025 48	0.972 14		
62.1	335.25	0.042 13	0.943 25	0.025 58	0.970 95		
1.3	274.45	0.0563	0.937 81	0.034 15	0.964 46		
12.2	285.35	0.0563	0.935 95	0.034 20	0.963 96		
27.5	300.65	0.0563	0.933 57	0.034 26	0.963 33		
48.6	321.75	0.0563	0.928 93	0.034 39	0.962 08		
13.0	286.15	0.0691	0.921 60	0.042 25	0.955 52		
21.4	294.55	0.0691	0.919 78	0.042 31	0.955 02		
32.6	305.75	0.0691	0.917 33	0.042 40	0.954 35		
41.6	314.75	0.0691	0.914 30	0.042 50	0.953 51		
56.5	329.65	0.0691	0.911 47	0.042 60	0.952 72		

paper. A binary homogenous mixture of known composition was added to a known amount of the phase until

Method/Apparatus/Procedure:

The synthetic method was used. Mixtures were prepared in sealed tubes; water was added from a weighted pipette to a known mass of alcohol-benzene mixture.

Source and Purity of Materials:

 source not specified; dried by refluxing over freshly ignited lime, and then with magnesium, distilled.
 source not specified; chemically purified, crystallized, distilled, dried over phosphoric anhydride.
 not specified.

Estimated Error:

composition <0.2%; temp. <0.2 °C.

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Benzene; C₆H₆; [71-43-2]
 (3) Water; H₂O; [7732-18-5]

Original Measurements: Y. C. Chang and R. W. Moulton, Ind Eng. Chem. 45, 2350–61 (1953).

, Variables:

T/K=298

Experimental Data Compositions along the saturation curve						
		<i>x</i> ₁	<i>x</i> ₂			
t/°C	T/K (compiler)	(com	piler)	w_1	w_2	
25.0	298.2	0.1213	0.0012	0.2600	0.0043	
		0.1496	0.0027	0.3080	0.0095	
		0.1735	0.0038	0.3458	0.0129	
		0.2737	0.0179	0.4711	0.0521	
		0.3430	0.0486	0.5171	0.1242	
		0.3978	0.1055	0.5160	0.2320	
		0.4175	0.1639	0.4860	0.3235	
		0.4177	0.2482	0.4310	0.4342	
		0.3879	0.3617	0.3529	0.5580	
		0.2947	0.5708	0.2241	0.7359	
		0.2597	0.6379	0.1880	0.7830	
		0.1508	0.8094	0.0980	0.8919	

Compiled by:

A. Skrzecz

		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''
t∕°C	T/K (compiler)	hydrocarbor rich phase er) (compiler)		se rich phase		hydrocarbon- rich phase		water- rich phase	
25.0	298.2	0.0310	0.9630	0.0676	0.0005	0.0186	0.9800	0.1561	0.0019
		0.0629	0.9233	0.1445	0.0018	0.0385	0.9582	0.3001	0.006
		0.0994	0.8813	0.2001	0.0052	0.0621	0.9332	0.3850	0.017
		0.1238	0.8425	0.2424	0.0094	0.0791	0.9125	0.4400	0.028
		0.1671	0.7867	0.3097	0.0329	0.1100	0.8781	0.4975	0.089
		0.2141	0.7181	0.3621	0.0621	0.1468	0.8350	0.5228	0.152
		0.2542	0.6516	0.3964	0.1028	0.1821	0.7915	0.5172	0.227
		0.2957	0.5788	0.4140	0.1423	0.2230	0.7400	0.4995	0.291
		0.3081	0.5579	0.4176	0.1606	0.2358	0.7241	0.4885	0.318
		0.3601	0.4268	0.4186	0.2439	0.3085	0.6201	0.4342	0.428
		0.3980	0.3248	0.3980	0.3248	0.3765	0.5210	0.3765	0.521

^aPlait point.

1038

Method/Apparatus/Procedure:

The cloud point method, as described in Ref. 1, was used. Binary alcohol–benzene mixtures were titrated with water to a sudden appearance of cloudiness. The end point was observed against a bright light as a background. Refractive indexes were measured at 25.5 °C with an Abbe refractometer. To obtain equilibrium, mixtures of known composition were overheated to about 35 °C and placed into a thermostat. When equilibrium was reached and the layers were clear in a bright light, phases were sampled, refractive indexes at 25.5 °C were measured and compositions were determined on the basis of charts obtained in saturation studies.

Source and Pority of Materials:

(1) source not specified, absolute alcohol; dehydrated by magnesium ethoxide method; b.p.= $78.3 \degree$ C; $n(25 \degree$ C,D) = 1.3596; $d(25 \degree$ C,4 \degree C)=0.7851.

(2) source not specified, reagent grade; dehydrated with Na wire, distilled; b.p.=80.1 °C; n(25 °C,D)=1.4978; d(25 °C,4 °C) = 0.8725.
(3) distilled.

Estimated Error:

temp. $\pm 0.1~^\circ C$ (temperature of the bath), composition accuracy 0.5% in the center part of the binodal curve.

References:

¹S. F. Taylor, J. Phys. Chem. 1, 461 (1897).

Components:

Variables:

T/K = 293 - 337

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Benzene; C₆H₆; [71-43-2]
 (3) Water; H₂O; [7732-18-5]

Original Measurements: A. G. Morachevskii and V. P. Belousov, Vestn. Leningr. Univ., Ser. 4: Fiz. Khim. 4, 117–25 (1958).

Compiled by: A. Skrzecz

Experimental Data Compositions of coexisting phases

		x'_2	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
<i>T</i> /K /°C (compiler)	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		2	hydrocarbon- rich phase		water- rich phase	
20	293.2	0.3376	0.4941	0.4268	0.1971	0.272	0.675	0.470	0.368
		0.2809	0.6145	0.4180	0.1334	0.206	0.764	0.510	0.276
		0.2484	0.6786	0.3976	0.0941	0.174	0.806	0.526	0.211
		0.1633	0.7938	0.3179	0.0353	0.107	0.882	0.504	0.095
		0.1152	0.8565	0.2489	0.0118	0.073	0.920	0.446	0.036
		0.0762	0.9072	0.1881	0.0042	0.047	0.949	0.368	0.014
		0.0414	0.9501	0.1327	0.0017	0.025	0.973	0.280	0.006
		0.0118	0.9839	0.0637	0.0005	0.007	0.992	0.148	0.002
40	313.2	0.0201	0.9756	0.0642	0.0008	0.012	0.987	0.149	0.003
		0.0572	0.9261	0.1176	0.0016	0.035	0.961	0.253	0.006
		0.1062	0.8655	0.1792	0.0057	0.067	0.926	0.353	0.019
		0.1680	0.7929	0.2495	0.0184	0.110	0.880	0.440	0.055
		0.2550	0.6554	0.3273	0.0533	0.182	0.793	0.496	0.137
		0.3621	0.3801	0.3842	0.1979	0.327	0.582	0.435	0.380
60	333.2	0.0848	0.8866	0.1107	0.0022	0.053	0.940	0.240	0.008
		0.2118	0.7210	0.2300	0.0187	0.145	0.837	0.414	0.057
		0.2973	0.5312	0.3010	0.0527	0.235	0.712	0.468	0.139
		0.3393	0.3808	0.3424	0.0988	0.310	0.590	0.470	0.230

			x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''	
		T/K (compiler)	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		2	hydrocarbon- rich phase		water- rich phase	
25.6	35	308.2	0.014	0.982	0.056	0.001	0.0083	0.9907	0.1313	0.0040	
28.3			0.080	0.899	0.154	0.003	0.0496	0.9453	0.3151	0.0104	
28.8			0.145	0.816	0.241	0.015	0.0939	0.8962	0.4324	0.0456	
29.2			0.197	0.746	0.298	0.033	0.1327	0.8522	0.4841	0.0909	
28.9			0.255	0.649	0.348	0.064	0.1831	0.7900	0.5070	0.1581	
28.5			0.320	0.508	0.386	0.124	0.2563	0.6898	0.4899	0.2669	
39.7	45	318.2	0.017	0.979	0.051	0.001	0.0101	0.9889	0.1205	0.0040	
44.8			0.086	0.889	0.140	0.003	0.0536	0.9403	0.2915	0.0106	
45.9			0.156	0.801	0.217	0.012	0.1019	0.8871	0.4027	0.0378	
46.1			0.213	0.727	0.270	0.027	0.1450	0.8390	0.4571	0.0775	
45.9			0.270	0.619	0.320	0.053	0.1981	0.7701	0.4885	0.1372	
60.3	55	328.2	0.023	0.972	0.044	0.001	0.0137	0.9851	0.1050	0.0040	
67.3			0.092	0.879	0.124	0.003	0.0577	0.9352	0.2636	0.0108	
68.8			0.164	0.789	0.195	0.010	0.1079	0.8800	0.3730	0.0324	
69.7			0.222	0.704	0.250	0.022	0.1537	0.8263	0.4371	0.0652	
69.4			0.278	0.586	0.300	0.047	0.2098	0.7500	0.4724	0.1255	
84.5	64	337.2	0.020	0.971	0.037	0.001	0.0120	0.9859	0.0892	0.0041	
95.7			0.099	0.873	0.108	0.002	0.0623	0.9309	0.2351	0.0074	
97.6			0.174	0.776	0.172	0.008	0.1153	0.8718	0.3398	0.0268	
98.5			0.228	0.685	0.235	0.020	0.1602	0.8159	0.4195	0.0605	
98.4			0.284	0.563	0.280	0.042	0.2187	0.7352	0.4543	0.1155	

Compositions of coexisting phases (liquid-liquid-vapor-equilibria)

Method/Apparatus/Procedure:

Mixtures of known total composition were placed in a thermostat for about 2 h. After phase separation, samples of each phase were taken for analysis using heat-jacketed pipettes. Composition of each phase at different temperatures was found by determinations of the total amount of benzene in a sample combined with tie line data at 20 °C for the mixture investigated. Total amount of benzene was determined by adding a known amount of cyclohexane and 80% H2SO4. This caused separation to an acid-water-alcohol phase and a benzene-cyclohexane phase, the refractive index of which was measured. Benzene concentrations were calculated from the benzene-cyclohexane refractive index calibration curve. Tie lines at 20 °C were found by the method described above combined with the binodal curve data at 20 °C determined by isothermal titration method. Liquid-liquid equilibrium data were presented together with vapor pressure and vapor composition over two-liquid mixtures.

Source and Purity of Materials:

(1) source not specified; absolute alcohol was obtained by azeotropic dehydration with C₆H₆; $d(20 \,^{\circ}C, 4 \,^{\circ}C) = 0.7895$, $n(20 \,^{\circ}C, D) = 1.3614$; in most of experiments distillate (containing water) was used; water concentration was determined densimetrically and taken into account in composition determinations.

(2) source not specified; pure for analysis grade, without thiophene; washed with H₂SO₄, H₂O, dried over CaCl₂, distilled; b.p.=80.10 °C, d(20 °C, 4 °C) = 0.8791, n(20 °C, D) = 1.5010.

(3) not specified.

Estimated Error:

temp. <±0.1 °C, error of analytical method <0.5%.

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Benzene; C₆H₆; [71-43-2]
 (3) Water; H₂O; [7732-18-5]

Original Measurements: R. V. Mertslin, N. I. Nikurashina, and L. A. Kamaevskaya, Zh. Fiz. Khim. **35**, 2628–32 (1961).

Variables: T/K=299

Dies:			
299			

-	nental Data ng the saturation curve
<i>x</i> ₁	<i>x</i> ₂

Complied by:

A. Skrzecz

		×2		T/K (compiler)	t/°C
w_2	w_1	piler)	(com		
0.0050	0.2520	0.0014	0.1169	299.2	26
0.0111	0.3677	0.0033	0.1873		
0.0210	0.4060	0.0066	0.2155		
0.0525	0.4710	0.0180	0.2738		
0.1052	0.5103	0.0399	0.3280		
0.1415	0.5228	0.0570	0.3569		
0.1970	0.5226	0.0857	0.3854		
0.2400	0.5180	0.1107	0.4052		
0.2500	0.5150	0.1167	0.4076		
0.2800	0.5026	0.1350	0.4107		
0.3940	0.4470	0.2140	0.4116		
0.4482	0.4283	0.2621	0.4247		
0.5200	0.3740	0.3222	0.3930		
0.5387	0.3662	0.3427	0.3950		
0.6150	0.3166	0.4246	0.3706		
0.6450	0.2950	0.4590	0.3559		
0.7170	0.2390	0.5461	0.3086		
0.7258	0.2360	0.5619	0.3098		
0.7930	0.1860	0.6611	0.2629		
0.9100	0.0820	0.8397	0.1283		

^aCritical solubility point.

Distribution of ethanol in ethanol-benzene-water system

t∕°C	T/K (compiler)	w'_1 hydrocarbon- rich phase	w ["] ₂ water- rich phase
26	299.2	0.0660	0.0050
		0.1380	0.0100
		0.2150	0.0200
		0.2960	0.0300
		0.3780	0.0560
		0.4530	0.0800
		0.4930	0.1060
		0.5130	0.1380
		0.5230	0.1810
		0.5230	0.1810
		0.5200	0.2060
		0.5160	0.2180

SKRZECZ, SHAW, AND MACZYNSKI

Method/Apparatus/Procedure:

The titration method was used to determine the binodal curve. The refractive indexes of mixtures were measured at 26 °C using an IRF-22 refractometer to construct the calibration curve, which was then used to find the concentration of ethanol in both phases at equilibrium.

Source and Purity of Materials:

(1) source not specified, "absolute;" distilled; b.p.=78.1 °C, $n(26 \,^{\circ}\text{C,D}) = 1.3596.$ (2) source not specified; doubly distilled; b.p.=80.0 °C, n(26 °C,D)=1.4975.

(3) doubly distilled. **Estimated Error:**

Not reported.

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5]

Original Measurements: S. Ross and R. E. Patterson J. Chem. Eng. Data 24, 111-5 (1979).

Variables: T/K = 298

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K t/°C (compiler)	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		hydrocarbon- rich phase		water- rich phase	
20.0	293.15	0.0000	1.0000	0.0000	0.0000	0.000	1.000	0.000	0.000
		0.0118	0.9839	0.0637	0.0005	0.007	0.992	0.148	0.002
		0.0414	0.9501	0.1327	0.0017	0.025	0.973	0.280	0.006
		0.0762	0.9072	0.1881	0.0042	0.047	0.949	0.368	0.014
		0.1152	0.8565	0.2489	0.0118	0.073	0.920	0.446	0.036
		0.1633	0.7938	0.3179	0.0353	0.107	0.882	0.504	0.095
		0.2484	0.6786	0.3976	0.0941	0.174	0.806	0.526	0.21
		0.2809	0.6145	0.4180	0.1334	0.206	0.764	0.510	0.276
		0.3376	0.4941	0.4268	0.1971	0.272	0.675	0.470	0.368

Compiled by:

A. Skrzecz

Auxiliary Information

Method/Apparatus/Procedure:

interfacial tension were measured.

Then density and surface tension of both phases as well as

Source and Purity of Materials:

Mixtures of known composition (close to the midpoint) and (1) source not specified, absolute alcohol; dried with Mg, distilled; $\rho(20 \circ C) = 0.7895 \text{ g cm}^{-3}$, b.p. = 77.9–78.1 °C, mass of about 90 g were prepared by weighing into flasks with $n(20 \ ^{\circ}C,D) = 1.3612.$ tightly fitting ground-glass stoppers. The solutions were shaken several times and placed in a thermostat for at least 24 h. (2) source not specified, reagent grade; passed through a column

of activated alumina into a bottle containing Na, distilled, (first and last portions of distillate were discarded); $\rho(20 \,^{\circ}\text{C})$ = 0.8792 g cm⁻³, b.p. = 79.6–79.8 °C, $n(20 \circ C,D) = 1.5011$. (3) distilled, redistilled from KMnO4, acidified with phosphoric acid, redistilled, (all distillations under N2 atmosphere).

Estimated Error:

temp. ±0.05 °C.

Variables:

T/K = 303 - 328

.

Components: (1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5]

Original Measurements:

Complied by:

A. Skrzecz

V. Brandani, A. Chianese, and M. Rossi, J. Chem. Eng. Data $30,\,27{-}9$ (1985).

Experimental Data Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
<i>T</i> /K t/°C (compiler)		hydrocarbon- rich phase		water- rich phase		hydrocarbon- rich phase (compiler)		water- rich phase (compiler)	
30.00	303.15	0.015	0.971	0.055	0.001	0.009	0.988	0.129	0.004
		0.053	0.935	0.133	0.003	0.032	0.965	0.279	0.011
		0.123	0.846	0.233	0.015	0.078	0.914	0.422	0.046
		0.138	0.816	0.243	0.015	0.090	0.899	0.435	0.046
		0.166	0.781	0.273	0.025	0.110	0.876	0.463	0.072
		0.194	0.725	0.315	0.039	0.133	0.845	0.497	0.104
		0.203	0.712	0.314	0.051	0.141	0.836	0.484	0.133
		0.242	0.662	0.343	0.082	0.173	0.801	0.485	0.197
		0.274	0.595	0.370	0.127	0.205	0.756	0.473	0.275
		0.288	0.555	0.376	0.162	0.223	0.729	0.452	0.330
		0.302	0.545	0.385	0.154	0.235	0.719	0.466	0.316
		0.302	0.526	0.377	0.179	0.239	0.707	0.441	0.355
		0.349	0.415	0.378	0.256	0.305	0.615	0.396	0.454
		0.365	0.353	0.365	0.353	0.340	0.557	0.340	0.557
0.04	313.15	0.019	0.971	0.052	0.001	0.011	0.986	0.123	0.004
		0.065	0.918	0.129	0.004	0.040	0.956	0.272	0.014
		0.149	0.806	0.210	0.014	0.097	0.891	0.391	0.044
		0.163	0.776	0.233	0.016	0.108	0.876	0.421	0.049
		0.200	0.709	0.270	0.025	0.139	0.836	0.459	0.072
		0.228	0.674	0.305	0.039	0.162	0.811	0.486	0.105
		0.230	0.670	0.306	0.054	0.164	0.808	0.472	0.141
		0.265	0.592	0.324	0.094	0.200	0.758	0.456	0.224
		0.316	0.472	0.357	0.197	0.264	0.667	0.413	0.386
		0.324	0.436	0.356	0.237	0.280	0.639	0.388	0.438
		0.344	0.330	0.344	0.330	0.334	0.543	0.334	0.543
55.00	328.15	0.026	0.960	0.046	0.002	0.016	0.981	0.109	0.008
		0.029	0.957	0.049	0.002	0.017	0.979	0.116	0.008
		0.094	0.875	0.125	0.005	0.059	0.933	0.264	0.018
		0.181	0.755	0.197	0.014	0.122	0.861	0.372	0.045
		0.183	0.747	0.209	0.017	0.124	0.858	0.387	0.053
		0.203	0.711	0.223	0.016	0.141	0.836	0.407	0.050
		0.241	0.643	0.256	0.024	0.175	0.792	0.443	0.070
		0.267	0.596	0.293	0.034	0.201	0.759	0.477	0.094
		0.268	0.581	0.287	0.060	0.204	0.751	0.446	0.158
		0.302	0.476	0.316	0.127	0.253	0.675	0.422	0.287
		0.344	0.351	0.343	0.151	0.325	0.562	0.430	0.321
		0.354	0.271	0.354	0.271	0.369	0.479	0.369	0.479^{3}

^aPlait point estimated by the authors.

Auxiliary Information

Method/Apparatus/Procedure:

The analytical method was used. Mixtures were stirred in an equilibrium cell fitted with a jacket for the circulating fluid and equipped with a mechanical stirrer. After equilibrium was reached each layer was withdrawn with a syringe and the composition was determined by glc (Carlo Erba Fractovap 2400 T, 2 m Poropak column, thermal conductivity detector; peak areas were measured with S-3380 Hewlett–Packard integrator). Calibration curves were prepared for the compositions closed to solubility curve at 20 °C. Each reported result is a mean of four analysis.

Source and Purity of Materials:

source not specified, reagent grade; used as received.
 source not specified, reagent grade; used as received.
 doubly distilled.

Estimated Error:

temp. $\pm\,0.05$ °C; composition accuracy $\pm\,1\%.$

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Cyclohexene; C₆H₁₀; [110-83-8]
 (3) Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1996.05)

4.2. Ethanol + Water + Cyclohexene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system ethanol-cyclohexene-water is given in Table 20.

TABLE 20. Summary of experimental data for the system ethanol-cyclohexene-water

Author(s)	T/K	Type of data ^a	Ref.
Washburn et al., 1940	298	sat. (12), eq. (6)	1
Kretschmer and Wiebe, 1945	228-298	sat. (9)	2

^aNumber of experimental points in parentheses.

Saturation curve

The system ethanol-cyclohexene-water forms a miscibility gap of type 1. Compositions along the saturation curves reported in both references were obtained by the titration method. Experimental data within each data set, measured at various temperatures, as well as both data sets, are consistent. The experimental results at 228, 273, and 298 K in the paper of Washburn *et al.*,¹ were expressed as the water tolerance of the alcohol-hydrocarbon mixture. Only one binary system, cyclohexene-water, forms a miscibility gap. Binary data of this system were compiled and critically evaluated in a previously published SDS volume.³ The recommended, Ref. 3, values of mutual solubility at 298 K are: x'_2 =0.9983 and x''_2 =0.000 035. Binary solubility data were not reported together with ternary data in any of the references discussed. Compositions of coexisting phases in equilibrium at 298.2 K, Ref. 1, are consistent with those measured along the saturation curve. Experimental results reported at lower temperatures by Kretschmer and Wiebe² are in agreement with the general expectation, at lower temperature the solubility gap increases. The maximum ethanol concentration is observed on the saturation curve at 298.2 K. It was reported to be x_1 =0.559 and x_2 =0.157.

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system ethanol–cyclohexene–water were presented only in Ref. 1. The reported tie lines cover the whole range of miscibility gap. In the paper of Washburn *et al.*¹ two points reported for the hydrocarbonrich phase did not contain water (x_2 =0.9947 and x_2 =0.9460). This presumably was the result of analytical limitations (self constructed refractive index–composition curve). Experimental compositions along the saturation curve and experimental compositions of coexisting phases in equilibrium at 298.2 K are treated as tentative and are presented in Fig. 11.

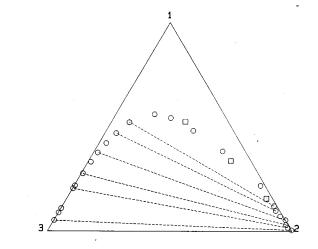


FIG. 11. Phase diagram of the system ethanol (1)—cyclohexene (2)—water (3) at 298.2 K. ○—experimental data, Ref. 1, □—experimental data, Ref. 2, dashed lines—experimental tie lines, Ref. 1.

References:

¹E. R. Washburn, C. L. Graham, G. B. Arnold, and L. F. Transue, J. Am. Chem. Soc. 62, 1454 (1940).

²C. B. Kretschmer and R. Wiebe, Ind. Eng. Chem. 37, 1130 (1945).

³D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon New York, 1989).

Components: (1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Cyclohexene; C₆H₁₀; [110-83-8]

(3) Water; H₂O; [7732-18-5]

Original Measurements:

E. R. Washburn, C. L. Graham, G. B. Arnold, and L. F. Transue, J. Am. Chem. Soc. 62, 1454-7 (1940).

Variables: Compiled by: T/K = 298A. Skrzecz **Experimental Data** Compositions along the saturation curve x_1 x_2 T/K $t/^{\circ}C$ (compiler) (compiler) w_1 w_2 25.0 298.15 0.0727 0.9155 0.0425 0.9548 0.7607 0.1386 0.8565 0.2195 0.3827 0.5229 0.2831 0.6896 0.4811 0.3537 0.4090 0.5361 0.2315 0.3957 0.5415 0.5192 0.5592 0.1570 0.5886 0.2946 0.5213 0.0733 0.6431 0.1613 0.4215 0.0285 0.6132 0.0739 0.0308 0.3313 0.0105 0.5454 0.2189 0.0017 0.4156 0.0059 0.1098 0.0004 0.2394 0.0017 0.0003 0.1985 0.0012 0.0884

	Compositions of coexisting phases								
		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''
t/°C	T/K (compiler)	hydrocarbon-rich phase (compiler)		water-rich phase (compiler)		hydrocarbon-rich phase		water-rich phase	
25.0	298.15	0.0053	0.9947	0.0521	0.0007	0.003	0.997	0.123	0.003
		0.0176	0.9734	0.2054	0.0009	0.010	0.988	0.397	0.003
		0.0314	0.9596	0.2762	0.0057	0.018	0.980	0.487	0.018
		0.0540	0.9460	0.3753	0.0166	0.031	0.969	0.584	0.046
		0.0992	0.8836	0.4689	0.0461	0.059	0.937	0.633	0.111
		0.1219	0.8653	0.5209	0.0731	0.073	0.924	0.643	0.161

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, as described in Ref. 1, was used. The titrant, from a weighed pipette, was added to the weighed binary mixture of known composition and the mixture was kept in a thermostated bath. To confirm that the end-point was reached the mixture was shaken automatically for at least 15 min and then reexamined. The plot of refractive index against composition was then used to find compositions of equilibrium phases. The refractive indexes were determinated at the temperature of 30.0 °C to eliminate an opalescence.

Source and Purity of Materials:

(1) Eastman Kodak Company, commercial grade; dried by refluxing over active lime, twice distilled; d(25 °C,4 °C) = 0.7851, n(25 °C, D) = 1.35942.

(2) Eastman Kodak Company, commercial grade; distilled in an atmosphere of purified N2, collected in dried nitrogen-filled bottles; $d(25 \circ C, 4 \circ C) = 0.8056$, $n(25 \circ C, D) = 1.4434$. (3) not specified.

Estimated Error:

temp. ± 0.05 °C.

References:

¹E. R. Washburn and A. E. Beguin, J. Am. Chem. Soc. 62, 579 (1940).

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Cyclohexene; C₆H₁₀; [110-83-8] (3) Water; H₂O; [7732-18-5]

Original Measurements: C. B. Kretschmer and R. Wiebe, Ind. Eng. Chem. 37, 1130-2 (1945).

Variables: Compiled by: T/K = 228 - 298A. Skrzecz **Experimental Data** Compositions along the saturation curve

	T/K	<i>x</i> ₁	<i>x</i> ₂	w_1	w2
t/°C	(compiler)	(com	piler)	(com	piler)
-45.0	228.2	0.5967	0.3420	0.4849	0.4956
		0.3586	0.6166	0.2443	0.7491
		0.1610	0.8304	0.0979	0.9001
0.0	273.2	0.5531	0.3170	0.4731	0.4835
		0.3463	0.5954	0.2420	0.7420
		0.1593	0.8218	0.0976	0.8979
25.0	298.2	0.5234	0.3000	0.4643	0.4745
		0.3371	0.5797	0.2403	0.7366
		0.1581	0.8156	0.0974	0.8962

Comments and Additional Data

Water tolerance (S) was described with probable error <0.5% at the range -45-25 °C by the equation: $\log(S) = a - b/(T/K)$. The parameters (a,b) were determined from plots. Water tolerance was defined as: $S = H_2O\%$ by volume $\cdot(100 - Hydrocarbon \% by volume in$ the blend)/100

vol % hydrocarbon	а	b
90	1.312	477.5
75	2.051	530.4
50	2.332	487.6

Auxiliary Information

Method/Apparatus/Procedure:

A glass tube with stirrer containing the ternary mixture was immersed in a bath, the temperature of which could be varied. Mixtures were prepared directly in the tube, by special pipettes at 15.5 °C. Precautions to exclude moisture and to prevent evaporation were observed. No correction was made for the slight expansion in volume when alcohol was mixed with hydrocarbon. In the paper the experimental results were expressed as the water tolerance of the alcohol-hydrocarbon blend. For practical purposes water tolerance was defined as the volume per cent of water which can be added before separation occurs.

Source and Purity of Materials:

(1) source not specified; anhydrous ethanol. (2) source not specified; b.p. = 82.55-82.65 °C. (3) not specified.

Estimated Error:

temp. within about 0.3 °C (duplicate determinations); composition <0.2% relative of volume fraction.

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Cyclohexane; C₆H₁₂; [110-82-7]
 (3) Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.04)

4.3. Ethanol + Water + Cyclohexane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.), compositions of coexisting phases in equilibrium (eq.) and distribution of ethanol between phases (distr.) for the system ethanol-cyclohexane-water is given in Table 21.

TABLE 21. Summary of experimental data for the system ethanol-cyclohexane-water

Author(s)	T/K	Type of data ^a	Ref.
Vold and Washburn, 1932	298	sat. (16), distr. (8)	1
Tarasenkov and Paulsen, 1937	273, 298	sat. (19)	2
Tarasenkov and Paulsen, 1939	298	eq. (3)	3
Kretschmer and Wiebe, 1945	228-298	sat. (5)	4
Connemann et al., 1990	303-335	eq. (6)	5
Moriyoshi et al., 1991	298, 323	eq. (36)	6
Letcher et al., 1991	298	sat. (17), eq. (6)	7
Plackov and Stern, 1992	298	sat. (21), eq. (6)	8

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system ethanol–cyclohexane–water forms a miscibility gap of type 1. Eight studies of the system in the temperature range 228–335 K were reported; seven studies included measurements at 298 K. A growing saturation gap with the decreasing temperature is well observed from 298 to 335 K. The maximum ethanol concentration changes from 0.628 (298 K), through 0.598 (323 K) to 0.547 (335 K). The temperature 298.2 K was selected to present the behavior of the system. Only one binary system, cyclohexane–water, forms a miscibility gap. The data for this binary system were compiled and critically evaluated in a previously published SDS volume, Ref. 9; the recommended values of mutual solubility at 298.2 K are: $x_2^{\prime} = 1.2 \cdot 10^{-5}$ and $x_3^{\prime} = 3.7 \cdot 10^{-4}$.

The end points of saturation curve were reported to be pure cyclohexane and water.^{6,7} For the water-rich phase and ethanol concentrations up to about 0.16 mole fraction the system was reported to be cyclohexane free.^{6,7} All these results are within the accuracy of experimental measurements which were stated by the authors to be 0.001 mole fraction. The experimental point on saturation curve $x_2=0.0002$ by Vold and Washburn,¹ appears to contain experimental error and was rejected. All saturation data sets are consistent within each reference as well as with one another. Experimental solubility and equilibrium data reported at 298.2 K (0.001< x_2 <0.98), for both water-rich and hydrocarbon-rich branches, were described by the equation:

 $x_1 = 1.021 89 + 0.131 29 \ln(x_2) - 1.019 99x_2$.

The least-squares method was used and the standard error of estimate was 0.0198. Compositions on the saturation curve calculated by this equation for selected concentrations of cyclohexane in the mixture are presented in Table 22 and in Fig. 12.

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.0000	0.000 012 Ref. 9	0.4209	0.5000
0.1140	0.0010	0.4056	0.5200
0.4071	0.0100	0.3902	0.5400
0.4879	0.0200	0.3746	0.5600
0.5585	0.0400	0.3588	0.5800
0.5913	0.0600	0.3428	0.6000
0.6087	0.0800	0.3267	0.6200
0.6176	0.1000	0.3105	0.6400
0.6211	0.1200	0.2941	0.6600
0.6210	0.1400	0.2777	0.6800
0.6181	0.1600	0.2611	0.7000
0.6132	0.1800	0.2444	0.7200
0.6066	0.2000	0.2276	0.7400
0.5987	0.2200	0.2107	0.7600
0.5897	0.2400	0.1937	0.7800
0.5798	0.2600	0.1766	0.8000
0.5692	0.2800	0.1594	0.8200
0.5578	0.3000	0.1422	0.8400
0.5459	0.3200	0.1249	0.8600
0.5335	0.3400	0.1075	0.8800
0.5206	0.3600	0.0901	0.9000
0.5073	0.3800	0.0725	0.9200
0.4936	0.4000	0.0550	0.9400
0.4796	0.4200	0.0373	0.9600
0.4653	0.4400	0.0196	0.9800
0.4507	0.4600	0.0000	0.999 63 Ref. 9
0.4359	0.4800		

Phases in equilibrium

Compositions of coexisting phases in equilibrium of the ternary system ethanol–cyclohexane–water were reported for the temperature range 298–335 K. The tie lines cover the full area of miscibility gap. The reported plait point calculated in Ref. 5 at 334.1 K was $x_1=0.437$ and $x_2=0.416$. Phase equilibrium data of Tarasenkov and Paulsen,³ are inconsistent with saturation curve and are rejected. The other reported equilibrium data sets are consistent with one another, and within each data set. The small differences in tie lines are the result of experimental errors of phase analysis. The data for phases in equilibrium are considered tentative. The experimental tie lines at 298.2 K as well as all experimental points on saturation curve, Refs. 4, 6, 7 and 8, at 298.2 K, are reported in Fig. 12.

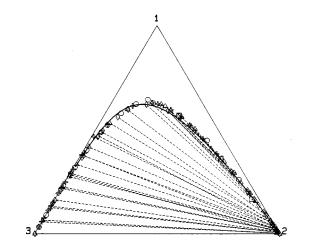


FIG. 12. Phase diagram of the system ethanol (1)—cyclohexane (2)—water (3) at 298.2 K. Solid line—calculated saturation curve, \bigcirc —experimental data, Ref. 1, \square —experimental data, Ref. 4, \triangle —experimental data, Ref. 6, \diamond —experimental data, Ref. 7, r_{\bigcirc} —experimental data, Ref. 8, dashed lines—experimental tie lines, Refs. 4, 6, 7, and 8.

References:

¹R. D. Vold and E. R. Washburn, J. Am. Chem. Soc. 54, 4217 (1932).

²D. N. Tarasenkov and I. A. Paulsen, Zh. Obshch. Khim. 7, 2143 (1937).

³D. N. Tarasenkov and I. A. Paulsen, Acta Physicochim. URSS 9, 75 (1939).

⁴C. B. Kretschmer and R. Wiebe, Ind. Eng. Chem. 37, 1130 (1945).

⁵M. Connemann, J. Gaube, L. Karrer, A. Pfennig, and U. Reuter, Fluid Phase Equilib. 60, 99 (1990).

⁶T. Moriyoshi, Y. Uosaki, K. Takahashi, and T. Yamakawa, J. Chem. Thermodyn. 23, 37 (1991).

⁷T. M. Letcher, P. Siswana, and S. E. Radloff, S. Afr. J. Chem. 44, 118 (1991).

⁸D. Plackov and I. Stern, Fluid Phase Equilib. 71, 189 (1992).

⁹D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Cyclohexane; C₆H₁₂; [110-82-7]
 (3) Water; H₂O; [7732-18-5]

Original Measurements: R. D. Vold and E. R. Washburn, J. Am. Chem. Soc. 54, 4217–25 (1932).

Variables:

T/K=298	A. Skrzecz

	Experimental Data	
(Compositions along the saturation of	curve

	T/K	<i>x</i> ₁	<i>x</i> ₂		<i>w</i> ₂
t/°C	(compiler)	(com	piler)	<i>w</i> ₁	
25	298.2	0.0314	0.0007	0.0763	0.0032
		0.0898	0.0014	0.2005	0.0059
		0.2143	0.0002	0.4106	0.0008
		0.2309	0.0016	0.4324	0.0054
		0.2868	0.0025	0.5038	0.0081
		0.3184	0.0044	0.5385	0.0136
		0.4014	0.0110	0.6163	0.0309
		0.4876	0.0278	0.6699	0.0698
		0.5213	0.0368	0.6847	0.0884
		0.5781	0.0634	0.6931	0.1388
		0.6226	0.1023	0.6789	0.2038
		0.6435	0.1399	0.6541	0.2598
		0.6269	0.1706	0.6159	0.3063
		0.5656	0.3056	0.4817	0.4754
		0.4485	0.4799	0.3314	0.6479
		0.2606	0.7039	0.1670	0.8241

Compiled by:

t/°C	T/K (compiler)	w'_1 hydrocarbon-rich phase	w_1'' water-rich phase
25.00	298.15	0.000	0.0072
		0.000	0.0330
		0.000	0.0368
			0.0665
		0.0020	0.1274
		0.0037	0.1880
		0.0064	0.2810
		0.0120	0.4360

Distribution of athonal in athonal avalahavana w

Method/Apparatus/Procedure:

The titration method was used to obtain points on the saturation curve. A 100 mL flask containing weighed amounts of ethanol and cyclohexane was suspended in a temperature controlled water bath at 24.8 °C and water was added from a weighed pipette until phase separation occurred. The appearance of a second phase was taken as the end-point. After each addition of water the flask was shaken for 30 s and then allowed to stand for at least 5 min. The flask was open only during addition of water from the pipette. The change of weight due to evaporation was no larger than 0.3%. Refractive index of each saturated mixture was measured at 25.0 °C. 0.2 °C above the titration temperature in order to assure homogeneous solutions. To determine the distribution of ethanol between water and organic phases, mixtures of 10 mL of water and different amounts of ethanol were prepared in glass-stoppered bottles, suspended in a thermostat 25.00 °C for 12 h and then the refractive indexes of both phases were measured and compared with those obtained for saturation mixtures.

Source and Purity of Materials:

(1) source not specified; absolute-standard commercial grade; refluxed over freshly ignited lime, distilled from an all-glass apparatus until density showed it to be 99.91% alcohol by Ref. 1. (2) Eastman Kodak Co.; the best grade; fractionally crystallized, distilled, dried over Na, distilled; ρ =0.773 79 g/cm³, f.p. = 6.20 °C.

(3) double distilled over KMnO₄.

Estimated Error:

temp. ± 0.2 K (estimated by the compiler).

References:

¹International Critical Tables, Vol. 3 (McGraw Hill, New York, 1929).

Components:

t/°C

0.0

20.0

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Cyclohexane; C₆H₁₂; [110-82-7]
 (3) Water; H₂O; [7732-18-5]

Original Measurements: D. N. Tarasenkov and I. A. Paulsen, Zh. Obshch. Khim. 7, 2143–8 (1937).

D. N

(3) Water; H ₂ O; [7732-18-5]		
Variables: <i>T</i> /K=273-298	Compiled by: A. Skrzecz	

Experimental Data Compositions along the saturation curve x_1 x_2 T/K(compiler) (compiler) w_1 w_2 273.15 0.7426 0.8488 0.2316 0.1449 0.3521 0.5680 0.2478 0.7302 0.4245 0.5131 0.3062 0.6762 0.6001 0.3085 0.5003 0.4699 0.6636 0.1900 0.6214 0.3250 0.6298 0.0699 0.7198 0.1460 0.5971 0.0533 0.7184 0.1171 0.4920 0.0182 0.6863 0.0465 0.4288 0.6447 0.0090 0.0247 0.3228 0.0040 0.5441 0.0122 0.1682 0.0006 0.3402 0.0023

Auxiliary Information

0.4477

0.5658

0.6110

0.6329

0.6357

0.6004

0.5212

0.3806

Method/Apparatus/Procedure:

A titration method similar to that in Ref. 1 was used. A flask of 100 mL capacity containing a binary cyclohexane–alcohol mixture of known composition, by weight, was placed in a thermostat. The mixture was titrated with water from a microburette with a scale of 0.01 mL, until opalescence, emulsion or turbidity was observed. Samples of the same binary composition were titrated several times.

298.15

0.6480

0.4754

0.3945

0.3497

0.2614

0.1627

0.0885

0.0217

formation

0.4797

0.3056

0.2388

0.2050

0.1401

0.0773

0.0369

0.0075

Source and Purity of Materials: (1) source not specified; purity of 99.97% for 3 points of the lower alcohol concentration at each temperature and purity of 92.64% for all other points.

(2) source not specified; distilled; b.p. = 80.9 °C, d(20 °C,4 °C)=0.7744.
 (3) source not specified.

0.3310

0.4818

0.5524

0.5911

0.6491

0.6920

0.6845

0.6007

Estimated Error: temp. ±0.05 °C.

References: ¹R. E. Washburn, J. Am. Soc. **53**, 3237 (1931).

Components: (1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water; H₂O; [7732-18-5]

Original Measurements:

D. N. Tarasenkov and I. A. Paulsen, Acta Physicochim. URSS 9, 75-86 (1939).

Variab T/K=2		Compiled by: A. Skrzecz							
			Cor		ental Data coexisting pl	nases			
		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)		n-rich phase piler)		ch phase piler)	hydrocarbo	n-rich phase	water-ri	ch phase
25.0	298.2	0.0110	0.9743	0.2530	0.0036	0.0061	0.9907	0.4598	0.0119
		0.0278	0.9563	0.3284	0.0044	0.0156	0.9809	0.5498	0.0135
		0.1607	0.7915	0.6135	0.1125	0.0989	0.8896	0.6624	0.2219

Auxiliary Information

Method/Apparatus/Procedure:

Not described. The data were also reported in Refs. 1 and 2.

(1) source not specified. (2) source not specified. (3) source not specified.

Source and Purity of Materials:

Estimated Error:

Not reported.

References:

¹D. N. Tarasenkov and I. A. Paulsen, Zh. Obshch. Khim. 7, 2143 (1937). ²D. N. Tarasenkov and I. A. Paulsen, Zh. Obshch. Khim. 8, 76 (1938).

Components:

Variables:

T/K = 298

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water; H₂O; [7732-18-5]

Original Measurements:

C. B. Kretschmer and R. Wiebe, Ind. Eng. Chem. 37, 1130-2 (1945).

Compiled by: A. Skrzecz

Experimental Data Compositions along the saturation curve								
	T/K	<i>x</i> ₁	<i>x</i> ₂	w_1	w_2			
t/°C	(compiler)	(compiler)		(compiler)				
-45.0	228.2	0.8347	0.1495	0.7493	0.2452 ^a			
0.0	273.2	0.6991	0.1252	0.7015	0.2295 ^a			
25.0	298.2	0.5680	0.3052	0.4834	0.4745			
		0.3604	0.5809	0.2495	0.7346			
		0.1662	0.8037	0.1010	0.8919			

^aSolution in equilibrium with solid cyclohexane.

Comments and Additional Data

Water tolerance (S) was described with probable error < 0.5% at the range -45-25 °C by the equation: $\log(S) = a - b/(T/K)$. The parameters (a,b) were determined from plots. Water tolerance was defined as: $S = H_2O$ % by volume (100-Hydrocarbon % by volume in the blend)/100

а	b
1.856	628.7
2.421	693.4
2.850	693.4
6.328	1526.0
	1.856 2.421 2.850

at the range -45-0 °C; solution in equilibrium with solid cylohexane.

Auxiliary Information

Method/Apparatus/Procedure:

A glass tube with stirrer containing the ternary mixture was immersed in a bath, the temperature of which could be varied. Mixtures were prepared directly in the tube, by special pipettes at 15.5 °C. Precautions to exclude moisture and to prevent evaporation were observed. No correction was made for the slight expansion in volume when alcohol was mixed with hydrocarbon. In the paper the experimental results were expressed as the water tolerance of the alcohol-hydrocarbon blend. For practical purposes water tolerance was defined as the volume per cent of water which can be added before separation occurs.

Source and Purity of Materials: (1) source not specified; anhydrous ethanol. (2) source not specified; b.p. = 78-81 °C. (3) not specified.

Estimated Error:

temp. within about 0.3 °C (duplicate determinations); composition <0.2% relative of volume fraction.

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Cyclohexane; C₆H₁₂; [110-82-7]
 (3) Water; H₂O; [7732-18-5]

Variables:

T/K = 303 - 335

Compiled by: A. Skrzecz

Original Measurements:

Fluid Phase Equilib. 60, 99-118 (1990).

M. Connemann, J. Gaube, L. Karrer, A. Pfennig, and U. Reuter,

Experimental Data

		x'_1	x'_2	x_1''	x_2''	w'_1	w'2	w_1''	w_2''
t/°C (compiler) T/	T/K	organic-rich T/K phase		water-rich phase		organic-rich phase (compiler)		water-rich phase (compiler)	
30.0	303.2	0.027	0.969	0.337	0.004	0.015	0.984	0.560	0.012
61.4	334.6	0.074	0.910	0.424	0.019	0.042	0.954	0.627	0.051
60.5	333.7	0.146	0.826	0.521	0.080	0.088	0.906	0.633	0.178
61.6	334.8	0.200	0.757	0.547	0.140	0.125	0.864	0.591	0.276
61.5	334.7	0.316	0.601	0.515	0.262	0.218	0.759	0.476	0.443
60.9	334.1	0.437	0.416	0.437	0.416	0.348	0.606	0.348	0.606

^aPlait point evaluated by the authors.

Auxiliary Information

Method/Apparatus/Procedure:

An equilibration cell with magnetic stirrer and a jacket for circulating thermostated fluid was used. Temperature was measured with a PT-100 resistance thermometer. After phase separation, samples of each phase were withdrawn with a syringe, dissolved in a known amount of 2-propanol and analyzed. Walter was determined by the Karl Fischer titration; the mass ratio of ethanol to cyclohexane was determined by glc using a peak-area calibration curve prepared earlier.

Source and Purity of Materials:

 Merck, Chromato-quality; dried over molecular sieves 3A; purity >99.8 mole %, impurities: organic <0.001 mass fraction, water <0.000 45 mass fraction by the Karl Fischer titration.
 Merck, Chromato-quality; dried over molecular sieves 3A; purity >99.8 mole %, impurities: organic <0.002 mass fraction, water <0.000 001 mass fraction by the Karl Fischer titration.
 dilded three times.

Estimated Error: temp. ±0.1 K.

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Cyclohexane; C₆H₁₂; [110-82-7]
 (3) Water; H₂O; [7732-18-5]

Original Measurements:

T. Moriyoshi, Y. Uosaki, K. Takahashi, and T. Yamakawa, J. Chem. Thermodyn. 23, 37-42 (1991).

Variables: Compiled by: T/K=298 and 323 A. Skrzecz

Experimental Data Compositions of coexisting phases x'_1 x_1'' w'_1 w'_2 w''_1 w_2'' x'_2 x_2'' t/°C hydrocarbon-rich phase water-rich phase (compiler) T/K(compiler) (compiler) hydrocarbon-rich phase water-rich phase 25.00 298.15 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0020 0.9870 0.0640 0.0000 0.0011 0.9965 0.1488 0.0000 0.0070 0.9840 0.1250 0.0000 0.0039 0.9942 0.2676 0.0000 0.0110 0.9750 0.0000 0.9908 0.3341 0.0000 0.1640 0.0061 0.0170 0.9750 0.2250 0.0010 0.0094 0.9888 0.4249 0.0035 0.0260 0.2740 0.0030 0.0145 0.9833 0.4874 0.0097 0.9640 0.0270 0.9630 0.3320 0.0050 0.0151 0.9827 0.5530 0.0152 0.0380 0.9767 0.0331 0.9530 0.4180 0.0120 0.0213 0.6306 0.0510 0.9440 0.4890 0.0260 0.0287 0.9702 0.6734 0.0654 0.0630 0.9320 0.5310 0.0400 0.0356 0.9633 0.6880 0.0947 0.6884 0.0790 0.0524 0.0910 0.8980 0.5980 0.9451 0.1661 0.1570 0.8240 0.6250 0.1650 0.0940 0.9015 0.6197 0.2989 0.2050 0.1950 0.7830 0.6220 0.1193 0.8754 0.5845 0.3519 0.2210 0.7640 0.6130 0.2260 0.1305 0.8634 0.5630 0.3792 0.2470 0.7180 0.5910 0.2590 0.1571 0.8342 0.5264 0.4214 0.2930 0.6690 0.5600 0.3200 0.1915 0.7988 0.4700 0.4906 0.3460 0.6010 0.5180 0.3790 0.2362 0.7496 0.4142 0.5536 0.3620 0 5810 0.5030 0.4030 0 2 5 0 4 07342 0.3942 0.5770 50.00 323.15 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0180 0.9820 0.1300 0.0000 0.0099 0.9901 0.2765 0.0000 0.0260 0.9700 0.1820 0.0010 0.0144 0.9847 0.3616 0.0036 0.0380 0.9600 0.2670 0.0030 0.0212 0.9784 0.4785 0.0098 0.0480 0.3210 0.0060 0.0269 0.9727 0.5394 0.0184 0.9500 0.0570 0.9400 0.3650 0.0080 0.0321 0.9672 0.5842 0.0234 0.0620 0.9350 0.3920 0.0120 0.0350 0.9643 0.6059 0.0339 0.0730 0.9230 0.4280 0.0210 0.0415 0.9577 0.6277 0.0563 0.0760 0.9190 0.4480 0.0220 0.0433 0.9556 0.6442 0.0578 0.0370 0.0890 0.8990 0.4780 0.0513 0.9460 0.6501 0.0919 0.1250 0.8610 0.5470 0.0800 0.0734 0.9234 0.6520 0.1742 0.1300 0.8540 0.5520 0.0850 0.0766 0.9197 0.6500 0.1829 0.1580 0.8210 0.5780 0.1150 0.0948 0.9002 0.6365 0.2313 0.1870 0.7820 0.5890 0.1230 0.1149 0.8777 0.6358 0.2426 0.2300 0.7300 0.1290 0.1456 0.8445 0.6359 0.2506 0.5980 0.2810 0.5870 0.1740 0.1858 0.7995 0.5880 0.3184 0.6620 0.3800 0.5380 0.5530 0.2750 0.2724 0.7046 0.4926 0.4475 0.4230 0.4830 0.5290 0.3230 0.3152 0.6574 0.4495 0.5014

S

Method/Apparatus/Procedure:

The method was similar to that described in Ref. 1. After equilibrium was reached, both phases were analyzed by glc using acetone as an internal standard (a glass column (diameter 3.2 mm, 2 m long) packed with PEG-6000 Shimalite TPA; 353 K, He flow rate 0.33 mL/s). Compositions were determined from the peak-area diagram.

Source and Purity of Materials:

source and purification procedure was described in Ref. 2.
 Dojin Chemical. Co.; spectrograde, used as received; refractive index agreed to within 0.005 with literature values.
 de-ionized, distilled over KMnO4, redistilled, by Ref. 1.

Estimated Error:

composition $\leq \pm 0.001$ mass fraction.

References:

¹T. Moriyoshi, Y. Uosaki, H. Matsuura, and W. Nishimoto, J. Chem Thermodyn. 20, 551 (1988).

²T. Moriyoshi, T. Sakamoto, and Y. Uosaki, J. Chem. Thermodyn. **27**, 947 (1989).

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Cyclohexane; C₆H₁₂; [110-82-7]
 (3) Water; H₂O; [7732-18-5]

Original Measurements: T. M. Letcher, P. Siswana, and S. E. Radloff, Afr. J. Chem. 44, 118–21 (1991).

Variables:

T/k = 298

Experimental Data Compositions along the saturation curve

Compiled by:

A. Skrzecz

t/°C				w1	w_2
compiler)	T/K	<i>x</i> ₁	x_2	(com	piler)
25.0	298.2	0.000	0.000	0.000	0.000
		0.144	0.001	0.300	0.004
		0.207	0.001	0.399	0.004
		0.280	0.004	0.494	0.013
		0.366	0.010	0.583	0.029
		0.466	0.024	0.657	0.062
		0.495	0.030	0.673	0.075
		0.597	0.083	0.683	0.174
		0.621	0.146	0.634	0.272
		0.607	0.215	0.568	0.367
		0.560	0.307	0.477	0.478
		0.492	0.404	0.387	0.581
		0.406	0.518	0.294	0.685
		0.298	0.655	0.197	0.791
		0.165	0.815	0.099	0.896
		0.088	0.903	0.051	0.947
		0.000	0.999	0.0000	0.9998

	Compositions of coexisting phases									
		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''	
t/°C (compiler)	T/K	2	bon-rich ase		water-rich phase		phase p		er-rich hase npiler)	
25.0	298.2	0.008	0.990	0.282	0.004	0.004	0.995	0.496	0.013	
		0.015	0.982	0.374	0.012	0.008	0.991	0.588	0.034	
		0.028	0.970	0.469	0.025	0.016	0.984	0.658	0.064	
		0.061	0.930	0.560	0.059	0.035	0.963	0.686	0.132	
		0.137	0.845	0.621	0.145	0.081	0.915	0.635	0.271	
		0.200	0.770	0.590	0.249	0.124	0.869	0.533	0.411	

1050

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the titration method, as described in Ref. 1. The formation of a cloudy mixture was observed visually on shaking after addition of a known mass of the third component; syringes were precisely weighed. Tie line compositions were determined by the refractive index method,² and a complementary method using the Karl Fischer titration.³ Measurements were made at pressure of 94.7 kPa.

Source and Purity of Materials:

mole % by glc. (3) not specified.

Estimated Error:

composition ± 0.005 mole fraction (binodal curve), ± 0.01 mole fraction (tie lines).

References:

¹T. M. Letcher, S. Wooten, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037 (1986).

²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. **35**, 411 (1943).

³T. M. Letcher, P. Siswana, P. van der Watt, and S. Radloff, J. Chem. Thermodyn. **21**, 1053 (1989).

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Cyclohexane; C₆H₁₂; [110-82-7]
 (3) Water; H₂O; [7732-18-5]

Original Measurements: D. Plackov and I. Stern, Fluid. Phase Equilib. **71**, 189–209

(1992).

Variables:

 $t/^{\circ}C$

25

T/K = 298

Experimental Data Compositions along the saturation curve

T/K			<i>w</i> ₁	w_2
(compiler)	<i>x</i> ₁	<i>x</i> ₂	(com	piler)
298.2	0.0433	0.9506	0.0243	0.9744
	0.1058	0.8826	0.0614	0.9360
	0.1890	0.7851	0.1157	0.8781
	0.2915	0.6653	0.1913	0.7976
	0.3824	0.5531	0.2697	0.7125
	0.4553	0.4600	0.3426	0.6324
	0.5204	0.3726	0.4187	0.5476
	0.5588	0.3181	0.4703	0.4891
	0.5945	0.2590	0.5285	0.4206
	0.6230	0.1915	0.5960	0.3347
	0.6284	0.1653	0.6215	0.2987
	0.6125	0.0939	0.6814	0.1908
	0.5235	0.0366	0.6867	0.0877
	0.3864	0.0105	0.6024	0.0299
	0.3073	0.0044	0.5258	0.0138
	0.2471	0.0021	0.4538	0.0070
	0.1931	0.0008	0.3788	0.0029
	0.1491	0.0005	0.3090	0.0019
	0.1111	0.0004	0.2419	0.0016
	0.0735	0.0002	0.1685	0.0008
	0.0334	0.0002	0.0811	0.0009

Compiled by:

A. Skrzecz

Compositions of coexisting phases

t/°℃		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
	T/K (compiler)	hydrocarbon- rich phase			ter- phase	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)	
25	298.2	0.003	0.994	0.057	0.000	0.002	0.998	0.134	0.000
		0.007	0.990	0.132	0.000	0.004	0.996	0.280	0.000
		0.015	0.982	0.218	0.003	0.008	0.991	0.413	0.010
		0.021	0.976	0.290	0.004	0.012	0.988	0.506	0.013
		0.032	0.964	0.377	0.005	0.018	0.981	0.601	0.015
		0.051	0.943	0.465	0.009	0.029	0.970	0.677	0.024

Method/Apparatus/Procedure

Binodal compositions were determined by titration with the corresponding, less-soluble component until the appearance of turbidity, Ref. 1. The analytical method was used for determination of tie-lines. This was based on refractive indexes and densities of the samples, Ref. 1, combined with the oxidation of the alcohol with an excess of potassium dichromate and determination of unreduced dichromate with Na2S2O3. Alcohol in the organic layer was determined after extraction with water.

Source and Purity of Materials:

(1) Kemika (Zagreb); analytical grade; presumably used as received; n = 1.3593, $\rho(25 \circ C) = 787.0 \text{ kg/m}^3$, b.p. = 79.1 °C. (2) Kemika (Zagreb); purity not specified; presumably used as received; n = 1.4232, $\rho(25 \circ C) = 773.9 \text{ kg/m}^3$, b.p. = 80.0 °C. (3) twice distilled in the presence of KMnO₄.

Estimated Error:

composition <0.0005 mass fraction, binodal, (relative); composition $\pm 2\%$, tie line.

References:

¹D. Plackov and I. Stern, Fluid Phase Equilib. 57, 327 (1990).

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) 2,2-Dimethylbutane (neohexane); C₆H₁₄; [75-83-2] (3) Water; H₂O; [7732-18-5]

Original Measurements: C. B. Kretschmer and R. Wiebe, Ind. Eng. Chem. 37, 1130-2 (1945).

Variables: Compiled by: T/K = 228 - 298A. Skrzecz

4.4. Ethanol + Water + 2,2-Dimethylbutane Experimental Data

Compositions along the saturation curve

	T/K	<i>x</i> ₁	<i>x</i> ₂	w_1	w_2
t/°C	(compiler)	(com	piler)	(com	piler)
-45.0	228.2	0.6168	0.3178	0.4987	0.4806
		0.3824	0.5911	0.2552	0.7379
		0.1759	0.8158	0.1032	0.8949
0.0	273.2	0.5814	0.2996	0.4893	0.4716
		0.3713	0.5740	0.2532	0.7322
		0.1742	0.8078	0.1029	0.8929
25.0	298.2	0.5596	0.2883	0.4831	0.4650
		0.3640	0.5627	0.2519	0.7283
		0.1730	0.8021	0.1028	0.8914

Comments and Additional Data

Water tolerance (S) was described with probable error <0.5% at the range -45-25 °C by the equation: $\log(S)=a-b/(T/K)$. The parameters (a, b) were determined from plots. Water tolerance was defined as: $S = H_2O$ by volume (100 - Hydrocarbon % by volume inthe blend)/100

vol % hydrocarbon	а	b
90	1.235	473.1
75	1.679	444.9
50	1.911	388.5

Auxiliary Information

Method/Apparatus/Procedure:

separation occurs.

A glass tube with stirrer containing the ternary mixture was

at 15.5 °C. Precautions to exclude moisture and to prevent evaporation were observed. No correction was made for the

slight expansion in volume when alcohol was mixed with

expressed as the water tolerance of the alcohol-hydrocarbon blend. For practical purposes water tolerance was defined as the volume percent of water which can be added before

hydrocarbon. In the paper the experimental results were

immersed in a bath, the temperature of which could be varied.

Mixtures were prepared directly in the tube, by special pipettes

Source and Purity of Materials: (1) source not specified; anhydrous ethanol. (2) source not specified; b.p. = 49.7 °C.

(3) not specified. Estimated Error:

temp. within about 0.3 °C (duplicate determinations), composition <0.2% relative of volume fraction.

1052

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Hexane (*n*-hexane); C₆H₁₄; [110-54-3]
 (3) Water (hydrogen oxide); H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.04)

4.5. Ethanol + Water + Hexane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.), compositions of coexisting phases in equilibrium (eq.) and distribution of ethanol between phases (distr.) for the system ethanol-hexane-water is given in Table 23.

TABLE 23. Summary of experimental data for the system ethanol-hexane-water

Author(s)	T/K	p/MPa	Type of data ^a	Ref.
Bonner, 1909	273		sat. (12)	1
Ormandy and Craven, 1922	242-304		sat. (25)	2
Tarasenkov and Paulsen, 1937	273, 298		sat. (25), eq. (2)	3
Mertslin et al., 1961	293		sat. (8), distr. (18)	4
Vorobeva and Karapetyants, 1966	298		sat. (16), eq. (9)	5
Ross and Patterson, 1979	293		eq. (9)	6
Moriyoshi et al., 1988	298	0.1-200	eq. (50)	7

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system ethanol-hexane-water forms a miscibility gap of type 1. The data are discussed on the basis of original papers with the exception of data of Ormandy and Craven,² which were taken from the handbook of Kafarov,⁸ these data were also taken into account during evaluation but are not reported as compilation sheet because they do not contribute further to knowledge of the system. The influence of pressure over the range 0.1–200 MPa at 298 K was also studied;⁷ the maximum concentration of ethanol on the saturation curve varies from $x_1 = 0.660$ at p = 0.1 MPa to $x_1 = 0.711$ at p = 200 MPa. Only the binary system hexane-water forms a miscibility gap. Data for this binary system were compiled and critically evaluated in a previously published SDS volume.⁹ The values of mutual solubility of hexane-water system recommended at 298.2 K are: $x'_2 = 2.3 \cdot 10^{-6}$ and $x''_2 = 0.999$ 53. The data of Tarasenkov and Paulsen at 273 and 298 K,³ show larger miscibility gaps than any other data set; they are inconsistent and therefore rejected. The measurements of Vorobeva and Karapetyants,⁵ and Ross and Patterson,⁶ were made with the accuracy of 0.001 mass fraction, and therefore the reported solubilities of binary system hexane-water in these references are outlayers. One of experimental points measured by Mertslin *et al.*,⁴ (x_1 =0.5582, x_2 =0.3033) is inconsistent and therefore is also rejected. Data of Bonner¹ measured at 273 K show a slightly larger immiscibility region which is in agreement with general expectation. A maximum value of ethanol concentration on the saturation curve of x_1 =0.66 is observed at 298.2 K (Refs. 5 and 7). The temperature 298.2 K was selected to present the phase behavior; the data sets of Vorobeva and Karapetyants,⁵ and Moriyoshi *et al.*⁷ are consistent. These data were described by the equation:

 $x_1 = 1.04385 + 0.126\ 03\ \ln(x_2) - 1.046\ 56\ x_2$.

The least-squares method was used and the standard error of estimate was 0.0165. Compositions on the saturation curve calculated by the proposed equation are presented in Table 24 for selected concentrations of hexane in the mixture. The results of calculations (solid line) are presented graphically in Fig. 13 together with experimental data reported at 298.2 K.

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.0000	2.3.10 ⁻⁶ Ref. 9	0.4172	0.5200
0.3709	0.0050	0.4010	0.5400
0.4530	0.0100	0.3847	0.5600
0.5299	0.0200	0.3682	0.5800
0.5963	0.0400	0.3515	0.6000
0.6265	0.0600	0.3347	0.6200
0.6418	0.0800	0.3178	0.6400
0.6490	0.1000	0.3008	0.6600
0.6510	0.1200	0.2836	0.6800
0.6495	0.1400	0.2663	0.7000
0.6454	0.1600	0.2489	0.7200
0.6393	0.1800	0.2314	0.7400
0.6317	0.2000	0.2139	0.7600
0.6228	0.2200	0.1962	0.7800
0.6128	0.2400	0.1785	0.8000
0.6020	0.2600	0.1607	0.8200
0.5904	0.2800	0.1428	0.8400
0.5781	0.3000	0.1248	0.8600
0.5653	0.3200	0.1068	0.8800
0.5521	0.3400	0.0887	0.9000
0.5383	0.3600	0.0705	0.9200
0.5242	0.3800	0.0523	0.9400
0.5097	0.4000	0.0340	0.9600
0.4950	0.4200	0.0157	0.9800
0.4799	0.4400	0.0065	0.9900
0.4646	0.4600	0.0019	0.9950
0.4490	0.4800	0.0000	0.99953 Ref. 9
0.4332	0.5000		

Phases in equilibrium

The phases in equilibrium were measured at 293 and 298 K over the pressure range 0.1–200 MPa. The tie lines of Ref. 3 are inconsistent and are rejected. The other tie lines cover the whole miscibility gap and are consistent within each data set, within each region and between the regions. The differences between compositions of the phases in equilibrium reported in Refs. 5 and 7 do not exceed 0.01 mole fraction. The solubility plait point of the system was reported only by Vorobeva and Karapetyants⁵ at 298.2 K (x_1 =0.478, x_2 =0.437) and by Bonner¹ at 273.2 K (x_1 =0.498, x_2 =0.414). The experimental tie lines at 298.2 K are presented in Fig. 13 together with the saturation curve.

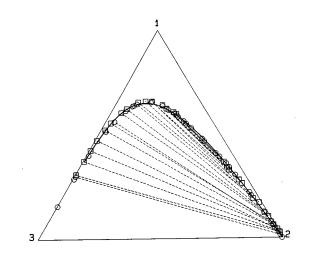


FIG. 13. Phase diagram of the system ethanol (1)—hexane (2)—water (3) at 298.2 K. Solid line—calculated saturation curve, O—experimental results of Ref. 5, D—experimental results of Ref. 7, dashed lines—experimental tie lines, Refs. 5 and 7.

References:

¹W. D. Bonner, J. Phys. Chem. 14, 738 (1909–1910).

²W. R. Ormandy and E. C. Craven, J. Inst. Petrol. Technol. 8, 181, 213 (1922).

³D. N. Tarasenkov and I. A. Paulsen, Zh. Obshch. Khim. 7, 2143 (1937).

⁴R. V. Mertslin, N. I. Nikurashina, and V. A. Petrov, Zh. Fiz. Khim. 35, 2770 (1961).

⁵A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 40, 3018 (1966).

⁶S. Ross and R. E. Patterson, J. Chem. Eng. Data 24, 111 (1979).

⁷T. Moriyoshi, Y. Uosaki, H. Matsuura, and W. Nishimoto, J. Chem. Thermodyn, 20, 551 (1988).

⁸V. V. Kafarov, ed., Spravochnik po Rastvorimosti, Vol. 2, Troinye, Mnogokomponentnye Sistemy, Part II (Izd. Akademii Nauk SSSR, Moskva, 1963).

⁹D. G. Shaw, ed., *Solubility Data Series*, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Hexane (*n*-hexane); C₆H₁₄; [110-54-3]
 (3) Water; H₂O; [7732-18-5]

Original Measurements;

W. D. Bonner, J. Phys. Chem. 14, 738-89 (1909-1910).

(3) Water, H₂O; [7/32-18-5] Variables: Complied by: 7/K=273 A. Skrzecz

Experimental Data Compositions along the saturation curve								
	<i>T</i> /K (compiler)	<i>x</i> ₁	<i>x</i> ₂	w ₁	w2			
t/°C		(compiler)		(compiler)				
0.0	273.2	0.4978	0.4375	0.3711	0.6101 plait point			
		0.5139	0.4142	0.3902	0.5884			
		0.6706	0.1893	0.6212	0.3280			
		0.6822	0.1588	0.6551	0.2853			
		0.6901	0.1112	0.7072	0.2132			
		0.6724	0.0810	0.7306	0.1646			
		0.6496	0.0557	0.7475	0.1199			
		0.6386	0.0484	0.7500	0.1062			
		0.5989	0.0327	0.7448	0.0761			
		0.5548	0.0202	0.7312	0.0497			
		0.4928	0.0121	0.6949	0.0320			
		0.2946	0.0021	0.5136	0.0068			

Auxiliary Information

Method/Apparatus/Procedure:

In a tube 1 cm diameter and 12 cm long known amount, by weight, of hydrocarbon and water were placed into a temperature controlled bath. The contents of the tube were stirred and alcohol was added gradually until a homogeneous solution was obtained. Observations were made visually through the telescope of a cathetometer. The samples were always weighed immediately before and after each experiment. Concentrations were reported as weight of water in 1 g of binary water–hydrocarbon mixture and the weight of alcohol necessary to make a homogenous solution. The mass of binary water–hydrocarbon mixture was about 1 g the mass of alcohol—up to 5 g.

Source and Purity of Materials:

Kahlbaum; presumably dried and distilled.
 Kahlbaum; presumably dried and distilled; n(14 °C) = 1.383 82.
 not specified.

Estimated Error:

accuracy of weighting 0.0001 g.

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Hexane (*n*-hexane); C₆H₁₄; [110-54-3]

Original Measurements:

Compiled by:

A. Skrzecz

D. N. Tarasenkov and I. A. Paulsen, Zh. Obshch. Khim. 7, 2143-8 (1937).

(3) Water; H₂O; [7732-18-5]

Variables:

T/K = 273 - 298____

			Com	positions along	ental Data g the saturation	n curve			
		T/K		<i>x</i> ₁	<i>x</i> ₂				
t/°C	(compiler)		(con	npiler)		w_1		w_2	
0.0)	273.15		0.1125	0.85	36	0.0653		0.9270
				0.5730	0.37	41	0.4430		0.5410
				0.6592	0.30	00	0.5332		0.4539
				0.7371	0.21	89	0.6334		0.3518
				0.7658	0.11	99	0.7401		0.2167
				0.7310	0.05	85	0.7922		0.1186
				0.6730	0.03	64	0.7874		0.0796
				0.6715	0.03	32	0.7908		0.0732
				0.6001	0.01	67	0.7682		0.0400
				0.4897	0.00	80	0.6985		0.0213
				0.4807	0.00	58	0.6943		0.0157
				0.3745	0.00	31	0.6004		0.0094
				0.2297	0.00	12	0.4312		0.0042
25.0	25.0	298.15		0.0545	0.90	14	0.0310		0.9592
				0.2843	0.65	64	0.1852		0.7997
				0.4866	0.44	20	0.3628		0.6164
				0.4971	0.41	95	0.3782		0.5970
				0.6336	0.29	94	0.5194		0.4591
				0.7321	0.16	17	0.6803		0.2811
				0.7024	0.08	96	0.7384		0.1761
				0.6602	0.06	11	0.7473		0.1293
				0.5879	0.03		0.7352		0.0800
				0.4709	0.01		0.6749		0.0361
				0.3200	0.00		0.5381		0.0186
				0.1870	0.00		0.3668		0.0121
			С	ompositions of	coexisting ph	ases			
		x'_1	x'_2	x_1''	x_2''	w'_1	w'2	w_1''	w
		hydroc	arbon-	wa	ter-				
С	T/K (compiler)		phase piler)		phase piler)		carbon- phase		/ater- 1 phase
.0	298.15	0.0015	0.9700	0.1916	0.0006	0.0008	0.9931	0.3767	0.00
		0.0316	0.9434	0.3531	0.0097	0.0175	0.9771	0.5692	0.02

Auxiliary Information

Method/Apparatus/Procedure:

A titration method similar to that in Ref. 1 was used. A flask of 100 mL capacity containing a binary hexane-alcohol mixture of known composition, by weight, was placed in a thermostat. The mixture was titrated with water from a microburette with a scale of 0.01 mL, until opalescence, emulsion or turbidity was observed. Samples of the same binary composition were titrated several times. Compositions of coexisting phases were obtained by an analytical method similar to that in Ref. 2. Experimental points were located on the binodal curve obtained by the authors. The ternary mixture became homogenous when the hexane concentration reached 79.4 mass % at 0 °C and 74.73 mass % at 25 °C.

Source and Purity of Materials:

(1) source not specified; purity of 99.97% for 3 points of the lower alcohol concentration at each temperature and purity of 92.64% for all other points. (2) source not specified; distilled; b.p. = 68.85 °C, $d(20 \ ^{\circ}C, 4 \ ^{\circ}C) = 0.6898.$ (3) source not specified.

Estimated Error:

temp. ±0.05 °C.

References:

¹R. E. Washburn, J. Am. Soc. 53, 3237 (1931). ²D. N. Tarasenkov and E. N. Polozhentseva, Zh. Obshch. Khim. 2, 84 (1932)

(1) Ethanol (ethyl alcohol); C ₂ H ₆ O; [64-17-5] (2) Hexane (<i>n</i> -hexane); C ₆ H ₁₄ ; [110-54-3] (3) Water; H ₂ O; [7732-18-5] Variables: <i>T</i> /K=293 Exper			 Korgha Arcastrenets. R. V. Mertslin, N. I. Nikurashina, and V. A. Petrov, Zh. Khim. 35, 2770-4 (1961). [Eng. transl. Russ. J. Phys. Chen 1369–72 (1961)]. Compiled by: A. Skrzecz 			
			ng the saturation curve			
	T/K	<i>x</i> ₁	<i>x</i> ₂			
t/°C	(compiler)	(co	mpiler)	<i>w</i> ₁	w2	
20	293.2	0.3683	0.0048	0.5918	0.0143	
		0.6543	0.0873	0.7122	0.1778	
		0.6892	0.1224	0.6949	0.2308	
		0.6327	0.2259	0.5697	0.3805	
		0.5582	0.3033	0.4732	0.4809	
		0.5054	0.4056	0.3891	0.5841	
		0.4907	0.4234	0.3728	0.6017	
		0.4824	0.4391	0.3615	0.6155	
	Distr	ibution of ethanol in	ethanol-hexane-water sys	stem		
	T/K	-	w ₁ ' hydrocarbon	-	w"1 water-	
t/°C	(compi		rich phase		rich phase	
20	293.	2	0.2125		0.5675	
			0.1325		0.6400	
			0.0600		0.7300	
			0.0200		0.6125	
			0.0150		0.5650	
			0.0125		0.5175	
			0.0100		0.4775	
			0.0075		0.4400	
			0.0075		0.4125	
			0.0060		0.3830	
			0.0055		0.3625	
			0.0055		0.3450	
			0.0050		0.3250	
			0.0050		0.3100	
			0.0040		0.2925	
			0.0040		0.2700	
			0.0030		0.2550	
			0.0030		0.2325	

Original Measurements:

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used to determine the binodal curve. The refractive indexes of mixtures were measured to construct the calibration curve, which was then used to find the concentration of ethanol in both phases at equilibrium.

Source and Purity of Materials:

 source not specified, dehydrated; distilled; b.p.=78.0 °C, n(20 °C,D)=1.3596.
 source not specified; doubly distilled; b.p.=68.5 °C, n(26 °C,D)=1.3751.
 doubly distilled.

Estimated Error:

Not reported.

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Hexane (*n*-hexane); C₆H₁₄; [110-54-3]
 (3) Water; H₂O; [7732-18-5]

Original Measurements: A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 40, 3018–23 (1966). [Eng. transl. Russ. J. Phys. Chem. 40, 1619–22 (1966)].

Variables:

T/K = 298

Experimental Values Compositions along the saturation curve

Compiled by:

A. Skrzecz

		T/K		<i>x</i> ₁	<i>x</i> ₂				
t/°C		(compiler)		(comp	oiler)		w_1		w_2
25		298.2	0.0	000	0.9952		0.000		0.999
			0.2	200	0.7548		0.134		0.860
			0.3	391	0.6147		0.225		0.763
			0.4	65	0.4526		0.346		0.630
			0.5	294	0.3677		0.421		0.547
			0.5	915	0.2777		0.509		0.447
			0.6	021	0.2630		0.525		0.429
			0.6	378	0.1977		0.595		0.345
			0.6	542	0.1415		0.655		0.265
			0.6	393	0.0786		0.713		0.164
			0.6	361	0.0735		0.717		0.155
			0.6	141	0.0562		0.724		0.124
			0.5	153	0.0233		0.697		0.059
			0.4	007	0.0090		0.618		0.026
			0.2	886	0.0040		0.504		0.013
			0.1						
			0.1	588	0.0005		0.325		0.002
					0.0005		0.325		0.002
		x' ₁					0.325		
/°C	T/K (compiler)	hydroo rich j (com	Comp x'2 carbon- phase	positions of c $\frac{x_1''}{w_1''}$ wy rich	coexisting phase	es w_1'hydroo			w ["] ₂
/°C 25		hydroc rich	Comp x'2 carbon- phase	positions of c $\frac{x_1''}{w_1''}$ wy rich	x_2''	es w_1'hydroo	w ₂ '	w_1''wa	w ["] ₂ ter- phase
	(compiler)	hydroc rich j (com	Comparison complexes for the second	positions of c x_1'' with rich (con	ater- phase npiler)	es 	w ₂ ' carbon- phase	w"1 wa rich j	w ["] ₂ ter- phase 0.015
	(compiler)	hydroc rich j (com	Comp x'2 carbon- phase piler) 0.982	positions of c $ \frac{x_1''}{w_1} $ ww. rich (con 0.301	$\frac{x_2''}{\text{ater-}}$ phase ph	es w'1 hydroc rich 0.007	w'2 carbon- phase 0.992	wa rich j 0.518	w ["] ₂ ter- phase 0.015 0.080
	(compiler)	hydroc rich j (com 0.013 0.065	Com x'2 carbon- phase piler) 0.982 0.926	positions of c $ \frac{x_1''}{w_1} $ ww. rich (con 0.301 0.562	oexisting phase x ["] / ₂ ater- phase npiler) 0.005 0.036	es <u>w'1</u> hydroc rich 0.007 0.036	w ₂ ' carbon- phase 0.992 0.962	wa rich 1 0.518 0.714	w ["] ₂ ter- phase 0.015 0.086 0.179
	(compiler)	hydroc rich j (com 0.013 0.065 0.125	Com x'2 carbon- phase piler) 0.982 0.926 0.861	positions of c x''_1 ww. rich (com 0.301 0.562 0.646	existing phase x ["] / ₂ ater- phase npiler) 0.005 0.036 0.087	es w'1 hydroc rich 0.007 0.036 0.072	w ₂ ' carbon- phase 0.992 0.962 0.925	wa rich j 0.518 0.714 0.707	w ["] ₂ ter- phase 0.015 0.086 0.179 0.270
	(compiler)	0.013 0.065 0.125 0.205	Com x'2 carbon- phase piler) 0.982 0.926 0.861 0.769	positions of c x''_1 ww. rich (com 0.301 0.562 0.646 0.657	x_2'' ater-phase npiler) 0.005 0.036 0.087 0.145	es <u>w'1</u> hydroc rich 1 0.007 0.036 0.072 0.124	w ₂ ' carbon- phase 0.992 0.962 0.925 0.870	wa rich 1 0.518 0.714 0.707 0.653	w ["] ₂ ter- phase 0.015 0.086 0.179 0.270 0.388
	(compiler)	hydroc rich j (com 0.013 0.065 0.125 0.205 0.303	Com x'2 arbon- phase piler) 0.982 0.926 0.861 0.769 0.657	positions of c x_1'' www.rich (com 0.301 0.562 0.646 0.657 0.618	ater-phase 0.005 0.036 0.087 0.145 0.230	es w'1 hydroc rich 0.007 0.036 0.072 0.124 0.196	w ['] ₂ carbon- phase 0.992 0.962 0.925 0.870 0.794	wa rich 1 0.518 0.714 0.707 0.653 0.558	w ["] ₂ ter- phase 0.015 0.086 0.175 0.276 0.388 0.458
	(compiler)	hydroc rich j (com 0.013 0.065 0.125 0.205 0.303 0.358	Com x'2 arbon- phase piler) 0.982 0.926 0.861 0.769 0.657 0.593	$ \frac{x_1''}{x_1''} \\ \frac{x_1''}{x_1''} \\ \frac{x_1''}{x_1''} \\ 0.301 \\ 0.562 \\ 0.646 \\ 0.657 \\ 0.618 \\ 0.584 \\ 0.584 $	ater-phase piller) 0.005 0.036 0.087 0.145 0.230 0.287	es w'1 hydroc rich 0.007 0.036 0.072 0.124 0.196 0.241	w ['] ₂ carbon- phase 0.992 0.962 0.925 0.870 0.794 0.746	wi1 wa rich 1 0.518 0.714 0.707 0.653 0.558 0.499	w ["] ₂

SKRZECZ, SHAW, AND MACZYNSKI

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, Ref. 1, was used to determine solubility of the mixtures. The third component was added to the binary homogenous mixture until cloudiness was first observed. Density of the saturated mixtures was measured; these results were graphed. To obtain equilibrium, ternary mixtures were stirred in a thermostated vessel for several hours. After phase separation, the density of each phase was measured and composition was determined from the graphs prepared earlier. Concentration at the critical point was found by method described in Ref. 2. Water included in ethanol was taken into account in all measurements.

Source and Purity of Materials:

(1) source not specified, "rectificate grade;" distilled; water concentration was determined by the Karl Fischer method. (2) source not specified; b.p. = 68.7 °C, n(20 °C,D) = 1.3753. (3) not specified.

Estimated Error:

solubility ±0.001 mass fraction.

References:

¹W. D. Bancroft, Phys. Rev. 3, 21 (1896).

²E. N. Zilberman, Zh. Fiz. Khim. 26, 1458 (1952).

Components:

T/K = 298

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Hexane (*n*-hexane); C₆H₁₄; [110-54-3]

Original Measurements: S. Ross and R. E. Patterson, J. Chem. Eng. Data 24, 111-5

(1979).

(3) Water; H₂O; [7732-18-5] Variables:

Experimental Data

Compiled by:

A. Skrzecz

Compositions	ot	coexisting	phases	

		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w ["] ₂
t/°C	T/K (compiler)	rich	carbon- phase piler)	rich	ter- phase piler)	2	carbon- phase		tter- phase
20.0	293.15	0.0000	1.0000	0.0000	0.0000	0.000	1.000	0.000	0.000
		0.0056	0.9944	0.1056	0.0000	0.003	0.997	0.232	0.000
		0.0093	0.9907	0.1586	0.0003	0.005	0.995	0.325	0.001
		0.0112	0.9888	0.1957	0.0005	0.006	0.994	0.383	0.002
		0.0149	0.9851	0.2358	0.0009	0.008	0.992	0.440	0.003
		0.0222	0.9778	0.2980	0.0018	0.012	0.988	0.518	0.006
		0.0368	0.9632	0.3914	0.0068	0.020	0.980	0.612	0.020
		0.1063	0.8892	0.5819	0.0349	0.060	0.939	0.730	0.082
		0.2170	0.7577	0.6710	0.1681	0.132	0.862	0.640	0.300

Auxiliary Information

Method/Apparatus/Procedure:

Source and Purity of Materials:

Mixtures of known composition (close to the midpoint) and mass of about 90 g were prepared by weighing into flasks with tightly fitting ground-glass stoppers. The solutions were shaken several times and placed in a thermostat for at least 24 h. Then density and surface tension of both phases as well as interfacial tension were measured.

(1) source not specified, absolute alcohol; dried with Mg, distilled; $\rho(20^{\circ}C) = 0.7895 \text{ g cm}^{-3}$, b.p.=77.9–78.1 °C, $n(20 \ ^{\circ}C,D) = 1.3612.$

(2) source not specified, reagent grade; passed through a column of activated alumina distilled, (first and last portions of distillate discarded; $\rho(20 \,^{\circ}\text{C}) = 0.6595 \text{ g cm}^{-3}$, were b.p. = 68.4 - 68.5 °C, n(20 °C,D) = 1.3749. (3) distilled, redistilled from KMnO4, acidified with phosphoric acid, redistilled, (all distillations under N2 atmosphere).

Estimated Error:

temp. ±0.05 °C.

Variables: $T/\mathrm{K}\!=\!298$

Components: (1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Hexane (n-hexane); C₆H₁₄; [110-54-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

T. Moriyoshi, Y. Uosaki, H. Matsuura, and W. Nishimoto, J. Chem. Thermodyn. 20, 551-7 (1988).

Compiled by: A. Skrzecz

Experimental Data

Compositions of coexisting phases

			x'1	x'2	x_1''	x"2	w'1	w2'	w_1''	w2
			<i>x</i> ₁	x2		x2	w ₁	w2	w ₁	w2
t/°C compiler)	T/K	p/MPa	hydrocarbon- rich phase			water- rich phase		carbon- phase piler)	rich	ter- phase piler)
25.00	298.15	98.15 0.1	0.026	0.974	0.310	0.001	0.014	0.986	0.533	0.003
			0.031	0.966	0.373	0.003	0.017	0.983	0.599	0.009
			0.042	0.956	0.425	0.005	0.023	0.977	0.647	0.014
			0.046	0.943	0.473	0.007	0.025	0.972	0.686	0.019
			0.062	0.930	0.523	0.017	0.034	0.964	0.712	0.043
			0.076	0.914	0.556	0.023	0.042	0.955	0.728	0.056
			0.102	0.890	0.605	0.042	0.058	0.941	0.736	0.096
			0.120	0.865	0.624	0.056	0.069	0.928	0.731	0.123
			0.170	0.818	0.655	0.088	0.100	0.898	0.712	0.179
			0.190	0.784	0.660	0.116	0.114	0.880	0.684	0.225
			0.262	0.705	0.659	0.143	0.164	0.828	0.656	0.266
			0.279	0.683	0.641	0.195	0.178	0.813	0.599	0.341
			0.326	0.621	0.624	0.220	0.216	0.770	0.569	0.375
			0.341	0.605	0.607	0.257	0.228	0.758	0.532	0.421
			0.364	0.581	0.599	0.272	0.247	0.738	0.517	0.439
		50	0.022	0.978	0.329	0.001	0.012	0.988	0.555	0.003
			0.038	0.959	0.450	0.006	0.021	0.979	0.668	0.017
			0.049	0.950	0.513	0.012	0.027	0.973	0.711	0.031
			0.064	0.930	0.558	0.019	0.035	0.963	0.735	0.047
			0.065	0.935	0.569	0.024	0.036	0.964	0.736	0.058
			0.074	0.916	0.603	0.034	0.041	0.957	0.746	0.079
			0.105	0.892	0.644	0.057	0.059	0.940	0.742	0.123
			0.208	0.775	0.674	0.131	0.125	0.871	0.677	0.246
			0.254	0.718	0.653	0.194	0.158	0.835	0.607	0.337
		100	0.019	0.978	0.346	0.001	0.010	0.989	0.574	0.003
			0.034	0.965	0.457	0.006	0.018	0.981	0.674	0.017
			0.036	0.964	0.515	0.011	0.020	0.980	0.714	0.029
			0.046	0.953	0.559	0.018	0.025	0.975	0.737	0.044
			0.057	0.943	0.589	0.025	0.031	0.969	0.749	0.059
			0.063	0.934	0.603	0.028	0.035	0.965	0.754	0.065
			0.076	0.912	0.643	0.043	0.043	0.955	0.760	0.095
			0.173	0.814	0.688	0.118	0.102	0.895	0.699	0.224
			0.203	0.779	0.677	0.160	0.122	0.874	0.651	0.288
			0.249	0.725	0.658	0.204	0.154	0.840	0.602	0.349
		150	0.024	0.974	0.456	0.004	0.013	0.987	0.676	0.011
			0.029	0.971	0.516	0.011	0.016	0.984	0.715	0.029
			0.039	0.961	0.559	0.016	0.021	0.979	0.740	0.040
			0.041	0.959	0.576	0.019	0.022	0.978	0.748	0.046
			0.046	0.954	0.605	0.026	0.025	0.975	0.758	0.061

	0.064	0.936	0.646	0.041	0.035	0.965	0.764	0.091
	0.176	0.813	0.692	0.145	0.103	0.894	0.674	0.264
	0.204	0.779	0.688	0.168	0.122	0.874	0.650	0.297
200	0.015	0.975	0.411	0.002	0.008	0.990	0.638	0.006
	0.020	0.975	0.475	0.006	0.011	0.988	0.689	0.016
	0.023	0.975	0.512	0.010	0.012	0.987	0.713	0.026
	0.031	0.969	0.561	0.015	0.017	0.983	0.743	0.037
	0.056	0.932	0.649	0.036	0.031	0.966	0.773	0.080
	0.091	0.904	0.695	0.071	0.051	0.948	0.756	0.144
	0.151	0.839	0.711	0.126	0.088	0.910	0.704	0.233
	0.200	0.790	0.695	0.174	0.119	0.879	0.648	0.304

Auxiliary Information

Method/Apparatus/Procedure:

The experimental apparatus consisted of a high-pressure equilibrium cell, two hand operated pumps, a pressure exchanger, and two pressure gauges. The equilibrium cell, a stainless-steel cylinder of 50 cm3 capacity, with mechanical stirrer was immersed in a thermostat. The mixtures, prepared by mass, were stirred under the desired conditions for at least 8 h and then allowed to settle for 2 h. Samples of each layer were withdrawn for glc analysis (glass column, 3.2 mm i.d ., 150 cm long, packed with PEG-6000 Shimalite F; T/K=343; thermal-conductivity detector equipped with electronic integrator). Acetone was used as an inert standard. Compositions were determined from the peak-area ratio and the calibration curve. Analysis of each phase were done at least twice.

Source and Purity of Materials:

(1) source not specified; dried by refluxing with CaO, followed by the Lund-Bjerrrum magnesium method, distilled. (2) source not specified; shaken with conc. H₂SO₄, neutralized with aq. NaOH, dried over CaCl2, distilled. (3) de-ionized, distilled over KMnO₄, redistilled. Estimated Error:

temp. ± 0.002 K (control of the thermostat); press. ± 0.1 MPa; composition ±0.003 mass fraction.

SKRZECZ, SHAW, AND MACZYNSKI

Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 Toluene (methylbenzene); C₇H₈; [108-88-3]
 Water; H₂O; [7732-18-5]

Evaluated by

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.05)

4.6. Ethanol + Water + Toluene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.), compositions of coexisting phases in equilibrium (eq.) and distribution of ethanol between phases (distr.) for the system ethanol-toluene-water is given in Table 25.

TABLE 25. Summary of experimental data for the system ethanol-toluene-water

Author(s)	T/K	Type of data ^a	Ref.
Curtis, 1897	273	sat. (7)	1
Bonner, 1909	273	sat. (8)	2
Ormandy and Craven, 1921	243-303	sat. (48)	3
Tarasenkov and Polozhentseva, 1932	273-313	eq. (14)	4
Washburn et al., 1939	298	sat. (17), distr. (9)	5
Leikola, 1940	293	sat. (8)	6
Mondain-Monval and Quiquerez, 1940	298	eq. (8)	7
Arzhanov et al., 1975	348-357	eq. (6)	8
Borisova et al., 1978	293-353	eq. (17)	9
Bevia et al., 1985	298	sat. (10)	10
Ricna et al., 1989	278-323	sat. (7), eq. (37)	11
Letcher and Siswana, 1992	298	sat. (15), eq. (6)	12

^aNumber of experimental points in parentheses.

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

Saturation curve

The ternary system ethanol-toluene-water forms a miscibility gap of type 1. There are 12 references for this system over the temperature range 243-353 K. This evaluation was made on the basis of original papers with the exception of data of Ormandy and Craven,³ Tarasenkov and Polozhentseva,⁴ and Leikola,⁶ which were taken from the handbook of Kafarov;¹³ these data were also taken into account during evaluation but are not reported as compilation sheet because they do not contribute further to knowledge of the system. Only the binary system toluene-water is partially miscible. The data for this system were compiled and critically evaluated in a previously published SDS volume.¹⁴ The recommended values of mutual solubility at 298 K, are: $x'_2 = 0.9972$ and $x''_2 = 0.000$ 0104. The papers of Borisova et al., $(x'_2=0.9976 \text{ and } x''_2=0.0001 \text{ at } 293.2 \text{ K})$ and Letcher and Siswana, $(x'_2=0.999 \text{ and } x''_2=0.000 \text{ at } 298.2 \text{ K})$ report mutual solubility of the binary system. Accuracy of experimental data reported in Ref. 12 was stated by the authors to be 0.005 mole fraction, so these data are consistent. The water-rich phase, Ricna et al.¹¹ is reported to be toluene free over a wide range of temperatures and water concentrations. This indicates that their experimental accuracy was in the range of 0.001-0.005 mole fraction; lower than reported (0.0001 mole fraction). Data of Arzhanov et al.⁸ and Borisova et al.⁹ reported for the temperature range 348–357 K describe the vapor-liquid-liquid equilibrium. (The boiling temperatures of two-phase mixture of Ref. 8 were estimated from authors graph.) The point ($x_1=0.5536$ and $x_2=0213$) on saturation curve at 278.2 K, Rican et al.¹¹ appears to contain a typing error and is rejected. Data reported for 273.2, 293.2, 313.2 K by Tarasenkov and Polozhentseva⁴ contain errors for the toluene-rich phase; the experimental points are inconsistent with saturation curve in the region of low concentration of ethanol. These data are also rejected. Data of Borisova et al.,⁹ at 293.2 K, close to the plait point, show a miscibility gap similar to the data at 273 K and larger than data of Leikola.⁶ All other data for the saturation curve are consistent with one another. Ormandy and Craven³ reported seven isotherms which clearly show the temperature dependence of the saturation data in the range 243-303 K. Characteristic points on the binodal curve of the system ethanol-toluene-water at selected temperatures, reported in literature, are presented in Table 26. At the maximum ethanol concentration point, the errors estimated by the evaluator are to be 0.005 and 0.015 mole fraction of ethanol and benzene, respectively.

	Max. C ₂ H ₅ OH	concentration		Plait		
T/K	<i>x</i> ₁	<i>x</i> ₂	Ref.	<i>x</i> ₁	<i>x</i> ₂	Ref.
243.2	0.573	0.168	3	_	_	
258.2	0.541	0.113	3	_	_	
273.2	0.523	0.143	3	_	_	
273.2	0.520	0.128	2	_	_	
278.2	0.512	0.161	3	_	_	
278.2	0.505	0.100	11	_	_	
288.2	0.493	0.193	3	_	_	
293.2	0.475	0.166	6	_	_	
293.2	0.503	0.197	9	0.464	0.357	9
298.2	0.474	0.123	3	0.423	0.341	7
298.2	0.473	0.127	11	_	_	
298.2	0.472	0.159	12	0.41	0.36	12
303.2	0.465	0.139	3	_	_	
323.2	0.425	0.160	11	_	_	
347.6	0.415	0.166	9	0.403	0.228	9
347.7	_	_		0.342	0.219	8

The temperature of 298.2 K was selected to present the behavior of the system. All experimental saturation and equilibrium points at 298.2 K water-rich and benzene-rich branches together, were described by the equation:

$x_1 = 0.718\ 83 + 0.092\ 81\ \ln(x_2) - 0.488\ 76x_2 - 0.230\ 41x_2^2$

The least-squares method was used and the standard error of estimate was 0.0125. The compositions on the saturation curve calculated by the proposed equation are presented in Table 27 for selected concentrations to toluene in the mixture. The results of calculations (solid line) are also presented graphically in Fig. 14 together with all experimental data reported at 298.2 K.

TABLE 27. Calculated compositions along the saturation curve at 298.2 K

x_1	<i>x</i> ₂	x_1	x_2
0.0000	0.000 0104 Ref. 14	0.3525	0.5000
0.0773	0.0010	0.3417	0.5200
0.2865	0.0100	0.3305	0.5400
0.3459	0.0200	0.3191	0.5600
0.4002	0.0400	0.3073	0.5800
0.4276	0.0600	0.2952	0.6000
0.4438	0.0800	0.2829	0.6200
0.4540	0.1000	0.2702	0.6400
0.4601	0.1200	0.2573	0.6600
0.4634	0.1400	0.2441	0.6800
0.4647	0.1600	0.2307	0.7000
0.4642	0.1800	0.2170	0.7200
0.4625	0.2000	0.2030	0.7400
0.4596	0.2200	0.1888	0.7600
0.4558	0.2400	0.1743	0.7800
0.4512	0.2600	0.1596	0.8000
0.4458	0.2800	0.1447	0.8200
0.4397	0.3000	0.1295	0.8400
0.4331	0.3200	0.1141	0.8600
0.4259	0.3400	0.0984	0.8800
0.4182	0.3600	0.0825	0.9000
0.4100	0.3800	0.0664	0.9200
0.4014	0.4000	0.0501	0.9400
0.3924	0.4200	0.0335	0.9600
0.3830	0.4400	0.0167	0.9800
0.3732	0.4600	0.0082	0.9900
0.3630	0.4800	0.0000	0.9972 Ref. 14

TABLE 26. Characteristic points on the binodal curve of the system ethanol-toluene-water

Phases in equilibrium

Compositions of the coexisting phases in equilibrium for the ternary system ethanol-toluene-water were reported in six references over the temperature range 273-357 K as 11 data sets. Two of these data sets, of Arzhanov et al.,⁸ and Borisova et al.,⁹ were measured at the boiling temperatures of two-phase mixtures at atmospheric pressure. Data reported by Tarasenkov and Polozhentseva⁴ contain errors in the toluene-rich phase, as discussed above, and are rejected. Equilibrium phases for a boiling point of 248.2 K, Borisova et al.9 contain presumably an analytical error. This tie line is inconsistent within the data set; other tie lines at boiling temperatures, Refs. 8 and 9, are consistent and cover the full miscibility gap. Other reported data are consistent within each data set. The distribution of ethanol (direction of tie lines) between the phases changes with temperature and at the boiling point (348-357 K) the concentration of ethanol in both phases becomes nearly the same. The reported plait points are presented above in Table 2. All equilibrium data are treated as tentative. All experimental points at 298.2 K, both saturation and equilibrium data, 3,5,7,10,11,12 are presented in Fig. 14.

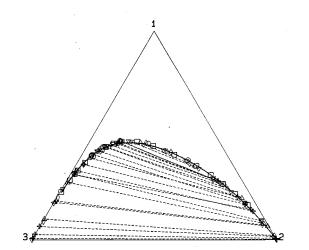


FIG. 14. Phase diagram of the system ethanol (1)-toluene (2)-water (3) at 298.2 K. Solid line-calculated saturation curve, ♦-experimental data, Ref. 10, O-experimental data, Ref. 3, - - experimental data, Ref. 11, - experimental data, Ref. 5, ∇-experimental data, Ref. 12, △-experimental data, Ref. 7, dashed lines-experimental tie lines, Refs. 7, 11, and 12.

References:

- ¹C. B. Curtis, J. Phys. Chem. 2, 371 (1897–1898).
- ²W. D. Bonner, J. Phys. Chem. 14, 738 (1909-1910).
- ³W. R. Ormandy and E. C. Craven, J. Inst. Pet. Technol. 7, 325, 422 (1921).
- ⁴D. N. Tarasenkov and E. N. Polozhentseva, Zh. Obshch. Khim. 2, 84 (1932).
- ⁵R. E. Washburn, A. E. Beguin, and O. C. Beckord, J. Am. Chem. Soc. **61**, 1694 (1939).
- ⁶E. Leikola, Suom. Kemistil. B 13, 13 (1940).
- ⁷P. Mondain-Monval and J. Quiquerez, Bull. Soc. Chim. Fr., Mem. 7, 240 (1940).
- ⁸P. G. Arzhanov, L. F. Komarova, and Yu. N. Garber, Zh. Prikl. Khim. (Leningrad) 48, 2089 (1975).
- ⁹I. A. Borisova, V. G. Vatskova, A. I. Gorbunov, and N. M. Sokolov, Khim. Prom-st (Moscow) 347 (1978).
- ¹⁰F. R. Bevia, D. P. Rico, and V. G. Yagues, Fluid Phase Equilibria 23, 269 (1985).
- ¹¹K. Ricna, J. Matous, J. P. Novak, and V. Kubicek, Collect. Czech. Chem. Commun. 54, 581 (1989).
- ¹²T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203 (1992).
- ¹³V. V. Kafarov, ed., Spravochnik po Rastvorimosti, Vol. 2, Troinye, Mnogokomponentnye Sistemy, Part II (Izd. Akademii Nauk SSSR, Moskva, 1963).
- ¹⁴D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ Pergamon, New York, 1989).

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Toluene (methylbenzene); C₇H₈; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements: W. D. Bonner, J. Phys. Chem. 14, 738-89 (1909-1910).

Variables: Compiled by: T/K = 273A. Skrzecz

Experimental Data Compositions along the saturation curve

	T/K	<i>x</i> ₁	<i>x</i> ₂	w_1	w_2			
t/°C	(compiler)	(com	piler)	(com	mpiler)			
0.0	273.2	0.3900	0.4764	0.2795	0.683			
		0.4451	0.3793	0.3498	0.596			
		0.4849	0.3023	0.4135	0.515			
		0.5198	0.1275	0.5695	0.279			
		0.4937	0.0748	0.6080	0.184			
		0.4202	0.0339	0.5990	0.096			
		0.3831	0.0226	0.5798	0.068			
		0.3224	0.0098	0.5345	0.032			
		0.2463	0.0042	0.4496	0.015			

Auxiliary Information

Method/Apparatus/Procedure:

In a tube 1 cm diameter and 12 cm long known amount, by weight, of hydrocarbon and water were placed into a temperature controlled bath. The contents of the tube were stirred and alcohol was added gradually until a homogeneous solution was obtained. Observations were made visually through the telescope of a cathetometer. The samples were always weighed immediately before and after each experiment. Concentrations were reported as weight of water in 1 g of binary water-hydrocarbon mixture and the weight of alcohol necessary to make a homogenous solution. The mass of binary water-hydrocarbon mixture was about 1 g; the mass of alcohol-up to 5 g.

Source and Purity of Materials:

(1) Kahlbaum; presumably dried and distilled. (2) Kahlbaum; presumably dried and distilled. (3) not specified.

Estimated Error:

accuracy of weighing 0.0001 g.

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Toluene (methylbenzene); C₇H₈; [108-88-3] (3) Water; H₂O; [7732-18-5]

Variables:

T/K = 298

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

Compiled by: A. Skrzecz

Original Measurements:

Soc. 61, 1694-5 (1939).

R. E. Washburn, A. E. Beguin, and O. C. Beckord, J. Am. Chem.

Experimental Data Compositions along the saturation curve

	T/K	x_1	<i>x</i> ₂		
t/°C	(compiler)	(com	piler)	w_1	w_2
25.0	298.2	0.1662	0.7975	0.0936	0.8984
		0.2194	0.7195	0.1304	0.855
		0.2668	0.6464	0.1674	0.811
		0.3106	0.5737	0.2066	0.763
		0.3543	0.4935	0.2529	0.704
		0.4074	0.3780	0.3266	0.606
		0.4497	0.2712	0.4083	0.492
		0.4695	0.1952	0.4737	0.394
		0.4696	0.1310	0.5289	0.295
		0.4604	0.1033	0.5496	0.246
		0.4449	0.0787	0.5642	0.199
		0.4333	0.0674	0.5676	0.176
		0.4022	0.0459	0.5666	0.129
		0.3697	0.0314	0.5546	0.094
		0.3315	0.0199	0.5304	0.063
		0.3155	0.0162	0.5178	0.053
		0.2843	0.0108	0.4889	0.037
		0.2284	0.0047	0.4248	0.017

Distribution of ethanol in ethanol-toluene-water system

t/°C	T/K (compiler)	w' ₁ hydrocarbon- rich phase	w ₁ " water- rich phase
25.0	298.2	0.002	0.110
		0.007	0.192
		0.013	0.257
		0.027	0.352
		0.047	0.417
		0.053	0.469
		0.065	0.500
		0.082	0.533
		0.094	0.556

Auxiliary Information

Method/Apparatus/Procedure:

The solubility curve was determined in a constant temperature bath by a titration method similar to that reported in Refs. 1-3. Refractive indexes were measured with an Abbe refractometer at the same temperature and presented as a concentration function in a graph. This graph was used to determine the concentration of alcohol in the samples of each phase when equilibrium had been reached. Phase equilibrium data were reported only as distribution of ethanol.

Source and Purity of Materials:

(1) source not specified; commercial grade absolute ethanol; refluxed over lime, distilled; $d(25 \circ C, 4 \circ C) = 0.7851$, n(25 °C,D)=1.359 40. (2) source not specified; analytical reagent grade; dried over Na, distilled; $d(25 \ ^{\circ}C, 4 \ ^{\circ}C) = 0.8608$, $n(25 \ ^{\circ}C, D) = 1.493 \ 71$. (3) distilled over KMnO₄.

Estimated Error:

temp. ± 0.1 °C.

References:

¹E. R. Washburn, V. Hnizda, and R. Vold, J. Am Chem. Soc. 53, 3237 (1931).

²R. Vold and E. R. Washburn, J. Am. Chem. Soc. 54, 4217 (1932).

³E. R. Washburn and H. C. Spencer, J. Am. Chem. Soc. 56, 361 (1934).

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Toluene (methylbenzene); C₇H₈; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

P. Mondain-Monaval, and J. Quiquerez, Bull. Soc. Chim. Fr., Mem. 7, 240-53 (1940).

Variable $T/K = 29$					Compiled by: A. Skrzecz				
			Co	•	ental Data coexisting pha	ases			
		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	<i>T</i> /K (compiler)	hydrocarbon- water- rich phase rich phase (complier) (complier)		phase	-	carbon- phase	water- rich phase		
25.00	298.15	0.020	0.980	0.0994	0.0002	0.010	0.990	0.220	0.001
	298.15	0.066	0.930	0.179	0.002	0.034	0.965	0.355	0.009
	298.15	0.078	0.908	0.274	0.008	0.041	0.956	0.480	0.029
	298.15	0.199	0.757	0.391	0.038	0.115	0.875	0.566	0.111
	298.15	0.246	0.675	0.445	0.079	0.151	0.830	0.564	0.200
	298.15	0.269	0.649	0.472	0.127	0.168	0.812	0.535	0.287
	298.15	0.354	0.486	0.466	0.210	0.255	0.700	0.460	0.415
	298.15	0.423	0.341	0.423	0.341	0.353	0.570	0.353	0.570 ^a

^aPlait point.

Auxiliary Information

Method/Apparatus/Procedure:

The analytical method was used. A sample of 100 mL of a ternary mixture, prepared by weight, was placed in a thermostat, agitated many times and then left for several hours to separate. The density and refractive index of each phase was measured. Inversion of density was observed.

Source and Purity of Materials:

(1) source not specified; $d(25 \circ C, 4 \circ C) = 0.7853$. (2) obtained in the laboratory; $d(24 \circ C, 4 \circ C) = 0.8622$. (3) not specified.

Estimated Error: temp. ±0.02 °C.

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Toluene (methylbenzene); C₇H₈; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements: P. G. Arzhanov, L. F. Komarova, and Yu. N. Garber, Zh. Prikl.

Khim. (Leningrad) 48, 2089-91 (1975). [Eng. transl. Russ. J. Appl. Chem. (Leningrad) 48, 2160-2 (1975)].

T/K = 348 - 353

Variables:

		x'_1	x'_2	x_1''	x_2''	w'_1	w2	w_1''	w_2''
t/°C	T/K (compiler)	hydroc rich		water-rich phase		hydrocarbon- rich phase (complier)		water-rich phase (compiler)	
80.0	353.2	0.075	0.925	0.085	0.000	0.039	0.961	0.192	0.000
76.5	349.7	0.139	0.815	0.144	0.003	0.078	0.912	0.298	0.012
75.5	348.7	0.205	0.705	0.220	0.006	0.124	0.854	0.412	0.022
75.1	348.3	0.261	0.603	0.263	0.015	0.172	0.793	0.457	0.052
74.7	347.9	0.290	0.530	0.283	0.030	0.204	0.746	0.463	0.098
74.5	347.7	0.342	0.219	0.342	0.219	0.359	0.460	0.359	0.460

Compiled by:

A. Skrzecz

Auxiliary Information

Method/Apparatus/Procedure:

The analytical method was used. The equilibrium was investigated at the boiling temperature at 760 Torr. The samples were taken for glc analysis through heated ca Analysis: column 2 m long and 4 mm diameter filled polichrom with 15% polyethyleneglycoladipinate; 100 100 mL/min; internal standard and homogenizer-acet Boiling temperatures of the two-phase mixture at 760 were estimated from the authors' graph.

Source and Purity of Materials:

as	(1) Source not specified; purified in the laboratory; b.p.=78.3
The	± 0.1 °C, $n(20$ °C,D)=1.3614; the properties were in
capillaries.	agreement with literature data, purity was checked by glc
d with	analysis.
00 °C; H ₂	(2) source not specified; purified in the laboratory; b.p.=110.7
etone.	± 0.1 °C, $n(20$ °C,D)=1.4969; the properties were in
0 Torr	agreement with literature data, purity was checked by glc
	analysis.
	(3) double distilled.

Estimated Error:

pressure ±0.1 Torr.

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Toluene (methylbenzene); C₇H₈; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

I. A. Borisova, V. G. Vatskova, A. I. Gorbunov, and N. M. Sokolov, Khim. Prom-st (Moscow) 347 (1978).

Variables:

T/K = 293 - 253

A. Skrzecz

Experimental Data Compositions of coexisting phases

Compiled by:

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''	
	T/K (compiler)	hydrocarbon- rich phase (complier)		rich	water- rich phase (complier)		hydrocarbon- rich phase		water- rich phase	
20	293.2	0.0000	0.9976	0.0000	0.0001	0.0000	0.9995	0.0000	0.0005	
		0.0209	0.9751	0.0767	0.0005	0.0106	0.9886	0.1750	0.0022	
		0.0485	0.9441	0.2067	0.0011	0.0250	0.9735	0.3986	0.0041	
		0.0797	0.9058	0.2253	0.0047	0.0420	0.9550	0.4205	0.0175	
		0.1066	0.8790	0.2546	0.0084	0.0570	0.9400	0.4550	0.0300	
		0.1866	0.7907	0.3533	0.0225	0.1050	0.8900	0.5500	0.0700	
		0.2548	0.6822	0.4629	0.0778	0.1550	0.8300	0.5800	0.1950	
		0.3769	0.5097	0.5027	0.1966	0.2616	0.7076	0.4960	0.3880	
		0.4643	0.3570	0.4643	0.3570	0.3720	0.5720	0.3720	0.5720 ^a	
80.0	353.2	0.0600	0.9152	0.0442	0.0007	0.0316	0.9633	0.1055	0.0034 ^t	
79.0	352.2	0.0650	0.9098	0.0510	0.0008	0.0343	0.9605	0.1205	0.0037 ^t	
78.0	351.2	0.0700	0.9001	0.0634	0.0009	0.0372	0.9566	0.1471	0.0042 ^t	
77.0	350.2	0.0869	0.8780	0.0858	0.0012	0.0468	0.9458	0.1927	0.0054 ^t	
76.0	349.2	0.1101	0.8480	0.1201	0.0030	0.0604	0.9306	0.2560	0.0128 ^t	
75.0	348.2	0.1366	0.8020	0.2122	0.0158	0.0774	0.9090	0.3888	0.0580 ^t	
74.5	347.7	0.2801	0.6000	0.3302	0.0660	0.1834	0.7859	0.4728	0.1891 ^b	
74.4	347.6	0.3910	0.3401	0.4146	0.1659	0.3324	0.5782	0.4554	0.3644 ^t	
74.3	347.5	0.4031	0.2276	0.4031	0.2276	0.4020	0.4540	0.4020	0.4540	

Auxiliary Information

^aCritical solubility point.

^bTemperatures are the boiling temperatures of the two-phase mixtures.

^cBoiling temperature estimated by the compiler.

Method/Apparatus/Procedure:

The method of description of concentration of phases in equilibrium was the same as reported in Ref. 1. No more details were reported in the paper.

Source and Purity of Materials:

(1) source not specified; properties were in agreement with literature data. (2) source not specified; properties were in agreement with literature data. (3) Not specified.

Estimated Error: Not reported.

References:

¹A S. Mozzhukhin, L. A. Serafimov, and V. A. Mitropolskaya, Zh. Fiz. Khim. 41, 1687 (1967).

Components:

Variables:

T/K = 298

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Toluene (methylbenzene); C₇H₈; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

F. R. Bevia, D. P. Rico, and V. G. Yagues, Fluid Phase Equilib. 23, 269-92 (1985).

Compiled by: A. Skrzecz

Experimental Data Compositions along the saturation curve

	T/K	<i>x</i> ₁ <i>x</i> ₂				
t/°C	(compiler)	(com	piler)	w_1	w_2	
25.0	298.2	0.0878	0.0022	0.196	0.010	
		0.2028	0.0034	0.390	0.013	
		0.3608	0.0296	0.548	0.090	
		0.4245	0.0666	0.561	0.176	
		0.4623	0.1221	0.532	0.281	
		0.4646	0.2344	0.442	0.446	
		0.4195	0.3584	0.343	0.586	
		0.3659	0.4608	0.270	0.680	
		0.2867	0.5963	0.188	0.782	
		0.1721	0.7830	0.098	0.892	

Auxiliary Information

Method/Apparatus/Procedure:

The analytical method was used. The quaternary system ethanol-toluene-water-chloroform was investigated. Mixtures of known composition representing the chosen ratios of components were vigorously stirred for at least 2 h and then allowed to separate. The refractive indexes of both phases were measured in a thermostated ERMA Abbe refractometer and the results were plotted as function of ethanol concentration. Solubility in the ternary system was calculated from these plots.

Source and Purity of Materials:

(1) Merck, analytical reagent grade; volatile impurities <0.1 mass % by glc. (2) Merck, analytical reagent grade; volatile impurities <0.1 mass % by glc. (3) not specified.

Estimated Error:

temp. ±0.1 °C.

Components: (1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Methylbenzene (toluene); C₇H₈; [108-88-3] (3) Water; H₂O; [7732-18-5] Variables: *T*/K=278

t/°C

 $t/^{\circ}C$

5.0

25.0

50.0

5.0

T/K

(compiler)

278.15

 x'_1

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0061

0.0255

0.0361

0.0442

0.0655

0.0996

0.0000

0.0000

0.0000

0.0072

0.0176

0.0170

0.0305

0.0571

0.0947

0.1172

0.1265

0.0000

0.0000

0.0000

hydrocarbon-

rich phase

T/K

(compiler)

278.15

298.15

323.15

Original Measurements:

K. Ricna, J. Matous, J. P. Novak, and V. Kubicek, Collect. Czech. Chem. Commun. 54, 581–5 (1989).

 W_1

0.8857

0.7719

0.6306

0.3875

0.2280

0.0832

0.0196

 w'_2

0.9988

0 9957

0.9953

0.9887

0.9753

0.9588

0.9298

0.8763

0.8501

0.8274

0.7935

0.7267

0.9986

0.9949

0.9869

0.9532

0.9059

0.8994

0.8767

0.8222

0.7686

0.7399

0.7203

0.9986

0.9982

0.9935

(compiler)

 w_1''

0.9971

0.9886

0.9887

0.9898

0.9818

0.9732

0.9351

0.8988

0.8786

0.8508

0.8478

0.8028

0.9967

0.9941

0.9794

0.9245

0.8706

0.8817

0.8327

0.7892

0.6808

0.6670

0.6669

0.9963

0.9910

0.9829

water-

rich phase

(compiler)

 W_2

0.0732

0.1281

0.2302

0.4261

0.5711

0.7443

0.7814

 w_2''

0.0026

0.0104

0.0102

0.0072

0.0101

0.0108

0.0346

0.0496

0.0654

0.0879

0.0793

0.1106

0.0028

0.0040

0.0144

0.0473

0.0702

0.0623

0.0975

0.1254

0.2065

0.2152

0.2149

0.0026

0.0076

0.0116

Compiled By:	
A Skrzecz	

 x_2

0.0356

0.0587

0.1045

0.1978

0.2780

0.4151

0.4251

 w'_1

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0039

0.0185

0.0276

0.0354

0.0550

0.0916

0.0000

0.0000

0.0000

0.0042

0.0119

0.0117

0.0219

0.0454

0.0806

0.1026

0.1136

0.0000

0.0000

0.0000

hydrocarbon-

rich phase

(compiler)

Experimental Data Compositions along the saturation curve

Compositions of coexisting phases

water-

rich phase

 x_2''

0.0013

0.0052

0.0051

0.0036

0.0050

0.0053

0.0168

0.0235

0.0310

0.0418

0.0369

0.0512

0.0014

0.0020

0.0072

0.0232

0.0332

0.0295

0.0460

0.0586

0.0963

0.1000

0.0998

0.0013

0.0038

0.0058

 x_1

0.8620

0.7072

0.5725

0.3597

0.2220

0.0928

0.0213

 x_1''

0.9980

0.9921

0.9919

0.9888

0.9744

0.9546

0.9080

0.8516

0.8331

0.8091

0.7895

0.7435

0.9973

0.9932

0.9770

0.9062

0.8236

0.8349

0.7857

0.7374

0.6349

0.6200

0.6194

0.9960

0.9927

0.9803

 x'_2

0.9938

0.9783

0.9763

0.9447

0.8855

0.8197

0.7283

0.6037

0.5554

0.5171

0.4727

0.3951

0.9930

0.9745

0.9364

0.8082

0.6710

0.6530

0.6093

0.5171

0.4518

0.4227

0.4009

0.9928

0.9908

0.9674

0.0000	019991	0.9707	0.0027	0.0000	0.7700	0.9000	0.0000
0.0030	0.9447	0.9672	0.0073	0.0016	0.9877	0.9752	0.0147
0.0047	0.8252	0.8669	0.0275	0.0027	0.9586	0.9000	0.0571
0.0068	0.7929	0.8333	0.0439	0.0041	0.9491	0.8598	0.0906
0.0081	0.7481	0.7961	0.0488	0.0051	0.9353	0.8342	0.1023
0.0331	0.6856	0.7719	0.0552	0.0219	0.9055	0.8126	0.1162
0.0306	0.6403	0.7294	0.0655	0.0213	0.8894	0.7755	0.1393
0.0428	0.6082	0.6888	0.0764	0.0307	0.8716	0.7379	0.1637
0.1021	0.5045	0.5390	0.1570	0.0807	0.7977	0.5546	0.3231
0.1256	0.4592	0.4553	0.2033	0.1041	0.7613	0.4574	0.4085
0.1603	0.4146	0.3320	0.2726	0.1387	0.7175	0.3218	0.5284

0.0027

Auxiliary Information

0.9757

Method/Apparatus/Procedure:

The titration method was used for solubility measurements. Water was added from a calibrated hypodermic syringe (controlled by a micrometer screw) to a binary ethanol–toluene mixture of known mass and composition until persistent turbidity was observed. The direct analytical method was used for liquid–liquid equilibrium measurements. A mixture was stirred vigorously for 2–3 h in a thermostated cell, ¹ and after phase separation samples were taken for analysis. A small amount of tetrahydroftran was added as an internal standard and homogenization agent in glc analysis. Calibration standards were analyzed separately for each phase prior to each sample analysis by glc. Conditions of the glc analysis were; glass column (2.5 mm i.d., 1.5 m), Poropak Q, 200 °C, carrier gas H_2 , thermal conductivity detector.

0.0000

0.9534

Source and Purity of Materials:

0.0000

0.9905

0.9860

(1) source not specified ''extra fine;'' distilled with benzene; 0.1% H₂O by the Karl Fischer method; $\rho(25 \ ^\circ\text{C}) = 0.784 \ 98 \ \text{g cm}^{-3}, \ n(25 \ ^\circ\text{C},\text{D}) = 1.3605.$

 Lachema Neratovice, A. R. grade; shaken five times with H₂SO₄ conc., three times with H₂O, then with NaOH, dried with Na, distilled: *p*(25 °C) = 0.861 24 g/cm³, *n*(25 °C,D) = 1.4939.
 (3) doubly distilled.

Estimated Error: temp. ±0.05 K.

0.0055	
0.0147	
0.0571	

1064

SKRZECZ, SHAW, AND MACZYNSKI

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Toluene (methylbenzene); C₇H₈; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

Complied by:

A. Skrzecz

T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203-17 (1992).

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the

a known mass of one component to a mixture of known

masses of the other two components. Precision weighing

syringes were used as described in Ref. 1. Tie line

Fischer titrations as reported in Ref. 3.

formation of a cloudy mixture on shaking after the addition of

compositions were determined by the refractive index method

reported in Ref. 2 and a complementary method using the Karl

Variables: T/K = 298

Experimental Data Compositions along the saturation curve

	T/K			w ₁	w2
t/°C	(compiler)	<i>x</i> ₁	<i>x</i> ₂	(com	piler)
25.0	298.2	0.000	0.000	0.000	0.000
		0.174	0.001	0.349	0.004
		0.242	0.003	0.445	0.011
		0.319	0.014	0.525	0.046
		0.404	0.041	0.575	0.117
		0.424	0.053	0.577	0.144
		0.460	0.099	0.554	0.238
		0.472	0.159	0.505	0.340
		0.456	0.228	0.440	0.440
		0.430	0.323	0.367	0.551
		0.378	0.441	0.284	0.663
		0.296	0.591	0.194	0.777
		0.174	0.785	0.099	0.892
		0.094	0.889	0.050	0.946
		0.000	0.999	0.000	0.999

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C T/K(compiler)		hydrocarbon- rich phase		water-rich phase		hydrocarbon- rich phase (compiler)		water-rich phase (compiler)	
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000
		0.341	0.510	0.470	0.170	0.240	0.719	0.494	0.358
		0.285	0.610	0.466	0.112	0.184	0.789	0.545	0.262
		0.230	0.697	0.445	0.070	0.139	0.844	0.572	0.185
		0.178	0.778	0.410	0.042	0.102	0.889	0.579	0.119
		0.090	0.890	0.315	0.012	0.048	0.940	0.523	0.040

Source and Purity of Materials:

(1) Merck, AR grade; AR grade; distilled, dried by refluxing with Mg and I2; purity better than 99.6 mole % by glc; d = 0.78524, n = 1.3594.

(2) BDH; used as received; purity better than 99.6 mole % by glc.

(3) not specified.

Estimated Error:

estimated comp. 0.005 mole fraction on the binodal curve and 0.01 mole fraction for tie lines (estimated by the authors).

References:

¹T. M. Letcher, S. Wooten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. 18, 1037 (1986).

²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. 35, 411 (1943).

³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff, J. Chem. Thermodyn. 21, 1053 (1989).

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

Auxiliary Information

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Methylcyclohexane (hexahydrotoluene); C₇H₁₄; [108-87-2] (3) Water; H₂O; [7732-18-5] ____

Varia T/K

Original Measurements:

C. B. Kretschmer and R. Wiebe, Ind. Eng. Chem. 37, 1130-2 (1945).

iables: = 228-298	Compiled by: A. Skrzecz	

4.7. Ethanol + Water + Methylcyclohexane

Experimental Data Compositions along the saturation curve

	T/K	<i>x</i> ₁	<i>x</i> ₂	w 1	x_2
t/°C	(compiler)	(complier)		(complier)	
-45.0	228.2	0.8952	0.0527	0.7251	0.2327
		0.8320	0.1470	0.5030	0.4843
		0.6471	0.3429	0.2562	0.7399
0.0	273.2	0.8580	0.0505	0.7005	0.2248
		0.8091	0.1429	0.4946	0.4761
		0.6366	0.3373	0.2545	0.7351
25.0	298.2	0.8349	0.0492	0.6850	0.2198
		0.7922	0.1399	0.4882	0.4700
		0.6275	0.3325	0.2530	0.7308

Comments and Additional Data

Water tolerance (S) was described with probable error < 0.5% at the range -45-25 °C by the equation: $\log(S) = a - b/(T/K)$. The parameters (a,b) were determined from plots. Water tolerance was defined as: $S = H_2O$ % by volume $\cdot(100$ -Hydrocarbon % by volume in the blend)/100.

vol % hydrocarbon	а	b
75	2.058	587.6
50	2.210	504.9
25	2.047	347.3

Auxiliary Information

Method/Apparatus/Procedure:

A glass tube with stirrer containing the ternary mixture was immersed in a bath, the temperature of which could be varied. Mixtures were prepared directly in the tube, by special pipettes at 15.5 °C. Precautions to exclude moisture and to prevent evaporation were observed. No correction was made for the slight expansion in volume when alcohol was mixed with hydrocarbon. In the paper the experimental results were expressed as the water tolerance of the alcohol-hydrocarbon blend. For practical purposes water tolerance was defined as the volume percent of water which can be added before separation occurs.

Source and Purity of Materials: (1) source not specified; anhydrous ethanol. (2) source not specified; b.p.=99.85-100 °C. (3) not specified.

Estimated Error:

composition <0.2% relative of volume fraction.

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) 1-Heptene; C₇H₁₄; [592-76-7] (3) Water; H₂O; [7732-18-5]

Original Measurements:

T. M. Letcher, B. C. Bricknell, I. D. Sewry, and S. E. Radloff, J. Chem. Eng. Data 39, 320-3 (1994).

Variables: Compiled by: T/K = 298A. Skrzecz

4.8. Ethanol + Water + 1-Heptene

Experimental Data

Compositions along the saturation curve

				w_1	w_2
t/°C	T/K (compiler)	x_1	<i>x</i> ₂	(com	piler)
25.0	298.2	0.000	1.000	0.000	1.000
		0.202	0.770	0.109	0.885
		0.361	0.579	0.223	0.762
		0.455	0.457	0.311	0.666
		0.538	0.342	0.409	0.555
		0.596	0.248	0.503	0.446
		0.628	0.171	0.586	0.340
		0.637	0.113	0.653	0.247
		0.611	0.063	0.700	0.154
		0.513	0.022	0.692	0.063
		0.412	0.013	0.620	0.042
		0.300	0.010	0.507	0.036
		0.239	0.005	0.438	0.020
		0.047	0.001	0.112	0.005
		0.000	0.000	0.000	0.000

Compositions of coexisting phases

t/°C	<i>T</i> /K (compiler)	2	arbon- phase		ter- phase	rich	earbon- phase piler)	rich	ter- phase piler)
25.0	298.2	0.365	0.578	0.595	0.246	0.225	0.761	0.504	0.44
		0.330	0.620	0.627	0.175	0.197	0.791	0.582	0.34
		0.262	0.700	0.639	0.121	0.148	0.843	0.645	0.2
		0.228	0.743	0.555	0.033	0.125	0.869	0.706	0.0
		0.193	0.783	0.442	0.017	0.103	0.892	0.641	0.0
		0.099	0.890	0.239	0.005	0.049	0.948	0.438	0.0

temp. within about 0.3 °C (duplicate determinations),

Auxiliary Information

Method/Apparatus/Procedure:

The experimental methods have been described in Ref. 1. No more details were reported in the paper.

Source and Purity of Materials:

(1) source not specified. (2) Aldrich; distilled; purity >99.8 mole % by glc, ρ = 0.692 65 g cm⁻³. (3) not specified.

Estimated Error:

Not reported.

References:

¹T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. **74**, 203 (1992).

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Heptane (*n*-heptane); C₇H₁₆; [142-82-5]
 (3) Water (hydrogen oxide); H₂O; [7732-18-5]

Evaluted by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.03)

4.9. Ethanol + Water + Heptane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.), compositions of coexisting phases in equilibrium (eq.) and distribution of ethanol between phases (distr.) for the system ethanol-heptane-water is given in Table 28.

TABLE 28.	Summary of	experimental	data for th	e system	ethanol-heptane-water
-----------	------------	--------------	-------------	----------	-----------------------

Author(s)	T/K	Type of data ^a	Ref.
Bonner, 1909	273	sat. (9)	1
Schweppe and Lorah, 1954	303	sat. (24), distr. (7)	2
Vorobeva and Karapetyants, 1966	298	sat. (15), eq.(9)	3
Letcher et al., 1986	298	sat. (8), eq.(3)	4

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system ethanol–heptane–water forms a large miscibility gap of type 1 covering the majority of the concentration triangle. The system was investigated by four groups over the temperature range 273–303 K; the saturation data are consistent with one another. Only the heptane–water binary system forms a miscibility gap. The data of this system were compiled and critically evaluated in a previously published SDS volume,⁵ the recommended values at 298 K are: $x_2^{n} = 4.3 \cdot 10^{-7}$ and $x_3^{i} = 5.6 \cdot 10^{-4}$. The data reported by Schweppe and Lorah,² at 303 K, and Vorobeva and Karapetyants,³ at 298 K, include solubility of the binary system heptane–water; $x_2^{n} = 0.0003$ and $x_3^{i} < 0.005$, respectively. These values are less precise and do not agree with the recommended data reported in Ref. 5. All experimental solubility and equilibrium data reported at 298 K in Refs. 3 and 4, were described by the equation:

$x_1 = 1.1136 + 0.1319 \ln(x_2) - 1.2083x_2 + 0.0932x_2^2$

The parameters were calculated by the least-squares method and the standard error of estimate was 0.0087. The selected points on the saturation curve, calculated by the above equation together with the "best" values of Ref. 5 are presented in Table 29 as in Fig. 1 as solid line.

<i>x</i> ₁	x_2	<i>x</i> ₁	<i>x</i> ₂
0.0000	0.000 000 43 Ref. 5	0.4242	0.5200
0.5735	0.0200	0.4070	0.5400
0.6408	0.0400	0.3897	0.5600
0.6703	0.0600	0.3723	0.5800
0.6844	0.0800	0.3548	0.6000
0.6900	0.1000	0.3372	0.6200
0.6903	0.1200	0.3196	0.6400
0.6869	0.1400	0.3019	0.6600
0.6809	0.1600	0.2842	0.6800
0.6729	0.1800	0.2664	0.7000
0.6634	0.2000	0.2486	0.7200
0.6526	0.2200	0.2308	0.7400
0.6407	0.2400	0.2129	0.7600
0.6281	0.2600	0.1951	0.7800
0.6147	0.2800	0.1772	0.8000
0.6007	0.3000	0.1593	0.8200
0.5862	0.3200	0.1414	0.8400
0.5713	0.3400	0.1235	0.8600
0.5559	0.3600	0.1056	0.8800
0.5403	0.3800	0.0877	0.9000
0.5243	0.4000	0.0699	0.9200
0.5081	0.4200	0.0520	0.9400
0.4917	0.4400	0.0341	0.9600
0.4751	0.4600	0.0163	0.9800
0.4583	0.4800	0.0000	0.999 44 Ref. 5
0.4413	0.5000		

TABLE 29. Calculated compositions along the saturation curve at 298.2 K

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system ethanol-heptane-water were reported in Refs. 3 and 4 at 298.2 K. The reported equilibrium data sets are not consistent with one another, although they are consistent within each data set. The data for phases in equilibrium differ very much from one another; they are treated as doubtful. Part of experimental tie lines from both discussed references are crossing one another and therefore they are rejected and not reported in Fig. 15. These tie lines cover the region of high heptane concentration (>0.79 mole fraction) in the heptane-rich phase.

The plait point at 298.2 K reported in Ref. 3 is $x_1 = 0.517$ and $x_2 = 0.409$.

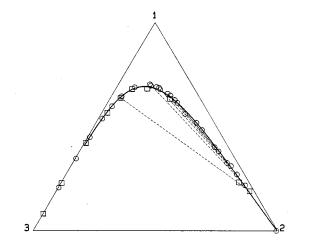


FIG. 15. Phase diagram of the system ethanol (1)—heptane (2)—water (3) at 298.2 K. Solid line—calculated saturation curve, O—experimental data, Ref. 3, D—experimental data, Ref. 4, dashed lines—experimental tie lines, Refs. 3 and 4.

References:

¹W. D. Bonner, J. Phys. Chem. **14**, 738 (1909–1910).

²J. L. Schweppe and J. R. Lorah, Ind. Eng. Chem. 46, 2391 (1954).

³A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 40, 3018 (1966).

⁴T. M. Letcher, S. Wootton, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037 (1986).

⁵D. G. Shaw, ed., *Solubility Data Series*, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Heptane (n-heptane); C₇H₁₆; [142-82-5]

Original Measurements:

W. D. Bonner, J. Phys. Chem. 14, 738-89 (1909-1910).

(3) Water; H₂O; [7732-18-5]

Variables: T/K = 273

Compiled by: A. Skrzecz

Experimental Data
Compositions along the saturation curve

		<i>x</i> ₁	<i>x</i> ₂	w ₁	w_2
t/°C	<i>T</i> /K(compiler)	(com	piler)	(com	plier)
0.0	273.2	0.5662	0.3557	0.4131	0.564
		0.7044	0.1695	0.6276	0.328
		0.7289	0.1126	0.7037	0.236
		0.7145	0.0736	0.7462	0.167
		0.7030	0.0656	0.7509	0.152
		0.6640	0.0438	0.7601	0.109
		0.6086	0.0250	0.7549	0.067
		0.5797	0.0176	0.7475	0.049
		0.4939	0.0092	0.6974	0.028

Auxiliary Information

Method/Apparatus/Procedure:

In a tube 1 cm diameter and 12 cm long known amount, by weight, of hydrocarbon and water were placed into a temperature controlled bath. The contents of the tube were stirred and alcohol was added gradually until a homogeneous solution was obtained. Observations were made visually through the telescope of a cathetometer. The samples were always weighed immediately before and after each experiment. Concentrations were reported as weight of water in 1 g of binary water-hydrocarbon mixture and the weight of alcohol necessary to make a homogenous solution. The mass of binary water-hydrocarbon mixture was about 1 g; the mass of alcohol-up to 5 g.

Source and Purity of Materials:

(1)	Kahlbaum;	presumably	dried	and	distilled.
(2)	Kahlbaum;	presumably	dried	and	distilled.
(3)	not specifie	ed.			

Estimated error:

accuracy of weighing 0.0001 g.

Components:

Variables:

T/K = 303

 $t/^{\circ}C$ 30.00

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2)Heptane (*n*-heptane); C₇H₁₆; [142-82-5] (3) Water; H₂O; [7732-18-5]

Original Measurements:

J. L. Schweppe and J.R. Lorah, Ind. Eng. Chem. 46, 2391-2 (1954).

Compiled by: A. Skrzecz

Experimental Data Compositions along the saturation curve

	T/K	<i>x</i> ₁	<i>x</i> ₂		
t/°C	(compiler)	(com	(compiler)		w_2
30.00	303.15	0.2061	0.7890	0.1071	0.8919
		0.3650	0.6296	0.2102	0.7886
		0.4437	0.5078	0.2831	0.7048
		0.5318	0.4133	0.3662	0.6190
		0.5996	0.3124	0.4565	0.5173
		0.6226	0.2892	0.4841	0.4891
	0.6865	0.1889	0.5990	0.3585	
		0.6687	0.2222	0.5597	0.4046
		0.6298	0.2674	0.5032	0.4647
		0.6997	0.1458	0.6495	0.2944
		0.7090	0.1137	0.6913	0.2411
		0.6963	0.0784	0.7292	0.1785
		0.6912	0.0636	0.7469	0.1495
		0.6477	0.0398	0.7563	0.1010
		0.4764	0.0073	0.6862	0.0230
		0.4957	0.0073	0.7021	0.0226
		0.5784	0.0135	0.7537	0.0384
		0.6367	0.0253	0.7727	0.0669
		0.6587	0.0394	0.7638	0.0993
		0.2808	0.0005	0.4988	0.0021
		0.1155	0.0002	0.2502	0.0009
		0.3727	0.0026	0.5986	0.0090
		0.0000	0.0003	0.0000	0.0016
		0.2738	0.0005	0.4901	0.0019

	0.2738	0.0005	0.4901	0.0019
Distribution	of ethanol in eth	anol-heptane-water syste	m	
<i>T</i> /K (compiler)		w ₁ ' hydrocarbon- rich phase		w ₁ " water- rich phase
303.15		0.029		0.106
		0.032		0.290
		0.050		0.392
		0.050		0.460
		_		0.624
		0.055		0.752
		0.145		0.663

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used. Third component (hexane or water) was added to the binary alcohol solutions, respectively, held in a temperature controlled bath until a cloud point was observed. The solutions were prepared by weight, using an analytical balance. Density and refractive index measurements were made for the mixture and then plotted separately for each component. Then tie lines were determined by analytical method. The two-phase mixtures were placed in a thermostated bath and agitated periodically. After phase separation, densities of both phases were measured and concentrations were read from the plots. Phase equilibrium data were reported in incomplete form; only distribution of ethanol between water and heptane was reported.

Source and Purity of Materials:

 U.S. Industrial Chemicals, Inc., U.S.P., 200-proof; n(30 °C)=1.3579; used as received.
 Philips Petroleum Co., pure grade; purity>99 mole %, n(30 °C)=1.3835.

(3) distilled.

Estimated Error:

temp. ± 0.03 °C.

Components:

(1) Ethanol (ethyl alcohol); C₂H₀O; [64-17-5]
 (2) Heptane (*n*-heptane); C₇H₁₆; [142-82-5]
 (3) Water; H₂O; [7732-18-5]

Original Measurements: A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 40, 3018–23 (1966). [Eng. transl. Russ. J. Phys. Chem. 40, 1619–22 (1966)].

Variables:

T/K = 298

Experimental Data Compositions along the saturation curve

Compiled by:

A. Skrzecz

T/K		<i>x</i> ₁	<i>x</i> ₂		
t/°C	(compiler)	(com	piler)	w_1	<i>w</i> ₂
25	298.2	0.0000	0.9945	0.000	0.999
		0.3108	0.6535	0.178	0.814
		0.4828	0.4488	0.325	0.657
		0.5591	0.3415	0.417	0.554
		0.6474	0.2381	0.535	0.428
		0.6843	0.1730	0.613	0.337
		0.6877	0.1609	0.627	0.319
		0.7009	0.1279	0.670	0.266
		0.6868	0.0730	0.731	0.169
		0.6432	0.0413	0.751	0.105
		0.5959	0.0257	0.745	0.070
		0.5372	0.0151	0.721	0.044
		0.4486	0.0081	0.661	0.026
		0.3467	0.0022	0.572	0.008
		0.2070	0.0010	0.399	0.004

Compositions of coexisting phases w_2'' x'_1 w'_1 w'_2 w''_1 x'_2 x_1'' x_2'' hyrocarbonwater-rich T/Krich phase hydrocarbonwater-rich phase $t/^{\circ}C$ (compiler) (compiler) (compiler) rich phase phase 25 298.2 0.000 1.000 0.365 0.003 < 0.001 1.000 0.591 0.009 0.030 0.970 0.492 0.008 0.014 0.986 0.697 0.026 0.128 0.857 0.692 0.086 0.064 0.933 0.716 0.194 0.218 0.758 0.695 0.135 0.879 0.659 0.116 0.278 0.270 0.698 0.677 0.181 0.150 0.843 0.601 0.350 0.326 0.630 0.656 0.222 0.190 0.800 0.553 0.407 0.381 0.568 0.626 0.266 0.233 0.755 0.502 0.464 0.401 0.542 0.612 0.284 0.250 0.736 0.482 0.486 0.517 0.409 0.517 0.409 0.360 0.620 0.360 0.620

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, Ref. 1, was used to determine solubility of the mixtures. The third component was added to the binary homogenous mixture until cloudiness was first observed. Density of the saturated mixtures was measured; these results were graphed. To obtain equilibrium, ternary mixtures were stirred in a thermostated vessel for several hours. After phase separation, the density of each phase was measured and composition was determined from the graphs prepared earlier. Concentration at the critical point was found by method described in Ref. 2. Water included in ethanol was taken into account in all measurements.

Source and Purity of Materials:

 source not specified, "rectificate grade:" distilled; water concentration was determined by the Karl Fischer method.
 source not specified; b.p. =98.4 °C, n(20 °C,D)=1.3877.
 not specified.

Estimated Error:

solubility ± 0.001 mass fraction.

References:

¹W. D. Bancroft, Phys. Rev. 3, 21 (1896).

²E. N. Zilberman, Zh. Fiz. Khim. 26, 1458 (1952).

Components:

Original Measurements:

Compiled by:

A. Skrzecz

T. M. Letcher, S. Wootton, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037–42 (1986).

Variables: T/K = 298

Experimental Data Compositions along the saturation curve

t/°C				<i>w</i> ₁	w_2
(compiler)	T/K	<i>x</i> ₁	<i>x</i> ₂	(compiler)	
25	298.2	0.082	0.000	0.186	0.000
		0.229	0.002	0.429	0.008
		0.421	0.006	0.640	0.020
		0.565	0.022	0.730	0.062
		0.678	0.067	0.734	0.158
		0.680	0.128	0.658	0.269
		0.631	0.244	0.521	0.438
		0.232	0.726	0.127	0.864

		x'_1	x'_2	x_1''	x_2''	w_1''	w'_2	w_1''	w_2''
t/°C (compiler)	T/K	/K rich phase		water-rich phase		hydrocarbon- rich phase (compiler)		water-rich phase (compiler)	
25	298.2	0.190	0.790	0.636	0.041	0.099	0.897	0.747	0.105
		0.110	0.875	0.418	0.006	0.054	0.943	0.637	0.020
		0.078	0.912	0.138	0.002	0.038	0.960	0.288	0.009

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, adapted from Ref. 1, was used to determine the coexistence curve. The third component was added from a weighed gas-tight syringe to a weighed mixture of the other two components in 100 mL long-neck flask until one drop (weighing less than 0.01 g) resulted in cloudiness. The flask was immersed in a well controlled water bath and shaken continuously. Refractive indexes of these mixtures were measured at 298.3 K to ensure that separation did not take place. Tie lines were determined from mixtures of known composition in the immiscible region. The flasks were shaken well and the phases allowed to separate. Refractive indexes of samples of both phases were measured and related to compositions on the coexistence curve. Each tie line was checked to ensure that it passed through the composition of the overall mixture.

Source and Purity of Materials:

(1) NCP, South Africa, absolute grade; dried with magnesium metal activated with iodine, distilled.

(2) Analytical Carbo Erba, purity 99.5 mole %; purified by passing through columns containing silica gel and basic alumina.(3) de-ionized.

Estimated Error:

composition ± 0.005 mole fraction for measured points, ± 0.01 mole fraction for tie-lines extremities in the worst case (authors).

References:

 $^1\mathrm{S}$. W. Briggs and E. W. Commings, Ind. Eng. Chem. **35**, 411 (1943).

(1) Ethanol (ethyl alcohol); C₂H₉O; [64-17-5] (2) *m*-Xylene (1,3-dimethylbenzene, 1,3-xylene); C₈H₁₀; [108-38-3] (3) Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1996.04)

4.10. Ethanol + Water + m-Xylene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system ethanol-m-xylene–water is given in Table 30.

TABLE 30. Summary of experimental data for the system ethanol-m-xylene-water

Author(s)	T/K	Type of data ^a	Ref.
Bonner, 1909	273	sat. (10)	1
Holt and Bell, 1914	273-373	sat.(43)	2
Mochalov, 1937	273, 323	eq.(12)	3
Leikola, 1940	293	sat. (6)	4
Mondain-Monval and Quiquerez, 1940	298	sat. (22), eq. (8)	5
Nam et al., 1972	298	sat. (16), eq. (10)	6

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system ethanol-*m*-xylene-water forms a miscibility gap of type 1. This critical evaluation is based on the original papers with the exception of data of Mochalov³ and Leikola⁴ which were taken from the handbooks of Seidel and Linke⁷ and Kafarov,⁸ respectively; these data sets were also taken into account during evaluation but are not reported as compilation sheets because they do not contribute further to knowledge of the system. Data of Holt and Bell² measured over a wide temperature range, show a decreasing miscibility gap with increasing temperature which is in agreement with the general expectation. The points x_1 =0.4706 at 336.2 K and x_1 =0.3956 at 373.2 K are incompatible with other data and presumably contain experimental errors. Data of Leikola⁴ for 293 K are close to the data for 298.2 K, with the exception of one experimental point x_1 =0.561, x_2 =0.243, which presumably contains an experimental error. Other solubility data are consistent within each data set, at the same temperature as well as with one another. Nam *et al.*,⁶ checked their experiments in two ways: repetition of experiment with another mixture and by reappearance of turbidity by lowering the temperature; so these data are considered more reliable. Equilibrium compositions of both phases, reported in Ref. 6, are consistent with saturation measurements. Only one binary system, *m*-xylene-water, forms a miscibility gap. This system was compiled and critically evaluated in a previously published SDS vol. 38, Ref. 9. These recommended values are: x_2' =0.000 0344 and x_2'' =0.9989 at 273 K; x_2' =0.000 029 and $x_2'''=0.9978$ at 293 K and $x_2'=0.000 027$ and $x_2''=0.9974$ at 298 K. All experimental data are treated as tentative. Data reported at 298.2 K by Mondain-Monval and Quiquerez⁵ and Nam *et al.*, $^6 x_2 < 0.96$ (water-rich and hydrocarbon-rich branches were treated together), were used to construct the fitting equation:

$x_1 = 0.765\ 79 + 0.087\ 29 \ln(x_2) - 0.495\ 55 x_2 - 0.284\ 48 x_2^2$

The parameters were calculated by the least-squares method and the standard error of estimate was 0.0164. Selected points on the saturation curve, calculated by this equation together with the recommended values of Ref. 9 are presented in Table 31 and in Fig. 16 as the solid line. Experimental points at 298.2 K are also shown.

x1	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.0000	0.000 027 Ref. 9	0.3983	0.4800
0.1623	0.0010	0.3864	0.5000
0.3588	0.0100	0.3741	0.5200
0.4143	0.0200	0.3615	0.5400
0.4645	0.0400	0.3485	0.5600
0.4894	0.0600	0.3351	0.5800
0.5038	0.0800	0.3215	0.6000
0.5124	0.1000	0.3075	0.6200
0.5171	0.1200	0.2932	0.6400
0.5192	0.1400	0.2785	0.6600
0.5192	0.1600	0.2636	0.6800
0.5177	0.1800	0.2484	0.7000
0.5148	0.2000	0.2328	0.7200
0.5108	0.2200	0.2170	0.7400
0.5059	0.2400	0.2009	0.7600
0.5001	0.2600	0.1845	0.7800
0.4936	0.2800	0.1678	0.8000
0.4864	0.3000	0.1508	0.8200
0.4789	0.3200	0.1336	0.8400
0.4702	0.3400	0.1160	0.8600
0.4613	0.3600	0.0982	0.8800
0.4519	0.3800	0.0802	0.9000
0.4421	0.4000	0.0618	0.9200
0.4318	0.4200	0.0432	0.9400
0.4210	0.4400	0.0243	0.9600
0.4099	0.4600	0.0000	0.9974 Ref. 9

TABLE 31. Calculated compositions along the saturation curve at 298.2 K

Phases in equilibrium

The equilibrium data for the ternary system ethanol-*m*-xylene-water were reported in the papers of Mochalov,³ Mondain-Monval and Quiquerez,⁵ and Nam *et al.*⁶ At 298.2 K data of Mondain-Monval and Quiquerez,⁵ covered the region closer to the plait point, while data of Nam *et al.*⁶ Covered the region from low methanol concentrations to the equilibrium point (x_1 =0.412, x_2 =0.024 in water-rich phase). The results are consistent within each data set but there is significant disagreement between the first tie line of Ref. 5 (x_1'' = 0.261 and x = 0.002) and the tie lines reported by Nam *et al.*⁶ Other reported tie lines are consistent. Systematic changes in the partition coefficient of ethanol are observed with temperature. Characteristic points on the binodal curve, plait point and maximum ethanol concentration, reported or estimated, are presented at selected temperatures in Table 32. The errors of maximum ethanol concentration point estimated by the evaluator are 0.01 and 0.02 mole fraction of ethanol and *m*-xylene, respectively.

TABLE 32. Characteristic points on binodal curve of the system ethanol-m-xylene-water

	Ma	ax. C ₂ H ₅ OH concentrat	ion	Plait points		
T/K	<i>x</i> ₁	<i>x</i> ₂	Ref.	<i>x</i> ₁	<i>x</i> ₂	Ref.
273.2	0.59	0.19	1	0.549	0.329	3
298.2	0.53	0.15	5	0.470	0.324	5
298.2	0.53	0.13	6	_	_	
314.2	0.51	0.15	2	_	_	
323.2	_	_		0.492	0.274	3
336.2	0.46	0.16	2	—	—	

The experimental data for phase equilibria at 298.2 K are considered tentative and are presented in the Fig. 16.

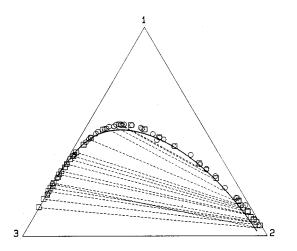


FIG. 16. Phase diagram of the system ethanol (1)—m-xylene (2)—water (3) at 298.2 K. Solid line—calculated saturation curve, O—experimental data, Ref. 5, D—experimental data, Ref. 6, dashed lines—experimental tie lines, Refs. 5 and 6.

References:

¹W. D. Bonner, J. Phys. Chem. **14**, 738 (1909–1910).

²A. Holt and N. M. Bell, J. Chem. Soc. 105, 633 (1914).

³K. I. Mochalov, Izv. Biol. Nauchno-Issled. Inst. Molotov. Gos. Univ. 11, 25 (1937).

⁴E. Leikola, Suomen Kemistil. B 13, 13 (1940).

⁵P. I. Mondain-Monval and J. Quiquerez, Bull. Soc. Chim. Fr. Mem. 7, 240 (1940).

⁶S. Nam, T. Hayakawa, and S. Fujita, J. Chem. Eng. Jpn. 5, 327 (1972).

⁷A. Seidel and W. F. Linke, *Solubilities of Inorganic and Organic Compounds*, Supplement to the Third Edition, Am. Chem. Soc., D (Ban Nostrand Co., New York, 1952).

⁸V. V. Kafarov, ed., Spravochnik po Rastvorimosti, Vol. 2, Troinye, Mnogokomponentnye Sistemy, Kniga II (Izd. Akademii Nauk SSSR, Moskva, 1963).

⁹D. G. Shaw, ed., Solubility Data Series, Vol. 38, Hydrocarbons with Water and Seawater, Part II: Hydrocarbons C₈ to C₃₆ (Pergamon, New York, 1989).

Components:

(1) Ethanol (ethyl alcohol); C_2H_6O ; [64-17-5] (2) *m*-Xylene (1,3-dimethylbenzene, 1,3-xylene); C_8H_{10} ; [108-38-3] (3) Water; H_2O ; [7732-18-5] Original Measurements:

W. D. Bonner, J. Phys. Chem. 14, 738-89 (1909-1910)

(3) Water; H_2U ; [//32-18-5]			
Variables:	Compiled by:		
T/K=273	A. Skrzecz		

	Experimental Data Compositions along the saturation curve					
	m (II	<i>x</i> ₁	<i>x</i> ₂	w ₁	w2	
t/°C	T/K (compiler)	(com	piler)	(com	piler)	
0.0	273.2	0.4350	0.4704	0.2795	0.6967	
		0.5548	0.2714	0.4444	0.5011	
		0.5912	0.1911	0.5294	0.3944	
		0.6028	0.1170	0.6139	0.2745	
		0.5772	0.0835	0.6396	0.2133	
		0.5387	0.0490	0.6627	0.1390	
		0.5036	0.0302	0.6667	0.0920	
		0.4684	0.0223	0.6516	0.0714	
		0.3953	0.0114	0.6047	0.0403	
		0.3177	0.0027	0.5387	0.0106	

Auxiliary Information

Method/Apparatus/Procedure:

In a tube 1 cm diameter and 12 cm long known amount, by weight, of hydrocarbon and water were placed into a temperature controlled bath. The contents of the tube were stirred and alcohol was added gradually until a homogeneous solution was obtained. Observations were made visually through the telescope of a cathetometer. The samples were always weighed immediately before and after each experiment. Concentrations were reported as weight of water in 1 g of binary water–hydrocarbon mixture and the weight of alcohol necessary to make a homogeneous solution. The mass of binary water–hydrocarbon mixture was about 1 g; the mass of alcohol—up to 5 g.

Source and Purity of Materials:

Kahlbaum; presumably dried and distilled.
 Kahlbaum; presumably dried and distilled.
 not specified.

Estimated Error:

accuracy of weighing 0.0001 g.

IUPAC-NIST SOLUBILITY DATA SERIES

=

Components: (1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) m-Xylene (1,3-dimethylbenzene, 1,3-xylene); C₈H₁₀; [108-38 (3) W

Original Measurements:

A. Holt and N. M. Bell, J. Chem. Soc. 105, 633-9 (1914).

ables: = 273–373			Compiled by: A. Skrzecz			
Experimental Data Compositions along the saturation curve						
	T/K			w ₁	w2	
t/°C	(compiler)	<i>x</i> ₁	<i>x</i> ₂	(com	piler)	
0	273.2	0.4112	0.4918	0.2598	0.7162	
		0.5335	0.3189	0.4023	0.5542	
		0.5827	0.2323	0.4895	0.4497	
		0.5961	0.1783	0.5443	0.3752	
		0.5907	0.1446	0.5749	0.3243	
		0.6002	0.1196	0.6091	0.2797	
		0.5843	0.0873	0.6393	0.2201	
		0.5522	0.0600	0.6557	0.1642	
		0.5271	0.0450	0.6604	0.1299	
		0.5143	0.0362	0.6649	0.1079	
19	292.2	0.4043	0.4836	0.2587	0.7132	
		0.5069	0.3031	0.3961	0.5458	
		0.5344	0.2131	0.4753	0.4368	
		0.5471	0.1636	0.5275	0.3635	
		0.5637	0.1318	0.5714	0.3079	
		0.5452	0.1087	0.5856	0.2691	
		0.5398	0.0922	0.6023	0.2371	
		0.5200	0.0691	0.6191	0.1896	
		0.4731	0.0404	0.6254	0.1231	
		0.4289	0.0223	0.6172	0.0740	
41	314.2	0.3853	0.4608	0.2556	0.7045	
		0.4719	0.2822	0.3873	0.5338	
		0.4963	0.1979	0.4630	0.4255	
		0.5075	0.1517	0.5124	0.3530	
		0.5075	0.1214	0.5443	0.3001	
		0.5007	0.0998	0.5645	0.2593	
		0.4661	0.0557	0.5964	0.1643	
		0.4437	0.0442	0.5949	0.1366	
		0.4122	0.0336	0.5836	0.1096	
		0.4035	0.0268	0.5864	0.0898	
63	336.2	0.3708	0.4435	0.2530	0.6974	
		0.4167	0.3322	0.3254	0.5979	
		0.4706	0.2814	0.3870	0.5333	
		0.4522	0.2163	0.4186	0.4614	
		0.4606	0.1836	0.4503	0.4137	
		0.4644	0.1587	0.4751	0.3741	
		0.4564	0.1248	0.5028	0.3168	
		0.4566	0.0993	0.5315	0.2664	
		0.4495	0.0766	0.5540	0.2176	
		0.4035	0.0419	0.5628	0.1347	
100	373.2	0.3956	0.1881	0.3988	0.4370	
		0.3824	0.0759	0.4972	0.2274	
		0.4097	0.0375	0.5752	0.1213	

t/°C	T/K (compiler)	x'_2 hydrocarbon- rich phase (compiler)	x ["] ₂ water-rich phase (compiler)
0	273.2	0.8018	0.0093
0	273.2	0.6995	0.0229
19	292.2	0.8212	0.0105
19	292.2	0.5840	0.0527

Distribution of m-xylene in ethanol-m-xylene-water system

Auxiliary Information

Method/Apparatus/Procedure:

To a known volume of *m*-xylene small portions of alcohol were added. After each addition of alcohol, water was added until a distinct milkiness was observed. The mixture was kept at constant temperature and was shaken repeatedly.

Source and Purity of Materials:

(1) source not specified; "absolute" ethyl alcohol; used as received. (2) source not specified; "nearly pure" m-xylene; used as

received. (3) distilled.

Estimated Error: Not reported.

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) *m*-Xylene (1,3-dimethylbenzene, 1,3-xylene); C₈H₁₀; [108-38-3] (3) Water; H₂O; [7732-18-5]

Variables: T/K=298 Compiled by: A. Skrzecz

Original Measurements:

Mem. 7, 240-53 (1940).

P. Mondain-Monval and J. Quiquerez, Bull. Soc. Chim. Fr.

Experimental Data Compositions along the saturation curve							
	T/K	<i>x</i> ₁	x_2				
t/°C	(compiler)	(com	piler)	w_1	w_2		
25.00	298.15	0.2039	0.0006	0.3948	0.0029		
	298.15	0.2763	0.0036	0.4880	0.0145		
	298.15	0.3433	0.0105	0.5536	0.0389		
	298.15	0.3887	0.0176	0.5876	0.0614		
	298.15	0.4485	0.0344	0.6144	0.1086		
	298.15	0.4717	0.0421	0.6216	0.1279		
	298.15	0.4992	0.0592	0.6175	0.1689		
	298.15	0.4895	0.0553	0.6158	0.1602		
	298.15	0.5132	0.0783	0.6014	0.2114		
	298.15	0.5238	0.0917	0.5915	0.2387		
	298.15	0.5328	0.1163	0.5680	0.2857		
	298.15	0.5345	0.1343	0.5490	0.3180		
	298.15	0.5344	0.1479	0.5347	0.3410		
	298.15	0.5304	0.1818	0.4995	0.3945		
	298.15	0.5185	0.2237	0.4569	0.4543		
298.	298.15	0.5133	0.2312	0.4479	0.4649		
	298.15	0.4877	0.2887	0.3932	0.5363		
	298.15	0.4618	0.3456	0.3463	0.5972		
	298.15	0.4287	0.4037	0.3009	0.6531		
	298.15	0.3870	0.4940	0.2462	0.7242		
	298.15	0.3168	0.5931	0.1843	0.7952		
	298.15	0.1803	0.7874	0.0898	0.9039		

Compositions of coexisting phases x'_1 x'_2 w_1'' w_2'' x_1'' x_2'' w'_1 w'_2 hydrocarbonwater-T/Khydrocarbonrich phase rich phase water-(compiler) rich phase $t/^{\circ}C$ (compiler) (compiler) rich phase 25.00 298.15 0.051 0.002 0.023 0.975 0.470 0.010 0.938 0.261 298.15 0.146 0.838 0.395 0.019 0.070 0.927 0.591 0.066 298.15 0.182 0.475 0.044 0.091 0.902 0.621 0.133 0.782 298.15 0.229 0.713 0.526 0.090 0.121 0.867 0.595 0.235 298.15 0.285 0.646 0.537 0.115 0.158 0.827 0.573 0.282 0.320 0.330 298.15 0.592 0.541 0.142 0.186 0.794 0.545 298.15 0.342 0.555 0.541 0.148 0.206 0.770 0.539 0.340 298.15 0.470 0.470 0.324 0.576 0.362 0.576^{a} 0.324 0.362

^aPlait point.

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

Auxiliary Information

Method/Apparatus/Procedure:

The analytical method was used. 100 mL of ternary mixture, prepared by weight, was placed in thermostat, agitated many times and then leave for several hours to separate. The density and refractive index of each phase was measured. Inversion of density was observed.

Source and Purity of Materials:

source not specified; d(25 °C,4 °C)=0.7853.
 source not specified; d(25 °C, 4 °C)=0.8593, b.p. = 138.1 °C at 739 Torr.
 not specified.

Estimated Error: temp. ±0.02 °C.

Components: (1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]

(2) m-Xylene (1,3-dimethylebenzene, 1,3-xylene); C₈H₁₀; [108-38-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

S. Nam, T. Hayakawa, and S. Fujita, J. Chem. Eng. Jpn. 5, 327-34 (1972).

Variables: T/K=298	Compiled by: A. Skrzecz					
		Experime Compositions along	ental Data the saturation curve			
	T/K	<i>x</i> ₁	<i>x</i> ₂			
$t/^{\circ}\mathbf{C}$	(compiler)	(compiler)		w_1	w_2	
25.00	298.15	0.1678	0.8001	0.0829	0.9109	
		0.2748	0.6548	0.1517	0.8331	
		0.3464	0.5499	0.2094	0.7661	
		0.4281	0.4081	0.2988	0.6565	
		0.4730	0.3222	0.3651	0.5731	
		0.5102	0.2433	0.4371	0.4803	
		0.5310	0.1772	0.5040	0.3877	
		0.5349	0.1275	0.5567	0.3059	
		0.5097	0.0729	0.6061	0.1998	
		0.4685	0.0447	0.6150	0.1351	
		0.4368	0.0309	0.6100	0.0993	
		0.3816	0.0175	0.5809	0.0613	
		0.3284	0.0096	0.5388	0.0364	
		0.2806	0.0052	0.4907	0.0210	
		0.2410	0.0028	0.4437	0.0117	
		0.1988	0.0015	0.3861	0.0065	

		x'_1	x'_2	x_1''	x_2''	w'_1	w2	w_1''	w_2''
t/°C	T/K (compiler)	rich	carbon- phase piler)	ph	r-rich ase piler)	-	arbon- phase		r-rich ase
25.00	298.15	0.049	0.945	0.1506	0.0008	0.022	0.977	0.311	0.004
		0.066	0.923	0.1888	0.0015	0.030	0.968	0.371	0.007
		0.076	0.907	0.2272	0.0021	0.035	0.962	0.426	0.009
		0.080	0.903	0.2430	0.0031	0.037	0.960	0.446	0.013
		0.090	0.888	0.2662	0.0044	0.042	0.954	0.474	0.018
		0.114	0.864	0.3068	0.0069	0.054	0.942	0.519	0.027
		0.118	0.860	0.3221	0.0084	0.056	0.940	0.534	0.032
		0.134	0.834	0.3562	0.0129	0.065	0.929	0.563	0.047
		0.145	0.818	0.3789	0.0164	0.071	0.922	0.580	0.058
		0.164	0.800	0.4118	0.0239	0.081	0.912	0.599	0.080

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used to determine solubility curve. A binary ethanol-xylene mixture of known composition was prepared in a conical flask with silicone stopper to prevent evaporation. The mixture was placed in a thermostated vessel, agitated by a magnetic stirrer and titrated through a needle of the syringe with water until two phases were observed. The result was checked by another ternary mixture, of the same composition as above: (a) titrated with one of the pure components until the turbidity disappeared, (b) by reappearance of turbidity by lowering the temperature about 0.5 °C. The two-phase mixture was placed in a 50 mL $\,$ glass-stoppered test tube at temperature of 25 °C, shaken vigorously, kept for nearly 2 h in a constant temperature water bath, and after separation each layer was pipetted for sampling. Refractive index and density of each phase were measured and composition was found from the calibration curves constructed during solubility measurements. When mixtures were not separated clearly after several hours, a centrifuge was used to obtain separation.

Source and Purity of Materials:

(1) Wako Pure Chemical Inst. Ltd., guaranteed reagent; $\rho(25 \text{ °C}) = 785.32 \text{ kg m}^{-3}$, n(25 °C, D) = 1.3600; used as received. (2) Kishida Chem. Ltd., guaranteed reagent; $\rho(25 \,^{\circ}\text{C})$

= 859.88 kg m⁻³, $n(25 \circ C,D) = 1.4940$; used as received. (3) ion exchanged, distilled.

Estimated Error:

temp. ±0.02 °C and ±0.1 °C (near plait point).

TABLE 34. Calculate	d compositions	along the	saturation	curve at	298.2 K
---------------------	----------------	-----------	------------	----------	---------

Components:	Evaluated by:	
 Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] o-Xylene (1,2-dimethylbenzene, 1,2-xylene); C₈H₁₀; [95-47-6] Water; H₂O; [7732-18-5] 	A. Skrzecz (1995.04)	

4.11. Ethanol + Water + o-Xylene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system ethanol-o-xylene-water is given in Table 33.

TABLE 33. Summary of experimental data for the system ethanol-o-xylene-water

Author(s)	T/K	Type of data ^a	Ref.
Bonner, 1909	273	sat. (10)	1
Nam et al., 1972	298	sat. (16), eq. (10)	2

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system ethanol–o-xylene–water forms a miscibility gap of type 1. The system was measured at temperatures 273 and 298 K in two references. Only one binary system, o-xylene–water, forms a miscibility gap. Binary data were compiled and critically evaluated in a previously published SDS volume.³ The recommended values of mutual solubility of the o-xylene–water system at 298 K are: $x'_2 = 0.9974$ and $x''_2 = 0.000 029 3.^3$ Binary data were not reported together with the ternary system and data reported in Ref. 1 and ± 0.1 mass % (estimated by the evaluator) for data reported in Ref. 1 and ± 0.1 mass % (estimated by the authors) for data reported in Ref. 2. Experimental data for phases in equilibrium, reported in Ref. 2, were also used to construct the binodal curve. Although the composition of the o-xylene–rich phase is outside the saturation measurements and is scattered, the data appear to be consistent within one another. The data reported from both references appear consistent although they were measured at different temperatures. The system shows increasing solubility with temperature. Data at both temperatures are treated as tentative. The data at 298.2 K (Ref. 2) were described by the equation:

$x_1 = 0.746 \ 15 + 0.086 \ 71 \ \ln(x_2) - 0.437 \ 11x_2 - 0.325 \ 75x_2^2$.

The least-squares method was used. The standard error of estimate was 0.0127. The model is not valid in the region of high concentration of o-xylene (x_2 >0.98). Compositions on the saturation curve calculated by the equation are presented in Table 34 for selected concentrations of o-xylene in the mixture. The results of calculations (solid line) are presented also graphically (Fig. 17) together with all experimental data reported at 298.2 K.

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.0000	0.000 0293 Ref. 3	0.3861	0.5000
0.1468	0.0010	0.3741	0.5200
0.3424	0.0100	0.3617	0.5400
0.3981	0.0200	0.3489	0.5600
0.4490	0.0400	0.3358	0.5800
0.4748	0.0600	0.3223	0.6000
0.4901	0.0800	0.3085	0.6200
0.4995	0.1000	0.2943	0.6400
0.5052	0.1200	0.2797	0.6600
0.5081	0.1400	0.2648	0.6800
0.5090	0.1600	0.2496	0.7000
0.5082	0.1800	0.2341	0.7200
0.5061	0.2000	0.2182	0.7400
0.5029	0.2200	0.2020	0.7600
0.4987	0.2400	0.1855	0.7800
0.4937	0.2600	0.1686	0.8000
0.4878	0.2800	0.1515	0.8200
0.4813	0.3000	0.1340	0.8400
0.4741	0.3200	0.1162	0.8600
0.4663	0.3400	0.0981	0.8800
0.4580	0.3600	0.0797	0.9000
0.4491	0.3800	0.0611	0.9200
0.4397	0.4000	0.0421	0.9400
0.4299	0.4200	0.0228	0.9600
0.4196	0.4400	0.0032	0.9800
0.4088	0.4600	0.0000	0.9974 Ref. 3
0.3976	0.4800		

Phases in equilibrium

For the ternary system ethanol-o-xylene-water, phases, in equilibrium were measured only in Ref. 2 at temperature 298.2 K. The tie lines cover the middle area of miscibility gap and are consistent with one another. They are considered tentative. The plait point was not reported. All experimental data reported at 298.2 K, Ref. 2, are presented in Fig. 17.

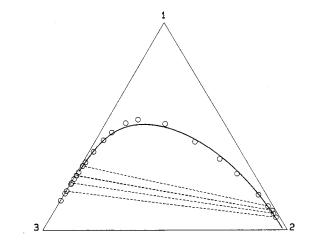


FIG. 17. Phase diagram of the system ethanol (1)—o-xylene (2)—water (3) at 298.2 K. Solid line—calculated saturation curve, O—experimental results of Ref. 2, dashed lines—experimental tie lines, Ref. 2.

References:

¹W. D. Bonner, J. Phys. Chem. 14, 738 (1909–1910).

²S. Nam, T. Hayakawa, and S. Fujita, J. Chem. Eng. Jpn. 5, 327 (1972).

³D. G. Shaw, ed., *Solubility Data Series*, Vol. 38, Hydrocarbons with Water and Seawater, Part II: Hydrocarbons C₈ to C₃₆ (Pergamon, New York, 1989).

Components:

Variables:

T/K = 273

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) *o*-Xylene (1,2-dimethylbenzene, 1,2-xylene); C₈H₁₀;
 [95-47-6]
 (3) Water; H₂O; [7732-18-5]

Original Measurements:

W. D. Bonner, J. Phys. Chem. 14, 738-89 (1909-1910)

Compiled by: A. Skrzecz

Experimental Data Compositions along the saturation curve					
t/°C	T/K	<i>x</i> ₁	<i>x</i> ₂	<i>w</i> ₁	w2
0.0	273.2	0.4153	0.4972	0.2604	0.718
		0.5053	0.3972	0.3464	0.627
		0.6030	0.2120	0.5181	0.419
		0.5977	0.1544	0.5690	0.338
		0.5873	0.1124	0.6094	0.268
		0.5580	0.0677	0.6485	0.181
		0.5252	0.0434	0.6616	0.125
		0.4615	0.0230	0.6445	0.073
		0.4116	0.0109	0.6212	0.037
		0.3232	0.0037	0.5434	0.014

Auxiliary Information

Method/Apparatus/Procedure:

In a tube 1 cm diameter and 12 cm long known amount, by weight of hydrocarbon and water were placed into a temperature controlled bath. The contents of the tube were stirred and alcohol was added gradually until a homogeneous solution was obtained. Observations were made visually through the telescope of a cathetometer. The samples were always weighed immediately before and after each experiment. Concentrations were reported as weight of water in 1 g of binary water-hydrocarbon mixture and the weight of alcohol necessary to make a homogenous solution. The mass of binary water-hydrocarbon mixture was about 1 g; the mass of alcohol—up to 5 g.

Source and Purity of Materials:

Kahlbaum; presumably dried and distilled.
 Kahlbaum; presumably dried and distilled.
 not specified.

Estimated Error:

accuracy of weighting 0.001 g.

(1) Ethanol (ethyl alcohol); C_2H_6O ; [64-17-5] (2) o-Xylene (1,2-dimethylbenzene, 1,2-xylene); C_8H_{10} ; [95-47-6] (3) Water; H₂O; [7732-18-5]

Variables: T/K=298

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

Compiled by: A. Skrzecz

Original Measurements:

327-34 (1972).

S. Nam, T. Hayakawa, and S. Fujita, J. Chem. Eng. Jpn. 5,

Experimental Data Compositions along the saturation curve x_1 x_2 T/K $t/^{\circ}C$ (compiler) (compiler) w_1 w_2 25.00 298.15 0.1710 0.7960 0.0847 0.9089 0.2727 0.6577 0.1502 0.8348 0.3432 0.5521 0.2072 0.7681 0.6590 0.4256 0.4106 0.2964 0.5110 0.2465 0.4353 0.4839 0.5312 0.1251 0.5568 0.3023 0.5143 0.0827 0.5963 0.2210 0.0472 0.6124 0.4700 0.1416 0.4333 0.0314 0.6060 0.1013 0.3785 0.0177 0.5774 0.0624 0.0098 0.5377 0.0369 0 3276 0.2801 0.0053 0.4900 0.0212 0.0033 0.0140 0.2479 0.4521 0.2226 0.0023 0.4192 0.0099 0.1777 0.0012 0.3543 0.0056 0.1439 0.0006 0.2999 0.0030

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''
t/°C	T/K (compiler)	rich	carbon- phase piler)	ph	r-rich ase piler)	~	carbon- phase		r-rich ase
25.00	298.15	0.061	0.922	0.190	0.002	0.028	0.969	0.372	0.008
		0.080	0.903	0.229	0.003	0.037	0.960	0.428	0.012
		0.095	0.889	0.265	0.004	0.044	0.953	0.472	0.018
		0.095	0.889	0.264	0.005	0.044	0.953	0.471	0.019
		0.116	0.862	0.310	0.007	0.055	0.941	0.522	0.029
		0.102	0.876	0.306	0.008	0.048	0.948	0.517	0.030
		0.130	0.849	0.362	0.014	0.062	0.934	0.566	0.052
		0.147	0.816	0.403	0.023	0.072	0.921	0.592	0.079
		0.167	0.796	0.448	0.036	0.083	0.910	0.611	0.114

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used to determine solubility curve. A binary ethanol-xylene mixture of known composition was prepared in a conical flask with silicone stopper to prevent evaporation. The mixture was placed in a thermostated vessel, agitated by a magnetic stirrer and titrated through a needle of the syringe with water until two phases were observed. The result was checked by another ternary mixture, of the same composition as above: (a) titrated with one of the pure components until the turbidity disappeared, (b) by reappearance of turbidity by lowering the temperature about 0.5 °C. The two-phase mixture was placed in a 50 mL glass-stoppered test tube at temperature of 25 °C, shaken vigorously, kept for nearly 2 h in a constant temperature water bath, and after separation each layer was pipetted for sampling. Refractive index and density of each phase were measured and composition was found from the calibration curves constructed during solubility measurements. When mixtures were not separated clearly after several hours, a centrifuge was used to obtain separation.

Source and Purity of Materials:

 (1) Wako Pure Chemical Inst. Ltd., guaranteed reagent; ρ(25 °C) = 785.32 kg m⁻³, n(25 °C,D) = 1.3600; used as received.
 (2) Kishida Chem. Ltd., guaranteed reagent; ρ(25 °C) 270.20 kg m⁻³, (25 °C,D) = 1.50/25 mm/dammingles.

= 870.29 kg m⁻³, n(25 °C,D) = 1.50175; used as received. (3) ion exchanged, distilled.

Estimated Error:

temp. ± 0.02 °C and ± 0.1 °C (near plait point).

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) *p*-Xylene (1,4-dimethylbenzene, 1,4-xylene); C₈H₁₀; [106-42-3] (3) Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.04)

4.12. Ethanol + Water + *p*-Xylene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system the system ethanol-p-xylene-water is given in Table 35.

TABLE 35. Summary of experimental data for the system ethanol-p-xylene-water

Author(s)	T/K	Type of data ^a	Ref.
Bonner, 1909	288	sat. (12)	1
Nam et al., 1972	298	sat. (16), eq. (9)	2
Letcher et al., 1989	298	sat.(15), eq. (6)	3

^aNumber of experimental points in parentheses.

Saturation curve

The system ethanol–*p*-xylene–water forms a miscibility gap of type 1. Solubility data for the saturation curve obtained by the titration method were reported in all three references. Data for phases in equilibrium, reported in Refs. 2 and 3, were also used for construction of the binodal curve. Only one binary pair of components, *p*-xylene–water, is partially miscible. Data of this system were compiled and critically evaluated in a previously published SDS volume.⁴ The recommended, values of mutual solubility of *p*-xylene–water system at 298.2 K are: $x_2^{\prime\prime}$ = 3.1·10⁻⁵ and x_2^{\prime} = 0.9974. The end points of the saturation curve, Ref. 3, were reported to be x_1 =0.000, x_2 =0.998 and x_1 =0.065, x_2 =0.000, which suggests that ethanol is only partially soluble in water. These numerical results are within the accuracy of experimental measurements which was stated by the authors to be 0.005 mole fraction, however, they are not adequate to describe the region of low ethanol concentration. Data of Bonner, Ref. 1, reported at 288.2 K, are consistent with the results of Refs. 2 and 3. All experimental saturation data reported at 298.2 K^{2.3} are in agreement. For x_2 >0.003, the results were fitted to the equation:

$x_1 = 0.845 \ 30 + 0.111 \ 30 \ \ln(x_2) = 0.704 \ 79x_2 = 0.144 \ 88x_2^2$

The parameters were calculated by the least-squares method and the standard error of estimate was 0.0246. Selected points on the saturation curve, calculated by this equation together with the "best" values of Ref. 4 are presented in Table 36. Experimental points at 298.2 K are also presented in Fig. 18.

TABLE 36. Calculated compositions along the saturation curve at 298.2 K

1080

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.0000	0.000 031 Ref. 4	0.3795	0.5000
0.0758	0.0010	0.3668	0.5200
0.3257	0.0100	0.3539	0.5400
0.3957	0.0200	0.3406	0.5600
0.4586	0.0400	0.3272	0.5800
0.4894	0.0600	0.3134	0.6000
0.5069	0.0800	0.2994	0.6200
0.5171	0.1000	0.2852	0.6400
0.5226	0.1200	0.2708	0.6600
0.5250	0.1400	0.2561	0.6800
0.5249	0.1600	0.2413	0.7000
0.5229	0.1800	0.2262	0.7200
0.5194	0.2000	0.2109	0.7400
0.5147	0.2200	0.1954	0.7600
0.5090	0.2400	0.1798	0.7800
0.5023	0.2600	0.1639	0.8000
0.4949	0.2800	0.1479	0.8200
0.4868	0.3000	0.1316	0.8400
0.4781	0.3200	0.1152	0.8600
0.4688	0.3400	0.0987	0.8800
0.4591	0.3600	0.0819	0.9000
0.4489	0.3800	0.0650	0.9200
0.4382	0.4000	0.0479	0.9400
0.4272	0.4200	0.0306	0.9600
0.4158	0.4400	0.0132	0.9800
0.4040	0.4600	0.0044	0.9900
0.3919	0.4800	0.0000	0.9974 Ref. 4

Phases in equilibrium

Compositions of equilibrium phases of the ternary system ethanol-*p*-xylene-water at 298.2 K were reported in Refs. 2 and 3. These data are presented in Fig. 18. The reported tie lines cross one another. For similar compositions of the hydrocarbon-rich phase, the concentration of ethanol at equilibrium in the water-rich phase is always reported to be lower by Nam *et al.*,² than by Letcher *et al.*,³ e.g.: $x_1'=0.044 \ x_2'=0.939, \ x_1'=0.0728 \ x_2'=0.0004 \ (Ref. 2) and \ x_1'=0.031 \ x_2'=0.960, \ x_1'=0.0292 \ x_2'=0.0007 \ (Ref. 3) or \ x_1'=0.163 \ x_2'=0.806, \ x_1'=0.4457 \ x_2'=0.0369 \ (Ref. 2) and \ x_1'=0.168 \ x_2'=0.795, \ x_1'=0.514 \ x_2'=0.074 \ (Ref. 3).$ These equilibrium data sets are not consistent with one another, although each is internally consistent. The plait point of the system at 298.2 K, calculated by Letcher and Siswana⁵ was reported to be $x_1=0.48 \ x_2=0.35$. The plait point reported by Bonner at 288.2 K¹ was $x_1=0.486, \ x_2=0.340$. The equilibrium and saturation data are presented together with calculated binodal curve in Fig. 18.

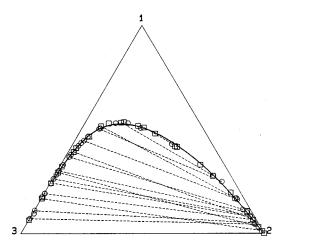


FIG. 18. Phase diagram of the system ethanol (1)—*p*-xylene (2)—water (3) at 298.2 K. Solid line—calculated binodal curve, O—experimental results of Ref. 2, □—experimental results of Ref. 3, dashed lines—experimental tie lines, Refs. 2 and 3.

References:

¹W. D. Bonner, J. Phys. Chem. 14, 738 (1909–1910).

²S. Nam, T. Hayakawa, and S. Fujita, J. Chem. Eng. Jpn. 5, 327 (1972).

³T. M. Letcher, P. M. Siswana, P. van der Watt, and S. Radloff, J. Chem. Thermodyn. 21, 1053 (1989).

 4 D. G. Shaw, ed., Solubility Data Series, Vol. 38, Hydrocarbons with Water and Seawater, Part II: Hydrocarbons C₈ to C₃₆ (Pergamon, New York, 1989).

⁵T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203 (1992).

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) *p*-Xylene (1,4-dimethylbenzene, 1,4-xylene); C₈H₁₀; [106-42-3]
 (3) Water; H₂O; [7732-18-5]

Original Measurements:

W. D. Bonner, J. Phys. Chem. 14, 738-89 (1909-1910).

(3) Water, 1120, [7732-10-5]		
Variables:	Compiled by:	
T/K=273	A. Skrzecz	

			perimental Data s along the saturation	curve		
	T/K	<i>x</i> ₁	<i>x</i> ₂	<i>w</i> ₁	w_2	
$t/^{\circ}C$	(compiler)	(com	piler)	(com	piler)	-
15.0	288.2	0.3768	0.5161	0.2343	0.7397	
		0.4732	0.3581	0.3468	0.6048	
		0.4856	0.3401	0.3631	0.5860	plait point
		0.5238	0.2629	0.4318	0.4994	
		0.5532	0.1734	0.5220	0.3772	
		0.5572	0.1318	0.5671	0.3091	
		0.5280	0.0630	0.6337	0.1744	
		0.5040	0.0464	0.6407	0.1358	
		0.4753	0.0353	0.6354	0.1086	
		0.4308	0.0222	0.6190	0.0735	
		0.3625	0.0103	0.5741	0.0375	

Auxiliary Information

Method/Apparatus/Procedure:

In a tube 1 cm diameter and 12 cm long known amount, by weight, of hydrocarbon and water were placed into a temperature controlled bath. The contents of the tube were stirred and alcohol was added gradually until a homogeneous solution was obtained. Observations were made visually through the telescope of a cathetometer. The samples were always weighed immediately before and after each experiment. Concentrations were reported as weight of water in 1 g of binary water–hydrocarbon mixture and the weight of alcohol necessary to make a homogenous solution. The mass of binary water–hydrocarbon mixture was about 1 g; the mass of alcohol—up to 5 g.

Source and Purity of Materials:

Kahlbaum; presumably dried and distilled.
 Kahlbaum; presumably dried and distilled.
 not specified.

Estimated Error:

accuracy of weighing 0.0001 g.

IUPAC-NIST SOLUBILITY DATA SERIES

2

Components: (1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) *p*-Xylene (1,4-dimethylbenzene, 1,4-xylene); C₈H₁₀; [106-42-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

S. Nam, T. Hayakawa, and S. Fujita, J. Chem. Eng. Jpn. 5, 327–34 (1972).

Variables: Compiled by: T/K = 298A. Skrzecz **Experimental Data** Compositions along the saturation curve x_1 x_2 T/Kt/°C (compiler) (compiler) w_2 w_1 25.00 298.15 0.8004 0.0832 0.9108 0.1685 0.2750 0.6529 0.1521 0.8323 0.0963 0.0050 0.2097 0.0250 0.4276 0.4062 0.2993 0.6552 0.5057 0.2401 0.4365 0.4777 0.1761 0.5042 0.3863 0.5297 0.5292 0.1257 0.5548 0.3037 0.5049 0.0755 0.5990 0.2063 0.4636 0.0441 0.6119 0.1340 0.4206 0.0266 0.6025 0.0879 0.0309 0.6073 0.4339 0.0998 0.3789 0.0175 0.5783 0.0615 0.0096 0.5381 0.0364 0.3277 0.2815 0.0052 0.4918 0.0208 0.2399 0.0028 0.4423 0.0117 0.0015 0.3774 0.1930 0.0066

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	<i>T</i> /K (compiler)	rich	carbon- phase piler)	ph	r-rich ase piler)	2	carbon- phase		r-rich ase
25.00	298.15	0.044	0.939	0.0728	0.0004	0.020	0.977	0.167	0.002
		0.051	0.932	0.1113	0.0006	0.023	0.974	0.242	0.003
		0.066	0.918	0.1917	0.0011	0.030	0.967	0.376	0.005
		0.080	0.903	0.2413	0.0028	0.037	0.960	0.444	0.012
		0.086	0.897	0.2613	0.0036	0.040	0.957	0.469	0.015
		0.102	0.876	0.3000	0.0064	0.048	0.948	0.512	0.025
		0.115	0.853	0.3671	0.0154	0.055	0.939	0.570	0.055
		0.163	0.806	0.4457	0.0369	0.080	0.914	0.608	0.116
		0.247	0.701	0.5013	0.0720	0.131	0.858	0.601	0.199

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used to determine solubility curve. A binary ethanol-xylene mixture of known composition was prepared in a conical flask with silicone stopper to prevent evaporation. The mixture was placed in a thermostated vessel, agitated by a magnetic stirrer and titrated through a needle of the syringe with water until two phases were observed. The result was checked by another ternary mixture, of the same composition as above: (a) titrated with one of the pure components until the turbidity disappeared, (b) by reappearance of turbidity by lowering the temperature about 0.5 °C. The two-phase mixture was placed in a 50 mL glass-stoppered test tube at temperature of 25 °C, shaken vigorously, kept for nearly 2 h in a constant temperature water bath, and after separation each layer was pipetted for sampling. Refractive index and density of each phase were measured and composition was found from the calibration curves constructed during solubility measurements. When mixtures were not separated clearly after several hours, a centrifuge was used to obtain separation.

Source and Purity of Materials:

(1) Wako Pure Chemical Inst. Ltd., guaranteed reagent; $\rho(25 \ ^{\circ}C) = 785.32 \text{ kg m}^{-3}$, $n(25 \ ^{\circ}C,D) = 1.3600$; used as received. (2) Kishida Chem. Ltd., guaranteed reagent; $\rho(25 \ ^{\circ}C)$

= 856.65 kg m⁻³, n(25 °C,D) = 1.4916; used as received. (3) ion exchanged, distilled.

Estimated Error:

temp. $\pm 0.02~^\circ C$ and $\pm 0.1~^\circ C$ (near plait point).

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) p-Xylene (1,4-dimethylbenzene, 1,4-xylene); C₈H₁₀; [106-42-3] (3) Water; H₂O; [7732-18-5]

Variables: T/K = 298

Experimental Data Compositions along the saturation curve						
				w 1	w2	
t/°C (compiler)	T/K	<i>x</i> ₁	<i>x</i> ₂	(con	piler)	
25.0	298.2	0.000	0.998	0.000	0.9997	
		0.107	0.875	0.050	0.946	
		0.196	0.763	0.099	0.892	
		0.328	0.572	0.195	0.782	
		0.418	0.424	0.287	0.671	
		0.479	0.312	0.374	0.562	
		0.516	0.224	0.455	0.455	
		0.534	0.157	0.525	0.356	
		0.528	0.098	0.587	0.251	
		0.465	0.050	0.604	0.150	
		0.410	0.023	0.599	0.077	
		0.320	0.008	0.532	0.031	
		0.241	0.003	0.443	0.013	
		0.174	0.001	0.349	0.005	
		0.065	0.000	0.151	0.000	

Compositions of coexisting phases								
	x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''
T/K	-				rich	phase	ph	r-rich ase piler)
298.2	0.415	0.433	0.508	0.252	0.282	0.678	0.430	0.491
	0.275	0.650	0.532	0.147	0.153	0.831	0.534	0.340
	0.168	0.795	0.514	0.074	0.083	0.909	0.608	0.202
	0.066	0.919	0.391	0.022	0.030	0.967	0.582	0.076
	0.031	0.960	0.292	0.007	0.014	0.985	0.501	0.028
	0.011	0.985	0.168	0.001	0.005	0.994	0.339	0.005
		hydroc T/K rich 298.2 0.415 0.275 0.168 0.066 0.031	$\begin{array}{c c} & x_1' & x_2' \\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \frac{x_1' x_2'}{T/K} \xrightarrow{x_1'' x_2''} \frac{x_1'' x_2''}{m_{\text{phase}}} \xrightarrow{w_1'} \frac{w_1'}{m_{\text{phase}}} $ 298.2 0.415 0.433 0.508 0.252 0.282 0.275 0.650 0.532 0.147 0.153 0.168 0.795 0.514 0.074 0.083 0.066 0.919 0.391 0.022 0.030 0.031 0.960 0.292 0.007 0.014	$\frac{x_1' x_2'}{T/K} \frac{x_1'' x_2''}{\begin{array}{c} & x_1'' x_2'' \\ & & & \\ \hline \\ & & \\ & $	$\frac{x_1' x_2'}{T/K} \frac{x_1' x_2'}{\text{rich phase}} \frac{x_1'' x_2''}{phydrocarbon-} x_1'' x_2'' x_2'' x_1'' x_2'' x_2'' x_1''' x_2''' x_2''' x_1''''''''''''''''''''''''''''''''''''$

=

Compiled by: A. Skrzecz

Original Measurements:

J. Chem. Thermodyn. 21, 1053-60 (1989).

T. M. Letcher, P. M. Siswana, P. van der Watt, and S. Radloff,

Method/Apparatus/Procedure:

The titration method was used to determine binodal curve. A binary mixture of known composition was titrated with the third component until cloudiness was observed. Tie line compositions were related to the coexistence curve; water was determined by the Karl Fischer titration. The methods were described in Ref. 1.

Source and Purity of Materials:

(1) source not specified; used as received. (2) source not specified; recrystallized three times. (3) not specified.

Estimated Error:

comp. <0.005 mole fraction (estimated authors' precision on binodal curve), <0.01 mole fraction (estimated authors' precision of tie lines).

References:

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037 (1986).

Components: (1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] [107-39-1]

(2) 2,4,4-Trimethyl-1-pentene (alpha-diisobutylene); C₈H₁₆; (3) Water; H₂O; [7732-18-5]

Variables: T/K = 228 - 298

4.13. Ethanol + Water + 2,4,4-Trimethyl-1-pentene Experimental Data

Compositions along the saturation curve

Original Measurements:

(1945).

Compiled by:

A. Skrzecz

C. B. Kretschmer and R. Wiebe, Ind. Eng. Chem. 37, 1130-2

	T/K	<i>x</i> ₁	<i>x</i> ₂	w ₁	w2
t/°C	(compiler)	(com	piler)	(com	piler)
-45.0	228.2	0.6682	0.2471	0.5127	0.4619
		0.4515	0.5010	0.2671	0.7219
0.0	273.2	0.6242	0.2309	0.5021	0.4523
		0.4355	0.4832	0.2648	0.7158
25.0	298.2	0.5984	0.2213	0.4954	0.4463
		0.4258	0.4725	0.2634	0.7120

Comments and Additional Data

Water tolerance (S) was described with probable error <0.5% at the range -45-25 °C by the equation: $\log(S)=a-b/(T/K)$. The parameters (a, b) were determined from plots. Water tolerance was defined as: S=H₂O % by volume (100-Hydrocarbon % by volume in the blend)/100.

vol % hydrocarbon	а	b
75	1.400	340.3
50	1.842	355.4

Auxiliary Information

Method/Apparatus/Procedure:

A glass tube with stirrer containing the ternary mixture was immersed in a bath, the temperature of which could be varied. Mixtures were prepared directly in the tube, by special pipettes at 15.5 °C. Precautions to exclude moisture and to prevent evaporation were observed. No correction was made for the slight expansion in volume when alcohol was mixed with hydrocarbon. In the paper the experimental results were expressed as the water tolerance of the alcohol-hydrocarbon blend. For practical purposes water tolerance was defined as the volume percent of water which can be added before separation occurs.

(1) sour	ce not specified; anhydrous ethanol.
(2) sour	ce not specified.
(3) not	specified.

temp. within about 0.3 °C (duplicate determinations), composition <0.2% relative of volume fraction.

Components:

Variables:

T/K = 273 - 298

 $t/^{\circ}C$ 0.0

20.0

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) 1-Octene; C₈H₁₆; [111-66-0] (3) Water; H₂O; [7732-18-5]

Original Measurements:

J. Nowakowska, C. B. Kretschmer, and R. Wiebe, J. Chem. Eng. Data Ser. 1, 42-5 (1956).

Compiled by: A. Skrzecz

4.14. Ethanol + Water + 1-Octene

Experimental Data

Compositions along the saturation curve

(compiler) w1 w2 273.2 0.0329 0.0000 0.080 0.000 0.0712 0.0000 0.144 0.000 0.1702 0.0000 0.344 0.000 0.1967 0.0000 0.343 0.000 0.1967 0.0002 0.451 0.001 0.2288 0.0002 0.431 0.001 0.2472 0.0002 0.456 0.001 0.2472 0.0005 0.510 0.002 0.3610 0.0015 0.588 0.066 0.4352 0.0041 0.655 0.015 0.4720 0.0057 0.684 0.020 0.6121 0.0230 0.755 0.669 0.6821 0.0554 0.735 0.167 0.7073 0.1311 0.649 0.239 0.6514 0.2406 0.509 0.438 0.5339 0.353 0.652 0.000 0.515 0.0000 0.164 0.000	T/K	<i>x</i> ₁	<i>x</i> ₂		
0.0515 0.0000 0.122 0.000 0.0712 0.0000 0.232 0.000 0.1702 0.0000 0.335 0.000 0.1967 0.0000 0.335 0.000 0.2288 0.0002 0.431 0.001 0.2472 0.0005 0.510 0.002 0.3610 0.0015 0.588 0.002 0.3610 0.0015 0.588 0.002 0.4352 0.0041 0.655 0.015 0.4720 0.0057 0.684 0.020 0.6121 0.0230 0.755 0.669 0.6212 0.6650 0.735 0.137 0.6121 0.0230 0.755 0.669 0.6514 0.2406 0.509 0.438 0.5339 0.3958 0.350 0.652 0.3476 0.6144 0.187 0.809 0.0515 0.0000 0.164 0.000 0.1712 0.0000 0.312 0.0001 0		(con	piler)	w_1	w ₂
0.0712 0.0000 0.164 0.0000 0.1702 0.0000 0.344 0.000 0.1967 0.0002 0.431 0.001 0.2288 0.0002 0.431 0.001 0.2472 0.0005 0.510 0.002 0.3610 0.0015 0.588 0.006 0.4352 0.0041 0.655 0.015 0.4320 0.0057 0.684 0.029 0.6121 0.0230 0.755 0.069 0.6972 0.0650 0.735 0.167 0.7073 0.1311 0.649 0.293 0.6514 0.2406 0.509 0.432 0.3476 0.6144 0.187 0.805 0.3476 0.6144 0.187 0.805 0.9515 0.0000 0.122 0.000 0.164 0.0000 0.222 0.000 0.164 0.0000 0.252 0.000 0.164 0.0000 0.307 0.000	273.2	0.0329	0.0000	0.080	0.000
0.1164 0.0000 0.252 0.000 0.1702 0.0000 0.344 0.000 0.2288 0.0002 0.431 0.001 0.2287 0.0002 0.431 0.001 0.2472 0.0002 0.456 0.001 0.2900 0.0005 0.510 0.002 0.3610 0.0015 0.588 0.006 0.4352 0.0041 0.655 0.015 0.4720 0.0057 0.6684 0.020 0.6121 0.0230 0.755 0.069 0.6621 0.0504 0.750 0.135 0.6972 0.6650 0.735 0.167 0.3476 0.6144 0.187 0.805 0.3376 0.6144 0.187 0.805 298.2 0.0329 0.0000 0.080 0.000 0.164 0.0000 0.222 0.000 0.122 0.000 0.164 0.0000 0.307 0.000 0.122 0.000 0		0.0515	0.0000	0.122	0.000
0.1702 0.0000 0.344 0.000 0.1967 0.0000 0.385 0.000 0.2288 0.0002 0.431 0.001 0.2900 0.0005 0.510 0.002 0.3610 0.0015 0.588 0.002 0.3610 0.0057 0.684 0.020 0.4720 0.057 0.684 0.020 0.6121 0.0230 0.755 0.069 0.6821 0.0504 0.750 0.135 0.6972 0.0650 0.735 0.632 0.7073 0.1311 0.649 0.293 0.6514 0.2406 0.509 0.435 0.3476 0.6144 0.187 0.805 298.2 0.0329 0.0000 0.307 0.000 0.164 0.0000 0.252 0.000 0.164 0.0002 0.312 0.001 0.164 0.0002 0.312 0.001 0.1658 0.0002 0.312 0.001		0.0712	0.0000	0.164	0.000
0.1967 0.0000 0.385 0.0001 0.2288 0.0002 0.431 0.001 0.2900 0.0005 0.510 0.002 0.3610 0.0015 0.588 0.006 0.4352 0.0041 0.655 0.015 0.4720 0.0057 0.684 0.029 0.6121 0.0230 0.755 0.069 0.6821 0.0504 0.750 0.135 0.6972 0.0650 0.735 0.167 0.7073 0.1311 0.649 0.293 0.6514 0.2406 0.509 0.438 0.5339 0.3958 0.350 0.632 0.3476 0.6144 0.187 0.805 298.2 0.0329 0.0000 0.122 0.000 0.0112 0.0000 0.122 0.000 0.164 0.0002 0.312 0.001 0.1677 0.0000 0.307 0.000 0.164 0.0002 0.312 0.001 <td></td> <td>0.1164</td> <td>0.0000</td> <td>0.252</td> <td>0.000</td>		0.1164	0.0000	0.252	0.000
0.2288 0.0002 0.431 0.001 0.2472 0.0002 0.456 0.001 0.3610 0.0015 0.588 0.006 0.4352 0.0041 0.655 0.015 0.4720 0.0057 0.684 0.020 0.6121 0.0230 0.755 0.069 0.6821 0.0504 0.750 0.135 0.6972 0.0650 0.735 0.167 0.7073 0.1311 0.649 0.293 0.6514 0.2406 0.509 0.438 0.5339 0.3958 0.350 0.632 0.3476 0.6144 0.187 0.805 298.2 0.0329 0.0000 0.164 0.000 0.01164 0.0000 0.252 0.000 0.1164 0.0002 0.338 0.001 0.1508 0.0002 0.338 0.001 0.1508 0.0002 0.338 0.001 0.1508 0.0004 0.424 0.002 </td <td></td> <td>0.1702</td> <td>0.0000</td> <td>0.344</td> <td>0.000</td>		0.1702	0.0000	0.344	0.000
0.2472 0.0002 0.456 0.001 0.2900 0.0005 0.510 0.002 0.3610 0.0015 0.588 0.006 0.4352 0.0041 0.655 0.015 0.4720 0.0057 0.684 0.020 0.6121 0.0230 0.755 0.069 0.6821 0.0504 0.735 0.167 0.7073 0.1311 0.649 0.293 0.6514 0.2406 0.509 0.458 0.5339 0.3958 0.350 0.632 0.3476 0.6144 0.187 0.805 298.2 0.0329 0.0000 0.164 0.000 0.0515 0.0000 0.164 0.000 0.164 0.000 0.0515 0.0000 0.164 0.000 0.307 0.000 0.1164 0.0000 0.307 0.000 0.307 0.000 0.1508 0.002 0.312 0.001 0.014 0.014 0.014 0.014		0.1967	0.0000	0.385	0.000
0.2900 0.0005 0.510 0.002 0.3610 0.0015 0.588 0.006 0.4352 0.0041 0.655 0.015 0.4720 0.0057 0.684 0.020 0.6121 0.0230 0.755 0.069 0.6821 0.0504 0.750 0.135 0.6972 0.0650 0.735 0.167 0.7073 0.1311 0.649 0.293 0.6514 0.2406 0.509 0.488 0.5339 0.3958 0.350 0.632 0.3476 0.6144 0.187 0.805 298.2 0.0329 0.0000 0.080 0.000 0.0515 0.0000 0.164 0.000 0.164 0.0000 0.307 0.000 0.1164 0.0000 0.307 0.001 0.167 0.0014 0.424 0.002 0.1647 0.0004 0.424 0.002 0.1698 0.00054 0.638 0.001 <td></td> <td>0.2288</td> <td>0.0002</td> <td>0.431</td> <td>0.001</td>		0.2288	0.0002	0.431	0.001
0.3610 0.0015 0.588 0.006 0.4352 0.0041 0.655 0.015 0.4720 0.0057 0.684 0.020 0.6121 0.0230 0.755 0.069 0.6821 0.0504 0.750 0.135 0.6972 0.0650 0.735 0.167 0.7073 0.1311 0.649 0.293 0.6514 0.2406 0.509 0.438 0.5339 0.3958 0.350 0.632 0.3476 0.6144 0.187 0.805 298.2 0.0329 0.0000 0.080 0.000 0.0515 0.0000 0.164 0.000 0.0712 0.0000 0.164 0.000 0.1164 0.0002 0.312 0.001 0.1164 0.0002 0.312 0.001 0.1698 0.002 0.388 0.001 0.1989 0.002 0.388 0.002 0.2841 0.0009 0.502 0.004		0.2472	0.0002	0.456	0.001
0.4352 0.0041 0.655 0.015 0.4720 0.0057 0.684 0.020 0.6121 0.0230 0.755 0.069 0.6821 0.0504 0.750 0.135 0.6972 0.0650 0.735 0.167 0.7073 0.1311 0.649 0.293 0.6514 0.2406 0.509 0.458 0.5339 0.3958 0.350 0.652 0.3476 0.6144 0.187 0.805 298.2 0.0329 0.0000 0.080 0.000 0.0112 0.0000 0.122 0.000 0.0112 0.0000 0.122 0.000 0.01164 0.0000 0.252 0.000 0.1477 0.0000 0.312 0.001 0.1508 0.0012 0.338 0.001 0.1989 0.002 0.388 0.001 0.2841 0.009 0.502 0.004 0.4701 0.0089 0.676 0.031 <td></td> <td>0.2900</td> <td>0.0005</td> <td>0.510</td> <td>0.002</td>		0.2900	0.0005	0.510	0.002
0.4720 0.0057 0.684 0.020 0.6121 0.0230 0.755 0.069 0.6821 0.0504 0.750 0.135 0.6972 0.0650 0.735 0.167 0.7073 0.1311 0.649 0.293 0.6514 0.2406 0.509 0.458 0.5339 0.3958 0.350 0.632 0.3476 0.6144 0.187 0.805 298.2 0.0329 0.0000 0.184 0.000 0.0515 0.0000 0.122 0.000 0.1164 0.0000 0.252 0.000 0.1508 0.0002 0.338 0.001 0.164 0.0002 0.338 0.001 0.1508 0.0002 0.338 0.001 0.1508 0.0002 0.338 0.001 0.1537 0.0054 0.638 0.002 0.2841 0.0009 0.502 0.004 0.4701 0.0089 0.676 0.031 <td></td> <td>0.3610</td> <td>0.0015</td> <td>0.588</td> <td>0.006</td>		0.3610	0.0015	0.588	0.006
0.6121 0.0230 0.755 0.069 0.6821 0.0504 0.750 0.135 0.6972 0.0650 0.735 0.167 0.7073 0.1311 0.649 0.293 0.6514 0.2406 0.509 0.458 0.5339 0.3958 0.350 0.632 0.3476 0.6144 0.187 0.805 298.2 0.0329 0.0000 0.080 0.000 0.0515 0.0000 0.164 0.000 0.0712 0.0000 0.164 0.000 0.164 0.0000 0.252 0.000 0.164 0.0002 0.338 0.001 0.1508 0.0002 0.338 0.001 0.1508 0.0002 0.338 0.001 0.2240 0.004 0.424 0.002 0.2841 0.0036 0.607 0.014 0.4195 0.0054 0.638 0.021 0.4701 0.0089 0.676 0.031		0.4352	0.0041	0.655	0.015
0.6821 0.0504 0.750 0.135 0.6972 0.0650 0.735 0.167 0.7073 0.1311 0.649 0.293 0.6514 0.2406 0.509 0.458 0.5339 0.3958 0.350 0.632 0.3476 0.6144 0.187 0.805 298.2 0.0329 0.0000 0.080 0.000 0.0515 0.0000 0.164 0.000 0.0512 0.0000 0.252 0.000 0.1477 0.0002 0.312 0.001 0.1508 0.002 0.312 0.001 0.1508 0.0002 0.388 0.001 0.1508 0.0002 0.388 0.001 0.1508 0.0002 0.388 0.002 0.2841 0.0009 0.502 0.004 0.4701 0.0089 0.676 0.031 0.4701 0.0089 0.676 0.031 0.5395 0.0161 0.717 0.056 <td></td> <td>0.4720</td> <td>0.0057</td> <td>0.684</td> <td>0.020</td>		0.4720	0.0057	0.684	0.020
0.6972 0.0650 0.735 0.167 0.7073 0.1311 0.649 0.293 0.6514 0.2406 0.509 0.458 0.5339 0.3958 0.350 0.632 0.3476 0.6144 0.187 0.805 298.2 0.0329 0.0000 0.080 0.000 0.0515 0.0000 0.122 0.000 0.0712 0.0000 0.252 0.000 0.1477 0.0002 0.312 0.001 0.1508 0.002 0.312 0.001 0.1508 0.0002 0.388 0.001 0.1508 0.0002 0.388 0.001 0.2240 0.0004 0.424 0.002 0.2841 0.0009 0.502 0.004 0.4701 0.0089 0.676 0.031 0.4701 0.0089 0.676 0.031 0.4701 0.0089 0.676 0.031 0.5606 0.0210 0.723 0.066 <td></td> <td>0.6121</td> <td>0.0230</td> <td>0.755</td> <td>0.069</td>		0.6121	0.0230	0.755	0.069
0.7073 0.1311 0.649 0.293 0.6514 0.2406 0.509 0.458 0.5339 0.3958 0.350 0.632 0.3476 0.6144 0.187 0.805 298.2 0.0329 0.0000 0.080 0.000 0.0515 0.0000 0.164 0.000 0.0712 0.0000 0.252 0.000 0.1164 0.0000 0.307 0.000 0.1477 0.0002 0.312 0.001 0.1508 0.002 0.388 0.001 0.1508 0.002 0.388 0.001 0.1508 0.0002 0.388 0.001 0.1508 0.0002 0.388 0.002 0.2841 0.0009 0.502 0.004 0.4195 0.0054 0.638 0.020 0.4701 0.0089 0.676 0.031 0.5395 0.0161 0.717 0.052 0.5606 0.0210 0.723 0.066		0.6821	0.0504	0.750	0.135
0.6514 0.2406 0.509 0.458 0.5339 0.3958 0.350 0.632 0.3476 0.6144 0.187 0.805 298.2 0.0329 0.0000 0.080 0.000 0.0515 0.0000 0.122 0.000 0.0712 0.0000 0.164 0.000 0.1164 0.0000 0.252 0.000 0.1477 0.0000 0.307 0.000 0.1508 0.002 0.312 0.001 0.1989 0.002 0.388 0.001 0.2240 0.0004 0.424 0.002 0.2841 0.009 0.502 0.004 0.4195 0.0054 0.638 0.020 0.4701 0.089 0.676 0.031 0.4795 0.0054 0.638 0.032 0.062 0.4701 0.089 0.676 0.031 0.5395 0.0161 0.717 0.052 0.5066 0.0210 0.723 0.060 <td></td> <td>0.6972</td> <td>0.0650</td> <td>0.735</td> <td>0.167</td>		0.6972	0.0650	0.735	0.167
0.5339 0.3958 0.350 0.632 0.3476 0.6144 0.187 0.805 298.2 0.0329 0.0000 0.080 0.000 0.0515 0.0000 0.122 0.000 0.0712 0.0000 0.164 0.000 0.1164 0.0000 0.252 0.000 0.1164 0.0002 0.312 0.001 0.1508 0.002 0.312 0.001 0.1989 0.002 0.388 0.001 0.2240 0.0004 0.424 0.002 0.2841 0.009 0.502 0.004 0.4701 0.0089 0.676 0.031 0.4701 0.0089 0.676 0.031 0.5395 0.0161 0.717 0.052 0.5066 0.0210 0.723 0.066 0.6038 0.0340 0.729 0.100 0.6560 0.6069 0.717 0.162		0.7073	0.1311	0.649	0.293
0.3476 0.6144 0.187 0.805 298.2 0.0329 0.0000 0.080 0.000 0.0515 0.0000 0.122 0.000 0.0712 0.0000 0.164 0.000 0.1164 0.0000 0.252 0.000 0.1477 0.0000 0.307 0.000 0.1508 0.0002 0.312 0.001 0.1989 0.0002 0.388 0.001 0.2240 0.0004 0.424 0.002 0.2841 0.0009 0.502 0.004 0.4701 0.0089 0.676 0.031 0.4701 0.0089 0.676 0.031 0.5395 0.0161 0.717 0.052 0.5066 0.0210 0.723 0.066 0.6038 0.0340 0.729 0.100 0.6560 0.6069 0.717 0.162		0.6514	0.2406	0.509	0.458
298.2 0.0329 0.0000 0.080 0.000 0.0515 0.0000 0.122 0.000 0.0712 0.0000 0.164 0.000 0.1164 0.0000 0.252 0.000 0.1477 0.0000 0.307 0.000 0.1508 0.002 0.312 0.001 0.1599 0.0002 0.388 0.001 0.2240 0.0004 0.424 0.002 0.2841 0.0009 0.502 0.004 0.3837 0.0036 0.607 0.014 0.4195 0.0054 0.638 0.020 0.4701 0.0089 0.676 0.031 0.5395 0.0161 0.717 0.052 0.5606 0.0210 0.723 0.066 0.6038 0.0340 0.729 0.100 0.6560 0.6069 0.717 0.162		0.5339	0.3958	0.350	0.632
0.0515 0.0000 0.122 0.000 0.0712 0.0000 0.164 0.000 0.1164 0.0000 0.252 0.000 0.1477 0.0000 0.307 0.000 0.1508 0.0002 0.312 0.001 0.1989 0.0002 0.388 0.001 0.2240 0.0004 0.424 0.002 0.2841 0.0009 0.502 0.004 0.3837 0.0036 0.607 0.014 0.4195 0.0054 0.638 0.020 0.4701 0.0089 0.676 0.031 0.5395 0.0161 0.717 0.052 0.5606 0.0210 0.723 0.066 0.6038 0.0340 0.729 0.100 0.6560 0.609 0.717 0.162		0.3476	0.6144	0.187	0.805
0.0712 0.0000 0.164 0.000 0.1164 0.0000 0.252 0.000 0.1477 0.0000 0.307 0.000 0.1508 0.0002 0.312 0.001 0.1989 0.0002 0.388 0.001 0.2240 0.0004 0.424 0.002 0.2841 0.0009 0.502 0.004 0.3837 0.0036 0.607 0.014 0.4195 0.0054 0.638 0.020 0.4701 0.0089 0.676 0.031 0.5395 0.0161 0.717 0.052 0.5606 0.0210 0.723 0.066 0.6038 0.0340 0.729 0.100 0.6560 0.609 0.717 0.162	298.2	0.0329	0.0000	0.080	0.000
0.1164 0.0000 0.252 0.000 0.1477 0.0000 0.307 0.000 0.1508 0.0002 0.312 0.001 0.1989 0.0002 0.388 0.002 0.2240 0.0004 0.424 0.002 0.2841 0.0009 0.502 0.014 0.3837 0.0036 0.607 0.014 0.4195 0.0054 0.638 0.020 0.4701 0.0089 0.676 0.031 0.5395 0.0161 0.717 0.052 0.5606 0.0210 0.723 0.066 0.6038 0.0340 0.729 0.100 0.6560 0.0609 0.717 0.162		0.0515	0.0000	0.122	0.000
0.1477 0.0000 0.307 0.000 0.1508 0.0002 0.312 0.001 0.1989 0.0002 0.388 0.002 0.2240 0.0004 0.424 0.002 0.2841 0.0009 0.502 0.004 0.3837 0.0036 0.607 0.014 0.4195 0.0054 0.638 0.020 0.4701 0.0089 0.676 0.031 0.5395 0.0161 0.717 0.052 0.6038 0.0340 0.723 0.066 0.6038 0.0340 0.729 0.100 0.6560 0.0609 0.717 0.162		0.0712	0.0000	0.164	0.000
0.1508 0.0002 0.312 0.001 0.1989 0.0002 0.388 0.001 0.2240 0.0004 0.424 0.002 0.2841 0.0009 0.502 0.004 0.3837 0.0036 0.607 0.014 0.4195 0.0054 0.638 0.020 0.4701 0.0089 0.676 0.031 0.5395 0.0161 0.717 0.052 0.5606 0.0210 0.723 0.066 0.6038 0.0340 0.729 0.100 0.6560 0.0609 0.717 0.162		0.1164	0.0000	0.252	0.000
0.1989 0.0002 0.388 0.001 0.2240 0.0004 0.424 0.002 0.2841 0.0009 0.502 0.004 0.3837 0.0036 0.607 0.014 0.4195 0.0054 0.638 0.020 0.4701 0.0089 0.676 0.031 0.5395 0.0161 0.717 0.052 0.5606 0.0210 0.723 0.066 0.6038 0.0340 0.729 0.100 0.6560 0.0609 0.717 0.162		0.1477	0.0000	0.307	0.000
0.2240 0.0004 0.424 0.002 0.2841 0.0009 0.502 0.004 0.3837 0.0036 0.607 0.014 0.4195 0.0054 0.638 0.020 0.4701 0.0089 0.676 0.031 0.5395 0.0161 0.717 0.052 0.5606 0.0210 0.723 0.066 0.6038 0.0340 0.729 0.100 0.6560 0.0609 0.717 0.162		0.1508	0.0002	0.312	0.001
0.2841 0.0009 0.502 0.004 0.3837 0.0036 0.607 0.014 0.4195 0.0054 0.638 0.020 0.4701 0.0089 0.676 0.031 0.5395 0.0161 0.717 0.052 0.5606 0.0210 0.723 0.066 0.6038 0.0340 0.729 0.100 0.6560 0.0609 0.717 0.162		0.1989	0.0002	0.388	0.001
0.3837 0.0036 0.607 0.014 0.4195 0.0054 0.638 0.020 0.4701 0.0089 0.676 0.031 0.5395 0.0161 0.717 0.052 0.5606 0.0210 0.723 0.066 0.6038 0.0340 0.729 0.100 0.6560 0.0609 0.717 0.162		0.2240	0.0004	0.424	0.002
0.4195 0.0054 0.638 0.020 0.4701 0.0089 0.676 0.031 0.5395 0.0161 0.717 0.052 0.5606 0.0210 0.723 0.066 0.6038 0.0340 0.729 0.100 0.6560 0.0609 0.717 0.162		0.2841	0.0009	0.502	0.004
0.4701 0.0089 0.676 0.031 0.5395 0.0161 0.717 0.052 0.5606 0.0210 0.723 0.066 0.6038 0.0340 0.729 0.100 0.6560 0.0609 0.717 0.162		0.3837	0.0036	0.607	0.014
0.5395 0.0161 0.717 0.052 0.5606 0.0210 0.723 0.066 0.6038 0.0340 0.729 0.100 0.6550 0.0609 0.717 0.162		0.4195	0.0054	0.638	0.020
0.5606 0.0210 0.723 0.066 0.6038 0.0340 0.729 0.100 0.6550 0.0609 0.717 0.162		0.4701	0.0089	0.676	0.031
0.6038 0.0340 0.729 0.100 0.6550 0.0609 0.717 0.162		0.5395	0.0161	0.717	0.052
0.6560 0.0609 0.717 0.162		0.5606	0.0210	0.723	0.066
		0.6038	0.0340	0.729	0.100
		0.6560	0.0609	0.717	0.162
0.6726 0.1248 0.637 0.288		0.6726	0.1248	0.637	0.288
0.6202 0.2307 0.500 0.453		0.6202	0.2307	0.500	0.453
0.5205 0.3874 0.347 0.629		0.5205	0.3874	0.347	0.629
0.3332 0.6148 0.180 0.809		0.3332	0.6148	0.180	0.809

SKRZECZ, SHAW, AND MACZYNSK

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	<i>T</i> /K (compiler)	rich	carbon- phase piler)	rich j	ter- phase piler)	2	carbon- phase		ter- phase
0.0	273.2	0.005	0.995	0.1396	0.0002	0.002	0.998	0.293	0.00
		0.012	0.988	0.2334	0.0004	0.005	0.995	0.437	0.002
		0.019	0.981	0.3717	0.0015	0.008	0.992	0.599	0.00
		0.043	0.957	0.4807	0.0063	0.018	0.982	0.690	0.02
		0.068	0.927	0.5884	0.0188	0.029	0.970	0.747	0.05
		0.131	0.857	0.6996	0.0697	0.059	0.939	0.729	0.17
20.0	298.2	0.000	1.000	0.0566	0.0000	0.000	1.000	0.133	0.00
		0.010	0.984	0.1309	0.0000	0.004	0.995	0.278	0.00
		0.017	0.977	0.2358	0.0000	0.007	0.992	0.441	0.00
		0.033	0.955	0.3020	0.0012	0.014	0.984	0.523	0.00
		0.062	0.920	0.4687	0.0083	0.027	0.970	0.676	0.02
		0.105	0.872	0.5861	0.0263	0.047	0.949	0.731	0.08
		0.139	0.833	0.6303	0.0456	0.064	0.931	0.726	0.12
		0.222	0.731	0.6734	0.0932	0.110	0.881	0.679	0.22

Auxiliary Information

Method/Apparatus/Procedure:

Points on the binodal curve were obtained by titrating a known mixture of two components by the third component until turbidity appeared or disappeared. The mixtures were prepared by volume with calibrated pipettes and the results converted to weight percent. Over most of the composition range alcoholhydrocarbon mixtures were titrated with water. For 25 °C, the end point was taken when the the mixture remained homogenous at 25.0 °C, but become turbid at 24.8 °C. The titrations at 0 °C were performed in small conical flasks with magnetic stirrers placed in Dewar vessel. Tie lines were determined through measurements of refractive index at 25 °C of both phases in equilibrium and comparison with the values obtained on binodal curve. For saturated solutions containing more than 40% ethanol the tie lines were obtained by measuring densities at 25 °C in a similar procedure. The experimental procedures were adapted mainly from Ref. 1.

Source and Purity of Materials:

(1) source not specified, commercial absolute grade; used as received; $\rho(25~^{\circ}{\rm C})=785.97~{\rm kg~m^{-3}}$, water concentration 0.30 mass % (water was taken into account in calculations of composition).

(2) Philips, pure grade purity >99 mole %; used as received; ρ(25 °C)=710.78 kg m⁻³.
(3) distilled.

Estimated Error:

conc. <0.1% (relative error) for ethanol in the region near 100% of hydrocarbon (tie lines).

References:

¹E. R. Washburn, V. Hnizda, and R. Vold, J. Am. Chem. Soc. 53, 3237 (1931) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 2,2,4-Trimethylpentane (isooctane); C₈H₁₈; [540-84-1]
 Water (hydrogen oxide); H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1996.05)

4.15. Ethanol + Water + 2,2,4-Trimethylpentane

Critical Evaluation:

A survey of reported in the literature compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system ethanol–2,2,4-trimethylpentane–water is given in Table 37.

TABLE 37. Summar	y of experimental	data for the system ethanol	-2,2,4-trimethylpentane-water
------------------	-------------------	-----------------------------	-------------------------------

Author(s)	T/K	Type of data ^a	Ref.
Kretschmer and Wiebe, 1945	228-298	sat. (12)	1
Nowakowska et al., 1956	273-298	sat. (50), eq. (14)	2
Huber et al., 1972	298	eq. (6)	3

^aNumber of experimental points in parentheses.

Saturation curve

The system ethanol–2,2,4-trimethylpentane–water forms a miscibility gap of type 1. Experimental points on the saturation curve were reported by Kretschmer and Wiebe¹ and Nowakowska *et al.*² In both references the saturation curves were obtained by the titration method. In Ref. 1 the experimental results at 228, 273, and 298 K were expressed as the water tolerance of the alcohol–hydrocarbon mixture. The binary 2,2,4-trimethylpentane–water system is only partially miscible. The data for this system were compiled and critically evaluated in a previously published SDS volume,⁴ the binary solubility data were not reported together with ternary data in any of the references. The "best" (Ref. 4) values of mutual solubility at 293 and 298 K are: $x_2^{\nu} = 3.10^{-7}$, $x_2^{\nu} = 0.9995$ and $x_2^{\nu} = 3.5 \cdot 10^{-7}$, $x_2^{\nu} = 0.9994$, respectively. Compositions of coexisting phases in equilibrium at 273 and 298 K (Refs. 2 and 3) were included and also used for data comparison on saturation curves. All data sets are consistent with one another. The temperature relationship of miscibility gap, (Refs. 1 and 2) is as expected one. At higher temperatures smaller miscibility gaps are found. The water-rich phase with low concentrations of ethanol ($x_1 < 0.20$), Ref. 2, was reported to be 2,2,4-trimethylpentane free, presumably due to the analytical methods used. The maximum ethanol concentration is observed on the saturation curve. At 298.2 K it reaches $x_1 = 0.71 \pm 0.01 \text{ when } x_2 = 0.10 \pm 0.02 \text{ mole}$ fraction. All experimental solubility and equilibrium data reported at 298.2 K were used for calculation of the saturation curve. (Waterrich and hydrocarbon-rich branches were treated together.) These data were described by the equation:

$x_1 = 1.021\ 78 + 0.104\ 50\ \ln(x_2) - 1.018\ 38x_2$.

The parameters were calculated by the least-squares method and the standard error of estimate was 0.0243. This equation describes the saturation curve for $x_2 < 0.95$ mole fraction. The points on the saturation curve, calculated by the above equation together with the "best" values from Ref. 4 are presented in Table 38 for selected concentration of 2,2,4-trimethylpentane in the mixture and in Fig. 19 as calculated binodal curve (solid line).

TABLE 38. Calculated compositions along the saturation curve at 298.2 K

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	x_2
0.0000	$3.5 \cdot 10^{-7}$ Ref. 4	0.4563	0.4800
0.2989	0.0010	0.4402	0.5000
0.5303	0.0100	0.4239	0.5200
0.5926	0.0200	0.4075	0.5400
0.6447	0.0400	0.3909	0.5600
0.6667	0.0600	0.3742	0.5800
0.6764	0.0800	0.3574	0.6000
0.6793	0.1000	0.3404	0.6200
0.6780	0.1200	0.3234	0.6400
0.6737	0.1400	0.3062	0.6600
0.6673	0.1600	0.2890	0.6800
0.6593	0.1800	0.2716	0.7000
0.6499	0.2000	0.2542	0.7200

0.6395	0.2200	0.2367	0.7400
0.6282	0.2400	0.2191	0.7600
0.6162	0.2600	0.2015	0.7800
0.6036	0.2800	0.1838	0.8000
0.5904	0.3000	0.1660	0.8200
0.5768	0.3200	0.1481	0.8400
0.5628	0.3400	0.1302	0.8600
0.5484	0.3600	0.1122	0.8800
0.5337	0.3800	0.0942	0.9000
0.5187	0.4000	0.0762	0.9200
0.5034	0.4200	0.0580	0.9400
0.4879	0.4400	0.0535	0.9500
0.4722	0.4600	0.0000	0.9994 Ref. 4

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system ethanol-2,2,4-trimethylpentane-water were presented in Refs. 2 and 3 and the reported tie lines cover the whole range of the miscibility gap. They were obtained by various analytical methods: refractive indexes, Ref. 2, or by glc, Ref. 3. The direction of tie lines differ slightly. They may be treated as tentative. Experimental tie lines together with all experimental saturation points at 298.2 K are presented in Fig. 19.

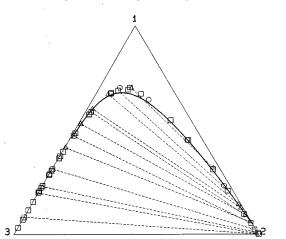


FIG. 19. Phase diagram of the system ethanol (1)-2,2,4-trimethylpentane (2)-water (3) at 298.2 K. Solid line-calculated saturation curve, O—experimental data, Ref. 1, □—experimental data, Ref. 2, △—experimental data, Ref. 3, dashed lines—experimental tie lines, Refs. 2 and 3.

References:

¹C. B. Kretschmer and R. Wiebe, Ind. Eng. Chem. 37, 1130 (1945).

²J. Nowakowska, C. B. Kretschmer, and R. Wiebe, J. Chem. Eng. Data Ser. 1, 42 (1956).

³J. F. K. Huber, C. A. M. Meijers, J. A. R. J. Hulsman, Anal. Chem. 44, 111 (1972).

⁴D. G. Shaw, ed., Solubility Data Series, Vol. 38, Hydrocarbons with Water and Seawater, Part II: Hydrocarbons C₈ to C₃₆ (Pergamon, New York, 1989).

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) 2, 2, 4-Trimethylpentane (isooctane); C₈H₁₈; [540-84-1] (3) Water; H₂O; [7732-18-5]

Original Measurements: C. B. Kretschmer and R. Wiebe, Ind. Eng. Chem. 37, 1130-2 (1945).

Variables: T/K = 228 - 298

Experimental Data Compositions along the saturation curve

Compiled by:

A. Skrzecz

	T/K	<i>x</i> ₁	<i>x</i> ₂	w_1	w_2
t/°C	(compiler)	(com	piler)	(compiler)	
-45.0	228.2	0.8028	0.0957	0.7434	0.2198
		0.7070	0.2529	0.5238	0.4646
		0.4737	0.5085	0.2720	0.7240
		0.2353	0.7578	0.1112	0.8876
0.0	273.2	0.7397	0.0882	0.7212	0.2132
		0.6709	0.2400	0.5157	0.4575
		0.4612	0.4950	0.2704	0.7196
		0.2329	0.7500	0.1110	0.8859
25.0	298.2	0.7032	0.0839	0.7072	0.2091
		0.6454	0.2309	0.5097	0.4521
		0.4517	0.4848	0.2691	0.7161
		0.2310	0.7438	0.1108	0.8845

Comments and Additional Data

Water tolerance (S) was described with probable error <0.5% at the range -45-25 °C by the equation: $\log(S) = a - b/(T/K)$. The parameters (a,b) were determined from plots. Water tolerance was defined as: $S = H_2O$ % by volume \cdot (100-Hydrocarbon % by volume in the blend)/100

vol % hydrocarbon	а	b
90	1.383	553.5
75	1.894	554.5
50	2.151	504.4
25	2.001	352.5

Auxiliary Information

Method/Apparatus/Procedure:

A glass tube with stirrer containing the ternary mixture was immersed in a bath, the temperature of which could be varied. Mixtures were prepared directly in the tube, by special pipettes at 15.5 °C. Precautions to exclude moisture and to prevent evaporation were observed. No correction was made for the slight expansion in volume when alcohol was mixed with hydrocarbon. In the paper the experimental results were expressed as the water tolerance of the alcohol-hydrocarbon blend. For practical purposes water tolerance was defined as the volume per cent of water which can be added before separation occurs.

Source and Purity of Materials:

(1) source not specified; anhydrous ethanol. (2) source not specified; b.p. = 99.25 °C. (3) not specified.

Estimated Error:

temp. within about 0.3 °C (duplicate determinations), composition <0.2% relative of volume fraction.

Variables:

Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 2,2,4-Trimethylpentane (isooctane); C₈H₁₈; [540-84-1]
 Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

J. Nowakowska, C. B. Kretschmer, and R. Wiebe, J. Chem. Eng. Data Ser. 1, 42–5 (1956).

			ental Data the saturation curve		
	T/K	<i>x</i> ₁	<i>x</i> ₂		
'∕°C	(compiler)	(com	piler)	<i>w</i> ₁	w ₂
0.0	273.2	0.0515	0.0000	0.122	0.000
		0.1164	0.0000	0.252	0.000
		0.1733	0.0000	0.349	0.000
		0.1894	0.0000	0.374	0.000
		0.2216	0.0002	0.421	0.001
		0.2472	0.0002	0.456	0.001
		0.2746	0.0005	0.491	0.002
		0.2770 0.3539	0.0005	0.494	0.002
			0.0012	0.581	0.005
		0.3654 0.4196	0.0012 0.0029	0.593 0.643	0.005 0.011
		0.4218	0.0029	0.645	0.011
		0.5320	0.0025	0.724	0.032
		0.5361	0.0095	0.727	0.032
		0.5697	0.0133	0.744	0.043
		0.5764	0.0137	0.748	0.044
		0.6289	0.0225	0.766	0.068
		0.6421	0.0227	0.774	0.068
		0.6587	0.0293	0.772	0.085
		0.7213	0.0642	0.748	0.165
		0.7335	0.1302	0.661	0.291
		0.7104	0.1871	0.585	0.382
		0.6727	0.2348	0.521	0.451
		0.6126	0.3147	0.431	0.549
		0.5030	0.4430	0.310	0.677
		0.3543	0.6166	0.187	0.807
20.0	298.2	0.0329	0.0000	0.080	0.000
		0.0712	0.0000	0.164	0.000
		0.1164	0.0000	0.252	0.000
		0.1556	0.0002	0.320	0.001
		0.2002	0.0002	0.390	0.001
		0.2066 0.2226	0.0004 0.0004	0.399 0.422	0.002 0.002
		0.2833	0.0004	0.422	0.002
		0.2882	0.0009	0.507	0.004
		0.3045	0.0009	0.526	0.004
		0.3639	0.0025	0.589	0.010
		0.3742	0.0023	0.600	0.009
		0.3960	0.0036	0.619	0.014
		0.4848	0.0088	0.688	0.031
		0.5746	0.0205	0.733	0.065
		0.5760	0.0206	0.734	0.065
		0.6747	0.0598	0.728	0.160
		0.6780	0.0604	0.729	0.161
		0.7042	0.1246	0.652	0.286
		0.6942	0.1225	0.649	0.284
		0.6734	0.1841	0.568	0.385
		0.5460	0.3698	0.365	0.613
		0.4504	0.4892	0.267	0.719
		0.3095	0.6604	0.158	0.836

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K t/°C (compiler)	hydrocarbon- rich phase (compiler)		water-rich phase (compiler)		hydrocarbon- rich phase		water-rich phase	
0.0	273.2	0.007	0.993	0.2331	0.0002	0.003	0.997	0.437	0.001
		0.022	0.978	0.3771	0.0018	0.009	0.991	0.604	0.007
		0.029	0.972	0.4737	0.0053	0.012	0.988	0.686	0.019
		0.057	0.937	0.5922	0.0152	0.024	0.975	0.756	0.048
		0.113	0.881	0.7044	0.0529	0.049	0.950	0.757	0.141
		0.150	0.839	0.7352	0.0760	0.067	0.931	0.737	0.189
		0.222	0.762	0.7274	0.1544	0.105	0.892	0.629	0.331
20.0	298.2	0.000	1.000	0.0825	0.0000	0.000	1.000	0.187	0.000
		0.000	1.000	0.1989	0.0002	0.000	1.000	0.388	0.001
		0.007	0.993	0.2310	0.0009	0.003	0.997	0.433	0.004
		0.022	0.972	0.3114	0.0012	0.009	0.990	0.534	0.005
		0.053	0.941	0.4729	0.0079	0.022	0.977	0.680	0.028
		0.095	0.893	0.5865	0.0228	0.041	0.957	0.737	0.071
		0.208	0.770	0.6903	0.0830	0.098	0.898	0.701	0.209

Auxiliary Information

Method/Apparatus/Procedure:

Points on the binodal curve were obtained by titrating a known mixture of two components by the third component until turbidity appeared or disappeared. The mixtures were prepared by volume with calibrated pipettes and the results converted to weight percent. Over most of the composition range alcoholhydrocarbon mixtures were titrated with water. For 25 °C, the end point was taken when the the mixture remained homogenous at 25.0 °C, but become turbid at 24.8 °C. The titrations at 0 °C were performed in small conical flasks with magnetic stirrers placed in Dewar vessel. The lines were determined through measurements of refractive index at 25 °C of both phases in equilibrium and comparison with the values obtained on binodal curve. For saturated solutions containing more than 40% ethanol the tie lines were obtained by measuring densities at 25 °C in a similar procedure. The experimental procedures were adapted mainly from Ref. 1.

Source and Purity of Materials:

(1) source not specified, commercial absolute grade; used as received; $\rho(25~{\rm ^{\circ}C})\!=\!785.97~{\rm kgm^{-3}}$, water concentration 0.30 mass % (water was taken into account in calculations of composition).

(2) source not specified, certified knock-rating grade; distilled to remove olefins, filtered by silica gel; $\rho(25 \,^{\circ}\text{C}) = 687.74 \text{ kg m}^{-3}$. (3) distilled.

Estimated Error:

conc.<0.1% (relative error) for ethanol in the region near 100% of hydrocarbon (tie lines).

References

¹E. R. Washburn, V. Hnizda, and R. Vold, J. Am. Chem. Soc. 53, 3237 (1931).

Components: (1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]

(2) 2, 2, 4-Trimethylpentane (isooctane); C₈H₁₈; [540-84-1]

(3) Water; H₂O; [7732-18-5]

Original Measurements:

J. F. K. Huber, C. A. M. Meijers, and J. A. R. J. Hulsman, Anal. Chem. 44, 111-6 (1972).

Variables: Compiled by: T/K = 298A. Skrzecz **Experimental Data** Compositions of coexisting phases w_1'' x'_1 x'_2 x_1'' x_2'' w'_1 w'_2 w_2'' hydrocarbonwater-T/Khydrocarbonrich phase waterrich phase $t/^{\circ}C$ (compiler) (compiler) rich phase rich phase (compiler) 0.317 0.700 0.133 0.833 0.639 0.301 25.0 298.2 0.658 0.162 0.142 0.847 0.671 0.051 0.063 0.935 0.740 0.140 0.126 0.865 0.601 0.021 0.055 0.943 0.750 0.065 0.093 0.900 0.529 0.009 0.959 0.723 0.030 0.040 0.059 0.935 0.416 0.003 0.025 0.974 0.639 0.011 0.037 0.296 0.002 0.984 0.009 0.961 0.015 0.514

Auxiliary Information

Method/Apparatus/Procedure:

Equilibrium was established in a thermostated vessel with a magnetic stirrer and the composition of each of the phases was determined analytically by glc. Data were obtained during measurements of partition coefficients for steroids in liquidliquid systems.

Source and Purity of Materials:

(1) Merck Uvasole, spectroquality grade; used as received. (2) Merck Uvasole, spectroquality grade; used as received. (3) double distilled.

Estimated Error: temp. ±0.1 °C.

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5] (2) Octane (n-octane); C₈H₁₈; [111-65-9] (3) Water; H₂O; [7732-18-5]

Original Measurements: A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 40

3018-23 (1966). [Eng. transl. Russ. J. Phys. Chem. 40, 1619-22 (1966)].

Variables: Compiled by: T/K = 298A. Skrzecz

4.16. Ethanol + Water + Octane

Experimental Data

Compositions along the saturation curve

	T/K	<i>x</i> ₁	<i>x</i> ₂		
t/°C	(compiler)	(com	piler)	w_1	w_2
25	298.2	0.0000	0.9937	0.000	0.999
		0.3330	0.6374	0.173	0.821
		0.4845	0.4687	0.291	0.698
		0.6099	0.3172	0.428	0.552
		0.7023	0.2052	0.563	0.408
		0.7121	0.1830	0.590	0.376
		0.7449	0.1319	0.665	0.292
		0.7382	0.1196	0.677	0.272
		0.7339	0.0808	0.729	0.199
		0.7242	0.0670	0.745	0.171
		0.7240	0.0620	0.753	0.160
		0.6986	0.0452	0.767	0.123
		0.6756	0.0353	0.771	0.100
		0.5998	0.0173	0.757	0.054
		0.5169	0.0097	0.712	0.033
		0.4945	0.0068	0.700	0.024
		0.4521	0.0055	0.667	0.020
		0.2697	0.0009	0.484	0.004
		0.2191	0.0004	0.417	0.002
		0.1792	0.0002	0.358	0.001

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w2	w_1''	w_2''
<i>T/K</i> <i>t/</i> °C (compiler)		hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		hydrocarbon- rich phase		water- rich phase	
25	298.2	0.000	1.000	0.472	0.006	0.000	1.000	0.684	0.020
		0.067	0.933	0.621	0.021	0.028	0.972	0.764	0.064
		0.106	0.888	0.680	0.037	0.046	0.953	0.770	0.105
		0.164	0.825	0.739	0.077	0.074	0.924	0.738	0.190
		0.351	0.624	0.714	0.186	0.184	0.811	0.588	0.380
		0.418	0.546	0.674	0.243	0.234	0.758	0.515	0.460
		0.493	0.461	0.622	0.306	0.298	0.691	0.442	0.538
		0.553	0.388	0.553	0.388	0.360	0.625	0.360	0.625

SKRZECZ, SHAW, AND MACZYNSKI

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, Ref. 1, was used to determine solubility of the mixtures. The third component was added to the binary homogenous mixture until cloudiness was first observed. Density of the saturated mixtures was measured; these results were graphed. To obtain equilibrium, ternary mixtures were stirred in a thermostated vessel for several hours. After phase separation, the density of each phase was measured and composition was determined from the graphs prepared earlier. Concentration at the critical point was found by method described in Ref. 2. Water included in ethanol was taken into account in all measurements.

Source and Purity of Materials:

 source not specified, "rectificate grade;" distilled; water concentration was determined by the Karl Fischer method.
 source not specified; b.p. = 125.5 °C, n(20 °C,D)=1.3976.
 not specified.

Estimated Error:

solubility ± 0.001 mass fraction.

References

¹W. D. Bancroft, Phys. Rev. 3, 21 (1896).
 ²E. N. Zilberman, Zh. Fiz. Khim. 26, 1458 (1952).

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Mesitylene (1,3,5-trimethylbenzene); C₉H₁₂; [108-67-8]
 (3) Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.05)

4.17. Ethanol + Water + Mesitylene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system ethanol-mesitylene-water is given in Table 39.

Author(s)	T/K	Type of data ^a	Ref.
Bonner, 1909	273	sat. (10)	1
Letcher et al., 1992	298	sat. (15), eq. (7)	2

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system ethanol-mesitylene-water forms a miscibility gap of type 1. Data for the system were reported in two references and are evaluated on the basis of the original papers. Only one binary system mesitylene-water forms a miscibility gap. This system was compiled and critically evaluated in a previously published SDS volume.³ The recommended value at 298 K is $x_2^i = 7.4 \cdot 10^{-6}$; solubility of water in mesitylene was not reported. The miscibility gap reported by Bonner¹ at 273 K is larger than the one at 298 K, which is in agreement with general expectation. Experimental errors estimated by evaluator are ± 0.0005 mole fraction for data reported in Ref. 1. The authors of Ref. 2 estimated their errors at 0.005 mole fraction for the binodal curve and 0.01 mole fraction for tie line compositions. Mutual solubility data for the misytylene-water system reported at 298.2 K together with the ternary data,² are $x_2^i = 0.000$ and $x_2^{\prime\prime} = 0.999$. They differ significantly from recommended values but are within the accuracy of experimental measurements. Data are consistent within each data set as well as between sets and are considered tentative. Data reported at 298.2 K by Letcher *et al.*² were described by the equation:

$x_1 = 0.935\ 36 + 0.113\ 49\ \ln(x_2) - 0.889\ 03x_2 - 0.049\ 05x_2^2$

The parameters were calculated by the least-squares method and the standard error of estimate was 0.0082. Selected points on the saturation curve, calculated by the above equation together with the recommended value of Ref. 3 are presented in Table 40.

TABLE 40.	Calculated compositions	s along the saturation	curve at 298.2 K
-----------	-------------------------	------------------------	------------------

x1	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.0000	7.4 · 10 ⁻⁶ Ref. 3	0.3999	0.5000
0.1505	0.0010	0.3856	0.5200
0.4038	0.0100	0.3710	0.5400
0.4736	0.0200	0.3563	0.5600
0.5344	0.0400	0.3414	0.5800
0.5625	0.0600	0.3263	0.6000
0.5773	0.0800	0.3111	0.6200
0.5846	0.1000	0.2956	0.6400
0.5873	0.1200	0.2801	0.6600
0.5868	0.1400	0.2644	0.6800
0.5839	0.1600	0.2485	0.7000
0.5791	0.1800	0.2325	0.7200
0.5729	0.2000	0.2164	0.7400
0.5656	0.2200	0.2002	0.7600
0.5572	0.2400	0.1839	0.7800
0.5480	0.2600	0.1674	0.8000
0.5381	0.2800	0.1509	0.8200
0.5276	0.3000	0.1342	0.8400

0.4679	0.4000	0.0493	0.9400
0.4549	0.4200	0.0321	0.9600
0.4415	0.4400	0.0147	0.9800
0.4279	0.4600	0.0060	0.9900
0.4140	0.4800	0.0000	0.9990 Ref. 2

Phases in equilibrium

Equilibrium data for the ternary system ethanol-mesitylene-water were reported at 298.2 K only by Letcher *et al.*² They are consistent within the series. The plait point calculated by the authors (Ref. 2) was $x_1 = 0.50$, $x_2 = 0.35$, while the maximum concentration of ethanol on binodal curve was $x_1 = 0.60$. The plait point reported by Bonner at 273.2 K.¹ was $x_1 = 0.517$, $x_2 = 0.400$. The experimental data for phase equilibria are treated as tentative and are presented together with experimental points on saturation curve in Fig. 20.

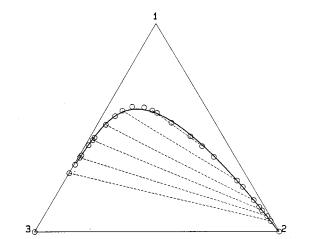


FIG. 20. Phase diagram of the system ethanol-mesitylene-water at 298.2 K. Solid line—calculated saturation curve, O—experimental data, Ref. 2.

References:

¹W. D. Bonner, J. Phys. Chem. **14**, 738 (1909–1910).

²T. M. Letcher and P. M. Siswana, Fluid Phase Equilib, 74, 203 (1992).

³D. G. Shaw, ed., *Solubility Data Series*, Vol. 38, Hydrocarbons with Water and Seawater, Part II: Hydrocarbons C₈ to C₃₆ (Pergamon, New York, 1989).

Components:

 $\begin{array}{l} (1) \ Ethanol \ (ethyl \ alcohol); \ C_2H_6O; \ [64-17-5] \\ (2) \ Mesitylene \ (1,3,5-trimethylbenzene); \ C_9H_{12} \ ; \ [108-67-8] \\ (3) \ Water; \ H_2O; \ [7732-18-5] \end{array}$

Original Measurements:

W. D. Bonner, J. Phys. Chem. 14, 738-89 (1909-1910)

Variables:

T/K = 273

Experimental Data Compositions along the saturation curve

Compiled by:

A. Skrzecz

	w_2	w ₁	<i>x</i> ₂	<i>x</i> ₁	T/K	
_	(compiler)		(compiler)		(compiler)	t/°C
plait p	0.6554	0.3243	0.4004	0.5170	273.2	0.0
	0.6352	0.3404	0.3767	0.5267		
	0.4594	0.4952	0.2236	0.6289		
	0.3381	0.5956	0.1448	0.6657		
	0.2317	0.6700	0.0879	0.6632		
	0.1697	0.7028	0.0595	0.6425		
	0.0779	0.7275	0.0238	0.5797		
	0.0570	0.7135	0.0165	0.5396		
	0.0331	0.6992	0.0091	0.5007		
	0.0195	0.6176	0.0048	0.3977		

Auxiliary Information

Method/Apparatus/Procedure:

In a tube 1 cm diameter and 12 cm long known amount, by weight, of hydrocarbon and water were placed into a temperature controlled bath. The contents of the tube were stirred and alcohol was added gradually until a homogeneous solution was obtained. Observations were made visually through the telescope of a cathetometer. The samples were always weighed immediately before and after each experiment. Concentrations were reported as weight of water in 1 g of binary water-hydrocarbon mixture and the weight of alcohol necessary to make a homogeneous solution. The mass of binary water-hydrocarbon mixture was about 1 g; the mass of alcohol—up to 5 g.

Source and Purity of Materials:

Kahlbaum; presumably dried and distilled.
 Kahlbaum; presumably dried and distilled.
 not specified.

Estimated Error:

accuracy of weighing 0.0001 g.

T/K = 298

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Mesitylene (1,3,5-trimethylbenzene); C₉H₁₂; [108-67-8]
 (3) Water; H₂O; [7732-18-5]

Original measurements:

Compiled by:

A. Skrzecz

T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. **74**, 203–17. (1992).

Variables:

Experimental Data Compositions along the saturation curve

	<i>T</i> /K (compiler)			w ₁	w2
t/°C		x_1	<i>x</i> ₂	(com	piler)
25.0	298.2	0.000	0.000	0.000	0.000
		0.322	0.004	0.540	0.018
		0.367	0.007	0.582	0.029
		0.416	0.012	0.620	0.047
		0.452	0.019	0.638	0.070
		0.554	0.053	0.655	0.163
		0.599	0.101	0.611	0.269
		0.596	0.152	0.546	0.363
		0.569	0.218	0.466	0.466
		0.522	0.300	0.380	0.570
		0.457	0.409	0.290	0.677
		0.359	0.553	0.196	0.786
		0.215	0.743	0.099	0.893
		0.119	0.858	0.050	0.946
		0.000	0.999	0.000	0.999

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	<i>T</i> /K (compiler)	hydrocarbon- rich phase		water-rich phase		hydrocarbon- rich phase (compiler)		water-rich phase (compiler)	
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000
		0.050	0.940	0.282	0.000	0.020	0.978	0.501	0.000
		0.073	0.914	0.356	0.006	0.030	0.968	0.573	0.025
		0.101	0.879	0.440	0.017	0.042	0.955	0.632	0.064
		0.151	0.820	0.513	0.035	0.066	0.929	0.657	0.117
		0.245	0.705	0.580	0.070	0.116	0.874	0.645	0.203
		0.410	0.480	0.581	0.193	0.240	0.734	0.495	0.429

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of a known mass of one component to a mixture of known masses of the other two components. Precision weighing syringes were used as described in Ref. 1. Tie line compositions were determined by the refractive index method reported in Ref. 2 and a complementary method using the Karl Fischer titrations reported in Ref. 3.

Auxiliary Information

Source and Purity of Materials:

(1) Merck, AR grade; distilled, dried by refluxing with Mg and I₂; purity better than 99.6 mole % by glc; d=0.78524, n = 1.3594.

(2) BDH; used as received; purity better than 99.6 mole % by

glc. (3) not specified.

Estimated Error:

estimated comp. 0.005 mode fraction on the binodal curve and 0.01 mole fraction for tie lines (estimated by the authors).

References:

¹T. M. Letcher, S. Wooten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. **18**, 1037 (1986).

- ²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. **35**, 411 (1943).
- ³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff,
- J. Chem. Thermodyn. 21, 1053 (1989).

Components: (1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]

Variables:

T/K = 298

(1) Entanoi (entyl alcoho), $C_{243}O$, [04 17 5 (2) Nonane (*n*-nonane); $C_{9}H_{2}O$; [111-84-2] (3) Water; $H_{2}O$; [7732-18-5]

3018–23 (1966). [Eng. transl. Russ. J. Phys. Chem. 40, 1619–20 (1966)].

Original Measurements:

A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 40,

Compiled by:

A. Skrzecz

4.18. Ethanoll + Water + Nonane Experimental Data

Compositions along the saturation curve

	T/K (compiler)	<i>x</i> ₁	<i>x</i> ₂		
t/°C		(com	(compiler)		w_2
25	298.2	0.0000	0.9929	0.000	0.999
		0.2218	0.7661	0.094	0.904
		0.2949	0.6881	0.133	0.864
		0.3677	0.6111	0.177	0.819
		0.4714	0.4952	0.253	0.740
		0.5307	0.4335	0.303	0.689
		0.5802	0.3777	0.352	0.638
		0.6201	0.3282	0.399	0.588
		0.6941	0.2483	0.493	0.491
		0.7504	0.1640	0.605	0.368
		0.7726	0.1262	0.664	0.302
		0.7699	0.0679	0.753	0.185
		0.7587	0.0516	0.777	0.147
		0.7354	0.0370	0.793	0.111
		0.7090	0.0274	0.798	0.086
		0.6533	0.0164	0.789	0.055
		0.6505	0.0160	0.788	0.054
		0.5122	0.0044	0.718	0.017
		0.4110	0.0016	0.637	0.007
		0.3409	0.0006	0.568	0.003

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
	<i>T</i> /K (compiler)	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		hydrocarbon- rich phase		water- rich phase	
25	298.2	0.000	1.000	0.593	0.010	0.000	1.000	0.764	0.036
		0.064	0.936	0.681	0.021	0.024	0.976	0.796	0.068
		0.122	0.871	0.752	0.045	0.048	0.951	0.786	0.131
		0.265	0.723	0.775	0.114	0.116	0.882	0.682	0.280
		0.300	0.683	0.768	0.135	0.136	0.861	0.650	0.318
		0.377	0.597	0.745	0.177	0.184	0.811	0.588	0.388
		0.505	0.462	0.672	0.268	0.280	0.713	0.466	0.518
		0.521	0.442	0.665	0.279	0.295	0.697	0.454	0.531
		0.588	0.370	0.588	0.370	0.360	0.630	0.360	0.630

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, Ref. 1, was used to determine solubility of the mixtures. The third component was added to the binary homogenous mixture until cloudiness was first observed. Density of the saturated mixtures was measured; these results were graphed. To obtain equilibrium, ternary mixtures were stirred in a thermostated vessel for several hours. After phase separation, the density of each phase was measured and composition was determined from the graphs prepared earlier. Concentration at the critical point was found by method described in Ref. 2. Water included in ethanol was taken into account in all measurements.

Source and Purity of Materials:

 source not specified, "rectificate grade;" distilled; water concentration was determined by the Karl Fischer method.
 source not specified; b.p. = 150.6 °C, n(25 °C,D) = 1.4030.
 not specified.

Estimated Error:

solubility ± 0.001 mass fraction.

References

¹W. D. Bancroft, Phys. Rev. **3**, 21 (1896).
 ²E. N. Zilberman, Zh. Fiz. Khim. **26**, 1458 (1952).

 $\begin{array}{l} (1) \ Ethanol \ (ethyl \ alcohol); \ C_2H_6O; \ [64-17-5] \\ (2) \ 2,6,6-Trimethylbicyclo[3.1.1] hept-2-ene \ (alpha-pinene), \\ pinene); \ C_{10}H_{16}; \ [80-56-8] \\ (3) \ Water; \ H_2O; \ [7732-18-5] \end{array}$

Original Measurements:

W. D. Bonner, J. Phys. Chem. 14, 738-89 (1909-1910).

Variables: T/K=273

Compiled by: A. Skrzecz

4.19. Ethanol + Water + 2,6,6-Trimethylbicyclo [3.1.1] hept-2-ene Experimental Data

Compositions along the saturation curve

	T/K	<i>x</i> ₁	<i>x</i> ₂	w_1	w_2	
t/°C	(compiler)	(com	(compiler)		(compiler)	
0.0	273.2	0.4265	0.5328	0.2114	0.7808	
		0.5586	0.3958	0.3197	0.6701	plait point
		0.6851	0.2187	0.5002	0.4723	
		0.7378	0.1403	0.6146	0.3457	
		0.7409	0.0878	0.6940	0.2433	
		0.7219	0.0617	0.7300	0.1844	
		0.7065	0.0494	0.7452	0.1542	
		0.6818	0.0363	0.7582	0.1192	
		0.6497	0.0276	0.7576	0.0952	
		0.6144	0.0200	0.7524	0.0726	
		0.5682	0.0133	0.7368	0.0511	
		0.4981	0.0068	0.6998	0.0282	
		0.3980	0.0029	0.6211	0.0133	

Components:

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Decahydronaphthalene (cis+trans) (decalin, bicyclo[4.4.0]decane); C₁₀H₁₈; [91-17-8]
 (3) Water; H₂O; [7732-18-5]

Original Measurements:

F. Ruiz, V. Gomis, and R. F. Botella, Fluid Phase Equilib. 43, 317–27 (1988).

Variables: Compiled by: T/K=298 A. Skrzecz

4.20. Ethanol + Water + Decahydronaphthalene (cis+trans) Experimental Data

Compositions along the saturation curve

		T/K		<i>x</i> ₁	x_2				
t/°C		(compiler)		(cor	npiler)				w_2
25	5.0	298.2		0.7214 0.244		0.491		0.500	
				0.7826	0.1673		0.600		0.385
				0.7981	0.1224		0.667		0.307
				0.7990	0.0878		0.722		0.238
				0.7546	0.0481		0.773		0.148
				0.7076	0.0313		0.783		0.104
				0.5758	0.0100		0.750		0.039
					0.0058		0.718	0.024	
			(Compositions of	coexisting phase	es			
		x' ₁	x'2	Compositions of x_1''	coexisting phase x_2''	es w'1	w'2	w″1	w"2
/°C	T/K (compiler)	hydroc rich		x"1 wa	• •		arbon-	wa	w ["] ₂ ater- phase
/°C 25.0		hydroc rich	x ₂ ' carbon- phase	x"1 wa	x"2 ter-phase	w ₁ '	arbon-	wa	iter-
	(compiler)	hydroc rich j (com	x ₂ ' carbon- phase piler)	x"1 wa rich j (com	ter- phase piler)	w'1 hydroc rich p	arbon- hase	warich	nter- phase 0.0 ^{a)}
	(compiler)	hydroc rich j (com	x ₂ ' carbon- phase piler) 0.9938	$ \frac{x_1''}{\begin{array}{c} \text{wa} \\ \text{rich} \\ (\text{com} \\ 0.04244 \end{array}} $	ter- phase piler)	w'1 hydroc rich p	arbon- hase 0.999	wa rich 0.1018	iter- phase
	(compiler)	hydroc rich j (com 0.0009 0.0051	$\frac{x'_2}{\text{carbon-phase piler}}$ 0.9938 0.9926	x ₁ " wa rich (com 0.04244 0.082032	x ["] / ₂ ter- phase piler) 0.0 0.000012	w' ₁ hydroc rich p 0.0003 0.0017	arbon- hase 0.999 0.998	wa rich 0.1018 0.186	nter- phase 0.0 ^{a)} 0.0000 0.0002
	(compiler)	hydroc rich j (com 0.0009 0.0051 0.0072	x ₂ ' carbon- phase piler) 0.9938 0.9926 0.9928	x ₁ " wa rich (com 0.04244 0.082032 0.121932	x ["] / ₂ ter- phase piler) 0.0 0.000012 0.000034	w ₁ ' hydroc rich p 0.0003 0.0017 0.0024	arbon- hase 0.999 0.998 0.998	wa rich 0.1018 0.186 0.262	tter- phase 0.0 ^{a)} 0.0000 0.0002 0.0002
	(compiler)	hydroc rich j (com 0.0009 0.0051 0.0072 0.0104	x ₂ ' carbon- phase piler) 0.9938 0.9926 0.9928 0.9896	x"1 wa rich (com 0.04244 0.082032 0.121932 0.162777	x ² / ₂ ter- phase piler) 0.0 0.000012 0.000034 0.000046	w ₁ ' hydroc rich p 0.0003 0.0017 0.0024 0.0035	arbon- hase 0.999 0.998 0.998 0.997	wa rich 0.1018 0.186 0.262 0.332	tter- phase 0.0 ^{a)} 0.0000

0.33748

0.38728

0.43963

0.48531

0.53337

0.59358

0.63462

0.00110

0.00187

0.00320

0.00487

0.00760

0.01172

0.01666

0.0061

0.0063

0.0066

0.0077

0.0089

0.0110

0.0125

0.994

0.994

0.993

0.992

0.991

0.989

0.988

0.563

0.613

0.659

0.694

0.725

0.758

0.773

0.0055

0.0089

0.0144

0.0209

0.0310

0.0449

0.0609

Auxiliary Information Method/Apparatus/Procedure: Source and Purity of Materials: In a tube 1 cm diameter and 12 cm long known amount, by (1) Kahlbaum; presumably dried and distilled. weight, of hydrocarbon and water were placed into a (2) Kahlbaum; presumably dried and distilled. temperature controlled bath. The contents of the tube were (3) not specified. stirred and alcohol was added gradually until a homogeneous solution was obtained. Observations were made visually **Estimated Error:** through the telescope of a cathetometer. The samples were accuracy of weighing 0.0001 g. always weighed immediately before and after each experiment. Concentrations were reported as weight of water in 1 g of 0.0181 0.9819 binary water-hydrocarbon mixture and the weight of alcohol 0.0187 0.9813 necessary to make a homogeneous solution. The mass of 0.0195 0.9775 binary water-hydrocarbon mixture was about 1 g; the mass of 0.0227 0.9750 alcohol-up to 5 g. 0.0262 0.9730

^aNo detectable composition of decalin.

0.0323

0.0366

0.9677

0.9634

Method/Apparatus/Procedure:

The cloud point method was used to determine the solubility curve. The experimental apparatus was described in Ref. 1. The analytical method was used to determine liquid–liquid equilibria. Mixtures of known overall composition, by weight, were stirred intensely and allowed to settle for 2 h at constant temperature bath. Samples of each phase were taken and analyzed by glc method with 1-propanol as internal standard. (1-Propanol also prevented phase separation.) Analytical conditions: column 2 m×3 mm, packed with Chromosorb 101 100/120, temp. 190 °C, thermal conductivity detector for the organic phase, flame ionization detector for aqueous phase, helium flow rate -40 mL/min. Water was reported to be undetectable in the organic phase.

Source and Purity of Materials:

Merck; used as received; <0.2 wt % impurities by glc.
 Merck; used as received; mixture of cis- and trans-isomers.
 not reported.

Estimated Error:

temp. ± 0.1 °C; relative accuracy of composition 2% (solubility curve).

References:

¹F. Ruiz and D. Prats, Fluid Phase Equilib. 10, 77 (1983).

Components:

Variables:

T/K = 293

(1) Ethanol (ethyl alcohol); C₂H₆O; [64-17-5]
 (2) Decane (*n*-decane); C₁₀H₂₂; [124-18-5]
 (3) Water; H₂O; [7732-18-5]

Original Measurements: L. V. Sadovnikova and M. V. Alexandrova, Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. 12, 137–9 (1971).

Compiled by: A. Skrzecz

4.21. Ethanol + Water + Decane

Experimental Data

compositions	aiong	une	suturution	curve

	T/K	<i>x</i> ₁	<i>x</i> ₂			
t/°C	(compiler)	(con	(compiler)		w_2	
20	293.2	0.0174	0.9811	0.0057	0.9941	
		0.8781	0.1219	0.7000	0.3000	
		0.8906	0.0884	0.7600	0.2330	
		0.8902	0.0697	0.7940	0.1920	
		0.8521	0.0350	0.8485	0.1075	
		0.8135	0.0254	0.8520	0.0820	
		0.7447	0.0133	0.8460	0.0465	
		0.6472	0.0048	0.8110	0.0185	
		0.4520	0.0005	0.6770	0.0023	
		0.3501	0.00026	0.5787	0.0013	
		0.2206	0.000034	0.4198	0.0002	
		0.10189	0.000022	0.22485	0.00015	

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	<i>T</i> /K (compiler)	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		hydrocarbon- rich phase		water- rich phase	
20	293.2	0.0040	0.9952	0.5703	0.4287	0.00130	0.99860	0.30100	0.69881
		0.0089	0.9899	0.7348	0.2479	0.00290	0.99695	0.48750	0.50800
		0.0174	0.9811	0.8502	0.1399	0.00570	0.99410	0.66100	0.33600
		0.0299	0.9693	0.9033	0.0804	0.00990	0.99000	0.78000	0.21450
		0.0347	0.9653	0.8781	0.1219	0.0115	0.9885	0.6800	0.3200

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used to obtain compositions along the saturation curve and the analytical method—for compositions of coexisting phases.

Source and Purity of Materials:

 source not specified; distilled on 20 TP column; n(20 °C,D)=1.3627.
 source not specified; distilled on 20 TP column; n(20 °C,D)=1.4119.
 distilled.

Estimated Error:

temp. ± 0.1 °C.

5. 1-Propanol + Water

Components: (1) 1-Proponal (*n*-propanol, propyl alcohol, *n*-propyl alcohol); C₃H₈0; [71-23-8] (2) Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5] Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1996.02)

5.1. 1-Propanol + Water + Benzene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 1-propanol-benzene-water is given in Table 41.

TABLE 41. Summary of experimental data for the system 1-propanol-benzene-water

Author(s)	T/K	Type of data ^a	Ref.
Holmes, 1918	288	sat. (1)	1
Leikola, 1940	293	sat. (8)	2
Denzler, 1945	293	sat. (17), eq. (12)	3
McCants et al., 1953	311	sat. (11), eq. (6)	4
Udovenko and Mazanko, 1963	288-352	sat. (87), eq. (38)	5
Letcher et al., 1990	298	sat. (14), eq. (5)	6

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system 1-propanol–benzene–water forms a miscibility gap of type 1. The miscibility gap was observed to increase with decreasing temperature. Only one binary system, benzene–water, forms a miscibility gap. These binary data were compiled and critically evaluated in a previously published SDS volume.⁷ This critical evaluation is based on the original papers with the exception of data of Leikola,² which were taken from the handbook of Kafarov;⁸ this data set was also taken into account during evaluation but is not reported as a compilation sheet because it does not contribute further to knowledge of the system. Data of Letcher *et al.*⁶ were presented in the original paper only in graphical form and therefore are not reported as a compilation. Data of Udovenko and Mazanko⁵ were reported at saturation temperatures of mixtures containing a constant ratio of two components. A large number of experimental points (87) was reported over the temperature range 288–352 K, but were not used for constant temperature data comparisons. In Ref. 3 one point in the organic-rich phase at 293 K, x_1 =0.4439, is rejected since it has an unrealistically high amount of 1-propanol. The comparison of recommended binary data (Ref. 7) was possible only with experimental data of McCants *et al.*⁴ at 310.9 K. The mutual solubility of the binary benzene–water system in Ref. 4 was reported to be x'_2 =0.9871 and x''_2 =0.0012, while the recommended values interpolated at this temperature by the evaluator on the basis of Ref. 7 are x'_2 =0.9954 and x''_2 =0.0012, while the recommended values interpolated at the consistent within each data set as well as with one another. All are treated as tentative. Temperature of 293.2 K was selected and data of Leikola² and Denzler³ were fitted to the equation:

$x_1 = a_1 \cdot z_1 \cdot \ln(z_1) + a_2 \cdot z_2 \ln(z_2) + a_3 \cdot z_1 \cdot z_2$.

where: $z_1 = (x_2 + 0.5 \cdot x_1 - x_{20}')/(x_{20}' - x_{20}')$, $z_2 = (x_{20}' - x_2 - 0.5 \cdot x_1)/(x_{20}' - x_{20}')$, x_1 , x_2 -mole fractions of component (1) and (2) respectively, x_{20}' , x_{20}'' , x_{20}'' , x_{20}'' , x_{20}'' , x_{20}'' , $x_{20}'' + 1$, $x_{20}''' + 1$, $x_{20}''' + 1$, $x_{20}''' + 1$, x_{20}

The equation was proposed by Hlavaty⁹ and also used with success by Letcher *et al.*¹⁰ for the description of saturation curves of the ternary alcohol–ether–water systems. This equation gives better results (smaller standard deviation) for this system than any other tested equations. The parameters obtained by the least squares method for the whole range of saturation curve are: $a_1 = -0.018$ 96, $a_2 = 0.462$ 78, $a_3 = 2.394$ 28. The standard error of estimate was 0.0094. For selected concentrations of benzene in the mixture, the saturation curve was calculated and the results are presented in Table 42 and in Fig. 21 as a solid line.

TABLE 42.	Calculated	compositions	along t	the	saturation	curve	at	293.2 K	

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.0000	0.000 406 Ref. 7	0.3571	0.5000
0.0490	0.0010	0.3453	0.5200
0.1612	0.0100	0.3331	0.5400
0.2190	0.0200	0.3204	0.5600
0.2898	0.0400	0.3074	0.5800
0.3353	0.0600	0.2939	0.6000
0.3676	0.0800	0.2802	0.6200
.03916	0.1000	0.2661	0.6400
0.4096	0.1200	0.2517	0.6600
0.4231	0.1400	0.2370	0.6800
0.4329	0.1600	0.2221	0.7000
0.4399	0.1800	0.2070	0.7200
0.4444	0.2000	0.1916	0.7400
0.4469	0.2200	0.1761	0.7600
0.4475	0.2400	0.1604	0.7800
0.4466	0.2600	0.1446	0.8000
0.4443	0.2800	0.1286	0.8200
0.4407	0.3000	0.1127	0.8400
0.4360	0.3200	0.0967	0.8600
0.4303	0.3400	0.0807	0.8800
0.4237	0.3600	0.0648	0.9000
0.4162	0.3800	0.0492	0.9200
0.4080	0.4000	0.0339	0.9400
0.3990	0.4200	0.0193	0.9600
0.3894	0.4400	0.0061	0.9800
0.3792	0.4600	0.0000	0.9975 Ref. 7
0.3684	0.4800		

Phase in equilibrium

The phases in equilibrium were measured at constant temperatures: 293 K (Ref. 3), 298 K (Ref. 6), 303 K (Ref. 5), 311 K (Ref. 4), 318 K and 333 K (Ref. 5). The tie lines cover the whole area of miscibility gap, all together 61 tie lines were reported. They are consistent within each data set, within each region as well as between regions. Letcher and Siswana on the basis previous experiments, Ref. 6, calculated the plait point in Ref. 11. Characteristic points on binodal curve, plait point and maximum 1-propanol concentration, reported or estimated, are presented at selected temperatures in Table 43. At maximum 1-propanol concentration the errors estimated by the evaluator are 0.005 and 0.02 mole fraction of 1-propanol and benzene, respectively.

TABLE 43. Characteristic points on the binodal curve of the system 1-propanol-benzene-water

	Max	. C ₃ H ₇ OH concentration	on	Plait	points	Ref.
T/K	<i>x</i> ₁	<i>x</i> ₂	Ref.	<i>x</i> ₁	<i>x</i> ₂	Ref.
288.2	0.438	0.198	3	0.173	0.014	3
293.2	0.458	0.220	3	_	_	
298.2	0.43	0.20	6	0.18	0.01	11
303.2	0.3917	0.101	5	0.172	0.014	5
310.9	0.396	0.151	4	_	_	
318.2	0.412	0.272	5	0.162	0.015	5
333.2	0.390	0.182	5	0.158	0.017	5

The plait point changes very slightly with temperature. The concentration of 1-propanol at the plait point increases very slowly with decreasing temperature [from x_1 =0.158 at 333 K (Ref. 5) to x_1 =0.173 at 293 K (Ref. 3)]; while the concentration of benzene is nearly independent of temperature (it varied from 0.017 to 0.014). The experimental tie lines at 293.2 K, Ref. 3, are presented in Fig. 21 together with the saturation curve as an example of the system property.

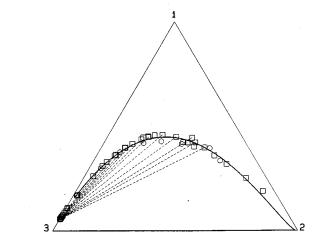


FIG. 21. Phase diagram of the system 1-propanol (1)—benzene (2)—water (3) at 293.2 K. ○—experimental results of Ref. 2, □—experimental results of Ref. 3, dashed lines—experimental tie lines, Ref. 3.

References:

¹J. Holmes, J. Chem. Soc. **113**, 263 (1918).

²E. Leikola, Suom. Kemistil. B 13, 13 (1940).

³C. G. Denzler, J. Phys. Chem. 49, 358 (1945).

⁴J. F. McCants, J. H. Jones, and W. H. Hopson, Ind. Eng. Chem. 45, 454 (1953).

⁵V. V. Udovenko and T. F. Mazanko, Zh. Fiz. Khim. 37, 1151 (1963).

⁶T. M. Letcher, J. Sewry, and S. Radloff, S. Afr. J. Chem. 43, 56 (1990).

⁷D. G. Shaw, ed., *Solubility Data Series*, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

⁸V. V. Kafarov, ed., Spravochnik po Rasivormosti, Vol. 2, Troinye, Mnogokomponentnye Sistemy, Kniga II (Izd. Akademii Nauk SSSR, Moskya, 1963).

⁹K. Hlavaty, Collect. Czech. Chem. Commun. 37, 4005 (1972).

¹⁰T. M. Letcher, S. Ravindran, and S. E. Radloff, Fluid Phase Equilib, 69, 251 (1991).

¹¹T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203 (1992).

			C	ompositions of	f coexisting ph	ases			
		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''
t/°C	T/K (compiler)	rich	carbon- phase piler)	rich	ter- phase piler)	2	carbon- phase		ater- phase
20.0	293.2	0.1732	0.0141	0.1732	0.0141	0.398	0.042	0.398	0.042 ^b
		0.3109	0.0478	0.1068	0.0056	0.550	0.110	0.281	0.019 ^a
		0.3646	0.0757	0.0937	0.0048	0.578	0.156	0.253	0.017
		0.3961	0.0988	0.0859	0.0039	0.586	0.190	0.236	0.014
		0.4148	0.1176	0.0754	0.0033	0.586	0.216	0.212	0.012 ^a
		0.4360	0.1441	0.0704	0.0030	0.582	0.250	0.200	0.011 ^a
		0.4472	0.1675	0.0671	0.0027	0.573	0.279	0.192	0.010
		0.4579	0.2198	0.0634	0.0024	0.545	0.340	0.183	0.009 ^a
		0.4479	0.2806	0.0626	0.0021	0.501	0.408	0.181	0.008
		0.4439	0.3482	0.0590	0.0018	0.463	0.472	0.172	0.007
		0.4216	0.3720	0.0570	0.0016	0.436	0.500	0.167	0.006 ^a
		0.3981	0.4217	0.0554	0.0010	0.398	0.548	0.163	0.004

Components:

Variables:

T/K = 293

t.

1-Propanol (*n*-propanol, propyl alcohol), *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 Benzene; C₆H₆; [71-43-2]
 Water; H₂O; [7732-18-5]

Original Measurements:

C. G. Denzler, J. Phys. Chem. 49, 358-65 (1945).

Compiled by: A. Skrzecz Experimental Data

		the saturation curve			
T/K		<i>x</i> ₁	<i>x</i> ₂		
t/°C	(compiler)	(com	piler)	w_1	w_2
20.0	293.2	0.0671	0.0009	0.193	0.0035
		0.1103	0.0047	0.289	0.016
		0.1689	0.0140	0.391	0.042
		0.2622	0.0338	0.507	0.085
		0.3297	0.0550	0.563	0.122
		0.3605	0.0726	0.577	0.151
		0.3979	0.0960	0.590	0.185
		0.4447	0.1477	0.586	0.253
		0.4507	0.1644	0.578	0.274
		0.4562	0.1882	0.565	0.303
		0.4234	0.3222	0.461	0.456
		0.4221	0.3406	0.451	0.473
		0.4034	0.3760	0.421	0.510
		0.3606	0.4809	0.349	0.605
		0.3203	0.5507	0.298	0.666
		0.2531	0.6632	0.222	0.756
		0.1889	0.7633	0.158	0.830

Method/Apparatus/Procedure:

The titration method was used to determine the binodal curve. Binary mixtures of known mass and composition, by weight, were placed in a thermostat and were titrated with the third component, added from a burette, until the second liquid phase was observed. The mass of the titrant was determined gravimetrically. Refractive indexes were measured at 25 °C, to be sure that samples are clear, and plotted for each component of the system. To determine tie-line, the two-phase mixtures of known total composition were placed into a thermostat bath and when equilibrium was reached, the refractive index of the top layer was measured. The compositions were read from prepared previously plots. The composition of the other phase in equilibrium was calculated from the mass balance. From several tie lines determined experimentally, Bachman charts were constructed and more lines were added by interpolation (a). The plait point was determined by extrapolation of the lines on Bachman chart to intersect with the equilibrium curve (b).

Source and Purity of Materials:

source not specified, chemically pure grade; dried over CaCl₂, distilled three times; n(20 °C)=1.3860.
 source not specified, chemically pure grade; used as received; n(20 °C)=1.5010.
 not specified; n(20 °C)=1.3330.

Estimated error:

temp. ± 0.1 °C

Components:

Variables:

T/K = 311

1-Propanol, (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 Benzene; C₆H₆; [71-43-2]
 Water; H₂O; [7732-18-5]

Original Measurements:

J. F. McCants, J. H. Jones, and W. H. Hopson, Ind. Eng. Chem. 45, 454-6 (1953).

Compiled by:	
A. Skrzecz	
Experimental Data Compositions along the saturation curve	

	T/K	<i>x</i> ₁	<i>x</i> ₂		
t/°C	(compiler)	(com	piler)	w_1	w ₂
100	310.9	0.0000	0.9871	0.000	0.997
		0.2811	0.5886	0.259	0.705
		0.3261	0.4570	0.331	0.603
		0.3917	0.3284	0.434	0.473
		0.3964	0.1514	0.544	0.270
		0.3673	0.1025	0.557	0.202
		0.2786	0.0471	0.514	0.113
		0.2246	0.0312	0.460	0.083
		0.1712	0.0192	0.390	0.057
		0.0870	0.0048	0.238	0.017
		0.0000	0.0012	0.000	0.005

		x'_1	x'_2	x_1''	x_2''	w'_1	w2	w_1''	w_2''
t/°C	T/K (compiler)	rich j	carbon- phase piler)	rich-	ter- phase piler)	2	carbon- phase		ater- phase
100	310.9	0.0496	0.9377	0.0188	0.0007	0.039	0.958	0.060	0.003
		0.1119	0.8512	0.0252	0.0015	0.091	0.900	0.079	0.006a)
		0.1786	0.7658	0.0338	0.0018	0.150	0.836	0.104	0.007a)
		0.3278	0.4888	0.0469	0.0026	0.322	0.624	0.140	0.010a)
		0.3854	0.3458	0.0564	0.0026	0.421	0.491	0.165	0.010b
		0.0990	0.8680	0.0290	0.0017	0.080	0.912	0.090	0.007b

Method/Apparatus/Procedure:

The titration method was used to obtain binodal curve. The samples of homogenous binary mixture were placed in a constant temperature bath and titrated the third component to the cloud point. Each sample was agitated in the constant temperature bath for several minutes between drops of the third component. The temperatures of these systems were raised slightly (1 °F) to obtain homogeneity and their refractive indexes were measured. The analytical method was used for tie lines. (a) A ternary mixture of known composition was shaken for several hours in constant temperature bath and after both phases were carefully separated and their refractive indexes were determined. The intersections of the tie lines with the binodal curve were determined by refractive index interpolations between points of known composition used to determine the curve. (b) The slopes of the tie lines were checked by determining tie lines by the graphical application of the lever rule as described in Ref. 1.

Source and Purity of Materials:

 Du Pont, refined; used as received; n(20 °C,D)=1.3855, d(75 °F,60 °F)=0.800.
 Baker, thiophene free; used as received; n(20 °C,D) =1.5004, d(75 °F,60 °F)=0.873.

(3) distilled; n(20 °C,D) = 1.3330.

Estimated Error:

refractive index ± 0.0001 ; concentration ± 0.001 mass % (estimated by compiler).

References:

¹D. F. Othmer and P. E. Tobias, Ind. Eng. Chem. 34, 690 (1942).

Components:

Variables:

T/K = 288 - 352

I-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 Benzene: C₆H₆; [71-43-2]
 Water; H₂O; [1732-18-5]

Original Measurements: V. V. Udovenko and T. F Mazanko, Zh. Fiz. Khim. **37**, 1151–3 (1062). Fize tened Puese I. Dive Chem. **27**, 610–2 (1062).

Compiled by:

 x_2

A. Skrzecz

Experimental Data Compositions along the saturation curve

 x_1

 w_1

 w_2

	T/K	<i>x</i> ₁	×2	w ₁	w2
t/°C	(compiler)	(com	piler)	(comp	piler)
16.75	289.90	0.1237	0.8519	0.0999	0.8942
27.62	300.77	0.1232	0.8484	0.0998	0.8933
39.45	312.60	0.1227	0.8452	0.0997	0.8925
51.50	324.65	0.1222	0.8418	0.0996	0.8916
60.62	333.77	0.1217	0.8379	0.0995	0.8906
70.57	343.72	0.1213	0.8359	0.0994	0.8901
21.00	294.15	0.2287	0.7059	0.1962	0.7870
25.75	298.90	0.2280	0.7033	0.1961	0.7862
26.42	299.57	0.2273	0.7014	0.1959	0.7857
41.63	314.78	0.2258	0.6964	0.1956	0.7842
47.50	320.65	0.2250	0.6940	0.1954	0.7835
59.50	332.65	0.2231	0.6883	0.1950	0.7818
68.01	341.16	0.2211	0.6822	0.1945	0.7800
16.22	289.37	0.3098	0.5683	0.2855	0.6808
25.60	298.75	0.3078	0.5647	0.2850	0.6796
33.73	306.88	0.3061	0.5615	0.2846	0.6785
47.77	320.92	0.3028	0.5555	0.2837	0.6765
57.60	330.75	0.3003	0.5507	0.2831	0.6748
69.73	342.88	0.2968	0.5445	0.2821	0.6727
17.25	290.40	0.3797	0.4261	0.3829	0.5584
27.50	300.65	0.3759	0.4218	0.3817	0.5567
38.27	311.42	0.3713	0.4166	0.3803	0.5546
44.75	317.90	0.3684	0.4133	0.3794	0.5532
54.60	327.75	0.3640	0.4083	0.3780	0.5511
58.59	331.74	0.3622	0.4063	0.3774	0.5503
63.25	336.40	0.3606	0.4045	0.3769	0.5495
73.40	346.55	0.3570	0.4005	0.3757	0.5478
18.11	291.26	0.4191	0.3140	0.4619	0.4499
33.50	306.65	0.4100	0.3072	0.4586	0.4466
40.49	313.64	0.4058	0.3040	0.4570	0.4450
54.02	327.17	0.3958	0.2965	0.4531	0.4413
60.50	333.65	0.3902	0.2923	0.4509	0.4391
67.53	340.68	0.3831	0.2871	0.4480	0.4364
14.70	287.85	0.4362	0.2523	0.5087	0.3824
26.67	299.82	0.4287	0.2480	0.5056	0.3801
33.65	306.80	0.4227	0.2444	0.5031	0.3781
46.98	320.13	0.4118	0.2381	0.4984	0.3746
54.87	328.02	0.4040	0.2336	0.4949	0.3720
64.12	337.27	0.3948	0.2284	0.4907	0.3689
78.60	351.75	0.3782	0.2187	0.4828	0.3629

19.12	292.27	0.4364	0.1828	0.5537	0.3015										
23.38	296.53	0.4325	0.1811	0.5518	0.3004				C	ompositions of	f coexisting pl	nases			
30.27	303.42	0.4255	0.1782	0.5484	0.2985			~'	<i>z'</i>			w'1		w_1''	w"2
45.63	318.78	0.4104	0.1718	0.5407	0.2943			x' ₁	x'2	<i>x</i> ₁ ''	<i>x</i> ₂ "	w ₁	w2'	w 1	w 2
55.58	328.73	0.2962	0.1241	0.4692	0.2555			hydro	carbon-	wa	ter-	hydrod	carbon-	wa	ater-
63.95	337.10	0.3889	0.1629	0.5291	0.2881		T/K	rich	phase		phase	rich	phase	rich	phase
76.25	349.40	0.3746	0.1569	0.5210	0.2837	t/°C	(compiler)	(con	npiler)	(com	piler)				
18.90	292.05	0.4134	0.1150	0.5870	0.2122		202.2	0.0169	0.0790	0.0100	0.0002	0.0120	0.0960	0.0250	0.0010
32.78	305.93	0.3958	0.1101	0.5761	0.2083	30	303.2	0.0168	0.9789	0.0108	0.0002	0.0130	0.9860	0.0350	0.0010
46.35	319.50	0.3784	0.1052	0.5648	0.2041			0.0447	0.9467	0.0214	0.0004	0.0350	0.9630	0.0680	0.0015
53.83	326.98	0.3665	0.1019	0.5567	0.2012			0.1181	0.8611	0.0330	0.0005	0.0950	0.9000	0.1020	0.0020
61.87	335.02	0.3548	0.0986	0.5485	0.1982			0.2119	0.7292	0.0372	0.0008	0.1800	0.8050	0.1140	0.0030
71.60	344.75	0.3357	0.0934	0.5344	0.1932			0.3217	0.5366	0.0412	0.0009	0.3030	0.6570	0.1250	0.0035
20.00	293.15	0.3571	0.0696	0.5765	0.1461			0.3754	0.3999	0.0448	0.0010	0.3900	0.5400	0.1350	0.0040
37.75	310.90	0.3316	0.0647	0.5558	0.1409			0.4143	0.2916	0.0475	0.0012	0.4700	0.4300	0.1420	0.0045
50.49	323.64	0.3083	0.0601	0.5355	0.1357			0.4279	0.1814	0.0539	0.0013	0.5480	0.3020	0.1590	0.0050
63.00	336.15	0.2822	0.0550	0.5108	0.1295			0.3917	0.1013	0.0625	0.0019	0.5800	0.1950	0.1810	0.0070
69.09	342.24	0.2662	0.0519	0.4947	0.1254			0.3576	0.0718	0.0744	0.0025	0.5750	0.1500	0.2100	0.0090
28.38	301.53	0.0724	0.0019	0.2055	0.0070			0.3337	0.0593	0.0753	0.0027	0.5630	0.1300	0.2120	0.0100
41.88	315.03	0.0724	0.0025	0.2050	0.0092			0.2979	0.0433	0.0953	0.0043	0.5400	0.1020	0.2570	0.0150
48.35	321.50	0.0723	0.0030	0.2046	0.0109			0.1721	0.0144	0.1721	0.0144	0.3960	0.0430	0.3960	0.0430 ^a
65.52	338.67	0.0723	0.0038	0.2040	0.0141	45	318.2	0.0090	0.9866	0.0083	0.0005	0.0070	0.9920	0.0270	0.0020
73.32	346.47	0.0722	0.0046	0.2034	0.0170			0.0269	0.9645	0.0205	0.0007	0.0210	0.9770	0.0650	0.0030
20.25	293.40	0.1131	0.0051	0.2945	0.0174			0.1353	0.8241	0.0296	0.0010	0.1110	0.8790	0.0920	0.0040
33.23	306.38	0.1130	0.0062	0.2935	0.0208			0.2226	0.7039	0.0334	0.0012	0.1920	0.7890	0.1030	0.0050
41.00	314.15	0.1129	0.0070	0.2927	0.0235			0.3169	0.5382	0.0370	0.0015	0.2990	0.6600	0.1130	0.0060
56.45	329.60	0.1127	0.0086	0.2911	0.0288			0.3675	0.4073	0.0413	0.0018	0.3810	0.5490	0.1250	0.0070
67.95	341.10	0.1125	0.0102	0.2895	0.0340			0.4122	0.2721	0.0435	0.0020	0.4790	0.4110	0.1310	0.0080
21.08	294.23	0.1668	0.0121	0.3891	0.0367			0.4090	0.1602	0.0510	0.0023	0.5480	0.2790	0.1510	0.0090
32.35	305.50	0.1666	0.0135	0.3875	0.0407			0.3576	0.0839	0.0619	0.0029	0.5640	0.1720	0.1790	0.0110
46.12	319.27	0.1662	0.0154	0.3851	0.0465			0.3070	0.0538	0.0786	0.0041	0.5400	0.1230	0.2190	0.0150
53.61	326.76	0.1660	0.0164	0.3839	0.0494			0.2434	0.0317	0.1118	0.0074	0.4850	0.0820	0.2900	0.0250
65.40	338.55	0.1656	0.0193	0.3806	0.0577			0.1623	0.0148	0.1623	0.0148	0.3790	0.0450	0.3790	0.0450 ^a
73.81	346.96	0.1653	0.0210	0.3786	0.0626	60	333.2	0.0253	0.9453	0.0092	0.0002	0.0200	0.9730	0.0300	0.0010
18.12	291.27	0.2217	0.0217	0.4651	0.0592			0.0562	0.9104	0.0140	0.0005	0.0450	0.9470	0.0450	0.0020
23.50	296.65	0.2216	0.0225	0.4641	0.0612			0.1462	0.7864	0.0238	0.0010	0.1230	0.8600	0.0750	0.0040
35.48	308.63	0.2212	0.0245	0.4616	0.0664			0.2370	0.6684	0.0285	0.0010	0.2090	0.7660	0.0890	0.0040
50.71	323.86	0.2204	0.0277	0.4574	0.0748			0.3075	0.5379	0.0324	0.0012	0.2920	0.6640	0.1000	0.0050
62.30	335.45	0.2197	0.0310	0.4533	0.0832			0.3612	0.3928	0.0388	0.0020	0.3820	0.5400	0.1180	0.0080
70.15	343.30	0.2197	0.0339	0.4497	0.0904			0.3859	0.3070	0.0436	0.0023	0.4400	0.4550	0.1310	0.0090
18.45	291.60	0.2993	0.0339	0.5458	0.0904			0.3902	0.1818	0.0514	0.0026	0.5170	0.3130	0.1520	0.0100
	301.95	0.2993	0.0390	0.5458	0.0924			0.3582	0.1010	0.0653	0.0035	0.5490	0.2030	0.1870	0.0130
28.80								0.3394	0.0842	0.0707	0.0041	0.5460	0.1760	0.2000	0.0150
37.67	310.82	0.2975	0.0447	0.5381	0.1052			0.2998	0.0842	0.0780	0.0041	0.5400	0.1700	0.2000	0.0130
48.20	321.35	0.2963	0.0487	0.5330	0.1138			0.2335	0.0327	0.1035	0.0082	0.3280	0.1330	0.2170	0.0180
61.25	334.40	0.2943	0.0549	0.5249	0.1272			0.2515	0.0327	0.1055	0.0082	0.4680	0.0800	0.2720	0.0280 0.0510 ^a
69.28	342.43	0.2927	0.0603	0.5180	0.1387			0.1361	0.0108	0.1361	0.0108	0.5700	0.0510	0.5700	0.0510

^aCritical point of solubility.

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 12

Method/Apparatus/Procedure:

Solubility was measured by Alekseev's method.¹ Nine solubility-temperature curves of constant alcohol-benzene ratio and another five curves of constant alcohol-water ratio were constructed. The method of phase equilibrium measurements was not reported. Critical points of solubility were obtained by Bachman,² and Alekseev's¹ methods.

(3) not specified.Estimated Error:

Source and Purity of Materials:

 $d(30 \circ C, 4 \circ C) = 0.7956, n(25 \circ C, D) = 1.3837.$

d(30 °C,4 °C)=0.8680, n(25 °C,D)=1.4980.

Not reported.

References:

¹V. F. Alekseev, Gornyi Zh. **4**, 83 (1897). ²J. Bachman, Ind. Eng. Chem. Anal. Ed. **2**, 38 (1940).

(1) source not specified; purified; b.p. = 96.5 °C at 750 Torr,

(2) source not specified; purified; b.p. = 79.0 °C, at 752.5 Torr,

Components:

1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 Cyclohexane; C₆H₁₂; [110-82-7]
 Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz (Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.04)

5.2. 1-Propanol + Water + Cyclohexane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 1-propanol-cyclohexane-water is given in Table 44.

TABLE 44. Summary of experimental data for the system 1-propanol-cyclohexane-water

Author(s)	T/K	Type of data ^a	Ref.
Washburn et al., 1942	298, 308	sat. (32), eq. (18)	1
Letcher et al., 1991	298	sat. (15), eq. (5)	2
Plackov and Stern, 1992	298	sat. (20), eq. (5)	3

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system 1-propanol–cyclohexane–water forms a miscibility gap of type 1 covering the majority of the concentration triangle. Studies of the system were reported in three references at 298.2 K. Only Washburn *et al.*¹ also investigated this system at 308.2 K. All saturation data are consistent. Only the cyclohexane–water binary system forms a miscibility gap. The data for this binary system were compiled and critically evaluated in a previously published SDS volume;⁴ the recommended values at 298.2 K are: $x_2'' = 1.2 \cdot 10^{-5}$ and $x_3' = 3.7 \cdot 10^{-4}$. The end points of the saturation curve, Ref. 2, were reported to be $x_2=0.998$ and pure water which is not consistent with recommended values. However, these results are within the accuracy of experimental measurements (0.005 mole fraction) stated by the authors. One experimental point in the water-rich phase³ was reported to be $x_1 = 0.053$, $x_2 = 0.000$, which may suggest that 1-propanol is only partially soluble in water. This numerical result reflects a lack of sensitivity of the analytical method used for cyclohexane in the water-rich phase. All experimental solubility and equilibrium data reported at 298.2 K in Refs. 1, 2, and 3, were used to construct the equation:

$x_1 = a_1 \cdot (\ln z_1)^{a_2} \cdot z_1^{a_3}$.

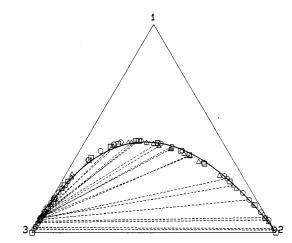
where: $z_1 = (x_2 + 0.5 \cdot x_1 - x_{20}')/(x_{20}' - x_{20}')$, x_1, x_2 —mole fractions of component (1) and (2), respectively, x'_{20}, x''_{20} —values of x_2 on the binodal curve which cuts the $x_1 = 0$ axis. This equation has been proposed by Letcher *et al.*⁵ for the description of saturation curves of the ternary alcohol-ether-water systems. It gives better results (the smallest standard deviation) for the investigated system than any other tested equation. The parameters obtained by the least squares method for the whole range of miscibility gap (water-rich and hydrocarbon-rich branches were described together) are: $a_1 = 1.50825$, $a_2 = 0.98056$, $a_3 = 1.28405$. The standard error of estimate was 0.0084. For selected concentrations of cyclohexane in the mixture, saturation curve was calculated by the above equation. The results are presented in the Table 45 and in Fig. 22 as solid line.

TABLE 45. Calculated compositions along the saturation curve at 298.2 K

x_1	<i>x</i> ₂	x_1	x_2
0.0000	0.000 012 Ref. 4	0.3607	0.5000
0.0288	0.0010	0.3504	0.5200
0.1697	0.0100	0.3397	0.5400
0.2233	0.0200	0.3285	0.5600
0.2870	0.0400	0.3169	0.5800
0.3279	0.0600	0.3049	0.6000
0.3572	0.0800	0.2925	0.6200
0.3791	0.1000	0.2797	0.6400
0.3958	0.1200	0.2666	0.6600
0.4085	0.1400	0.2531	0.6800
0.4181	0.1600	0.2394	0.7000
0.4251	0.1800	0.2253	0.7200

SKRZECZ,

SHAW, AND MACZYNSKI


0.4299	0.2000	0.2109	0.7400
0.4328	0.2200	0.1963	0.7600
0.4342	0.2400	0.1813	0.7800
0.4341	0.2600	0.1661	0.8000
0.4327	0.2800	0.1506	0.8200
0.4303	0.3000	0.1349	0.8400
0.4267	0.3200	0.1189	0.8600
0.4223	0.3400	0.1026	0.8800
0.4170	0.3600	0.0861	0.9000
0.4109	0.3800	0.0694	0.9200
0.4041	0.4000	0.0524	0.9400
0.3966	0.4200	0.0352	0.9600
0.3885	0.4400	0.0176	0.9800
0.3798	0.4600	0.0088	0.9900
0.3705	0.4800	0.0000	0.999 63 Ref. 4

Components:	Original Measurements:
 1-Propanol (<i>n</i>-propanol, propyl alcohol, <i>n</i>-propyl alcohol); C₃H₈O; [71-23-8] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water; H₂O; [7732-18-5] 	E. R. Washburn, C. E. Brockway, C. L. Graham, and P. Demin J. Am. Chem. Soc. 64 , 1886–8 (1942).
Variables:	Compiled by:
T/K = 298 - 308	A. Skrzecz

Experimental Data

Phases in equilibrium

Compositions of coexisting phases in the ternary system 1-propanol-cyclohexane-water at equilibrium were reported in all three references at 298.2 and at 308.2 K (Ref. 1). The tie lines cover the full area of the miscibility gap. The reported equilibrium data sets are not always consistent with one another, although they are consistent within each data set. Inconsistency is observed at the region near the plait point (the water-rich phase in equilibrium with the organic phase containing more than 0.25 mole fraction of alcohol). The data for phases in equilibrium are considered tentative. All experimental tie lines as well as experimental points, Refs. 1, 2, and 3 at 298.2 K, are shown in Fig. 22.

Compositions along the saturation curve					
	T/K	<i>x</i> ₁	<i>x</i> ₂		
t/°C	(compiler)	(com	piler)	w_1	w_2
25.0	298.2	0.0983	0.8887	0.0730	0.9241
		0.1917	0.7686	0.1498	0.8409
		0.2727	0.6527	0.2255	0.7560
		0.3361	0.5362	0.2987	0.6673
		0.3933	0.4193	0.3794	0.5664
		0.4272	0.3141	0.4522	0.4657
		0.4410	0.2251	0.5150	0.3681
		0.4342	0.1474	0.5668	0.2695
		0.3920	0.0847	0.5873	0.1777
		0.3487	0.0558	0.5760	0.1291
		0.2467	0.0233	0.4952	0.0656
		0.1939	0.0138	0.4301	0.0429
		0.1456	0.0063	0.3563	0.0216
		0.1024	0.0019	0.2742	0.0072
		0.0637	0.0002	0.1849	0.0008
		0.0302	0.0001	0.0940	0.0006
5.0	308.2	0.1024	0.8833	0.0762	0.9206
		0.1903	0.7700	0.1486	0.8421
		0.2725	0.6525	0.2254	0.7560
		0.3380	0.5428	0.2981	0.6704
		0.3911	0.4269	0.3748	0.5729
		0.4278	0.3140	0.4527	0.4654
		0.4442	0.2303	0.5140	0.3731
		0.4343	0.1475	0.5668	0.2696
		0.3963	0.0867	0.5891	0.1805
		0.3543	0.0573	0.5799	0.1314
		0.2665	0.0274	0.5160	0.0742
		0.1933	0.0135	0.4296	0.0419
		0.1416	0.0064	0.3487	0.0221
		0.1028	0.0023	0.2746	0.0085
		0.0634	0.0003	0.1840	0.0011
		0.0295	0.0002	0.0921	0.0007

FIG. 22. Phase diagram of the system 1-propanol (1)-cyclohexane (2)-water (3) at 298.2 K. Solid line-calculated saturation curve, O-experimental data, Ref. 1, □-experimental data, Ref. 2, △-experimental data, Ref. 3.

References:

¹E. R. Washburn, C. E. Brockway, C. L. Graham, and P. Deming, J. Am. Chem. Soc. 64, 1886 (1942).

²T. M. Letcher, P. Siswana, and S. E. Radloff, S. Afr. J. Chem. 44, 118 (1991).

³D. Plackov and I. Stern, Fluid Phase Equilib. 71, 189 (1992).

⁴D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

⁵T. M. Letcher, S. Ravindran, and S. E. Radloff, Fluid Phase Equilib. 69, 251 (1991).

IUPAC-NIST SOLUBILITY DATA SERIES

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
T/K t/°C (compiler)		hyrocarbon- rich phase (compiler)		water- rich phase (compiler)		hydrocarbon- rich phase		water- rich phase	
25.0	298.2	0.0126	0.9874	0.0181	0.0002	0.009	0.991	0.058	0.001
		0.0195	0.9805	0.0275	0.0007	0.014	0.986	0.086	0.003
		0.0606	0.9394	0.0464	0.0012	0.044	0.956	0.139	0.005
		0.1578	0.8118	0.0601	0.0015	0.121	0.872	0.175	0.006
		0.2599	0.6709	0.0674	0.0020	0.213	0.770	0.193	0.008
		0.4124	0.3660	0.0735	0.0018	0.416	0.517	0.208	0.007
		0.4422	0.2101	0.0781	0.0020	0.526	0.350	0.219	0.008
		0.4236	0.1240	0.0830	0.0028	0.578	0.237	0.230	0.011
		0.2141	0.0171	0.1702	0.0098	0.457	0.051	0.396	0.032
35.0	308.2	0.0153	0.9847	0.0194	0.0002	0.011	0.989	0.062	0.001
		0.0249	0.9704	0.0264	0.0002	0.018	0.981	0.083	0.001
		0.0907	0.9002	0.0440	0.0002	0.067	0.931	0.133	0.001
		0.1819	0.7837	0.0544	0.0002	0.141	0.851	0.161	0.001
		0.2956	0.6137	0.0606	0.0002	0.250	0.727	0.177	0.001
		0.4201	0.3563	0.0657	0.0000	0.426	0.506	0.190	0.000
		0.4437	0.1974	0.0710	0.0002	0.536	0.334	0.203	0.001
		0.4145	0.1066	0.0794	0.0008	0.586	0.211	0.223	0.003
		0.2318	0.0190	0.1502	0.0071	0.480	0.055	0.364	0.024

Method/Apparatus/Procedure:

The titration method, Refs 1,2, was used. Binary mixtures of known composition were titrated with the third component. The total weight of liquids employed was 13-15 g. The refractive indexes of mixtures were used to construct the refractive index/composition curve, which was used further to find compositions of equilibrium phases.

Source and Purity of Materials:

(1) Eastman Kodak Company, best grade; dried with active lime, distilled; $d(25 \circ C, 4 \circ C) = 0.8000, n(25 \circ C, D) = 1.3838.$ (2) Eastman Kodak Company; distilled, dried with Na, recrystallized several times; $d(25 \circ C, 4 \circ C) = 0.7746$, n(25 °C,D) = 1.4232, f.p. = 6.1 °C. (3) not specified.

Estimated Error: Not reported.

References:

¹R. Vold and E. R. Washburn, J. Am. Chem. Soc. 54, 4217 (1932).

²E. R. Washburn and H. C. Spencer, J. Am. Chem. Soc. 56, 361 (1934).

Components:

Variables:

T/K = 298

 $t/^{\circ}C$

(compiler) 25.0

(1) 1-Propanol (n-propanol, propyl alcohol, n-propyl alcohol); C₃H₈O; [71-23-8] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

A. Skrzecz

T. M. Letcher, P. Siswana, and S. E. Radloff, S. Afr. J. Chem. 44, 118-21 (1991)

0.000

0.004 0.015

0.036 0.058

Experimental Data along th

Compositions along the saturation curve					
				<i>w</i> ₁ <i>w</i> ₂	
	T/K	<i>x</i> ₁	<i>x</i> ₂	(compiler)	
	298.2	0.000	0.000	0.000	
		0.070	0.001	0.200	
		0.113	0.004	0.295	
		0.165	0.011	0.386	
		0.229	0.020	0.475	

0.347	0.060	0.570	0.138
0.412	0.116	0.575	0.227
0.440	0.205	0.528	0.344
0.430	0.300	0.462	0.451
0.393	0.413	0.382	0.562
0.330	0.542	0.293	0.673
0.246	0.688	0.200	0.784
0.132	0.847	0.100	0.896
0.068	0.922	0.050	0.948
0.000	0.999	0.0000	0.9998

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C (compiler)	T/K	-	arbon- phase		ter- phase	rich	carbon- phase piler)	rich	ter- phase piler)
25.0	298.2	0.371	0.460	0.061	0.001	0.348	0.604	0.178	0.004
		0.429	0.300	0.092	0.003	0.461	0.452	0.250	0.01
		0.440	0.218	0.100	0.004	0.519	0.360	0.267	0.01
		0.426	0.140	0.121	0.006	0.566	0.261	0.309	0.02
		0.360	0.062	0.160	0.010	0.581	0.140	0.378	0.03

SKRZECZ, SHAW, AND MACZYNSKI

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the titration method, as described in Ref. 1. The formation of a cloudy mixture was observed visually on shaking after addition of a known mass of the third component; syringes were precisely weighed. Tie line compositions were determined by the refractive index method, Ref. 2, and a complementary method using the Karl Fischer titration, Ref. 3. Measurements were made at pressure of 94.7 kPa.

Source and Purity of Materials:

Merck; AR grade; refluxed with Mg and I₂, distilled; purity >99.9 mole % by glc.
 BDH; Gold label grade; used as received; purity >99.9 mole % by glc.

(3) not specified.

Estimated Error:

composition ± 0.005 mole fraction (binodal curve), ± 0.01 mole fraction (tie lines).

References:

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. **18**, 1037 (1986).

²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. **35**, 411 (1943).

³T. M. Letcher, P. Siswana, P. van der Watt, and S. Radloff, J. Chem. Thermodyn. **21**, 1053 (1989).

Components:

Variables:

T/K = 298

 $t/^{\circ}C$

25

1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 (2) Cyclohexane; C₆H₁₂; [110-82-7]
 (3) Water; H₂O; [7732-18-5]

T/K

Original Measurements:

Compiled by:

A. Skrzecz

Experimental Data Compositions along the saturation curve

D. Plackov and I. Stern, Fluid Phase Equilib. 71, 189-209 (1992).

w₁ (comp

 w_2

(compiler)	<i>x</i> ₁	<i>x</i> ₂	(com	piler)
298.2	0.0489	0.9452	0.0356	0.9631
	0.1347	0.8391	0.1022	0.8918
	0.2111	0.7319	0.1685	0.8179
	0.2732	0.6324	0.2301	0.7460
	0.3389	0.5149	0.3070	0.6533
	0.3767	0.4345	0.3616	0.5841
	0.4005	0.3716	0.4049	0.5261
	0.4257	0.2848	0.4671	0.4377
	0.4308	0.2540	0.4890	0.4038
	0.4315	0.1790	0.5401	0.3138
	0.4144	0.1251	0.5695	0.2408
	0.2647	0.0296	0.5113	0.0801
	0.2102	0.0174	0.4510	0.0523
	0.1588	0.0091	0.3772	0.0303
	0.1260	0.0043	0.3208	0.0153
	0.1041	0.0022	0.2775	0.0082
	0.0859	0.0010	0.2379	0.0039
	0.0702	0.0006	0.2008	0.0024
	0.0520	0.0004	0.1545	0.0017
	0.0254	0.0002	0.0799	0.0009

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	2	arbon- phase		ter- phase	rich	carbon- phase piler)	rich	ter- phase piler)
25	298.2	0.072	0.918	0.053	0.000	0.053	0.945	0.157	0.000
		0.226	0.712	0.070	0.002	0.182	0.803	0.199	0.008
		0.368	0.464	0.077	0.003	0.345	0.608	0.216	0.012
		0.400	0.367	0.078	0.003	0.407	0.522	0.218	0.012
		0.414	0.312	0.079	0.003	0.444	0.468	0.220	0.012
		0.431	0.191	0.084	0.004	0.531	0.329	0.231	0.015
		0.279	0.025	0.134	0.010	0.534	0.067	0.331	0.035

Method/Apparatus/Procedure:

Binodal compositions were determined by tirration with the corresponding, less-soluble component until the appearance of turbidity.¹ The analytical method was used for determination of tie-lines. This was based on refractive indexes and densities of the samples,¹ combined with the oxidation of the alcohol with an excess of potassium dichromate and determination of unreduced dichromate with Na₂S₂O₃. Alcohol in the organic layer was determined after extraction with water.

Source and Purity of Materials:

Kemika (Zagreb); analytical grade; presumably used as received; n=1.3828, p(25°C)=799.6 kg/m³,b.p.=96.8 °C.
 Zorka (Sabac); purity not specified; presumably used as received; n=1.4232, p(25°C)=773.6 kg/m³,b.p.=80.1 °C.
 twice distilled in the presence of KMnO₄.

Estimated Error:

composition $<\!0.0005$ mass fraction, binodal, (relative); composition $\pm 2\%,$ tie line.

References:

¹D. Plackov and I. Stern, Fluid Phase Equilib. 57, 327 (1990).

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland, (1994.11)

5.3. 1-Propanol + Water + Hexane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 1-propanol-hexane-water is given in Table 46.

TABLE 46. Summary of experimental data for the system 1-propanol-hexane-water

Author(s)	T/K	Type of data ^a	Ref.
McCants et al., 1953	311	sat. (16), eq. (5)	1
Vorobeva and Karapetyants, 1967	298	sat. (15), eq. (12)	2
Koshelkov et al., 1974	334	eq. (5)	3
Sugi and Katayama, 1977	298	sat. (22), eq. (5)	4

^aNumber of experimental points in parentheses.

(1) 1-Propanol (n-propanol, propyl alcohol, n-propyl alcohol);

(2) Hexane (n-hexane); C₆H₁₄; [110-54-3]

Components:

C₃H₈O; [71-23-8]

(3) Water; H₂O; [7732-18-5]

Saturation curve

The system 1-propanol–hexane–water forms miscibility gap of type 1. Only one binary system, hexane–water, is partially miscible. The data for this binary system were compiled and critically evaluated in previously published SDS volume.⁵ The recommended values of mutual solubility of the hexane–water system at 298.2 K are: x'_2 =0.999 53 and x''_2 =2.3·10⁻⁶. References 1, 2, and 4 also contain mutual solubility data for the binary system. Solubility of water in hexane (x'_2 =0.999 49) reported by Sugi and Katayama⁴ is consistent with recommended value of Ref. 5, while the results of McCants *et al.*,¹ at 310.9 K, and Vorobeva and Karapetyants² at 298.2 K differ significantly because they were measured with an accuracy of 0.001 wt. fraction and therefore are not able to describe properly mutual solubility in the binary system. Composition along the saturation curve were obtained by titration. Data for 298.2 K by Vorobeva and Karapetyants,² by Sugi and Katayama,⁴ and for 310.9 K by McCants *et al.*¹, are consistent. The miscibility gap built on the basis of McCants *et al.* data¹ at 310.9 K is a little smaller, as is expected, than that for 298.2 K. Equilibrium data of Koshelkov *et al.*³ at 334 K were reported at the boiling temperatures and are not entirely consistent with one another. The temperature 298.2 K was selected to present phase behavior. These data were used to construct the equation:

$x_1 = 0.574\ 85 + 0.125\ 13\ \ln(x_3) + 0.217\ 41x_3 - 0.821\ 37x_3^2$

The standard error of estimate was 0.0084. The equation is valid in the region of $0.001 < x_3 < 0.83$. The compositions on the saturation curve calculated by the proposed equation are presented in Table 47 for selected concentrations of water in the mixture. The results of calculations (solid line) are also presented graphically in Fig. 23 together with all experimental data reported at 298.2 K.

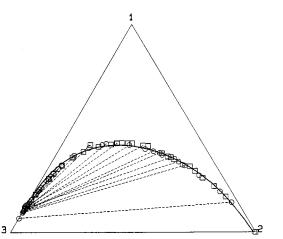
TABLE 47. Calculated compositions along the saturation curve at 298.2 K

<i>x</i> ₁	<i>x</i> ₃	x_1	<i>x</i> ₃
0.0000	0.000 47 Ref. 5	0.4127	0.4200
0.0893	0.0200	0.4088	0.4400
0.1794	0.0400	0.4039	0.4600
0.2329	0.0600	0.3981	0.4800
0.2709	0.0800	0.3915	0.5000
0.3002	0.1000	0.3756	0.5400
0.3238	0.1200	0.3665	0.5600
0.3432	0.1400	0.3565	0.5800
0.3593	0.1600	0.3457	0.6000
0.3728	0.1800	0.3341	0.6200
0.3841	0.2000	0.3217	0.6400
0.3935	0.2200	0.3086	0.6600
0.4011	0.2400	0.2946	0.6800

	0.1952	0.8000
0.3600		
0.2500	0 1052	0.8000
0.3400	0.2136	0.7800
0.3200	0.2313	0.7600
0.3000	0.2483	0.7400
0.2800	0.2645	0.7200
0.2600	0.2799	0.7000
	0.2800 0.3000 0.3200	0.2800 0.2645 0.3000 0.2483 0.3200 0.2313

Components: (1) 1-Propanol (<i>n</i> -propanol, propyl alcohol, <i>n</i> -propyl alcohol); C ₃ H ₈ O; [71-23-8] (2) Hexane (<i>n</i> -hexane); C ₆ H ₁₄ ; [110-54-3] (3) Water; H ₂ O; [7732-18-5]	Original Measurements: J. F. McCants, J. H. Jones, and W. H. Hopson, Ind. Eng. Chem. 45, 454-6 (1953).
Variables:	Compiled by:

Experimental Data


Compositions along the saturation curve

A. Skrzecz

T/K = 311

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system 1-propanol-hexane-water are reported in four references. Data of Koshelkov et al.³ were measured at boiling temperatures which were estimated by the compiler to be 334 ± 1 K. In all cases similar procedures were used. When the equilibrium was reached, phases were separated and the composition of each phase was analyzed. The tie lines cover the whole range of miscibility gap. Data reported at 298.2 K by Vorobeva and Karapetyants² and by Sugi and Katayama⁴ are in agreement with the exception of the range $x_3 = 0.88 - 0.90$ in the water-rich phase, where experimental equilibrium data are inconsistent, presumably due to the change of tie lines direction. The plait point of the system was reported only in Ref. 2 and is $x_1=0.214$, $x_2=0.017$. As with the saturation data, equilibrium data of McCants et al.¹ are reported at 310.9 K, a slightly higher temperature than in Refs. 2,4. The direction of tie lines at boiling temperatures, Ref. 3, is quite different than those at lower temperatures 298, 311 K, Refs. 1,2,4, but these data are consistent with those measured at boiling temperatures for the system 1-propanol-nonanewater, Ref. 3.

∕°F	T/K (compiler)	(com	piler)	w_1	w2
100	310.9	0.0000	0.9952	0.000	0.999
		0.2240	0.7008	0.179	0.803
		0.3083	0.5410	0.273	0.687
		0.3652	0.4382	0.347	0.597
		0.3984	0.3635	0.402	0.526
		0.4200	0.2815	0.460	0.442
		0.4229	0.1729	0.534	0.313
		0.4191	0.1322	0.564	0.255
		0.3881	0.0964	0.570	0.203
		0.3303	0.0546	0.557	0.132
		0.2352	0.0226	0.480	0.066
		0.1911	0.0161	0.423	0.051
		0.1439	0.0063	0.353	0.022
		0.0569	0.0010	0.167	0.004
		0.0292	0.0004	0.091	0.002
		0.0000	0.0002	0.000	0.001
		Comparision of	coexisting phases		

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
T/K ric		rich j	ocarbon- water- ch phase rich phase ompiler) (compiler)		hydrocarbon- rich phase		water- rich phase		
100	310.9	0.0621	0.9148	0.0459	0.0007	0.045	0.950	0.138	0.003
		0.2237	0.6934	0.0729	0.0012	0.180	0.800	0.207	0.005ª
		0.4228	0.2369	0.0929	0.0008	0.489	0.393	0.254	0.003 ^t
		0.4218	0.1705	0.1054	0.0026	0.535	0.310	0.280	0.010 ^a
		0.3773	0.4043	0.0879	0.0018	0.369	0.567	0.242	0.007

FIG. 23. Phase diagram of the system 1-propanol (1)-hexane (2)-water (3) at 298.2 K. Solid line-calculated binodal curve, ○—experimental results of Ref. 2, □—experimental results of Ref. 4, dashed lines—experimental tie lines, Refs. 2 and 4.

References:

¹J. F. McCants, J. H. Jones, and W. H. Hopson, Ind. Eng. Chem. 45, 454 (1953).

²A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 41, 1144 (1967).

³V. A. Koshelkov, T. G. Pavlenko, V. N. Titova, V. S. Timofeev, and L. A. Serafimov, Tr. Altai. Politekh. Inst. im, I. I. Polzunova 41, 84 (1974).

⁴H. Sugi and T. Katayama, J. Chem. Eng. Jpn. 10, 400 (1977).

⁵D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

	p.org/termsconditions Downloaded to IP: 120
	p.org/termsconditions. Downloaded to Tr. T25

Method/Apparatus/Procedure:

The titration method was used to obtain binodal curve. The samples of homogenous binary mixture were placed in a constant temperature bath and titrated the third component to the cloud point. Each sample was agitated in the constant temperature bath for several minutes between drops of the third component. The temperatures of these systems were raised slightly (1 °F) to obtain homogeneity and their refractive indexes were measured. The analytical method was used for tie lines.

(a) A ternary mixture of known composition was shaken for several hours in constant temperature bath and after both phases were carefully separated and their refractive indexes

were determined. The intersections of the tie lines with the binodal curve were determined by refractive index interpolations between points of known composition used to

determine the curve. (b) The slopes of the tie lines were checked by determining tie

lines by the graphical application of the lever rule as described in Ref. 1.

(c) The two phases were analyzed chemically for one or two components.

Source and Purity of Materials:

 Du Pont, refined; used as received; n(20 °C,D)=1.3855, d(75 °F,60 °F)=0.800.
 Philips, pure grade; used as received; n(20 °C,D)=1.3752, d(75 °F,60 °F)=0.654.

(3) distilled; n(20 °C,D) = 1.3330.

Estimated Error:

refractive index $\pm 0.0001;$ concentration ± 0.001 mass % (estimated by compiler).

References:

¹D. F. Othmer and P. E. Tobias, Ind. Eng. Chem. 34, 690 (1942).

Components:

Variables:

T/K = 298

25

I-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 Hexane (*n*-hexane); C₆H₁₄; [110-54-3]
 Water; H₂O; [7732-18-5]

Original Measurements: A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 41, 1144-9 (1967). [Eng. transl. Russ. J. Phys. Chem. 41, 602–5 (1967)].

Compiled by:

A. Skrzecz

Experimental Data

Compositions along the saturation curve

 x_2

 x_1

7732-18-5]

		T/K		×1	x2				
t/°C	C (compiler)		(compiler) w ₁		w_1	w_2		
25		298.2	0.0000		0.9952		0.000		0.999
			0.1422		0.8309		0.106		0.888
			0.1944		0.7581		0.150		0.839
			0.2724		0.6348		0.225		0.752
			0.3243		0.5423		0.284		0.681
			0.3719		0.4349		0.353		0.592
			0.4003		0.3515		0.409		0.515
			0.4204		0.1651		0.538		0.303
			0.4063		0.1188		0.565		0.237
			0.3699		0.0755		0.574		0.168
			0.3237		0.0473		0.558		0.117
			0.2564		0.0259		0.504		0.073
			0.2060		0.0148		0.447		0.046
			0.1978		0.0136		0.436		0.043
			0.1354		0.0042		0.339		0.015
			Composi	tions of co	existing phases				
		x'_1	<i>x</i> [′] ₂	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t∕°C	T/K (compiler)	rich	carbon- phase ppiler)	rich	nter- phase ppiler)		carbon- phase		ater-

Critical solubility	point at 29	8.2 K.

298.2

0.1422

0.3211

0.3397

0.3818

0.3898

0.4196

0.4253

0.3207

0.3057

0.2858

0.2483

0.2142

0.8309

0.5522

0.5177

0.4198

0.3901

0.2774

0.1793

0.0471

0.0406

0.0338

0.0237

0.0167

0.0678

0.0949

0.1000

0.1023

0.1052

0.1062

0.1115

0.1399

0.1463

0.1570

0.1833

0.2142

0.0005

0.0015

0.0018

0.0018

0.0021

0.0021

0.0024

0.0048

0.0057

0.0070

0.0111

0.0167

0.106

0.279

0.302

0.366

0.384

0.462

0.531

0.555

0.546

0.531

0.496

0.457

0.888

0.688

0.660

0.577

0.551

0.438

0.321

0.117

0.104

0.090

0.068

0.051

0.195

0.258

0.269

0.274

0.280

0.282

0.293

0.347

0.358

0.376

0.416

0.457

0.002

0.006

0.007

0.007

0.008

0.008

0.009

0.017

0.020

0.024

0.036

0.051^a

Method/Apparatus/Procedure:

The methods were reported in Ref. 1. The titration method was used to describe solubility of the mixtures. The third component was added to the binary homogeneous mixture until the cloudiness started to be observed. Density of the saturated mixtures was measured and put on the graphs. To obtain equilibrium ternary mixtures were stirred in thermostated vessel through several hours. After phase separation, density of each phase was measured and composition was determined from earlier prepared graphs. Concentration at critical point was found by the method described in Ref. 2. Water include in propanol was taken into account in all measurements.

Source and Purity of Materials:

 source not specified, chemical pure grade; distilled; water concentration was determined by the Karl Fischer method.
 source not specified; properties were the same as reported in Ref. 1.

(3) doubly distilled.

Estimated Error:

Not reported.

References:

 ¹A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. **40**, 3018 (1966).
 ²E. N. Zilberman, Zh. Fiz. Khim. **26**, 1458 (1952).

Components:

Variables:

T/K = 334

(1)1-Propanol (*n*-propanol, propyl alcohol), *n*-propyl alcohol);
C₃H₈O; [71-23-8]
(2) Hexane (*n*-hexane); C₆H₁₄; [110-54-3]
(3) Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

A. Skrzecz

V. A. Koshelkov, T. G. Pavlenko, V. N. Titova, V. S. Timofeev, and L. A. Serafimov, Tr. Altai. Politekh. Inst. im. I. I. Polzunova 41, 84–92 (1994).

Experimental Data Compositions of coexisting phases w_1'' x'_1 x_1'' w'_1 w'_2 w_2'' x'_2 x_2'' hydrocarbonwater-T/Khydrocarbonwaterrich phase rich phase $t/^{\circ}C$ (compiler) rich phase rich phase complier complier 61 334 0.087 0.902 0.123 0.063 0.309 0.040 0.011 0.935 0.122 0.833 0.169 0.036 0.093 0.898 0.368 0.112 0.202 0.157 0.830 0.441 0.236 0.743 0.262 0.098 0.271 0.634 0.323 0.121 0.224 0.752 0.487 0.262 0.229 0.701 0.341 0.154 0.182 0.801 0.478 0.310

Auxiliary Information

Method/Apparatus/Procedure:

The method was not specified. Experiments were made at boiling temperatures of mixtures. The boiling temperatures of the two-liquid system were estimated by the compiler.

Source and Purity of Materials:

source not specified.
 source not specified.
 source not specified.

Estimated Error: temp. ± 1K (compiler).

Components:

(1) 1-Propanol (n-propanol, propyl alcohol, n-propyl alcohol); C₃H₈O; [71-23-8] (2) Hexane (*n*-hexane); C₆H₁₄; [110-54-3]

Original Measurements:

H. Sugi and T. Katayama, J. Chem. Eng. Jpn. 10, 400-2 (1977).

(3) Water; H₂O; [7732-18-5]

Variables: T/K=298			Compiled by: A. Skrzecz			
Experimental Data Compositions along the saturation curve						
				w ₁	w2	
t/°C	T/K (compiler)	<i>x</i> ₁	<i>x</i> ₂	(com	piler)	
25	298.2	0.0000	0.99949	0.0000	0.99989	
		0.1701	0.7934	0.1290	0.8627	
		0.2197	0.7222	0.1726	0.8137	
		0.2606	0.6550	0.2127	0.7666	
		0.2948	0.6067	0.2468	0.7284	
		0.3166	0.5753	0.2697	0.7027	
		0.3513	0.4932	0.3179	0.6399	
		0.3645	0.4618	0.3379	0.6139	
		0.3799	0.4305	0.3604	0.5857	
		0.4149	0.3564	0.4172	0.5139	
		0.4280	0.2842	0.4643	0.4421	
		0.4282	0.2664	0.4748	0.4236	
		0.4296	0.2423	0.4907	0.3969	
		0.4293	0.2204	0.5048	0.3717	
		0.4223	0.2008	0.5130	0.3498	
		0.4117	0.1541	0.5397	0.2897	
		0.3874	0.1044	0.5619	0.2171	
		0.3609	0.0722	0.5689	0.1632	
		0.3215	0.0496	0.5532	0.1224	
		0.2815	0.0346	0.5251	0.0925	
		0.2578	0.0280	0.5035	0.0784	
		0.1827	0.0114	0.4146	0.0371	

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	,	hydrocarbon- water- rich phase rich phase		hydrocarbon- rich phase complier		water- rich phase complier		
25.0	298.2	0.3606	0.0732	0.1311	0.0029	0.5676	0.1652	0.3320	0.0105
		0.4200	0.1163	0.1253	0.0012	0.5787	0.2298	0.3222	0.0044
		0.4272	0.2229	0.1181	0.0007	0.5016	0.3753	0.3081	0.0026
		0.4170	0.3349	0.1155	0.0005	0.4292	0.4943	0.3030	0.0019
		0.3603	0.4766	0.1140	0.0003	0.3298	0.6255	0.3000	0.0011

Auxiliary Information

Method/Apparatus/Procedure:

The combination of a titration and analytical methods was used. The apparatus and experimental procedure were described in Ref. 1. For glc analysis of 1.6 m column filled with Poropak-Q was used. Solubility of water in hexane was determined by the Karl Fischer method.

Source and Purity of Materials:

Wako Chemicals Ind. Ltd., guaranteed reagent; dried with Molecular Sieve 3A, distilled; densities agreed within 0.0003 with literature values. (2) Merck Uvasol, spectrograde; used as received; densities agreed within 0.0003 with literature values. (3) de-ionized, twice distilled.

Estimated Error:

Not reported.

References:

¹H. Sugi, T. Nitta, and T. Katayama, J. Chem. Eng. Jpn. 9, 12 (1976).

(1)1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈φ₅ [71-23-8]
 (2) Toluene (methylbenzene); C₇H₈; [108-88-3]
 (3) Water, H₂O₅ [7732-18-5]

Evaluated by:

A Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.02)

5.4. 1+Propanol + Water + Toluene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.), compositions of coexisting phases in equilibrium (eq.) and distribution of 1-propanol between phases (distr.) for the system 1-propanol-toluene-water is given in Table 48.

TABLE 48. Summary of experimental data for the system 1-propanol-toluene-water

Author(s)	T/K	Type of data ^a	Ref.
Leikola, 1940	293	sat. (4)	1
Baker, 1955	298	sat. (16), eq. (11)	2
Nikurashina and Ilin, 1972	298	sat. (20), distr. (15)	3
Letcher and Siswana, 1992	298	sat. (15), eq. (8)	4

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system 1-propanol-toluene-water forms a miscibility gap of type 1. Studies of the system were reported in four references and are discussed on the basis of original papers with the exception of data of Leikola,¹ which were taken from the handbook of Kafarov;⁵ this data set was also taken into account during evaluation but is not reported as a compilation sheet because it does not contribute further to knowledge of the system. Only the toluene-water binary system forms a miscibility gap. The data for this binary system were compiled and critically evaluated in a previously published SDS volume.⁶ The recommended values of mutual solubility of toluene-water system at 298 K are: $x_2'=0.9972$ and $x_2''=0.000\ 104.^6$ The end points of saturation curve at 298.2 K,⁴ were reported to be $x_2'=0.999$ and x_2'' =0.000. These numerical results are limited by the accuracy of experimental measurements which were estimated by the authors to be 0.005 mole fraction; the data are within accuracy limit, but are not adequate to describe the regions of low concentrations of ethanol. Data reported by Ref. 4 show also a somewhat smaller (up to 0.03 mole fraction) concentration of water in the organic-rich phase (the region of 0.4-0.7 mole fraction of toluene) than data of other authors. A maximum value of 1-propanol concentration on the saturation curve at 298.2 K is reported to be $x_1 = 0.44$.⁴ Concentration of toluene in the water-rich phase is very low, <0.002 mole fraction, so toluene was not reported in some experimental points in equilibrium, Ref. 4 (authors estimated composition of tie lines was within 0.01 mole fraction). All data describing the saturation curve are treated as tentative; they are consistent within each data set as well as between the references. Temperature of 298.2 K was selected to present the behavior of the system. The water-rich phase was not described by any equation and this phase is not presented in Table 48. All experimental saturation and equilibrium points of the hydrocarbon-rich phase at 298.2 K, were used to construct the equation:

$x_1 = 0.788\ 09 + 0.146\ 55\ \ln(x_2) - 0.542\ 22x_2 - 0.245\ 63x_2^2$

The least-squares method was used and the standard error of estimate was 0.0068. Calculated compositions of the hydrocarbon-rich part of the saturation curve are presented in Table 49 for the selected concentrations of toluene in the mixture. The results of calculations (solid line) are also presented graphically in Fig. 24 together with all experimental data reported at 298.2 K.

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.0000	0.000 104 Ref. 6	0.3439	0.5200
0.2038	0.0200	0.3334	0.5400
0.2943	0.0400	0.3224	0.5600
0.3424	0.0600	0.3111	0.5800
0.3730	0.0800	0.2995	0.6000
0.3940	0.1000	0.2874	0.6200
0.4088	0.1200	0.2751	0.6400
0.4192	0.1400	0.2623	0.6600
0.4265	0.1600	0.2493	0.6800
0.4312	0.1800	0.2359	0.7000
0.4340	0.2000	0.2222	0.7200
0.4350	0.2200	0.2082	0.7400
0.4347	0.2400	0.1939	0.7600
0.4331	0.2600	0.1793	0.7800
0.4305	0.2800	0.1644	0.8000
0.4269	0.3000	0.1492	0.8200
0.4224	0.3200	0.1338	0.8400
0.4172	0.3400	0.1180	0.8600
0.4113	0.3600	0.1020	0.8800
0.4048	0.3800	0.0857	0.9000
0.3976	0.4000	0.0691	0.9200
0.3899	0.4200	0.0523	0.9400
0.3816	0.4400	0.0352	0.9600
0.3729	0.4600	0.0179	0.9800
0.3637	0.4800	0.0091	0.9900
0.3540	0.5000	0.0000	0.9972 Ref. 6

TABLE 49. Calculated composition along the saturation curve (hydrocarbon-rich phase) at 298.2 K

Phases in equilibrium

The phases in equilibrium were measured at 298.2 K (Refs. 2 and 4). The tie lines cover the whole area of the miscibility gap and are consistent with one another. All experimental tie lines at 298.2 K together with the saturation curve are presented in Fig. 24. The plait point of the system at 298.2 K estimated by Letcher and Siswana⁴ was x_1 =0.18, x_2 =0.01. Distribution of 1-propanol between hydrocarbon and water phases reported in Ref. 3 is in agreement with other equilibrium data. The characteristic point of the system, the same mass fraction concentration of 1-propanol in both phases (0.150),³ after recalculation gives the values 0.21 and 0.048 mole fraction of 1-propanol in organic and water rich phases, respectively.

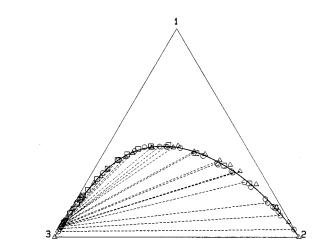


FIG. 24. Phase diagram of the system 1-propanol-toluene-water at 298.2 K. Solid line-calculated saturation curve, O-experimental results of Ref. 2, □-experimental results of Ref. 3, △-experimental results of Ref. 4, dashed lines-experimental tie lines, Refs. 2 and 4.

References:

¹E. Leikola, Suomen Kemistil. B 13, 13 (1940).

²E. M. Baker, J. Phys. Chem. 59, 1182 (1955)

³N. I. Nikurashina and K. K. Ilin, Zh. Obshch. Khim. 42, 1657 (1972).

⁴T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203 (1992).

⁵V. V. Kafarov, ed., Spravochnik po Rastvorimosti, Vol. 2, Troinye, Mnogokomponentnye Sistemy, Kniga II (Izd. Akademii Nauk SSSR, Moskva, 1963).

⁶D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

Components:

Variables: T/K = 298

> $t/^{\circ}C$ 25.0

(1) 1-Propanol (n-propanol, propyl alcohol, n-propyl alcohol); C₃H₈O; [71-23-8] (2) Toluene (methylbenzene); C₇H₈; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

0.478 20

0.545 26

0.565 96

0.539 54

0.425 25

0.302 95

0.226 53

E. M. Baker, J. Phys. Chem. 59, 1182-3 (1955).

:	Compiled by: A. Skrzecz						
		•	ental Data the saturation curve				
	T/K	<i>x</i> ₁	<i>x</i> ₂				
	(compiler)	(com	piler)	w_1	w_2		
	298.2	0.122 21	0.854 22	0.084 93	0.910 16		
		0.145 54	0.820 27	0.102 97	0.889 78		
		0.181 77	0.771 06	0.131 90	0.857 84		
		0.239 59	0.682 37	0.183 00	0.799 13		
		0.315 27	0.564 64	0.259 06	0.711 36		
		0.346 66	0.493 77	0.301 04	0.657 42		
		0.389 02	0.412 18	0.360 01	0.584 84		
		0.426 88	0.299 59	0.440 89	0.474 42		

0.244 45

0.152 80

0.078 38

0.043 31

0.013 44

0.004 69

0.001 42

0.432 29

0.430 64

0.371 67

0.306 27

0.191 57

0.117 50

0.081 18

			0.0	073 99	0.001 0	02	0.209 69	(.004 44		
	Compositions of coexisting phases										
		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''		
t/°C	<i>T</i> /K rich phase /°C (compiler) (compiler)		water- rich phase (compiler)		-	hydrocarbon- rich phase		water- rich phase			
25.0	298.2	0.0370	0.9605	0.0262	0.0010	0.0245	0.9750	0.0820	0.0050		
		0.1042	0.8716	0.0387	0.0010	0.0720	0.9230	0.1180	0.0045		
		0.1645	0.7892	0.0467	0.0011	0.1185	0.8715	0.1400	0.0050		
		0.2620	0.6443	0.0493	0.0009	0.2050	0.7730	0.1470	0.0040		
		0.3082	0.5735	0.0524	0.0011	0.2520	0.7190	0.1550	0.0050		
		0.3532	0.4861	0.0538	0.0006	0.3080	0.6500	0.1590	0.0025		
		0.4027	0.3676	0.0607	0.0006	0.3890	0.5445	0.1770	0.0028		
		0.4339	0.2382	0.0663	0.0008	0.4835	0.4070	0.1910	0.0035		
		0.4341	0.2123	0.0671	0.0009	0.5015	0.3760	0.1930	0.0040		
		0.4129	0.1214	0.0792	0.0013	0.5590	0.2520	0.2220	0.0055		
		0.3672	0.0740	0.0801	0.0014	0.5665	0.1750	0.2240	0.0060		

0.414 60

0.296 63

0.182 99

0.116 97

0.045 73

0.018 55

0.006 09

Method/Apparatus/Procedure:

The titration and analytical methods were used. Weighed portions of 1-propanol and toluene in glass stoppered flasks were titrated with water from a calibrated burette. After each portion of water the mixture was shaken and the temperature of the solution was allowed to return to 25 °C before further additions of water. When the end-point was reached, the mixture was left in the bath for 30 min before specific gravity and refractive index were determined. The binary two liquid-phase mixtures of toluene and water were treated with 1-propanol and when equilibrium was reached the samples of each layer were removed and refractive indexes were determined. A large-scale graph of refractive index, constructed during the binodal curve determination, was used to find equilibrium concentrations.

Source and Purity of Materials:

(1) Eastman Kodak Co.; distilled over CaCl₂, middle fraction was used; $d(25 \text{ °C}, 4 \text{ °C}) = 0.79992 \pm 0.0002$, $n(25 \text{ °C}, D) = 1.3854 \pm 0.0001$.

(2) source not specified; analytical reagent grade; dried over Na, distilled; $d(25 \text{ °C}, 4 \text{ °C}) = 0.859 \ 39 \pm 0.0002$, $n(25 \text{ °C}, D) = 1.3325 \pm 0.0001$.

(3) distilled from alkaline potassium permanganate.

Estimated Error:

temp. ±0.1 °C.

Components:

Variables:

T/K = 298

1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 Toluene (methylbenzene); C₇H₈; [108-88-3]
 Water; H₂O; [7732-18-5]

Original Measurements:

N. I. Nikurashina and K. K. Ilin, Zh. Obshch. Khim. **42**, 1657–60 (1972). [Eng. transl. Russ. J. Gen. Chem. **42**, 1651–3 (1972)].

Compiled by: A. Skrzecz

Experimental Data

		Compositions along	the saturation curve			
	T/K	<i>x</i> ₁	<i>x</i> ₂			
t/°C	(compiler)	(com	piler)	w_1	w_2	
25.0	298.2	0.0697	0.0005	0.1996	0.0022	
		0.1134	0.0039	0.2953	0.0155	
		0.1579	0.0104	0.3731	0.0376	
		0.1647	0.0111	0.3841	0.0398	
		0.1783	0.0134	0.4042	0.0467	
		0.1845	0.0144	0.4130	0.0495	
		0.1908	0.0155	0.4216	0.0525	
		0.1991	0.0170	0.4327	0.0567	
		0.2256	0.0219	0.4654	0.0692	
		0.2774	0.0337	0.5180	0.0964	
		0.3283	0.0520	0.5529	0.1342	
		0.3695	0.0727	0.5700	0.1720	
		0.3960	0.0988	0.5666	0.2167	
		0.4226	0.1309	0.5581	0.2651	
		0.4346	0.1771	0.5284	0.3301	
		0.4412	0.2452	0.4842	0.4126	
		0.4028	0.3780	0.3843	0.5530	
		0.3423	0.5209	0.2896	0.6757	
		0.2563	0.6684	0.1966	0.7861	
		0.1417	0.8326	0.0994	0.8952	

·/°C	T/K (compiler)	w'_1 hydrocarbon- rich phase	w ₁ " water- rich phase
25.0	298.2	0.011	0.056
		0.038	0.101
		0.097	0.130
		0.150	0.150 ^a
		0.218	0.155
		0.290	0.165
		0.358	0.174
		0.423	0.180
		0.480	0.188
		0.527	0.200
		0.561	0.211
		0.571	0.253
		0.537	0.291
		0.507	0.316
		0.467	0.351

^aThe same concentration of 1-propanol in both phases.

Method/Apparatus/Procedure:

The isothermal titration method was used. Phase equilibrium was determined by the secants method.¹ Each secant represented a constant water-toluene mass ratio, the concentration of 1-propanol was variable. After 24 h separation, refractive indexes of both phases were measured. Equilibrium concentration of 1-propanol in both phases, in weight percent, was reported for 15 tie lines.

Estimated Error:

Source and Purity of Materials:

b.p.=97.4 °C, n(20 °C,D)=1.3858.

received; b.p.=110.6 °C, n(20 °C,D)=1.4967.

(3) freshly distilled water; n(20 °C,D) = 1.3332.

temp. ± 0.1 °C.

References:

¹N. I. Nikurashina and R. V. Mertslin, *Metod Sechenii* (Izd. Saratovskii Universitet, Saratov, 1969).

(1) source not specified, chemically pure grade: used as received;

(2) source not specified, pure for analysis grade: used as

Components:

Variables:

T/K = 298

1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 Toluene (methylbenzene); C₇H₈; [108-88-3]
 Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

A. Skrzecz

T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203– 17 (1992).

SKRZECZ, SHAW, AND MACZYNSKI

		Compositions along	the saturation curve		
	T/K			<i>w</i> ₁	w2
t/°C	(compiler)	x_1	<i>x</i> ₂	(com	piler)
25.0	298.2	0.000	0.000	0.000	0.000
		0.091	0.001	0.249	0.004
		0.138	0.005	0.343	0.019
		0.194	0.014	0.428	0.047
		0.259	0.031	0.499	0.092
		0.320	0.055	0.541	0.143
		0.403	0.118	0.554	0.249
		0.429	0.185	0.518	0.342
		0.438	0.286	0.457	0.457
		0.397	0.416	0.364	0.585
		0.346	0.544	0.285	0.688
		0.252	0.698	0.188	0.800
		0.143	0.836	0.100	0.896
		0.074	0.920	0.050	0.949
		0.000	0.999	0.000	0.9998

Experimental Data

Compositions of coexisting phases

		x_1^{IH}	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
	<i>T</i> /K (compiler)			water-rich phase		hydrocarbon- rich phase (compiler)		water-rich phase (compiler)	
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000
		0.315	0.600	0.049	0.000	0.250	0.730	0.147	0.000
		0.368	0.490	0.057	0.000	0.317	0.647	0.168	0.000
		0.410	0.365	0.064	0.000	0.395	0.540	0.186	0.000
		0.430	0.270	0.072	0.000	0.460	0.443	0.206	0.000
		0.428	0.182	0.080	0.000	0.519	0.339	0.225	0.000
		0.383	0.100	0.095	0.001	0.554	0.222	0.258	0.004
		0.290	0.044	0.135	0.002	0.521	0.121	0.340	0.008

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of a known mass of one component to a mixture of known masses of the other two components. Precision weighing syringes were used as described in Ref. 1. Tie line compositions were determined by the refractive index method reported in Ref. 2 and a complementary method using the Karl Fischer titrations as reported in Ref. 3.

Source and Purity of Materials:

(1) Merck, AR grade; distilled, dried by refluxing with Mg and I₂; purity better than 99.6 mole % by glc; d=0.79979, n = 1.3837.

(2) BDH; used as received; purity better than 99.6 mole % by glc.

(3) not specified.

Estimated Error:

estimated comp. $0.005\ mole$ fraction on the binodal curve and $0.01\ mole$ fraction for tie lines (estimated by the authors).

References:

 ¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. 18, 1037 (1986).
 ²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. 35, 411

(1943).

³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff, J. Chem. Thermodyn. **21**, 1053 (1989).

Components:

Variables:

T/K = 298

I-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [17-23-8]
 I-Heptene; C₇H₁₄; [592-76-7]
 Water; H₂O; [7732-18-5]

Original Measurements:

T. M. Letcher, B. C. Bricknell, J. D. Sewry, and S. E. Radloff, J. Chem. Eng. Data **39**, 320–3 (1994).

Compiled by: A. Skrzecz

5.5. 1-Propanol + Water + 1-Heptene

Experimental Data

Compositions along the saturation curve

	T/K			W 1	w_2
t/ °C	(compiler)	<i>x</i> ₁	<i>x</i> ₂	(com	piler)
25.0	298.2	0.000	1.000	0.000	1.000
		0.080	0.901	0.051	0.945
		0.168	0.792	0.114	0.878
		0.287	0.622	0.216	0.764
		0.365	0.479	0.306	0.655
		0.416	0.343	0.397	0.534
		0.439	0.230	0.480	0.411
		0.433	0.154	0.536	0.311
		0.400	0.090	0.571	0.210
		0.316	0.040	0.550	0.114
		0.248	0.021	0.495	0.068
		0.186	0.010	0.420	0.037
		0.123	0.005	0.313	0.021
		0.026	0.001	0.081	0.005
		0.000	0.000	0.000	0.000

		x'_1	x'_2	x_1''	x_2''	w '1	w'_2	w_1''	w_2''
t∕ °C	<i>T</i> /K (compiler)	hydrocarbon- rich phase		water-rich phase		hydrocarbon- rich phase (compiler)		water-rich phase (compiler)	
25.0	298.2	0.365	0.060	0.150	0.010	0.509	0.178	0.300	0.043
		0.420	0.128	0.134	0.009	0.483	0.314	0.274	0.039
		0.420	0.326	0.112	0.008	0.346	0.572	0.237	0.036
		0.349	0.511	0.075	0.005	0.234	0.730	0.168	0.024
		0.132	0.838	0.026	0.002	0.068	0.926	0.063	0.010

Auxiliary Information

Method/Apparatus/Procedure:

The experimental methods have been described in Ref. 1. No more details were reported in the paper.

Source and Purity of Materials:

(1) source not specified. (2) Aldrich; distilled; purity > 99.8 mole % by glc, ρ = 0.692 65 g cm⁻³. (3) not specified.

Estimated Error:

Not reported.

References:

¹T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. **74**, 203 (1992).

Evaluated by:

1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈o; [71-23-8]
 Heptane (*n*-heptane); C₇H₁₆; [142-82-5]
 Water; H₂O; [7732-18-5]

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.03)

5.6. 1-Propanol + Water + Heptane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 1-propanol-heptane-water is given in Table 50.

TABLE 50. Summary of experimental data for the system 1-propanol-heptane-water

Author(s)	T/K	Type of data ^a	Ref.
McCants et al., 1953	311	sat. (15), eq. (4)	1
Vorobeva and Karapetyants, 1967	298	sat. (16), eq. (12)	2
Rabinovich and Pugachevich, 1974	293	eq. (5)	3
Timofeev et al., 1975	348.7-349.5	eq. (5)	4
Letcher et al., 1986	298	sat. (9), eq. (3)	5

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system 1-propanol–heptane–water forms a large miscibility gap of type 1 covering the majority of the concentration triangle. The system was reported in the range 293–311 K and at the boiling point (vapor–liquid–liquid equilibria) at 101.3 kPa. Only the heptane–water binary system forms a miscibility gap. Data of this binary system were compiled and critically evaluated in a previously published SDS volume.⁶ The recommended mutual solubilities of the binary system heptane–water at 298.2 K⁶ are: x_2^{\prime} =4.3 · 10⁻⁷ and x_3^{\prime} =5.6 · 10⁻⁴. The solubility of water in heptane reported by Ref. 2 is 0.0055 mole fraction (0.001 weight fraction), which differs from the recommended value by a factor of 10. This is the result of the method used by Vorobeva and Karapetyants.² The data sets at 298.2 K, ^{2,5} are consistent with each other, with the exception of the region close to the plait point (0.16< x_2 <0.43); Letcher *et al.*⁵ present a slightly larger miscibility gap than Vorobeva and Karapetyants.² The temperature of 298.2 K, as a standard temperature in which various alcohol–hydrocarbon–water systems are presented, was chosen to present the behavior of this system. Saturation and equilibrium data of Refs. 2 and 5, were described by the equation:

$x_1 = a_1 \cdot (-\ln z_1)^{a_2} \cdot z_1^{a_3},$

where: $z_1 = (x_2 + 0.5 \cdot x_1 - x_{20}')/(x_{20}' - x_{20}')$, x_1, x_2 —mole fractions of component (1) and (2), respectively, x_{20}', x_{20}'' —values of x_2 on the binodal curve which cuts the $x_1 = 0$ axis.

This equation has been proposed by Letcher *et al.*, Ref. 7, for the description of saturation curves of ternary alcohol–ether–water systems. It gives better results (the smallest standard deviation) for the investigated system than any other tested equation. The parameters obtained by the least-squares method for the whole range of miscibility gap (water-rich and hydrocarbon-rich branches were described together) are: a_1 =1.568 77, a_2 =0.999 39, a_3 =1.289 19. The standard error of estimate was 0.0138. Points for selected concentrations of heptane on the saturation curve were calculated by the proposed equation. These are presented in Table 51 and Fig. 25 as calculated binodal curve (solid line). The maximum concentration of 1-propanol at this temperature is in the region of 0.470±0.025 (x_1 =0.486, Ref. 5; x_1 =0.448, calculated).

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.0000	0.000 000 43 Ref. 6	0.3551	0.5200
0.2539	0.0200	0.3439	0.5400
0.3137	0.0400	0.3322	0.5600
0.3522	0.0600	0.3202	0.5800
0.3797	0.0800	0.3078	0.6000
0.4001	0.1000	0.2950	0.6200
0.4155	0.1200	0.2818	0.6400
0.4270	0.1400	0.2684	0.6600
0.4354	0.1600	0.2546	0.6800
0.4414	0.1800	0.2405	0.7000
0.4452	0.2000	0.2261	0.7200
0.4472	0.2200	0.2115	0.7400
0.4477	0.2400	0.1965	0.7600
0.4468	0.2600	0.1813	0.7800
0.4447	0.2800	0.1659	0.8000
0.4414	0.3000	0.1502	0.8200
0.4372	0.3200	0.1343	0.8400
0.4321	0.3400	0.1182	0.8600
0.4261	0.3600	0.1018	0.8800
0.4194	0.3800	0.0853	0.9000
0.4120	0.4000	0.0685	0.9200
0.4039	0.4200	0.0515	0.9400
0.3952	0.4400	0.0344	0.9600
0.3859	0.4600	0.0170	0.9800
0.3762	0.4800	0.0000	0.999 44 Ref. 6
0.3659	0.5000		

TABLE 51. Calculated compositions along the saturation curve at 298.2 K

Rabinovich and Pugachevich³ measured the system at 293.2 K as two phases in equilibrium. This data set presents a much larger miscibility gap particularly in hydrocarbon-rich phase; for a similar alcohol concentration (e.g., 0.390 mole fraction) the heptane concentration at saturation point differs from the value at 298.2 K² by about 0.130 mole fraction. The compositions of the water-rich phase at 293.2 K are in agreement with other data sets. McCants *et al.*¹ report saturation and equilibrium data at 310.9 K. At this temperature, as was expected, data show a slightly smaller miscibility gap than those at 298.2 K. One point of the heptane-rich phase (x_1 =0.1922 and x_2 =0.7009) is an outlyer and presumably contains an experimental error. The paper of Timofeev, *et al.*⁴ presents equilibrium data at normal boiling points. The compositions of the heptane-rich phase are consistent with the results at 298.2 K, but the reported concentrations of heptane in the water-rich phase seem abnormal high (0.04–0.06 mole fraction); (heptane concentrations at 298.2 K were measured to be about 0.01 mole fraction and the temperature dependence is not expected to result such large changes).

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system 1-propanol–heptane–water were reported in all five references. The tie lines at 298.2 K (Refs. 2 and 5) are presented in Fig. 25. The distribution of 1-propanol between the phases changes slightly with the propanol concentration. This is observed in the data of Vorobeva and Karapetyants (Ref. 2) at 298.2 K. In the region x_1 <0.24 the concentration of 1-propanol is slightly higher in the heptane-rich phase, while at higher alcohol concentrations, more 1-propanol is in the water-rich phase. Data of Letcher *et al.*⁵ confirm this behavior for the low propanol region (all three tie lines are located in this region). Other tie lines, reported at various temperatures, show similar direction as at 298.2 K with the exception of the results of McCants *et al.*¹ These tie lines are in nearly the opposite direction (the direction of tie lines is consistent within this data set) than those presented in all other references. Plait points reported by Vorobeya and Karapetyants² at 298.2 K (x_1 =0.4255 and x_2 =0.3090) and Timofeev *et al.*⁴ at 349.4 K (x_1 =0.43 and x_2 =0.33) are very close to one another. All experimental tie lines as well as experimental points on saturation curve, Refs. 2 and 5, at 298.2 K, are shown in Fig. 25. SKRZECZ, SHAW, AND MACZYNSK

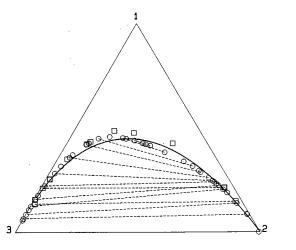


FIG. 25. Phase diagram of the system 1-propanol (1)—heptane (2)—water (3) at 298.2 K. Solid line—calculated saturation curve, O—experimental data, Ref. 2, D—experimental data, Ref. 5, dashed lines—experimental tie lines, Refs. 2 and 5.

References:

¹J. F. McCants, J. H. Jones, and W. H. Hopson, Ind. Eng. Chem. 45, 454 (1953).
 ²A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 41, 1144 (1969).

³I. I. Rabinovich and P. P. Pugachevich, Zh. Fiz. Khim. 48, 2525 (1974).

⁴V. S. Timofeev, V. Yu. Aristovich, I. I. Sabylin, V. A. Koshel'kov, T. G. Pavlenko, and L. A. Serafimov, Izv. Vyssh, Uchebn. Zaved., Khim. Khim. Tekhnol. 18, 1219 (1975).

⁵T. M. Letcher, S. Wootton, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037 (1986).

⁶D. G. Shaw, ed., *Solubility Data Series*, Vol. 37, Hydrocarbons with Water and Seawater, Part I. Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

⁷T. M. Letcher, S. Ravindran, and S. E. Radloff, Fluid Phase Equilib. 69, 251 (1991).

Components:

1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 (2) Heptane (*n*-heptane); C₇H₁₆; [142-82-5]
 (3) Water; H₂O; [7732-18-5]

Original Measurements:

J. F. McCants, J. H. Jones, and W. H. Hopson, Ind. Eng. Chem. 45, 454–6 (1953).

Variables: Compileo T/K=311 A. Skrzec	-

Experimental Data Compositions along the saturation curve								
	T/K	<i>x</i> ₁	<i>x</i> ₂					
t∕ °F	(compiler)	(com	piler)	w_1	w_2			
100	310.9	0.0000	0.9945	0.000	0.999			
		0.2283	0.7007	0.161	0.824			
		0.3107	0.5645	0.241	0.730			
		0.3598	0.4592	0.305	0.649			
		0.4070	0.2983	0.410	0.501			
		0.4312	0.2197	0.478	0.406			
		0.4289	0.1314	0.550	0.281			
		0.4072	0.0911	0.574	0.214			
		0.3243	0.0413	0.556	0.118			
		0.2689	0.0227	0.518	0.073			
		0.1821	0.0092	0.414	0.035			
		0.1193	0.0030	0.308	0.013			
		0.0928	0.0015	0.253	0.007			
		0.0448	0.0006	0.135	0.003			
		0.0000	0.0002	0.000	0.001			

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t∕ °F	T/K (compiler)	rich	carbon- phase piler)	rich	ter- phase piler)	-	carbon- phase		ater- phase
100	310.9	0.1922	0.7009	0.1443	0.0024	0.138	0.839	0.357	0.010
		0.3240	0.5227	0.2526	0.0209	0.261	0.702	0.500	0.069a)
		0.3064	0.5574	0.2385	0.0183	0.240	0.728	0.485	0.062b)
		0.1912	0.7503	0.0883	0.0013	0.131	0.857	0.243	0.006c)

Method/Apparatus/Procedure:

The titration method was used to obtain binodal curve. The samples of homogeneous binary mixture were placed in a constant temperature bath and titrated the third component to the cloud point. Each sample was agitated in the constant temperature bath for several minutes between drops of the third component. The temperatures of these systems were raised slightly (1 °F) to obtain homogeneity and their refractive indexes were measured. The analytical method was used for tie lines.

(a) A ternary mixture of known composition was shaken for several hours in constant temperature bath and after both phases were carefully separated and their refractive indexes were determined. The intersections of the tie lines with the binodal curve were determined by refractive index

interpolations between points of known composition used to determine the curve.

(b) The slopes of the tie lines were checked by determining tie lines by the graphical application of the lever rule as described in Ref. 1.

(c) The two phases were analyzed chemically for one or two components.

Source and Purity of Materials:

 Du Pont, refined; used as received; n(20 °C,D)=1.3855, d(75 °F,60 °F)=0.800.
 Philips, pure grade; used as received; n(20 °C,D)=1.3974, d(75 °F,60 °F)=0.680.

(3) distilled; $n(20 \circ C,D) = 1.3330$.

Estimated Error:

refractive index $\pm 0.0001;$ concentration ± 0.001 mass % (estimated by compiler).

References:

¹D. F. Othmer and P. E. Tobias, Ind. Eng. Chem. 34, 690 (1942).

Components:

Variables:

T/K = 298

1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 Heptane (*n*-heptane); C₇H₁₆; [142-82-5]
 Water; H₂O; [7732-18-5]

Original Measurements: A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 41,

A. I. Vorobeva and M. Kn. Karapetyants, Zh. Fiz. Khim. 41, 1144-9 (1967). [Eng. transl. Russ. J. Phys. Chem. 41, 602–5 (1967)].

		Experime Compositions along	ntal Data the saturation curve		
	T/K	<i>x</i> ₁	<i>x</i> ₂		
t/ °C	(compiler)	(com	piler)	w_1	w ₂
25	298.2	0.0000	0.9945	0.000	0.999
		0.0861	0.9032	0.054	0.944
		0.1861	0.7742	0.125	0.867
		0.2275	0.7105	0.159	0.828
		0.2919	0.6059	0.219	0.758
		0.3371	0.5212	0.270	0.696
		0.4200	0.3240	0.405	0.521
		0.4474	0.2305	0.482	0.414
		0.4566	0.1585	0.546	0.316
		0.4261	0.0889	0.592	0.206
		0.3697	0.0504	0.589	0.134
		0.3148	0.0307	0.560	0.091
		0.2522	0.0161	0.506	0.054
		0.1753	0.0059	0.407	0.023
		0.1070	0.0016	0.284	0.007
		0.0569	0.0006	0.167	0.003

Compiled by:

A. Skrzecz

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t∕ °C	T/K (compiler)	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		hydrocarbon- rich phase		water- rich phase	
25	298.2	0.0831	0.9063	0.0644	0.0008	0.052	0.946	0.186	0.004
		0.1371	0.8372	0.0851	0.0009	0.089	0.906	0.236	0.004
		0.2022	0.7489	0.1239	0.0023	0.138	0.852	0.318	0.010
		0.2205	0.7218	0.1573	0.0045	0.153	0.835	0.378	0.018
		0.2382	0.6956	0.2205	0.0110	0.168	0.818	0.470	0.039
		0.2437	0.6859	0.2806	0.0221	0.173	0.812	0.533	0.070
		0.2581	0.6632	0.3566	0.0447	0.186	0.797	0.584	0.122
		0.2846	0.6168	0.4190	0.0821	0.212	0.766	0.594	0.194
		0.3141	0.5690	0.4484	0.1175	0.242	0.731	0.579	0.253
		0.3814	0.4205	0.4512	0.2150	0.334	0.614	0.496	0.394
		0.4141	0.3451	0.4386	0.2689	0.390	0.542	0.450	0.460
		0.4255	0.3090	0.4255	0.3090	0.417	0.505	0.417	0.505 ^a

^aCritical solubility point.

SKRZECZ, SHAW, AND MACZYNSKI

Method/Apparatus/Procedure:

The methods were reported in Ref. 1. The titration method was used to describe solubility of the mixtures. The third component was added to the binary homogenous mixture until the cloudiness started to be observed. Density of the saturated mixtures was measured and put on the graphs. To obtain equilibrium ternary mixtures were stirred in thermostated vessel through several hours. After phase separation, density of each phase was measured and composition was determined from earlier prepared graphs. Concentration at critical point was found by the method described in Ref. 2. Water include in propanol was taken into account in all measurements.

Source and Purity of Materials:

(1) source not specified, chemical pure grade; distilled; water concentration was determined by the Karl Fischer method. (2) source not specified; properties were the same as reported in Ref. 1.

(3) doubly distilled.

Estimated Error:

Not reported.

References:

 ¹A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. **40**, 3018 (1966).
 ²E. N. Zilberman, Zh. Fiz. Khim. **26**, 1458 (1952). Components:

Variables:

T/K = 293

 $t/^{\circ}C$

20.0

ts:

1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 Heptane (*n*-heptane); C₇H₁₆; [142-82-5]
 Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

A. Skrzecz

I. I. Rabinovich and P. P. Pugachevich, Zh. Fiz. Khim. 48, 2525-7 (1974). [Eng. transl. Russ. J. Phys. Chem. 48, 1491–3 (1974)].

Experimental Data Compositions of coexisting phases x'_1 x_1'' w'_1 w'_2 w''_1 w_2'' x'_2 x_2'' hydrocarbonwaterhydrocarbonwaterrich phase rich phase rich phase rich phase (compiler) (compiler) 0.351 0.17 0.82 0.14 0.001 0.110 0.888 0.004 0.23 0.73 0.27 0.02 0.158 0.834 0.523 0.065 0.27 0.190 0.564 0.114 0.68 0.33 0.04 0.799 0.33 0.40 0.239 0.750 0.592 0.173 0.62 0.07 0.39 0.55 0.44 0.11 0.294 0.692 0 580 0.242

Source and Purity of Materials:

(3) doubly distilled.

Estimated Error: temp. ± 0.1 °C.

References:

(1971)

(1972).

(1) source not specified; chemically pure grade; used as received.

(2) source not specified; chemically pure grade; used as received.

¹P. P. Pugachevich and I. I. Rabinovich, Zh. Fiz. Khim. 45, 2189

²P. P. Pugachevich and I. I. Rabinovich, Zh. Fiz. Khim. 46, 266

Comments and Additional Data

The authors described both branches of the solubility curve by the following equations obtained by the least-squares method.

 $x_1' = 0.6788 - 0.1927x_3' - 49.0x_3'^2$

 $x_1'' = 0.0896 + 8.335x_3'' - 3689.0x_3''^2$

Auxiliary Information

Method/Apparatus/Procedure:

T/K

(compiler)

293.15

Equilibrium data were obtained by the method reported in Ref. 1. The method uses experimental data of phases' density (measured in a three-capillary pycnometer) and the solubility curve (obtained by the method reported in Ref. 2). Solubility data were reported in the paper as the equations

S

1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 Heptane (*n*-heptane); C₇H₁₆; [142-82-5]
 Water, H₂O; [7732-18-5]

Original Measurements:

V. S. Timofeev, V. Yu. Aristovich, I. I. Sabylin, V. A. Koshel'kov, T. G. Pavlenko, and L. A. Serafimov, Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol. 18, 1219–23 (1975).

Variables: <i>T</i> /K=348.7–	349.5				Compile A. Skrze	e e			
			Co	Experim mpositions of	ental Data coexisting ph	ases			
		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C (compiler)	· · · · · · · · · · · · · · · · · · ·			ter- phase	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		
76.3	349.5	0.101	0.888	0.153	0.036	0.0637	0.9342	0.3354	0.1316
76.1	349.3	0.118	0.865	0.169	0.059	0.0754	0.9214	0.3388	0.1972
75.9	349.1	0.151	0.823	0.192	0.056	0.0986	0.8963	0.3759	0.1828
75.5	348.7	0.173	0.798	0.223	0.062	0.1144	0.8799	0.4124	0.1912
76.2	349.4	0.430	0.330	0.430	0.330	0.4087	0.5230	0.4087	0.5230 ^a

^aCritical solubility point.

Auxiliary Information

The method is described in Ref. 1. Data are reported at the boiling point at 101.3 kPa together with liquid–liquid–vapor equilibrium data for the system.

Source and Purity of Materials:
(1) source not specified.
(2) source not specified.
(3) not specified.

Estimated Error: Not reported.

References:

¹V. A. Koshelkov, T. G. Pavlenko, V. S. Timofeev, and L. A. Serafimov, Uch. Zap. Mosk. Inst. Tonkoi Khim. Tekhnol. 1, 44 (1971).

Components:

Variables:

T/K = 298

1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 Heptane (*n*-heptane); C₇H₁₆; [142-82-5]
 Water; H₂O; [7732-18-5]

Original Measurements:

Complied By:

T. M. Letcher, S. Wootton, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037–42 (1986).

A. Skrzecz

Experimental Data Compositions along the saturation curve									
t/°C				<i>w</i> ₁	w2				
(compiler)	T/K	<i>x</i> ₁	<i>x</i> ₂	(com	piler)				
25	298.2	0.155	0.003	0.376	0.012				
		0.253	0.016	0.507	0.053				
		0.349	0.040	0.583	0.111				
		0.422	0.082	0.597	0.193				
		0.434	0.092	0.595	0.210				
		0.486	0.163	0.563	0.315				
		0.476	0.248	0.490	0.425				
		0.425	0.432	0.358	0.606				
		0.212	0.750	0.144	0.848				

Compositions of coexisting phases									
		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C (compiler)	T/K	hydrocarbon- rich phase		water-rich phase		hydrocarbon- rich phase (complier)		water-rich phase (compiler)	
25	298.2	0.210 0.146 0.095	0.750 0.828 0.889	0.210 0.135 0.068	0.008 0.013 0.001	0.143 0.095 0.060	0.849 0.900 0.937	0.459 0.328 0.195	0.029 0.053 0.005

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, adapted from Ref. 1, was used to determine the coexistence curve. The third component was added from a weighed gas-tight syringe to a weighed mixture of the other two components in 100 mL long-neck flask until one drop (weighing less than 0.01 g) resulted in cloudiness. The flask was immersed in a well controlled water bath and shaken continuously. Refractive indexes of these mixtures were measured at 298.3 K to ensure that separation did not take place. Tie lines were determined from mixtures of known composition in the immiscible region. The flasks were shaken well and the phases allowed to separate. Refractive indexes of samples of both phases were measured and related to compositions on the coexistence curve. Each tie line was checked to ensure that it passed through the composition of the overall mixture.

Source and Purity of Materials:

(1) Merck, synthesis grade; dried with magnesium metal activated with iodine, distilled.

(2) Analytical Carbo Erba, purity 99.5 mole %; purified by passing through columns containing silica gel and basic alumina.(3) de-ionized.

Estimated Error:

composition ± 0.005 mole fraction for measured points, ± 0.01 mole fraction for tie-lines extremities in the worst case (authors).

References:

¹S. W. Briggs and E. W. Commings, Ind. Eng. Chem. **35**, 411 (1943).

=

(1) 1-Propanol (n-propanol, propyl alcohol, n-propyl alcohol); C₃H₈O; [71-23-8] (2) p-Xylene (1,4-dimethylbenzene, 1,4-xylene); C₈H₁₀; [106-42-3] (3) Water; H₂O; [7732-18-5]

Variables:

T/K = 298

Compiled by: A. Skrzecz

Original Measurements:

J. Chem. Thermodyn. 21, 1053-60 (1989).

T. M. Letcher, P. M. Siswana, P. van der Watt, and S. Radloff,

5.7. 1-Propanol + Water + p-Xylene

Experimental Data Compositions along the saturation curve

t/°C				w 1	w_2
(compiler)	T/K	<i>x</i> ₁	<i>x</i> ₂	(com	piler)
25.0	298.2	0.000	0.998	0.000	0.9997
		0.083	0.889	0.050	0.945
		0.157	0.798	0.099	0.892
		0.277	0.626	0.196	0.783
		0.358	0.474	0.287	0.672
		0.413	0.351	0.374	0.562
		0.441	0.251	0.451	0.454
		0.442	0.167	0.517	0.345
		0.408	0.099	0.558	0.239
		0.315	0.045	0.537	0.136
		0.260	0.028	0.497	0.095
		0.194	0.014	0.425	0.054
		0.138	0.006	0.341	0.026
		0.050	0.000	0.149	0.000
		0.000	0.000	0.000	0.000

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C (compiler)	T/K	hydrocarbon- rich phase		water-rich phase		hydrocarbon- rich phase (complier)		water-rich phase (complier)	
25.0	298.2	0.314	0.039	0.142	0.009	0.544	0.119	0.344	0.039
		0.426	0.123	0.078	0.004	0.547	0.279	0.217	0.020
		0.439	0.250	0.052	0.003	0.451	0.453	0.153	0.016
		0.385	0.418	0.038	0.002	0.326	0.624	0.115	0.011
		0.228	0.702	0.024	0.001	0.153	0.833	0.075	0.006

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used to determine binodal curve. A binary mixture of known composition was titrated with the third component until cloudiness was observed. Tie line compositions were related to the coexistence curve; water was determined by the Karl Fischer titration. The methods were described in Ref. 1.

Source and Purity of Materials:

(1) source not specified; used as received. (2) source not specified, recrystallized three times. (3) not specified.

Estimated Error:

comp. <0.005 mole fraction (estimated authors' precision on binodal curve), <0.01 mole fraction (estimated authors' precision of tie lines).

References:

¹T.M. Letcher, S. Wootten, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037 (1986).

Components: (1) 1-Propanol

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of

Sciences, Warsaw, Poland (1996.05)

(1) 1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol); C₃H₈0; [71-23-8] (2)Octane (*n*-octane); C₈H₁₈; [111-65-9] (3) Water; H₂O; [7732-18-5]

5.8. 1-Propanol + Water + Octane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 1-propanol-octane-water is given in Table 52.

TABLE 52. Summary of experimental data for the system 1-propanol-octane-water

Author(s)	T/K	Type of data ^a	Ref.
Vorobeva and Karapetyants, 1967	298	sat. (16), eq. (11)	1
Timofeev et al., 1975	355-356	eq. (5)	2

^aNumber of experimental points in parentheses.

Saturation curve

The system 1-propanol-octane-water forms a miscibility gap of type 1. Only one binary pair of components, octane-water, is partially miscible. The data for this system were compiled and critically evaluated in a previously published SDS volume.³ The recommended values of mutual solubility of octane-water system at 298.2 K are: $x_2^{"}=1.1\cdot10^{-7}$ and $x_2^{'}=0.9994$. The solubility of water in octane reported in Ref. 1 as 0.001 mass fraction (equivalent to 0.006 mole fraction) is rejected because is inconsistent with recommended value.³ Compositions along the saturation curve obtained by the titration method as well as compositions of phases in equilibrium are consistent at 298.2 K.¹ Data reported by Timofeev *et al.*² at very difficult experiments as vapor-liquid-liquid equilibria at 101.3 kPa and at boiling temperatures 354.7–355.7 K, present a larger miscibility gap than at 298 K, which indicates error in the experimental method. However they are consistent within the data set. On other hand, the data for the 1-propanol-octane-water system are consistent with the data for the 1-propanol-nonane-water system measured and reported by Vorobeva and Karapetyants in the same paper.¹

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system 1-propanol-octane-water were reported in both references. Composition of each phase was calculated from the density—composition curve of saturated mixtures prepared at the time of saturation curve measurements. Compositions of phases in equilibrium reported in Ref. 2 were measured only at boiling temperatures and detailed information about experimental procedures are not reported. Plait points were reported in both cases; at 298.2 K it is x_1 =0.449 and x_2 =0.318 and at 355.7 K— x_1 =0.540 and x_2 =0.310. All experimental data are treated as tentative. To present system behavior, the data at 298.2 K of Vorobeva and Karapetyant, ¹ are presented in Fig. 26.

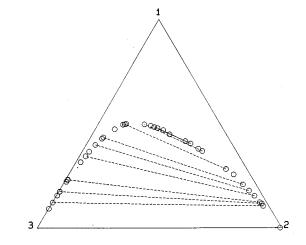


FIG. 26. Phase diagram of the system 1-propanol (1)—octane (2)—water (3) at 298.2 K. O—experimental data, Ref. 1, dashed lines—experimental tie lines, Ref. 1.

References:

¹A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 41, 1144 (1967).

²V. S. Timofeev, V. Yu. Aristovich, I. I. Sabylin, V. A. Koshel'kov, T. G Pavlenko, and L. A. Serafimov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 18, 1219 (1975).

³D. G. Shaw, ed., *Solubility Data Series*, Vol. 38, Hydrocarbons with Water and Seawater, Part II: Hydrocarbons C₈ to C₃₆ (Pergamon, New York, 1989).

(1) 1-Propanol (n-propanol, propyl alcohol, n-propyl alcohol); C₃H₈O; [71-23-8] (2) Octane (n-octane); C₈H₁₈; [111-65-9] (3) Water; H₂O; [7732-18-5]

Variables: T/K = 298

A. Skrzecz

Compiled by:

Original Measurements:

1144-9 (1967). [Eng. transl. Russ. J. Phys. Chem. 41, 602-5 (1967)].

A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 41,

Experimental Data Compositions along the saturation curve									
	T/K	<i>x</i> ₁	<i>x</i> ₂						
t∕°C	(compiler)	(com	piler)	w_1	w_2				
25	298.2	0.0000	0.9937	0.000	0.999				
		0.2561	0.6762	0.164	0.823				
		0.3799	0.4705	0.288	0.678				
		0.4697	0.2818	0.435	0.496				
		0.4910	0.2200	0.493	0.420				
		0.4996	0.1143	0.600	0.261				
		0.4961	0.1030	0.611	0.241				
		0.4746	0.0795	0.625	0.199				
		0.4294	0.0493	0.632	0.138				
		0.3673	0.0282	0.610	0.089				
		0.3171	0.0180	0.576	0.062				
		0.2337	0.0072	0.492	0.029				
		0.2226	0.0069	0.477	0.028				
		0.1749	0.0034	0.409	0.015				
		0.1572	0.0024	0.380	0.011				
		0.0933	0.0004	0.255	0.002				

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
/°C	<i>T</i> /K (compiler)	hydrocarbon- rich phase (complier)		water- rich phase (complier)		hydrocarbon- rich phase		water- rich phase	
25	298.2	0.1044	0.8720	0.1232	0.0008	0.059	0.937	0.318	0.004
		0.1161	0.8605	0.1765	0.0032	0.066	0.930	0.412	0.014
		0.1221	0.8488	0.2319	0.0070	0.070	0.925	0.490	0.028
		0.1537	0.8121	0.3456	0.0238	0.090	0.904	0.596	0.078
		0.1785	0.7769	0.3996	0.0373	0.107	0.885	0.625	0.111
		0.2082	0.7376	0.4358	0.0522	0.128	0.862	0.633	0.144
		0.2823	0.6321	0.4987	0.1087	0.187	0.796	0.606	0.251
		0.3688	0.4921	0.4977	0.1906	0.274	0.695	0.522	0.380
		0.4050	0.4261	0.4847	0.2368	0.320	0.640	0.476	0.442
		0.4169	0.3985	0.4798	0.2529	0.339	0.616	0.461	0.462
		0.4495	0.3181	0.4495	0.3181	0.400	0.538	0.400	0.538

^aCritical solubility point.

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

Auxiliary Information

Method/Apparatus/Procedure:

The methods were reported in Ref. 1. The titration method was used to describe solubility of the mixtures. The third component was added to the binary homogenous mixture until the cloudiness started to be observed. Density of the saturated mixtures was measured and put on the graphs. To obtain equilibrium ternary mixtures were stirred in thermostated vessel through several hours. After phase separation, density of each phase was measured and composition was determined from earlier prepared graphs. Concentration at critical point was found by the method described in Ref. 2. Water include in propanol was taken into account in all measurements.

Source and Purity of Materials:

(1) source not specified, chemical pure grade; distilled; water concentration was determined by the Karl Fischer method. (2) source not specified; properties were the same as reported in Ref. 1. (3) doubly distilled.

Estimated Error: Not reported.

References:

¹A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 40, 3018 (1966). ²E. N. Zilberman, Zh. Fiz. Khim. 26, 1458 (1952).

Variables:

1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 Octane (*n*-octane); C₈H₁₈; [111-65-9]
 Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

V. S. Timofeev, V. Yu. Aristovich, I. I. Sabylin, V. A. Koshel'kov, T. G. Pavlenko, and L. A. Serafimov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 18, 1219–23 (1975).

T/K=355-35	56				A. Skrze	·			
			Co	Experim mpositions of	ental Data coexisting ph	ases			
		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w ["] ₂
t/°C (compiler)	T/K	-	carbon- phase		ter- phase	rich	carbon- phase piler)	rich	tter- phase npiler)
81.5	354.7	0.170	0.819	0.291	0.026	0.0983	0.8998	0.5338	0.0907
81.5	354.7	0.259	0.721	0.372	0.028	0.1584	0.8380	0.6148	0.0880
82.0	355.2	0.401	0.564	0.525	0.074	0.2703	0.7226	0.6680	0.1790
82.2	355.4	0.452	0.491	0.549	0.138	0.3223	0.6655	0.6065	0.2898
82.5	355.7	0.540	0.310	0.540	0.310	0.4599	0.5018	0.4599	0.5018 ^a

^aCritical solubility point.

Auxilliary Information

Method/Apparatus/Procedure:

The method is described in Ref. 1. Data are reported at the boiling point at 101.3 kPa together with liquid–liquid–vapor equilibrium data for the system.

.....

Source and Purity of Materials:(1) source not specified.(2) source not specified.(3) not specified.

Estimated Error: Not reported.

References:

¹V. A. Koshelkov, T. G. Pavlenko, V. S. Timofeev, and L. A. Serafimov, Uch. Zap. Mosk. Inst. Tonkoi Khim. Tekhnol. 1, 44 (1971).

Components:

Variables:

T/K = 298

 1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol); C₃H₈O; [71-23-8]
 Mesitylene (1,3,5-trimethylbenzene); C₉H₁₂; [108-67-8]
 Water; H₂O; [7732-18-5]

Original Measurements:

T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203– 17 (1992).

Compiled by: A. Skrzecz

5.9. 1-Propanol + Water + Mesitylene

Experimental Data Compositions along the saturation curve

T/V			w_1	w_2
(compiler)	<i>x</i> ₁	<i>x</i> ₂	(compiler)	
298.2	0.000	0.000	0.000	0.000
	0.070	0.000	0.201	0.000
	0.114	0.001	0.299	0.005
	0.165	0.006	0.388	0.028
	0.179	0.008	0.408	0.036
	0.220	0.016	0.457	0.067
	0.295	0.037	0.518	0.130
	0.379	0.081	0.539	0.230
	0.424	0.141	0.507	0.337
	0.435	0.218	0.446	0.447
	0.420	0.333	0.362	0.574
	0.381	0.444	0.288	0.672
	0.300	0.601	0.196	0.785
	0.175	0.789	0.099	0.895
	0.092	0.880	0.049	0.946
	0.000	0.999	0.000	0.9998
		$\begin{array}{ c c c c c } & x_1 & & & \\ \hline 298.2 & 0.000 & & \\ 0.070 & 0.114 & & \\ 0.165 & & & \\ 0.179 & & & \\ 0.220 & & & \\ 0.295 & & & \\ 0.379 & & & \\ 0.424 & & & \\ 0.435 & & & \\ 0.420 & & & \\ 0.381 & & & \\ 0.300 & & & \\ 0.175 & & & \\ 0.092 & & \\ \end{array}$	$\begin{array}{c ccc} (\text{compiler}) & x_1 & x_2 \\ \hline 298.2 & 0.000 & 0.000 \\ 0.070 & 0.000 \\ 0.114 & 0.001 \\ 0.165 & 0.006 \\ 0.179 & 0.008 \\ 0.220 & 0.016 \\ 0.295 & 0.037 \\ 0.379 & 0.081 \\ 0.424 & 0.141 \\ 0.435 & 0.218 \\ 0.420 & 0.333 \\ 0.381 & 0.444 \\ 0.300 & 0.601 \\ 0.175 & 0.789 \\ 0.092 & 0.880 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Compositions of coexisting phases									
		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''
t/°C	T/K (compiler)	2	carbon- phase		r-rich ase	rich	carbon- phase npiler)	ph	r-rich ase piler)
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000
		0.177	0.782	0.055	0.000	0.101	0.892	0.163	0.000
		0.289	0.615	0.070	0.000	0.187	0.795	0.201	0.000
		0.352	0.503	0.087	0.000	0.251	0.718	0.241	0.000
		0.422	0.320	0.098	0.001	0.370	0.562	0.265	0.005
		0.434	0.256	0.105	0.001	0.418	0.493	0.280	0.005
		0.425	0.159	0.117	0.002	0.490	0.366	0.304	0.010
		0.380	0.090	0.135	0.003	0.529	0.250	0.338	0.015

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of a known mass of one component to a mixture of known masses of the other two components. Precision weighing syringes were used as described in Ref. 1. Tie line compositions were determined by the refractive index method reported in Ref. 2 and a complementary method using the Karl Fischer titrations as reported in Ref. 3.

Source and Purity of Materials:

(1) Merck, AR grade; distilled, dried by refluxing with Mg and I₂; purity better than 99.6 mole % by glc; d=0.79979, n = 1.3837.

(2) BDH; used as received; purity better than 99.6 mole % by glc.

(3) not specified.

Estimated Error:

estimated comp. 0.005 mole fraction on the binodal curve and 0.01 mole fraction for tie lines (estimated by the authors).

References:

 ¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. 18, 1037 (1986).
 ²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. 35, 411

(1943). ³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff,

J. Chem. Thermodyn. **21**, 1053 (1989).

Components:

1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 Nonane (*n*-nonane); C₉H₂₀; [111-84-2]
 Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1996.04)

5.10. 1-Propanol + Water + Nonane

Critical Evaluation:

A survey of reported in the literature compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 1-propanol-nonane-water is given in Table 53.

TABLE 53. Summary of experimental data for the system 1-propanol-nonane-water

Author(s)	T/K	Type of data ^a	Ref.
Vorobeva and Karapetyants, 1967	298	sat. (12), eq. (13)	1
Koshelkov et al., 1974	359-363	eq. (10)	2

^aNumber of experimental points in parentheses.

Saturation curve

The system 1-propanol–nonane–water forms a miscibility gap of type 1. Only one binary pair of components, nonane–water, is partially miscible. The data for this system were compiled and critically evaluated in a previously published SDS volumes, Ref. 3. The recommended values of mutual solubility of the nonane–water system at 298 K are: $x_2'' = 2.4 \cdot 10^{-8}$ and $x_2' = 0.999$ 44. The solubility of water in nonane reported in Ref. 1 as 0.001 mass fraction (with the accuracy of ± 0.001 of mass fraction equivalent to 0.007 mole fraction) is rejected. Data reported by Koshelkov *et al.*² represent vapor–liquid–liquid equilibria at boiling temperatures 358.7–363.2 K (pressure 101.3 kPa). Temperatures were estimated from the authors' graph. Compositions of the nonane-rich phase in the region $x_1 > 0.18$ seems to form a larger miscibility gap than at 298 K, which indicates an error in the experimental method of Ref. 2. Compositions at 298.2 K along the saturation curve obtained by tiration method as well as compositions of phases in equilibrium are consistent in Ref. 1. These data are also consistent with the data of the 1-propanol–octane–water system reported by Vorobeva and Karapetyants in the same paper.¹

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system 1-propanol-nonane-water were reported in both references. Composition of each phase was calculated from density-composition curve of saturated mixtures prepared at the time of saturation curve measurements. Compositions of phases in equilibrium reported in Ref. 2 were measured only at boiling temperatures and detailed information about experimental procedures are not reported. A plait point reported at 298.2 K is x_1 =0.486 and x_2 =0.318 mole fraction. All experimental data are treated as tentative. To present the system behavior, the data at 298.2 K of Vorobeva and Karapetyant,¹ are presented in Fig. 27.

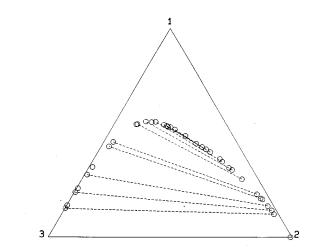


FIG. 27. Phase diagram of the system 1-propanol (1)—nonane (2)—water (3) at 298.2 K. O—experimental data, Ref. 1, dashed lines—experimental tie lines, Ref. 1.

References:

¹A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 41, 1144 (1967).

²V. A. Koshelkov, T. G. Pavlenko, V. N. Titova, V. S. Timofeev, and L. A. Serafimov, Tr. Altai. Politekh. Inst. im. I. I. Polzunova 41, 84 (1974).

³D. G. Shaw, ed., *Solubility Data Series*, Vol. 38, Hydrocarbons with Water and Seawater, Part II: Hydrocarbons C₈ to C₃₆ (Pergamon, New York, 1989).

Components:

1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 Nonane (*n*-nonane); C₉H₂₀; [111-84-2]
 Water; H₂O; [7732-18-5]

Original Measurements: A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 41, 1144–9 (1967). [Eng. transl. Russ. J. Phys. Chem. 41, 602–5 (1967)].

Variables: T/K=298

Experimental Data Compositions along the saturation curve					
	<i>T</i> (17	<i>x</i> ₁	x_2		
t/°C	T/K (compiler)	(compiler)		w_1	w_2
25	298.2	0.0000	0.9929	0.000	0.999
		0.1815	0.7873	0.097	0.898
		0.3324	0.5726	0.210	0.772
		0.3750	0.5145	0.249	0.729
		0.4487	0.3806	0.342	0.619
		0.5288	0.2254	0.488	0.444
		0.5516	0.1481	0.576	0.330
		0.5404	0.0906	0.640	0.229
		0.4567	0.0378	0.663	0.117
		0.3356	0.0134	0.600	0.051
		0.2336	0.0046	0.495	0.021
		0.1524	0.0011	0.373	0.006

Compiled by:

A. Skrzecz

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		hydrocarbon- rich phase		Water- rich phase	
25	298.2	0.1105	0.8698	0.1386	0.0007	0.056	0.941	0.348	0.004
		0.1288	0.8516	0.2147	0.0036	0.066	0.931	0.470	0.017
		0.1496	0.8248	0.2989	0.0099	0.078	0.918	0.567	0.040
		0.1856	0.7773	0.4346	0.0313	0.100	0.894	0.657	0.101
		0.2059	0.7515	0.4562	0.0381	0.113	0.880	0.662	0.118
		0.2779	0.6543	0.5419	0.0942	0.164	0.824	0.636	0.236
		0.3222	0.5918	0.5543	0.1228	0.200	0.784	0.607	0.287
		0.3620	0.5310	0.5530	0.1638	0.237	0.742	0.560	0.354
		0.4081	0.4586	0.5390	0.2047	0.286	0.686	0.512	0.415
		0.4217	0.4343	0.5333	0.2192	0.303	0.666	0.496	0.435
		0.4326	0.4131	0.5275	0.2368	0.318	0.648	0.478	0.458
		0.4487	0.3806	0.5165	0.2596	0.342	0.619	0.454	0.487
		0.4858	0.3182	0.4858	0.3182	0.397	0.555	0.397	0.555 ^a

^aCritical solubility point.

SKRZECZ, SHAW, AND MACZYNSKI

Method/Apparatus/Procedure:

The methods were reported in Ref. 1. The titration method was used to describe solubility of the mixtures. The third component was added to the binary homogenous mixture until the cloudiness started to be observed. Density of the saturated mixtures was measured and put on the graphs. To obtain equilibrium ternary mixtures were stirred in thermostated vessel through several hours. After phase separation, density of each phase was measured and composition was determined from earlier prepared graphs. Concentration at critical point was found by the method described in Ref. 2. Water include in propanol was taken into account in all measurements.

Source and Purity of Materials:

(1) source not specified, chemical pure grade; distilled; water concentration was determined by the Karl Fischer method. (2) source not specified; properties were the same as reported in Ref. 1.

(3) doubly distilled.

Estimated Error:

Not reported.

References:

¹A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 40, 3018 (1966).
 ²E. N. Zilberman, Zh. Fiz. Khim. 26, 1458 (1952).

Components:

Variables:

 $t/^{\circ}C$

90.0

87.0

86.0

85.5

86.0

88.0

T/K = 359 - 363

1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol); C₃H₈O; [71-23-8] Nonane (*n*-nonane); C₉H₂₀; [111-84-2] Water; H₂O; [7732-18-5]

 x'_1

0.040

0.091

0.131

0.182

0.435

0.475

hydrocarbon-

rich phase

Original Measurements:

Compiled by:

A. Skrzecz

 x_2''

0.009

0.018

0.021

0.038

0.052

0.102

Experimental Data

Compositions of coexisting phases

water-

rich phase

Auxiliary Information

 x_1''

0.101

0.171

0.243

0.321

0.488

0.543

 x'_2

0.951

0.897

0.851

0.797

0.505

0.450

V. A. Koshelkov, T. G. Pavlenko, V. N. Titova, V. S. Timofeev, and L. A. Serafimov, Tr. Altai. Politekh. Inst. im. I. I. Polzunova 41, 84–92 (1974).

 w'_2

0.979

0.953

0.930

0.900

0.704

0.659

 w_1''

0.261

0.378

0.478

0.540

0.662

0.626

Water-

rich phase

(compiler)

 w_2''

0.050

0.085

0.088

0.136

0.151

0.251

Method/Apparatus/Procedure:

T/K

(compiler)

363.2

360.2

359.2

358.7

359.2

361.2

The method was not specified. Experiments were made at boiling temperatures of mixtures. Temperatures were read and estimated by the compiler from the authors' graphs.

Source and Purity of Materials:

 w'_1

0.019

0.045

0.067

0.096

0.284

0.326

hydrocarbon-

rich phase

(compiler)

source not specified.
 source not specified.
 source not specified.

Estimated Error: temp. ±0.5 K (compiler).

Eva

1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 Decane (*n*-decane); C₁₀H₂₂; [124-18-5]
 Water; H₉O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1996.01)

 x_1

0.0000

0.3825

0.4649

0.5371

0.5707

0 5886

0.5979

0.6017

0.6017

0.5990

0 5942

0.5878

0.5800

0.5711

0.5613

0 5507

0.5394

0.5276

0.5152

0.5024

0.4891

0.4755

0.4616

0.4474

5.11. 1-Propanol + Water + Decane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 1-propanol-decane-water is given in Table 54.

TABLE 54. Summary of experimental data for the system 1-propanol-decane-water

Author(s)	T/K	Type of data ^a	Ref.
Dubovskaya and Karapetyants, 1968	293	sat. (17), eq. (4)	1
Mahers and Dawe, 1986	293	sat. (78), eq. (12)	2

^aNumber of experimental points in parentheses.

Saturation curve

Compositions along the saturation curve of the 1-propanol–decane–water system were obtained at 293.2 K by titration method, Refs. 1 and 2. All experimental solubility data at 293.2 K are presented in Fig. 1. Only one binary pair of components, decane–water, is partially miscible. Experimental values of mutual solubilities in this binary system were compiled and critically evaluated in a previously published SDS Volume, Ref. 3. At 293 K the tentative value for solubility of decane in water was reported to be $x_2^{\nu}=2.5 \cdot 10^{-9}$ while for solubility of water in decane reasonable data were not accessible; they are expected by the evaluator to be about $x_3'=6\cdot 10^{-4}$ mole fraction. Mutual solubilities of decane and water were not reported in the papers evaluated in Ref. 3. Compositions of four points in the water-rich phase at the lowest 1-propanol concentration were reported to be decane free,² which suggests that 1-propanol is only partially soluble in water. These numerical results are the consequence of the limited sensitivity of experimental measurements (reading the equilibrium phase composition from previously obtained curves of refractive index and density along the saturation curve). The concentration of the decane-rich phase (Ref. 2) in the range of $x_2 > 0.83$ appears to contain errors since it is inconsistent with the expected equation:

$x_1 = 1.009\ 02 + 0.133\ 81\ \ln(x_2) - 1.031\ 32x_2 - 0.010\ 20x_2^2$

The parameters were calculated by the least-squares method and the standard error of estimate was 0.0153. (The parameters describe experimental data which are in the region of 0.01–0.92 mole fraction of decane.) Points on the saturation curve calculated in the range of experimental data by the proposed equation are presented in Table 55 and in Fig. 28.

TABLE 55.	Calculated composition	along the saturation	curve at 293.2 K

 x_1

0.4329

0.4181

0.4032

0 3880

0.3726

0.3571

0.3414

0.3255

0.3096

0.2934

0 2772

0.2608

0.2444

0.2278

0.2111

0 1944

0.1775

0 1606

0.1436

0.1266

0.1094

0.0922

0.0750

0.0577

 x_2

2.5 · 10⁻⁹ Ref. 3

0.0100

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

0.1800

0.2000

0.2200

0.2400

0.2600

0.2800

0.3000

0.3200

0.3400

0.3600

0.3800

0.4000

0.4200

0.4400

 x_2

0.4600

0.4800

0.5000

0.5200

0 5400

0 5600

0.5800

0.6000

0.6200

0 6400

0.6600

0.6800

0.7000

0.7200

0.7400

0.7600

0.7800

0.8000

0.8200

0.8400

0.8600

0.8800

0.9000

0.9200

Phase in equilibrium

Compositions of coexisting phases in equilibrium of the ternary system 1-propanol-decane-water were reported in two references. Similar experimental procedures were used in both references; when the equilibrium was reached then the phases were separated and the densities^{1,2} and refractive indexes² of each phase were measured. The tie lines in each reference cover the whole area of the miscibility gap, but they are inconsistent with one another; the directions of the tie lines are quite different although the compositions of phases in equilibrium are located on the saturation curve. On the basis of tie lines consistency in a series 1-propanol-alkane-water systems,⁴ the equilibrium data of Mahers and Dawe² appear to be more reasonable because they are similar to other systems. The equilibrium data of Dubovskaya and Karapetyants¹ are rejected.

The plait point estimated by Mahers and Dawe, Ref. 2, is $x_1 = 0.529$, $x_2 = 0.299$.

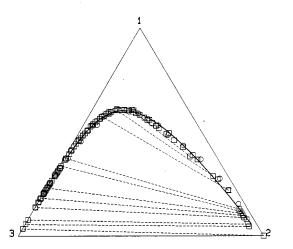


FIG. 28. Phase diagram of the system 1-propanol(1)—decane (2)—water (3) at 293.2 K. Solid line—calculated saturated curve, \bigcirc —experimental results of Ref. 1, \square —experimental results of Ref. 2, dashed lines—experimental tie lines, Ref. 2.

References:

¹A. S. Dubovskaya and M. Kh. Karapetyants, Tr. Inst.-Mosk., Khim.-Tekhnol. Inst. im. D. I. Mendeleeva 58, 92 (1968).

²E. G. Mahers and R. A. Dawe, J. Chem. Eng. Data **31**, 28 (1986)

³D. G. Shaw, ed., *Solubility Data Series*, Vol. 38, Hydrocarbons with Water and Seawater, Part II; Hydrocarbons C₈ to C₃₆ (Pergamon, New York, 1989).

⁴A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 41, 1144 (1967).

Components:

1-Propanol (*n*-propanol, propyl alcohol, *n*-propyl alcohol);
 C₃H₈O; [71-23-8]
 (2) Decane (*n*-decane); C₁₀H₂₂; [124-18-5]
 (3) Water; H₂O; [7732-18-5]

Original Measurements:

A. S. Dubovskaya and M. Kh. Karapetyants, Tr. Inst.-Mosk. Khim.-Tekhnol. Inst. im. D. I. Mendeleeva 58, 92-7 (1968).

Variables:	Compiled by:	
T/K=293	A. Skrzecz	

	70.07	<i>x</i> ₁	<i>x</i> ₂		
t/°C	T/K (compiler)	(com	piler)	w_1	w_2
20.0	293.2	0.1537	0.8210	0.0730	0.9234
		0.2753	0.6846	0.1443	0.8494
		0.3671	0.5618	0.2136	0.7740
		0.4342	0.4577	0.2801	0.6990
		0.4846	0.3702	0.3450	0.6240
		0.5321	0.3063	0.4075	0.5554
		0.5645	0.2478	0.4675	0.4859
		0.5884	0.1978	0.5250	0.4178
		0.5974	0.1526	0.5780	0.3495
		0.6018	0.1154	0.6270	0.2847
		0.5846	0.0819	0.6655	0.2207
		0.5327	0.0552	0.6770	0.1660
		0.4548	0.0278	0.6730	0.0975
		0.3735	0.0159	0.6286	0.0634
		0.2886	0.0079	0.5570	0.0360
		0.1648	0.0022	0.3927	0.0123
		0.1369	0.0009	0.3444	0.0052

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	rich	carbon- phase piler)		ter- phase piler)	2	carbon- phase		ater- phase
20.0	293.2	0.2461	0.7087	0.1998	0.0030	0.1270	0.8660	0.4480	0.0160
		0.2721	0.6895	0.3304	0.0112	0.1420	0.8520	0.5960	0.0480
		0.3574	0.5731	0.5049	0.0426	0.2060	0.7820	0.6810	0.1360
		0.5758	0.2403	0.5758	0.2403	0.4800	0.4740	0.4800	0.4740 ^a

^aCritical point extrapolated by the authors, by Alekseev's method, Ref. 1.

Method/Apparatus/Procedure:

The titration method was used to determine the solubility curve. Binary hydrocarbon-alcohol mixtures were titrated with water until turbidity was observed, as described in Ref. 1. The relationship of density versus composition of saturated mixture was used later to calculate equilibrium. The method was tested on the ethanol-heptane-water system and the results were in agreement with literature data. The analytical method was used to determine liquid-liquid equilibria. A binary mixture of known composition was placed in a special thermostated vessel and the third component was added to obtain a two-phase mixture. This mixture was agitated for 3-4 h to ensure equilibrium. The mixture was allowed to stand 1-2 h to became clear and then both phases were taken for density measurements. On the basis the previously constructed relationship of density versus composition of the saturated mixture, the composition of the mixture in equilibrium was calculated.

Source and Purity of Materials:

(1) source not specified; d(20 °C,20 °C)=0.805, n(20 °C,D) =1.3858. (2) source not specified; $d(20 \circ C, 20 \circ C) = 0.730$, $n(20 \circ C, D)$

= 1.4119.(3) double distilled.

Estimated Error:

temp. ± 0.1 K; conc. ± 0.0001 .

References:

¹W. D. Bancroft, Phys. Rev. 3, 21 (1896).

Components:

Variables:

T/K = 293

 $t/^{\circ}C$

20.00

(1) 1-Propanol (n-propanol, propyl alcohol, n-propyl alcohol); C₃H₈O; [71-23-8] (2) Decane (*n*-decane); C₁₀H₂₂; [124-18-5] (3) Water; H₂O; [7732-18-5]

Original Measurements: E. G. Mahers and R. A. Dawe, J. Chem. Eng. Data 31, 28-31 (1986).

		the saturation curve		
T/K	<i>x</i> ₁	<i>x</i> ₂		
(compiler)	(com	piler)	<i>w</i> ₁	w ₂
293.15	0.1629	0.0004	0.3930	0.0020
	0.1782	0.0004	0.4190	0.0020
	0.1821	0.0005	0.4250	0.0030
	0.2012	0.0007	0.4550	0.0040
	0.2045	0.0008	0.4600	0.0040
	0.2067	0.0009	0.4630	0.0050
	0.2097	0.0011	0.4670	0.0060
	0.2154	0.0010	0.4760	0.0050
	0.2222	0.0014	0.4850	0.0070
	0.2310	0.0016	0.4970	0.0080
	0.2378	0.0018	0.5060	0.0090
	0.2441	0.0020	0.5140	0.0100
	0.2516	0.0020	0.5240	0.0100
	0.2528	0.0018	0.5260	0.0090
	0.2566	0.0022	0.5300	0.0110
	0.2667	0.0027	0.5420	0.0130
	0.2882	0.0037	0.5660	0.0170
	0.2942	0.0032	0.5740	0.0150
	0.3008	0.0044	0.5790	0.0200
	0.3079	0.0049	0.5860	0.0220
	0.3148	0.0052	0.5910	0.0230
	0.3246	0.0055	0.6020	0.0240
	0.3379	0.0067	0.6140	0.0290
	0.1650	0.0072	0.6400	0.0300
	0.3711	0.0080	0.6440	0.0230
	0.3932	0.0095	0.6610	0.0380
	0.4086	0.0101	0.6730	0.0400
	0.4116	0.0109	0.6760	0.0420
	0.4309	0.0125	0.6870	0.0470
	0.4410	0.0146	0.6920	0.0540
	0.4569	0.0169	0.6980	0.0610
	0.4619	0.0164	0.7030	0.0590
	0.4700	0.0192	0.7030	0.0680
	0.4823	0.0225	0.7050	0.0780
	0.4842	0.0213	0.7090	0.0740
	0.4931	0.0253	0.7070	0.0860
	0.5059	0.0283	0.7100	0.0940
	0.5085	0.0297	0.7090	0.0980
	0.5264	0.0333	0.7140	0.1070
	0.5304	0.0333	0.7150	0.1070
	0.5324	0.0374	0.7100	0.1090
	0.3324	0.0374	0.7100	0.1180

Compiled by:

A. Skrzecz

Experimental Data

	0.5380	0.0372	0.7140	0.1170
	0.5474	0.0430	0.7090	0.1320
	0.5517	0.0452	0.7090	0.1370
	0.5611	0.0506	0.7050	0.1500
	0.5641	0.0526	0.7020	0.1550
	0.5724	0.0538	0.7050	0.1570
	0.5782	0.0627	0.6930	0.1780
	0.5868	0.0658	0.6920	0.1840
	0.5890	0.0720	0.6840	0.1980
	0.5973	0.0726	0.6880	0.1980
	0.5951	0.0824	0.6710	0.2200
	0.6020	0.0950	0.6560	0.2450
	0.6113	0.0973	0.6580	0.2480
	0.6054	0.1075	0.6400	0.2690
	0.6043	0.1202	0.6220	0.2930
	0.6064	0.1312	0.6090	0.3120
	0.6030	0.1426	0.5910	0.3320
	0.6022	0.1521	0.5810	0.3480
	0.6026	0.1541	0.5790	0.3510
	0.5967	0.1710	0.5570	0.3780
	0.6029	0.1702	0.5620	0.3750
	0.5899	0.1865	0.5370	0.4020
	0.5817	0.2064	0.5110	0.4310
	0.5691	0.2309	0.4840	0.4650
	0.5572	0.2496	0.4620	0.4900
	0.5582	0.2580	0.4560	0.4990
	0.5428	0.2774	0.4310	0.5240
	0.5170	0.3162	0.3930	0.5690
	0.4906	0.3610	0.3530	0.6150
	0.4956	0.3681	0.3520	0.6190
	0.4601	0.4079	0.3140	0.6590
	0.4262	0.4601	0.2750	0.7030
	0.3880	0.5187	0.2360	0.7470
	0.3669	0.5485	0.2170	0.7680
	0.2707	0.6788	0.1410	0.8490
	0.2180	0.7486	0.1090	0.8860
	0.0792	0.8915	0.0360	0.9600
-				

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'2	w_1''	w_2''
t/°C	T/K (compiler)	rich	arbon- phase piler)	rich	ter- phase piler)	2	carbon- phase		ter- phase
20.00	293.15	0.0000	1.0000	0.0357	0.0000	0.0000	1.0000	0.1100	0.0000
		0.0446	0.9182	0.0578	0.0000	0.0200	0.9750	0.1700	0.0000
		0.0554	0.9077	0.0780	0.0000	0.0250	0.9700	0.2200	0.0000
		0.0869	0.8768	0.1390	0.0000	0.0400	0.9550	0.3500	0.0000
		0.0972	0.8668	0.1825	0.0009	0.0450	0.9500	0.4250	0.0050
		0.1073	0.8569	0.2331	0.0016	0.0500	0.9450	0.5000	0.0080
		0.1171	0.8471	0.3367	0.0058	0.0550	0.9400	0.6150	0.0250
		0.1272	0.8374	0.3734	0.0086	0.0600	0.9350	0.6450	0.0350
		0.2198	0.7469	0.5718	0.0571	0.1100	0.8850	0.7000	0.1650
		0.2865	0.6519	0.6049	0.1002	0.1550	0.8350	0.6500	0.2550
		0.3813	0.5105	0.6057	0.1638	0.2350	0.7450	0.5700	0.3650
		0.529	0.299	0.529	0.299	0.410	0.550	0.410	0.550 ^a

^aEstimated by the authors.

Auxiliary Information

Source and Purity of Materials:

= 1.385 32, $\rho(20 \text{ °C}) = 803.9 \text{ kg/m}^3$.

 $\rho(20 \,^{\circ}\text{C}) = 710.0 \, \text{kg/m}^3$.

(3) distilled.

Estimated Error:

temp. ± 0.05 C.

(1) BDH, AnalaR grade; used as received; n(20 °C,D)

(2) Koch-Light Ltd.; used as received; n(20 °C,D) = 1.412 13,

Method/Apparatus/Procedure:

The titration method was used to determine binodal curve. The mass of each component added to the mixture was determined on an electronic balance. From the water-side of the system to 10 mL of water 1 drop of decane was added and then the mixture was titrated with 1-propanol until the mixture became homogenous. The decane-rich side of the system was determined similarly but starting with 10 mL of decane and adding water and 1-propanol. The refractive indexes and densities along the binodal curve were measured for selected compositions. The tie lines were determined by the analytical method. Two-phase mixtures were shaken well, then allowed to settle and samples of each phase were taken for analysis. Composition of equilibrium phases were derived from the refractive index and density curves.

6. 2-Propanol+Water

Components: (1) 2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O; [67-63-0] (2) Benzene; C₆H₆; [71-43-2] (3)Water; H₂O; [7732-18-5] Evaluated by:

A. Skrzecz. Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.04)

6.1. 2-Propanol + Water + Benzene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.), compositions of coexisting phases in equilibrium (eq.) and distribution of ethanol between phases (distr.) for the system 2-propanol-benzene-water is given in Table 56.

TABLE 56. Summary of experimental data for the system 2-propanol-benzene-water

Author(s)	T/K	Type of data ^a	Ref.
Perrakis, 1925	292	sat. (11)	1
Olsen and Washburn, 1935	298	sat. (16), distr. (15)	2
Leikola, 1940	293	sat. (4)	3
Udovenko and Mazanko, 1964	292-343	sat. (48), eq. (45)	4
Morachevskii and Legochkina, 1965	293-340	eq. (35)	5
Udovenko and Mazanko, 1967	303-323	eq. (23)	6
Nikurashina and Sinegubova, 1973	298	sat. (18), eq. (22)	7
Udovenko et al., 1985	340	eq. (9)	8
Rajendran et al., 1989	303	sat. (15), eq. (6)	9
Letcher et al., 1990	298	sat. (13), eq. (5)	10

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system 2-propanol-benzene-water forms a miscibility gap of type 1. Ten references describes this system over the temperature range 292-343 K. The data are evaluated on the basis of the original papers with the exception of data of Leikola,³ which were taken from the handbook of Kafarov.¹¹ Experimental points reported in all ten papers are in general agreement. The data of Letcher et al.¹⁰ were presented in graphical form only and therefore are not given as a compilation sheet. Only one binary system, benzene-water, is partially miscible. The data for this system were compiled and critically evaluated in a previously published SDS volume.¹² The recommended values of mutual solubility at 298.2 K¹² are: $x'_2 = 0.9970$ and $x''_2 = 0.000409$. Olsen and Washburn² and Rajendran et al.⁹ reported mutual solubility for the binary system. These values at 298.2 K² and at 303.2 K⁹ are: $x'_2=0.9970$, $x''_2=0.0003$ and x'_2 =0.9961, x''_{1} =0.0043, respectively. The experimental results for the 2-propanol-benzene-water system of Perraksis¹ at 292 K are in agreement with other data sets, but the results for other alcohol-benzene-water systems reported in Ref. 1 differed very much from the recommended values. Therefore these data are not compiled. Data reported by Olsen and Washburn² at 298 K present a larger miscibility gap (by about 0.05 mole fraction) than any other data at a similar temperature. This was observed in the range $x_2 = 0.014 - 0.58$. The two points of lowest 2-propanol concentration in benzene-rich phase at 303 K, Rajendran et al.⁹ are not located on the expected binodal curve. This is presumably the result of an experimental error. (Compositions are expected to contain of about 0.01 mole fraction less water.) Therefore the data of Refs. 2 and 9 are rejected. Udovenko and Mazanko⁴ report five solubility-temperature curves of constant alcoholbenzene ratio and another four curves of constant alcohol-water ratio over the temperature range 292-343 K. These were used by the authors to construct solubility isotherms at 303, 318, and 333 K. Morachevskii and Legochkina⁵ report equilibrium data in the temperature range 307-339 K. No significant compositional differences with temperature were observed on the binodal curve on the basis of these data sets. Saturation points at boiling temperatures as a function of pressure are also presented. The influence of composition on boiling temperature over two liquid phases at constant pressure is very weak; it changes no more than 0.5 K. All saturation data are treated as tentative. The temperature of 298.2 K was chosen to present the behavior of the system since several studies included this standard temperature. Saturation and equilibrium data of Nikurashina and Sinegubova⁷ ($0.0004 \le x_2 \le 0.9635$), including water-rich and hydrocarbon-rich branches were described by the equation:

 $x_1 = 0.346 \ 81 + 0.042 \ 11 \ \ln(x_2) + 0.470 \ 10x_2 - 0.843 \ 39x_2^2$

The least-squares method was used and the standard error of estimate was 0.0125. The compositions on the saturation curve calculated by the proposed equation are presented in Table 57 for selected concentrations of benzene in the mixture. The results of calculations (solid line) are presented graphically in Fig. 29 together with all experimental data reported at 298.2 K.

TABLE 57. Calculated composition along the saturation curve at 298.2 K

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.0000	0.000 409 Ref. 12	0.3472	0.4800
0.0564	0.0010	0.3418	0.5000
0.1575	0.0100	0.3357	0.5200
0.1911	0.0200	0.3288	0.5400
0.2287	0.0400	0.3212	0.5600
0.2535	0.0600	0.3128	0.5800
0.2727	0.0800	0.3037	0.6000
0.2884	0.1000	0.2939	0.6200
0.3018	0.1200	0.2834	0.6400
0.3133	0.1400	0.2722	0.6600
0.3233	0.1600	0.2603	0.6800
0.3319	0.1800	0.2476	0.7000
0.3393	0.2000	0.2342	0.7200
0.3456	0.2200	0.2202	0.7400
0.3523	0.2400	0.2054	0.7600
0.3510	0.2600	0.1899	0.7800
0.3587	0.2800	0.1737	0.8000
0.3612	0.3000	0.1568	0.8200
0.3629	0.3200	0.1393	0.8400
0.3637	0.3400	0.1210	0.8600
0.3637	0.3600	0.1020	0.8800
0.3629	0.3800	0.0810	0.9000
0.3613	0.4000	0.0620	0.9200
0.3589	0.4200	0.0409	0.9400
0.3558	0.4400	0.0191	0.9600
0.3519	0.4600	0.0000	0.9970 Ref. 12

No large differences in the maximum 2-propanol concentration were observed with temperature. The maximum 2-propanol concentration in benzene-rich phase of this ternary system at 298.2 K was measured to be $x_1 = 0.371$,⁷ and $x_1 = 0.38$,¹⁰ the value $x_1 = 0.41$ reported in Ref. 2 seems to be too large.

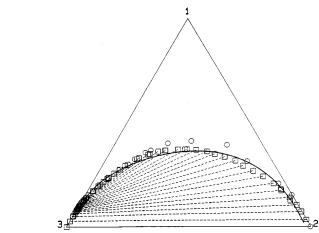


FIG. 29. Phase diagram of the system 2-propanol (1)—benzene (2)—water (3) at 298.2 K. Solid line—calculated saturation curve, O—experimental data, Ref. 2, D—experimental data, Ref. 7, dashed lines—experimental tie lines, Ref. 2.

Phases in equilibrium

Compositions of coexisting phases in equilibrium of the ternary system 2-propanol-benzene-water were reported in seven references in the temperature range 293-340 K as 17 isotherms. The lines cover the full miscibility gap. Udovenko et al.^{4,6,8} and Morachevskii and Legochikina⁵ report the equilibrium data over the temperature range 303-340 K and 293-339 K, respectively. At various temperatures, tie lines systematically change direction slightly according to the final position of plait points. For constant water-phase composition, the benzene-rich phase in equilibrium contains less benzene at higher temperature. Reported data are consistent within each data set but several points are inconsistent between data sets, e.g., Ref. 4 at 303.2 K the composition of water-rich phase (x_1 =0.3251 and x_2 =0.4885) contains more alcohol than expected. Equilibrium data of Morachevskii and Legochkina at 293.2 K,⁵ and Nikurashina and Sinegubova at 298.2 K,⁷ are inconsistent with one another. All equilibrium data are treated as tentative. Plait point composition, reported in Refs. 4,7,10 and presented in Table 58 changes only slightly with temperature and contains less 2-propanol and more water at higher temperatures (concentration of benzene is nearly constant). This behavior is also confirmed by weak systematical changes of tie lines directions.⁵ All experimental points at 298.2 K, both saturation and phases in equilibrium^{2,7} are presented in Fig. 29.

TADIE 58	Experimental	nlait i	nointe t	for the	evetom '	2 pro	panol-benzene-water

Components:

T/K = 298

 $t/^{\circ}C$

25.0

(1) 2-Propanol (isopropanol, isopropyl alcohol); C3H8O; [67-63-0] (2) Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

 w_1

0.0000

0.1220

0.1722

0.2854

0.3795

0.4600

0.5028

0.5100

0.5136

0.5042

0.4816

0.4179

0.3911

0.3251

0.2516

0.0000

 w'_1

hydrocarbon-

rich phase

0.008

0.015

0.023

0.033

0.049

0.089

0.150

0.198

0.261

0.301

0.348

0.389

0.419

0.443

0.459

A. Skrzecz

Experimental Data Compositions along the saturation curve

 x_2

0.9970

0.8448

0.7629

0.5816

0.4606

0.3066

0.2163

0.1627

0.1453

0.1172

0.0769

0.0314

0.0213

0.0067

0.0023

0.0003

Distribution of 2-propanol in 2-propanol-benzene-water system

(compiler)

A. L. Olsen and E. R. Washburn, J. Am. Chem. Soc. 57, 303-5 (1935)

Variables:

T/K(compiler)

298.0

 x_1

0.0000

0.1527

0.2081

0.3144

0.3930

0.4115

0.4005

0.3669

0.3570

0.3249

0.2737

0.1956

0.1729

0.1290

0.0922

0.0000

T/K

(compiler)

298.2

w2		
0.9993		
0.8774		_
0.8206		
0.6863		P
0.5781		6
0.4455		Ϋ́
0.3530		
0.2940		r E E
0.2717		()
0.2363		ő
0.1759		Ē
0.0871		Ē
0.0625		≊
0.0221		<u> </u>
0.0080		- 7
0.0015 data taken	n from Ref. 4.	
		Ď.
		UPAC-NIST SOLUBILITY DATA
	w_1''	Ś
	water-	SE
	rich phase	꼰
		Ш

0.029

0.058

0.088

0.113

0.141

0.179

0.209

0.228

0.243

0.256

0.267

0.279

0.285

0.297

0.302

T/K	x_1	<i>x</i> ₂	Ref.	t/°C
298.2	0.2299	0.0496	7	
298.2	0.22	0.05	10	24.8
303.2	0.2248	0.0456	4	
318.2	0.2188	0.0478	4	
333.2	0.1970	0.0417	4	

A. L. Olsen and E. R. Washburn, J. Am. Chem. Soc. 57, 303 (1935).

³E. Leikola, Suomen Kemistil B 13, 13 (1940).

⁴V. V. Udovenko and T. F. Mazanko, Zh. Fiz. Khim. 38, 2984 (1964).

⁵A. G. Morachevskii and L. A. Legochkina, Zh. Prikl. Khim. (Leningrad) 38, 1789 (1965).

⁶V. V. Udovenko and T. F. Mazanko, Zh. Fiz. Khim. 41, 395 (1967).

⁷N. I. Nikurashina and S. I. Sinegubova, Zh. Obshch. Khim. 43, 2100 (1973).

⁸V. V. Udovenko, T. F. Mazanko, and V. Ya. Plyngeu, Izv. Akad. Nauk Mold. SSR, Ser. Biol. Khim. Nauk 3, 52 (1985).

⁹M. Rajendran, S. Renganarayanan, and D. Srinivasan, Fluid Phase Equilib. 50, 133 (1989).

¹⁰T. M. Letcher, J. Sewry, and S. Radloff, S. Afr. J. Chem. 43, 56 (1990).

¹¹V. V. Kafarov, ed., Spravochnik po Rastvorimosti, Vol. 2, Troinye, Mnogokomponentnye Sistemy, Kniga II (Izd. Akademii Nauk SSSR, Moskva, 1963).

¹²D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

~
~
ω
<u>``</u>

S

Method/Apparatus/Procedure:

The titration method was used. The method was described in Refs. 1.2,3. The mixtures were titrated at 24.8 °C in order that the slight excess necessary for the recognition of the end point, might be dissolved at 25.00 °C, the temperature at which the refractive indexes were determinated. The plot of refractive index against composition was used to find compositions of equilibrium phases. Phase equilibrium data were reported in incomplete form; only distribution of alcohol between water and benzene was reported. 20 mL of benzene and 20 mL of water were pipetted into glass stoppered bottles and varying amounts of alcohol were added to the mixture. The flasks were suspended in the thermostated water bath for a period of 24 h and occasionally shaking. After separation the layers were analyzed by means of refractometer and concentrations of alcohol were reported.

Source and Purity of Materials:

source not specified; refluxed over lime, distilled; d(25 °C) = 0.780 87.
 source not specified; purified; d(25 °C)=0.873 44.

(3) "conductivity water".

Estimated Error:

Not reported.

Reference:

¹E. R. Washburn, V. Hnizda, and R. Vold, J. Am. Chem. Soc. **53**, 3237 (1931).

²R. Vold and E. R. Washburn, J. Am. Chem. Soc. **54**, 4217 (1932).

³E. R. Washburn and H. C. Spencer, J. Am. Chem. Soc. **56**, 361 (1934).

⁴International Critical Tables, Vol. 3 (McGraw-Hill, New York, 1929), p. 389.

Components:

Variables:

T/K = 292 - 343

t/°C

18.92

25 10

19.72

30.70

41.50

50.45

65.37

19.90

35.10

42.90

50.88

60.41

19.20

28.25

43.75

54.51

64.75

19.01

28.25

31.93

41.49

49.80

63.60

2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O;
 [67-63-0]
 Benzene; C₆H₆; [71-43-2]
 Water; H₂O; [7732-18-5]

T/K

(compiler)

292.07

200 22

292.87

303.85

314.65

323.60

338.52

293.05

308.25

316.05

324.03

333.56

292.35

301.40

316.90

327.66

337.90

292.16

301.40

305.08

314.64

322.95

336.75

 x_1

0.0559

0.0550

Compiled By: A. Skrzecz

 x_2

0.0005

0.0007

0.5816

0.5790

0.5768

0.5740

0.5691

0.3359

0.3324

0.3312

0.3286

0.3260

0.1828

0.1813

0.1787

0.1766

0.1741

0.0682

0.0666

0.0655

0.0639

0.0621

0.0602

Experimental Data

Compositions along the saturation curve

(compiler)

Original Measurements:

V. V. Udovenko and T. F. Mazanko, Zh. Fiz. Khim. 38, 2984-8

(1964) [Eng. transl. Russ. J. Phys. Chem. 38, 1626-9 (1964)].

 w_1

0.1647

0.1646

0.1643

0.1642

0.1639

0.1638

0.2912

0.2898

0.2884

0.2867

0.2841

0.4199

0.4176

0.4111

0.4084

0.4063

0.4861

0.4834

0.4803

0.47680.4742

0.1511

0.1509

0.1507

0.1505

0.1504

0.2659

0.2656

0.2653

0.2650

0.2643

0.4115

0.4101

0.4095

0.4085

0.4073

0.4893

0.4876

0.4847

0.4823

0.4795

0.4716

0.4655

0.4612

0.4545

0.4474

0.4398

(compiler)

4S
(RZECZ.
. SHAW.
AND

MACZYNSK

 w_2

0.0018

0.0027

0.0041

0.0051

0.0064

0.0074

0.0131

0.0179

0.0228

0.0285

0.0373

0.0829

0.0979

0.1023

0.1081

0.1126

0.1831

0.1876

0.1928 0.1986

0.2030

0.8364

0.8352

0.8343

0.8334

0.8328

0.6980

0.6971

0.6964

0.6954

0.6938

0.4889

0.4872

0.4866

0.4853

0.4840

0.3237

0.3226

0.3207

0.3191

0.3172

0.1614

0.1593

0.1578

0.1556

0.1531

0.1505

25.18	298.33	0.0559	0.0007
35.88	309.03	0.0559	0.0011
45.15	318.30	0.0559	0.0013
56.00	329.15	0.0558	0.0017
64.72	337.87	0.0558	0.0019
19.80	292.95	0.1111	0.0038
28.85	302.00	0.1109	0.0053
39.86	313.01	0.1108	0.0067
51.66	324.81	0.1106	0.0085
69.39	342.54	0.1103	0.0111
21.95	295.10	0.1960	0.0298
27.98	301.13	0.1956	0.0317
41.00	314.15	0.1949	0.0355
51.12	324.27	0.1946	0.0372
57.51	330.66	0.1941	0.0395
66.70	339.85	0.1937	0.0413
20.81	293.96	0.2809	0.0814
30.83	303.98	0.2802	0.0837
46.39	319.54	0.2794	0.0863
62.42	335.57	0.2784	0.0892
68.55	341.70	0.2778	0.0915
22.00	295.15	0.1807	0.7695
34.20	307.35	0.1797	0.7651
48.13	321.28	0.1789	0.7618
57.35	330.50	0.1780	0.7584
68.78	341.93	0.1775	0.7563

0.2880

0.2867

0.2856

0.2843

0.2818

0.3675

0.3637

0.3622

0.3596

0.3566

0.3592

0.3562

0.3511

0.3469

0.3421

0.2591

0.2530

0.2488

0.2424

0.2357

0.2288

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w''_2	
<i>T</i> /K t/°C (compiler)		hydrocarbon- rich phase (compiler)		rich j	water- rich phase (compiler)		hydrocarbon- rich phase		water- rich phase	
30	303.2	0.0052	0.9905	0.0146	0.0002	0.004	0.995	0.047	0.00	
		0.0219	0.9738	0.0292	0.0007	0.017	0.982	0.091	0.003	
		0.0661	0.9254	0.0489	0.0010	0.052	0.946	0.146	0.004	
		0.1302	0.8371	0.0650	0.0021	0.106	0.886	0.187	0.008	
		0.2200	0.7101	0.0757	0.0027	0.189	0.793	0.213	0.01	
		0.3042	0.5290	0.0897	0.0034	0.292	0.660	0.245	0.01	
		0.3526	0.3764	0.1014	0.0049	0.382	0.530	0.270	0.01	
		0.3640	0.3059	0.1130	0.0068	0.423	0.462	0.293	0.02	
		0.3689	0.2544	0.1166	0.0072	0.454	0.407	0.300	0.02	
		0.3619	0.2070	0.1237	0.0088	0.476	0.354	0.313	0.02	
		0.3537	0.1788	0.1290	0.0092	0.487	0.320	0.323	0.03	
		0.3512	0.1581	0.1416	0.0127	0.499	0.292	0.344	0.04	
		0.3272	0.1228	0.1494	0.0152	0.502	0.245	0.356	0.04	
		0.3029	0.0964	0.1650	0.0201	0.498	0.206	0.379	0.06	
		0.2492	0.0628	0.2015	0.0344	0.464	0.152	0.424	0.09	
		0.2248	0.0456	0.2248	0.0456	0.447	0.118	0.447	0.11	
5	318.2	0.0206	0.9709	0.0108	0.0007	0.016	0.982	0.035	0.00	
		0.0534	0.9339	0.0221	0.0010	0.042	0.955	0.070	0.00	
		0.1134	0.8537	0.0405	0.0013	0.092	0.900	0.123	0.00	
		0.1860	0.7623	0.0545	0.0026	0.156	0.831	0.160	0.01	
		0.2557	0.6330	0.0663	0.0030	0.230	0.740	0.190	0.01	
		0.3103	0.5172	0.0738	0.0033	0.300	0.650	0.208	0.01	
		0.3431	0.3999	0.0847	0.0045	0.365	0.553	0.233	0.01	
		0.3601	0.3157	0.0953	0.0057	0.415	0.473	0.256	0.02	
		0.3606	0.2367	0.1072	0.0080	0.457	0.390	0.280	0.02	
		0.3543	0.1902	0.1177	0.0103	0.480	0.335	0.300	0.03	
		0.3386	0.1542	0.1313	0.0147	0.490	0.290	0.323	0.04	
		0.3100	0.1170	0.1459	0.0184	0.489	0.240	0.347	0.05	
		0.2961	0.1022	0.1546	0.0215	0.486	0.218	0.360	0.06	
		0.2447	0.0619	0.1898	0.0349	0.459	0.151	0.406	0.09	
		0.2188	0.0478	0.2188	0.0478	0.437	0.124	0.437	0.12	
60	333.2	0.0231	0.9683	0.0083	0.0007	0.018	0.980	0.027	0.00	
		0.0582	0.9249	0.0218	0.0015	0.046	0.950	0.069	0.00	
		0.1222	0.8370	0.0374	0.0018	0.100	0.890	0.114	0.00	
		0.1977	0.7247	0.0469	0.0023	0.170	0.810	0.140	0.00	
		0.2445	0.6611	0.0545	0.0026	0.216	0.759	0.160	0.01	
		0.3097	0.5089	0.0623	0.0029	0.302	0.645	0.180	0.01	
		0.3544	0.3538	0.0731	0.0041	0.393	0.510	0.206	0.01	
		0.3577	0.2720	0.0819	0.0053	0.435	0.430	0.226	0.01	
		0.3502	0.1969	0.0996	0.0078	0.433	0.345	0.264	0.01	
		0.3325	0.1530	0.1089	0.0101	0.472	0.290	0.282	0.02	
		0.3323	0.1350	0.1089	0.0101	0.485	0.290	0.282	0.03	
		0.2873	0.1267	0.1232	0.0159	0.485	0.233	0.312	0.04	
		0.2873	0.0976	0.1323	0.0160	0.480	0.212	0.324	0.05	
		0.2520	0.0717	0.1522	0.0224 0.0417	0.460	0.170	0.355	0.06	

^aCritical point of solubility.

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

IUPAC-NIST SOLUBILITY DATA SERIES

Auxiliary Information

Solubility was measured by the Alekseev's method.¹ Five solubility-temperature curves of constant alcohol-benzene ratio and another four curves of constant alcohol-water ratio were measured. These were used to construct solubility isotherms. Phase equilibrium was determined by comparison of density and refractive index on calibration curves obtained for saturation solutions. Critical points of solubility were

Method/Apparatus/Procedure:

obtained by the Alekseev's method.2

Source and Purity of Materials:

(1) source not specified; b.p.=81.4 °C at 750 Torr, d(30 °C,4 °C)=0.7971, n(25 °C,D)=1.3749.
(2) source not specified; purified; b.p.=79.0 °C at 752.5 Torr, d(30 °C,4 °C)=0.8680, n(25 °C,D)=1.4980; taken from Ref. 3.

(3) not specified.

Estimated Error: Not reported.

References:

¹V. F. Alekseev, Gornyi Zh. 4, 83 (1879).
 ²V. F. Alekseev, Gornyi Zh. 2, 385 (1885).
 ³V. V. Udovenko and T. F. Mazanko, Zh. Fiz. Khim. 37, 1151 (1963).

Components: (1) 2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O; [67-63-0] (2) Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5]

Original Measurements:

A. G. Morachevskii and I. A. Legochkina, Zh. Prikl. Khim. (Leningrad) 38, 1789–93 (1965). [Eng. transl. Russ. J. Appl. Chem. (Leningrad) 38, 1751–4 (1965)].

Variables: <i>T</i> /K=293-340					Compile A. Skrze					
Experimental Data Compositions of coexisting phases										
		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''	
t/°C	T/K (compiler)	rich	carbon- phase piler)	water-rich phase (compiler)		hydrocarbon- rich phase		water-rich phase		
20.0	293.2	0.046	0.950	0.0561	0.0010	0.036	0.963	0.165	0.004	
		0.204	0.747	0.0801	0.0019	0.172	0.816	0.224	0.007	
		0.320	0.507	0.1065	0.0047	0.311	0.639	0.281	0.016	
		0.366	0.333	0.1227	0.0063	0.412	0.487	0.313	0.021	
		0.358	0.194	0.1444	0.0117	0.481	0.339	0.350	0.037	
40.0	313.2	0.046	0.945	0.0419	0.0008	0.036	0.962	0.127	0.003	
		0.220	0.710	0.0640	0.0016	0.189	0.793	0.185	0.006	
		0.333	0.437	0.0815	0.0022	0.344	0.585	0.227	0.008	
		0.360	0.290	0.0882	0.0028	0.428	0.448	0.242	0.010	
		0.330	0.156	0.1050	0.0070	0.481	0.295	0.276	0.024	
60.0	333.2	0.082	0.885	0.0306	0.0007	0.066	0.926	0.095	0.003	
		0.230	0.675	0.0494	0.0015	0.203	0.772	0.147	0.006	
		0.325	0.426	0.0633	0.0019	0.341	0.581	0.183	0.007	
		0.346	0.318	0.0727	0.0024	0.403	0.480	0.206	0.009	
		0.291	0.122	0.1092	0.0083	0.466	0.253	0.284	0.028	

			x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''	
<i>P</i> /kPa t/°C		T/K (compiler)	hydrocarbon- rich phase (compiler)		ph	water-rich phase (compiler)		hydrocarbon- rich phase		water-rich phase	
26.7	34.32	307.47	0.075	0.913	0.0493	0.0010	0.059	0.938	0.147	0.004	
	34.05	307.20	0.184	0.772	0.0636	0.0013	0.153	0.836	0.184	0.005	
	34.26	307.41	0.269	0.610	0.0751	0.0019	0.245	0.722	0.212	0.007	
	34.39	307.54	0.333	0.456	0.0868	0.0028	0.337	0.599	0.239	0.010	
	34.52	307.67	0.362	0.305	0.0981	0.0046	0.422	0.462	0.263	0.016	
53.3	50.18	323.33	0.085	0.890	0.0387	0.0017	0.068	0.926	0.118	0.005	
	49.87	323.02	0.191	0.746	0.0520	0.0013	0.162	0.822	0.154	0.005	
	49.97	323.12	0.274	0.586	0.0621	0.0016	0.254	0.707	0.180	0.006	
	50.12	323.27	0.329	0.428	0.0728	0.0027	0.343	0.581	0.206	0.010	
	50.36	323.51	0.352	0.288	0.0832	0.0039	0.422	0.449	0.230	0.014	
80.0	60.27	333.42	0.090	0.873	0.0324	0.0012	0.073	0.918	0.100	0.005	
	59.93	333.08	0.194	0.728	0.0449	0.0015	0.167	0.813	0.135	0.006	
	59.97	333.12	0.274	0.570	0.0555	0.0018	0.258	0.698	0.163	0.007	
	60.19	333.34	0.329	0.415	0.0658	0.0021	0.348	0.571	0.189	0.008	
	60.47	333.62	0.346	0.275	0.0771	0.0030	0.423	0.438	0.216	0.011	
101.3	66.57	339.72	0.095	0.864	0.0282	0.0015	0.077	0.913	0.088	0.006	
	66.18	339.33	0.198	0.718	0.0402	0.0018	0.171	0.807	0.122	0.007	
	66.19	339.34	0.276	0.562	0.0517	0.0018	0.262	0.692	0.153	0.007	
	66.41	339.56	0.328	0.406	0.0618	0.0021	0.351	0.564	0.179	0.008	
	66.71	339.86	0.345	0.272	0.0703	0.0027	0.424	0.435	0.200	0.010	

Compositions of coexisting phases

Auxiliary Information

Method/Apparatus/Procedure:

as reported in Ref. 1.

The analytical method was used in liquid-liquid equilibrium

refractometrically as reported in Ref. 1. The solubility curve at 20 °C was also measured by the isothermal titration method;

specified. The method and apparatus used in investigation of liquid–liquid vapor equilibrium were described in Ref. 2.

stirrer. Samples of each phase were analyzed refractometrically

investigations. Samples of each phase were analyzed

results were in agreement, but numerical data were not

Boiling temperatures of two-phase liquid mixtures were measured by Swietoslawski ebulliometer with a magnetic

Source and Purity of Materials:

 source not specified; purified; n(20 °C,D)=1.5010, d(20 °C,4 °C)=0.8790.
 source not specified; purified; n(20 °C,D)=1.3771, d(20 °C,4 °C)=0.7853.
 not specified.

Estimated Error:

temp. ± 0.1 °C (accuracy of thermostating), ± 0.05 °C (accuracy of boiling temperature); comp. $<\pm 0.5$ mass %.

References

 ¹A. G. Morachevskii and V. P. Belousov, Vest. Leningr. Univ., Ser. 4: Fiz. Khim. 4, 118 (1958).
 ²N. A. Smirnova and A. G. Morachevskii, Vest. Leningr. Univ., Ser. 4: Fiz. Khim. 10, 106 (1959).

Components:

 2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O; [67-63-0]
 Benzene: C₆H₆; [71-43-2]
 Water; H₂O [7732-18-5]

Variables:

T/K = 303 - 333

Compiled by: A. Skrzecz

(1967)].

Original Measurements:

V. V. Udovenko and T. F. Mazanko, Zh. Fiz. Khim. 41, 395-

401 (1967). [Eng. transl. Russ. J. Phys. Chem. 41, 197-9

				1	coexisting pha					
		<i>x</i> ₁ '	x ₂ '	<i>x</i> ₁ "	<i>x</i> ₂ "	w'1	w2	w"1	w_2''	
t/°C compiler)	T/K	rich	carbon- phase piler)	rich	water- rich phase (compiler)		hydrocarbon- rich phase		water- rich phase	
30	303.2	0.0154	0.9760	0.0175	0.0005	0.012	0.986	0.056	0.002	
		0.0370	0.9502	0.0394	0.0008	0.029	0.968	0.120	0.003	
		0.0671	0.8956	0.0524	0.0018	0.054	0.937	0.155	0.007	
		0.1435	0.8159	0.0683	0.0027	0.118	0.872	0.195	0.010	
		0.1591	0.7850	0.0746	0.0033	0.133	0.853	0.210	0.012	
		0.2605	0.6217	0.0859	0.0039	0.236	0.732	0.236	0.014	
		0.3251	0.4885	0.1261	0.0061	0.320	0.625	0.320	0.020	
45	318.2	0.0295	0.9619	0.0169	0.0005	0.023	0.975	0.054	0.002	
		0.0938	0.8691	0.0369	0.0008	0.076	0.915	0.113	0.003	
		0.1341	0.8253	0.0505	0.0018	0.110	0.880	0.150	0.007	
		0.1911	0.7534	0.0564	0.0026	0.161	0.825	0.165	0.010	
		0.2940	0.5634	0.0723	0.0038	0.275	0.685	0.204	0.014	
		0.3544	0.3426	0.0889	0.0054	0.398	0.500	0.242	0.019	
60	333.2	0.0231	0.9683	0.0098	0.0009	0.018	0.980	0.032	0.004	
		0.0477	0.9229	0.0195	0.0015	0.038	0.955	0.062	0.006	
		0.0975	0.8655	0.0338	0.0018	0.079	0.912	0.104	0.007	
		0.1843	0.7378	0.0487	0.0021	0.158	0.822	0.145	0.008	
		0.2075	0.7078	0.0513	0.0021	0.180	0.798	0.152	0.008	
		0.2725	0.5779	0.0565	0.0032	0.255	0.703	0.165	0.012	
		0.3007	0.5264	0.0621	0.0035	0.290	0.660	0.179	0.013	
		0.3219	0.4503	0.0694	0.0041	0.330	0.600	0.197	0.015	
		0.3577	0.2359	0.0864	0.0059	0.455	0.390	0.236	0.021	
		0.3412	0.1796	0.1006	0.0079	0.475	0.325	0.266	0.027	

Components:

Variables:

T/K = 298

 $t/^{\circ}C$

25

2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O;
 [67-63-0]
 Benzene; C₆H₆; [71-43-2]
 Water; H₂O; [7732-18-5]

T/K

(compiler)

298.2

Original Measurements:

Compiled by:

 x_2

0.8530

0.7857

0.4793

0.3018

0.2217

0.1672

0.1266

0.0941

0.0800

0.0660

0.0544

0.0520

0.0496

0.0426

0.0358

0.0314

0.0092

0.0019

0.0007

A. Skrzecz

Experimental Data Compositions along the saturation curve

(compiler)

 x_1

0.1246

0.1803

0.3354

0.3710

0.3664

0.3492

0.3246

0.2941

0.2759

0.2571

0.2373

0.2340

0.2299

0.2180

0.2051

0.1968

0.1377

0.0907

0.0540

N. I. Nikurashina and S. I. Sinegubova, Zh. Obshch. Khim **43**, 2100-5 (1973). [Eng. transl. Russ. J. Gen. Chem. **43**, 2093-7 (1993)].

 w_1

0.1005

0.1488

0.3308

0.4307

0.4709

0.4908

0.4966

0.4903

0.4816

0.4711

0.4560

0.4538

0.4504

0.4403

0.4280

0.4196

0.3397

0.2483

0.1596

 w_2

0.8941

0.8428

0.6144

0.4554

0.3704

0.3055

0.2517

0.2039

0.1814

0.1571

0.1360

0.1311

0.1264

0.1119

0.0972

0.0870

0.0295

0.0028

Auxiliary Information

Method/Apparatus/Procedure:

The method was not reported. Liquid–liquid equilibrium data were presented together with vapor pressure and vapor composition over the two-phase liquid mixtures.

 source not specified; purified; b.p. = 81.4 °C at 750 Torr, d(30 °C, 4 °C)=0.7971, n(25 °C,D)=1.3749.
 source not specified; purified; b.p. = 79.0 °C at 752.5 Torr, d(30 °C,4 °C)=0.8680, n(25 °C,D)=1.4980.
 not specified.

Estimated Error: Not reported.

Source and Purity of Materials:

 $t/^{\circ}C$

25

		e	sinpositions of	coexisting pr	10303			
	x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
<i>T</i> /K (compiler)	rich	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		hydrocarbon- rich phase		ıter- phase
298.2	0.0344	0.9635	0.0277	0.0004	0.0267	0.9728	0.0867	0.0016
	0.0723	0.9243	0.0504	0.0007	0.0567	0.9425	0.1500	0.0028
	0.1041	0.8892	0.0626	0.0011	0.0825	0.9159	0.1816	0.0041
	0.1404	0.8414	0.0710	0.0013	0.1133	0.8823	0.2025	0.0047
	0.1747	0.7905	0.0762	0.0014	0.1441	0.8473	0.2150	0.0053
	0.2080	0.7429	0.0805	0.0018	0.1750	0.8126	0.2250	0.0065
	0.2419	0.6828	0.0838	0.0020	0.2100	0.7704	0.2325	0.0071
	0.2682	0.6297	0.0871	0.0021	0.2400	0.7326	0.2400	0.0076
	0.2928	0.5756	0.0915	0.0022	0.2710	0.6925	0.2500	0.0079
	0.3175	0.5326	0.0960	0.0023	0.3010	0.6564	0.2600	0.0081
	0.3359	0.4805	0.0988	0.0025	0.3308	0.6150	0.2660	0.0086
	0.3497	0.4321	0.1021	0.0026	0.3580	0.5750	0.2730	0.0091
	0.3608	0.3946	0.1058	0.0028	0.3810	0.5416	0.2810	0.0096
	0.3688	0.3480	0.1108	0.0035	0.4070	0.4993	0.2910	0.0118
	0.3716	0.3082	0.1180	0.0045	0.4280	0.4614	0.3050	0.0151
	0.3712	0.2726	0.1224	0.0055	0.4460	0.4257	0.3130	0.0183
	0.3668	0.2238	0.1266	0.0059	0.4700	0.3727	0.3210	0.0193
	0.3614	0.1955	0.1326	0.0069	0.4830	0.3395	0.3320	0.0223
	0.3470	0.1611	0.1416	0.0103	0.4930	0.2975	0.3460	0.0327
	0.3296	0.1326	0.1535	0.0134	0.4970	0.2599	0.3650	0.0413
	0.2989	0.1010	0.1739	0.0210	0.4900	0.2151	0.3930	0.0617
	0.2299	0.0496	0.2299	0.0496	0.4504	0.1264	0.4504	0.1264

Compositions of coexisting phases

^aCritical solubility point.

Auxiliary Information

Method/Apparatus/Procedure:

This isothermal titration method was used. No more details were reported in the paper.

Source and Purity of Materials:

source not specified, pure grade; used as received; b.p. = 82 °C, n(25 °C,D)=1.3752.
 source not specified; distilled at 80 °C; n(25 °C,D) = 1.5016.
 doubly distilled.

Estimated Error:

Not reported.

Components:

Method/Apparatus/Procedure:

contained 25, 50, or 75 mass % water.

The experimental method was not described. Liquid-liquid-

Torr. (Vapor composition over two-component liquid mixtures

vapor equilibrium data were reported at a pressure of 760

was also reported.) Initial binary water-benzene mixtures

(1) 2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O;
 [67-63-0]
 (2) Benzene; C₆H₆; [71-43-2]
 (3) Water; H₂O; [7732-18-5]

Original Measurements:

V. V. Udovenko, T. F. Mazanko, and V. Ya. Plyngeu, Izv. Akad. Nauk Mold. SSR, Sef. Biol. Khim. Nauk **3**, 52–4 (1985).

Variables:	Compiled by:
<i>T</i> /K=339.7-340.1	A. Skrzecz

Experimental Data Compositions of coexisting phases										
		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''	
t/°C	T/K hydrocarbon- (compiler) rich phase			water- rich phase		hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		
66.90	340.05	0.0620	0.9280	0.0230	0.0030	0.0488	0.9489	0.0721	0.0122	
66.70	339.85	0.1010	0.8840	0.0310	0.0030	0.0805	0.9159	0.0955	0.0120	
66.50	339.65	0.1300	0.8420	0.0320	0.0050	0.1054	0.8877	0.0978	0.0199	
66.52	339.67	0.2850	0.5150	0.0400	0.0070	0.2810	0.6599	0.1195	0.0272	
66.55	339.70	0.3030	0.4650	0.0480	0.0080	0.3101	0.6187	0.1406	0.0305	
66.60	339.75	0.3310	0.3740	0.0520	0.0090	0.3655	0.5368	0.1506	0.0339	
66.65	339.80	0.3420	0.3280	0.0700	0.0100	0.3943	0.4916	0.1951	0.0362	
66.70	339.85	0.3520	0.2700	0.0800	0.0100	0.4312	0.4299	0.2187	0.0355	
66.80	339.95	0.3410	0.1810	0.1020	0.0130	0.4739	0.3270	0.2655	0.0440	

Auxiliary Information

Source and Purity of Materials:

source not specified; properties were described in Ref. 1.
 source not specified; properties were described in Ref. 1.
 not specified.

Estimated Error:

Not reported.

References:

¹V. V. Udovenko, T. F. Mazanko, and V. Ya. Plyngeu, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. **16**, 686 (1973).

1136

Components:

(1) 2-Propanol (isopropanol, isopropyl alcohol); C3H8O; [67-63-0] (2) Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5]

T/K

Variables: T/K = 303

•	ental Data the saturation curve	
<i>x</i> ₁	<i>x</i> ₂	
(corr	miler)	

Original Measurements:

Compiled by:

A. Skrzecz

Phase Equilib. 50, 133-64 (1989).

t/°C	(compiler)	(com	piler)	w1	w ₂
30	303.2	0.0000	0.9961	0.0000	0.9991
		0.1237	0.8467	0.1003	0.8925
		0.2374	0.7108	0.2017	0.7851
		0.3263	0.5601	0.2998	0.6689
		0.3670	0.3926	0.3866	0.5375
		0.3704	0.2535	0.4558	0.4055
		0.3486	0.1491	0.5030	0.2797
		0.3036	0.0943	0.5004	0.2021
		0.2306	0.0549	0.4467	0.1383
		0.2024	0.0495	0.4123	0.1310
		0.1288	0.0138	0.3190	0.0443
		0.1114	0.0048	0.2912	0.0162
		0.0669	0.0037	0.1910	0.0138
		0.0304	0.0031	0.0939	0.0125
		0.0000	0.0043	0.0000	0.0184

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		hydrocarbon- rich phase		water- rich phase	
30	303.2	0.0270	0.9411	0.01336	0.00520	0.0214	0.9710	0.0425	0.0215
		0.0599	0.9071	0.03144	0.00539	0.0480	0.9441	0.0961	0.0214
		0.2063	0.7347	0.06500	0.00529	0.1750	0.8100	0.1854	0.0196
		0.3057	0.5850	0.09267	0.00541	0.2782	0.6920	0.2504	0.0190
		0.3667	0.3894	0.11371	0.00503	0.3876	0.5351	0.2958	0.0170
		0.3617	0.1882	0.11247	0.00532	0.4880	0.3300	0.2930	0.0180

=

M. Rajendran, S. Renganarayanan, and D. Srinivasan, Fluid

Solubilities were determined at atmospheric pressure by a procedure described in Ref. 1. The concentration of 2-propanol was determined by glc using HP 5890-A microprocessor controlled unit and integrator HP 3390-A. A stainless steel column of 2 mm diameter packed with SE-30 (100% methyl silicone gum) and N2 as carrier gas of 30 mL/min at 120 °C were used.

Method/Apparatus/Procedure:

Auxiliary Information

Source and Purity of Materials:

(1) Merck; reagent grade; purity>99.9% by glc. (2) Merck; reagent grade; purity>99.9% by glc. (3) double distilled.

Estimated Error: temp. ± 1 °C.

References:

¹D. Rama Subramanian and D. Srinivasan, Chem. Eng. Commun. 19, 335 (1983).

$\label{eq:components:} (1) 2-Propanol (isopropanol, isopropyl alcohol); C_3H_8O; [67-63-0] (2) Cyclohexene; C_6H_{10}; [110-83-8] (3) Water; H_2O; [7732-18-5] \\$

Variables: T/K=288-

T/K=288-308			A. Skrzecz							
	6.2. 2-Propanol + Water + Cyclohexene Experimental Data Compositions along the saturation curve									
		<i>x</i> ₁	<i>x</i> ₂							
t/°C	T/K (compiler)	(com	piler)	w_1	w2					
15.0	288.15	0.0273	0.9655	0.0202	0.9782					
15.0	200.15	0.1097	0.8694	0.0841	0.9111					
		0.1954	0.7592	0.1570	0.8316					
		0.2442	0.6841	0.2034	0.7787					
		0.3018	0.5908	0.2644	0.7074					
		0.3643	0.4385	0.3562	0.5860					
		0.3935	0.2812	0.4495	0.4391					
		0.3779	0.1700	0.5067	0.3116					
		0.3272	0.1007	0.5142	0.2163					
		0.2611	0.0441	0.4930	0.1138					
		0.2332	0.0259	0.4752	0.0722					
		0.1678	0.0065	0.3956	0.0209					
		0.1449	0.0038	0.3576	0.0128					
		0.1022	0.0009	0.2744	0.0034					
		0.0820	0.0003	0.2294	0.0011					
		0.0616	0.0003	0.1795	0.0011					
		0.0313	0.0005	0.0972	0.0020					
		0.0120	0.0002	0.0389	0.0008					
25.0	298.15	0.0693	0.9105	0.0525	0.9429					
		0.2125	0.7259	0.1737	0.8112					
		0.3192	0.5461	0.2886	0.6749					
		0.3781	0.3894	0.3858	0.5431					
		0.3908	0.2899	0.4427	0.4489					
		0.3685	0.1626	0.5039	0.3039					
		0.3118 0.2621	0.0833 0.0457	0.5137 0.4927	0.1876 0.1173					
		0.2102	0.0204	0.4485	0.0594					
		0.2017	0.0175	0.4387	0.0521					
		0.1321	0.0037	0.3334	0.0129					
		0.0714	0.0012	0.2034	0.0048					
		0.0479	0.0009	0.1433	0.0035					
		0.0224	0.0002	0.0710	0.0009					
		0.0098	0.0001	0.0321	0.0006					
35.0	308.15	0.0675	0.9075	0.0513	0.9430					
		0.1789	0.7732	0.1431	0.8454					
		0.3240	0.5392	0.2940	0.6688					
		0.3893	0.3651	0.4047	0.5188					
		0.3905	0.2494	0.4652	0.4062					
		0.3747	0.1740	0.5010	0.3181					
		0.3371	0.1135	0.5131	0.2362					
		0.2721	0.0553	0.4953	0.1376					
		0.2149	0.0255	0.4501	0.0731					
		0.1242	0.0035	0.3180	0.0123					
		0.0872	0.0012	0.2408	0.0046					
		0.0480	0.0004	0.1439	0.0018					

0.0149

0.0001

Original Measurements:

Compiled by:

J. Am. Chem. Soc. 62, 1454-7 (1940).

E. R. Washburn, C. L. Graham, G. B. Arnold, and L. F. Transue,

	Compositions of	coexisting phase	s
x'_2	x_1''	x_2''	w'_1

0.0281

0.0691

0.1127

0.1406

0.1563

0.1768

0.2210

0.2487

water-

rich phase

(compiler)

0.0002

0.0008

0.0019

0.0044

0.0070

0.0131

0.0242

0.0384

 x_1'

0.0082

0.0750

0.2152

0.3228

0.3567

0.3863

0.3731

0.3274

T/K

(compiler)

298.15

t/°C

25.0

hydrocarbon-

rich phase

(compiler)

0.9873

0.9030

0.7236

0.5576

0.4624

0.3422

0.1707

0.0989

 w_2''

0.001

0.003

0.007

0.015

0.023

0.041

0.069

0.102

SKRZECZ,
, SHAW,
AND
MACZYNSKI

t/°C	T/K (compiler)	w'1 hydrocarbon- rich phase	w ₁ " water- rich phase
15.0	288.15	0.007	0.120
		0.035	0.205
		0.141	0.306
		0.232	0.361
		0.367	0.424
		0.473	0.473
		0.502	0.488
35.0	308.15	0.018	0.096
		0.049	0.172
		0.140	0.239
		0.247	0.299
		0.316	0.328
		0.365	0.345

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, as described in Ref. 1, was used. The titrant, from a weighed pipette, was added to the weighed binary mixture of known composition and the mixture was kept in a thermostated bath. To confirm that the end-point was reached the mixture was shaken automatically for at least 15 min and then reexamined. The plot of refractive index against composition was then used to find compositions of equilibrium phases. The refractive indexes were determinated at the temperature of 30.0 °C to eliminate an opalescence. Part of phase equilibrium data was reported in incomplete form; only distribution of alcohol between water and benzene was reported.

Source and Purity of Materials:

(1) Eastman Kodak Company, commercial grade; dried by refluxing over active lime, twice distilled; d(25 °C,4 °C) = 0.7809, n(25 °C,D) = 1.374 87.

 w_2'

0.993

0.938

0.809

0.680

0.606

0.500

0.314

0.213

hydrocarbon-

rich phase

0.006

0.057

0.176

0.288

0.342

0.413

0.502

0.516

 w_1''

0.088

0.198

0.296

0.349

0.375

0.404

0.460

0.483

water-

rich phase

(2) Eastman Kodak Company, commercial grade; distilled in an atmosphere of purified N₂, collected in dried nitrogen-filled bottles; d(25 °C, 4°C) = 0.8056, n(25 °C, D) = 1.4434. (3) not specified.

Estimated Error:

temp. ± 0.05 °C.

References:

¹E. R. Washburn and A. E. Beguin, J. Am. Chem. Soc. **62**, 579 (1940).

0.0006

0.0479

Components: (1) 2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O; [67-63-0] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water (hydrogen oxide); H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.04)

6.3. 2-Propanol + Water + Cyclohexane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 2-propanol-cyclohexane-water is given in Table 59.

TABLE 59. Summary of experimental data for the system 2-propanol-cyclohexane-water

Author(s)	T/K	Type of data ^a	Ref.
Washburn et al., 1942	298	sat. (13), eq. (8)	1
Verhoeye, 1968	298	sat. (27), eq. (8)	2
Nikurashina and Sinegubova, 1973	298	sat. (20), eq. (14)	3
Letcher et al., 1991	298	sat. (14), eq. (6)	4
Plackov and Stern, 1992	298	sat. (21), eq. (7)	5

^aNumber of experimental points in parentheses.

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

Saturation curve

The ternary system 2-propanol–cyclohexane–water forms a miscibility gap of type 1. The system was studied five times at the same temperature, 298.2 K. Saturation data are consistent within and between each reference. The exceptions are two points for the cyclohexane-rich phase reported with the evident experimental errors in the paper of Verhoeye 2 (x_1 =0.213 and x_1 =0.040). Only one binary system, cyclohexane–water, forms a miscibility gap. The data for this binary system were compiled and critically evaluated in a previously published SDS volume, Ref. 6; the recommended values at 298.2 K are: $x_2^{"}$ =1.2·10⁻⁵ and $x_3^{'}$ =3.7·10⁻⁴. All experimental solubility and equilibrium data reported at 298.2 K were used for calculation of saturation curve. (Water-rich and hydrocarbon-rich branches were treated together.) These data were described by the equation:

$x_1 = 0.475 \ 90 + 0.056 \ 28 \ \ln(x_2) - 0.113 \ 24x_2 - 0.58 \ 67x_2^2$

The parameters were calculated by the least-squares method and the standard error of estimate was 0.0156. Selected points on the saturation curve, calculated by the above equation are presented in Table 60 for selected concentrations of cyclohexane in the mixture and in Fig. 30 as calculated binodal curve (solid line).

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	x_2
0.0000	0.000 012 Ref. 6	0.3438	0.5000
0.0873	0.0010	0.3361	0.5200
0.2178	0.0100	0.3278	0.5400
0.2578	0.0200	0.3189	0.5600
0.2983	0.0400	0.3095	0.5800
0.3222	0.0600	0.2996	0.6000
0.3390	0.0800	0.2891	0.6200
0.3517	0.1000	0.2780	0.6400
0.3615	0.1200	0.2665	0.6600
0.3694	0.1400	0.2544	0.6800
0.3756	0.1600	0.2417	0.7000
0.3804	0.1800	0.2286	0.7200
0.3840	0.2000	0.2149	0.7400
0.3866	0.2200	0.2007	0.7600
0.3883	0.2400	0.1860	0.7800
0.3891	0.2600	0.1708	0.8000
0.3890	0.2800	0.1550	0.8200
0.3882	0.3000	0.1388	0.8400
0.3867	0.3200	0.1220	0.8600
0.3845	0.3400	0.1047	0.8800
0.3816	0.3600	0.0870	0.9000
0.3780	0.3800	0.0687	0.9200
0.3738	0.4000	0.0499	0.9400
0.3690	0.4200	0.0306	0.9600
0.3636	0.4400	0.0108	0.9800
0.3576	0.4600	0.0007	0.9900
0.3510	0.4800	0.0000	0.999 63 Ref.

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system 2-propanol-cyclohexane-water were reported in all references at 298.2 K and tie lines cover the full miscibility gap. The reported plait point, Ref. 3, was x_1 =0.3982 and x_2 =0.2776. In the area close to the plait point there are small differences in the direction of the tie lines. There is a nearly uniform distribution of alcohol between the phases, the concentration of 2-propanol in the equilibrium phases differs by no more than 0.03 mole fraction. In the water-rich phase, when x_1 <0.15, the concentration of cyclohexane is very low, x_2 <0.002. The reported equilibrium data sets are consistent with one another and within each data set. The exceptions are two points of the cyclohexane-rich phase reported with evident experimental errors in the paper of Verhoeye ² (as discussed above in the description of saturation curve). The data for phases in equilibrium are considered tentative. All experimental tie lines as well as all experimental points, Refs. 1–5, at 298.2 K, are reported in Fig. 30.

TABLE 60. Calculated composition along the saturation curve at 298.2 K

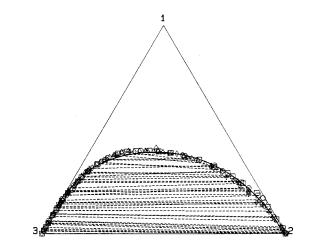


FIG. 30. Phase diagram of the system 2-propanol (1)—cyclohexane (2)—water (3) at 298.2 K. Solid line—calculated saturation curve, \bigcirc —experimental data, Ref. 1, \square —experimental data, Ref. 2, \triangle —experimental data, Ref. 3, \diamond —experimental data, Ref. 4, \bigcirc —experimental data, Ref. 5.

References:

¹E. R. Washburn, C. E. Brockway, C. L. Graham, and P. Deming, J. Am. Chem. Soc. 64, 1886 (1942).

²L. A. J. Verhoeye, J. Chem. Eng. Data **13**, 462 (1968).

³N. I. Nikurashina and S. I. Sinegubova, Zh. Obshch. Khim. 43, 2100 (1973).

⁴T. M. Letcher, P. Siswana, and S. E. Radloff, S. Afr. J. Chem. 44, 118 (1991).

⁵D. Plackov and I. Stern, Fluid Phase Equilib. 71, 189 (1992).

⁶D. G. Shaw, ed., *Solubility Data Series*, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

Components:

2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O;
 [67-63-0]
 (2) Cyclohexane; C₆H₁₂; [110-82-7]
 (3) Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

A. Skrzecz

E. R. Washburn, C. E. Brockway, C. L. Graham, and P. Deming, J. Am. Chem. Soc. **64**, 1886–8 (1942).

Variables: T/K=298

Experimental Data Compositions along the saturation curve								
	T/K	<i>x</i> ₁	<i>x</i> ₂					
t/°C	(compiler)	(com	piler)	w_1	w_2			
25.0	298.2	0.0281	0.0003	0.0880	0.0014			
		0.0862	0.0008	0.2388	0.0032			
		0.1503	0.0032	0.3680	0.0108			
		0.2320	0.0165	0.4829	0.0481			
		0.2988	0.0414	0.5388	0.1046			
		0.3449	0.0721	0.5557	0.1627			
		0.3628	0.0882	0.5574	0.1897			
		0.3875	0.1388	0.5353	0.2685			
		0.3970	0.2069	0.4929	0.3597			
		0.3952	0.2727	0.4508	0.4356			
		0.3752	0.3894	0.3786	0.5502			
		0.2992	0.5917	0.2578	0.7140			
		0.1696	0.8216	0.1282	0.8698			

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	-	n-rich phase piler)		ch phase piler)	hydrocarbo	n-rich phase	water-ri	ch phase
25.0	298.2	0.0000	1.0000	0.0136	0.0004	0.000	1.000	0.044	0.002
		0.0028	0.9972	0.0224	0.0002	0.002	0.998	0.071	0.001
		0.0180	0.9773	0.0520	0.0012	0.013	0.986	0.154	0.005
		0.0801	0.9108	0.0950	0.0005	0.059	0.939	0.259	0.002
		0.1486	0.8382	0.1278	0.0025	0.112	0.885	0.326	0.009
		0.2179	0.7399	0.1814	0.0084	0.172	0.818	0.416	0.027
		0.2996	0.5920	0.2729	0.0299	0.258	0.714	0.521	0.080
		0.3521	0.4586	0.3529	0.0808	0.335	0.611	0.555	0.178

Method/Apparatus/Procedure:

The titration method, Refs. 1, 2, was used. Binary mixtures of known composition were titrated with the third component. The total weight of liquids employed was 13–15g. The refractive indexes of mixtures were used to construct the refractive index/composition curve, which was used further to find compositions of equilibrium phases.

Source and Purity of Materials:

(1) Eastman Kodak Company, best grade; dried with active lime, distilled; d(25 °C,4 °C)=0.7808, n(25 °C,D)=1.3749.
(2) Eastman Kodak Company; distilled, dried with Na, recrystallized several times; d(25 °C,4 °C)=0.7746, n(25 °C,D)=1.4232, f.p.=6.1 °C.
(3) not specified.

Estimated Error:

Not reported.

References:

¹R. Vold and E. R. Washburn, J. Am. Chem. Soc. 54, 4217 (1932).
 ²E. R. Washburn and H. C. Spencer, J. Am. Chem. Soc. 56, 361

(1934).

Components:

Variables:

T/K = 298

 $t/^{\circ}C$

25.0

2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O;
 [67-63-0]
 (2) Cyclohexane; C₆H₁₂; [110-82-7]
 (3) Water; H₂O; [7732-18-5]

T/K

(compiler)

298.2

Original Measurements:

Compiled by:

 x_2

0.0002

0.0003

0.0007

0.0010

0.0014

0.0018

0.0026

0.0048

0.0092

0.0118

0.0219

0.0401

0.0601

0.1198

0.1507

0.1872

0.2430

0.2813

0.3353

0.3973

0.4690

0.5423

0.6176

0.6959

0.7842

0.9270

0.9977

A. Skrzecz

Experimental Data

Compositions along the saturation curve

(compiler)

 x_1

0.0000

0.0156

0.0321

0.0502

0.0891

0.1134

0.1376

0.1660

0.1945

0.2082

0.2500

0.2956

0.3297

0.3821

0.3924

0.3952

0.3974

0.3939

0.3859

0.3715

0.3536

0.3263

0.2897

0.2443

0.1942

0.0684

0.0000

L. A. J. Verhoeye, J. Chem. Eng. Data 13, 462-7 (1968).

 w_1

0.0000

0.0500

0.0995

0.1495

0.2450

0.2975

0.3450

0.3940

0.4360

0.4540

0.5010

0.5365

0.5525

0.5465

0.5300

0.5050

0.4700

0.4450

0.4110

0.3725

0.3325

0.2900

0.2450

0.1975

0.1495

0.0500

0.0000

w_2	_
0.0010	
0.0015	
0.0030	5
0.0040	Ē
0.0055	Ž
0.0065	- P
0.0090	Z
0.0160	N.
0.0290	-
0.0360	S
0.0615	2
0.1020	
0.1410	<u>m</u>
0.2400	₽
0.2850	=
0.3350	-
0.4025	
0.4450	≥
0.5000	7
0.5580	-
0.6175	SE
0.6750	ÿ
0.7315	Ē
0.7880	ŝ
0.8455	

0.9490

0.9995

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	hydrocarbon-rich phase (compiler)		water-rich phase (compiler)		hydrocarbon-rich phase		water-rich phase	
25.0	298.2	0.026	0.974	0.060	0.001	0.019	0.981	0.175	0.004
		0.040	0.911	0.078	0.002	0.030	0.959	0.218	0.006
		0.127	0.864	0.121	0.002	0.095	0.903	0.312	0.009
		0.182	0.796	0.158	0.003	0.140	0.855	0.382	0.010
		0.213	0.787	0.184	0.007	0.162	0.838	0.422	0.021
		0.240	0.706	0.218	0.018	0.193	0.794	0.462	0.053
		0.274	0.646	0.269	0.028	0.228	0.752	0.518	0.075
		0.319	0.549	0.334	0.062	0.283	0.682	0.555	0.145

Method/Apparatus/Procedure:

The binodal curve was determined by titration of heterogenous mixtures with a homogenous mixture until turbidity ceased. Two-liquid mixture was mixed for 1 h at constant temperature and after separation samples of each phase were analyzed. Liquid–liquid equilibrium data at boiling points (64.30–69.40 °C) at pressure 760 Torr were presented graphically in the paper.

Source and Purity of Materials:

(1) source not specified; distilled through a glass column (3 cm in diameter, 2 m high, packed in stainless wire) under reflux >10; chosen fractions were used; b,p.=80.4 °C, d(25 °C,4 °C)=0.7808, n(25 °C,D)=1.3749.

(2) source not specified; distilled through a glass column (3 cm in diameter, 2 m high, packed in stainless wire) under reflux >10; chosen fractions were used; b.p.= $80.7 \degree C$, $d(25 \degree C, 4 \degree C) = 0.7738$, $n(25 \degree C, D) = 1.4238$. (3) twice distilled.

Estimated Error:

temp. ± 0.1 °C; comp. <0.0005 mole fraction (for the binodal curve).

Components:

Variables:

T/K = 298

 $t/^{\circ}C$

25

(1) 2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O; [67-63-0] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water; H₂O; [7732-18-5]

T/K

(compiler)

298.2

N. I. Nikurashina and S. I. Sinegubova, Zh. Obshch. Khim. 43, 2100-5 (1973). [Eng. transl. Russ. J. Gen. Chem. 40, 2093–7 (1973)].

 w_1

0.3481

0.3912

0.4942

0.5363

0.5502

0.5540

0.5478

0.5287

0.4960

0.4782

0.4725

0.4687

0.4561

0.4448

0.4504

0.4306

0.4080

0.3722

Original Measurements:

Compiled by:

 x_2

0.0015

0.0033

0.0176

0.0360

0.0568

0.0809

0.1103

0.1568

0.2012

0.2285

0.2364

0.2629

0.2615

0.2801

0.2776

0.3015

0.3378

0.3976

A. Skrzecz

Experimental Data

Compositions along the saturation curve

(compiler)

 x_1

0.1388

0.1634

0.2412

0.2915

0.3243

0.3520

0.3743

0.3966

0.3961

0.3963

0.3954

0.4110

0.3938

0.3928

0.3982

0.3894

0.3836

0.3712

 w_2

0.0054

0.0109

0.0506

0.0927

0.1350

0.1784

0.2261

0.2928

0.3528

0.3861

0.3956

0.4198

0.4242

0.4442

0.4397

0.4669

0.5032

0.5583

			0	.3217 .2408	0.5362 0.6880		0.2885 0.1965	0.6733 0.7861	
		x'1	x'2			w'1	w'2	w_1''	w"2
t/°C	T/K (compiler)	hydrocarbon-rich phase (compiler)			water-rich phase (compiler)		n-rich phase	water-rich phase	
25	298.2	0.0022	0.9964	0.0161	0.0001	0.0016	0.9981	0.0516	0.0003
		0.0059	0.9918	0.0323	0.0002	0.0042	0.9953	0.1000	0.0007
		0.0116	0.9852	0.0460	0.0004	0.0083	0.9910	0.1383	0.0015
		0.0322	0.9641	0.0632	0.0005	0.0233	0.9759	0.1833	0.0020
		0.0615	0.9312	0.0831	0.0006	0.0450	0.9534	0.2316	0.0025
		0.1074	0.8792	0.1102	0.0009	0.0800	0.9170	0.2916	0.0035
		0.1612	0.8130	0.1481	0.0021	0.1233	0.8708	0.3650	0.0074
		0.2088	0.7444	0.1992	0.0077	0.1650	0.8239	0.4450	0.0240
		0.2506	0.6789	0.2503	0.0203	0.2050	0.7777	0.5033	0.0571
		0.2781	0.6259	0.2943	0.0387	0.2350	0.7407	0.5366	0.0988
		0.3053	0.5733	0.3408	0.0704	0.2667	0.7015	0.5533	0.1601
		0.3350	0.5018	0.3754	0.1072	0.3083	0.6467	0.5516	0.2205
		0.3471	0.4674	0.3913	0.1311	0.3283	0.6191	0.5450	0.2556
		0.3982	0.2776	0.3982	0.2776	0.4504	0.4397	0.4504	0.4397 ^a

^aCritical solubility point.

Method/Apparatus/Procedure:

The isothermal titration method was used. No more details were reported in the paper.

Source and Purity of Materials:

(1) source not specified, pure grade; used as received; b.p. = 82 °C, n(25 °C,D) = 1.3752.
(2) source not specified; distilled at 80.8 °C; n(25 °C,D) = 1.4238.

(3) doubly distilled.

Estimated Error:

Not reported.

Components:

Variables:

T/K = 298

(1) 2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O;
 [67-63-0]
 (2) Cyclohexane; C₆H₁₂; [110-82-7]
 (3) Water; H₂O; [7732-18-5]

0.382

0.362

0.376

0.120

0.396

0.525

0.541

0.242

Original Measurements:

Compiled by:

A. Skrzecz

T. M. Letcher, P. Siswana, and S. E. Radloff, S. Afr. J. Chem. 44, 118–21 (1991).

			Compo		ental Data g the saturation	a curve			
							w_1		w_2
t/	°C	T/K (compiler)		<i>x</i> ₁	<i>x</i> ₂		((compiler)	
25	5.0	298.2	0.	.000	0.00	0	0.000		0.000
			0.	.140	0.00	4	0.348		0.014
			0.	.198	0.01	1	0.439		0.034
			0.	.275	0.02	6	0.528		0.070
			0.	.315	0.04	9	0.549		0.119
			0.	.365	0.09	6	0.552		0.203
			0.	.392	0.18	3	0.505		0.330
			0.	.394	0.28	0	0.446		0.444
			0.	.370	0.39	6	0.372		0.558
			0.	.320	0.53	4	0.288		0.673
			0.	.240	0.68	8	0.196		0.786
			0.	.131	0.84	6	0.099		0.896
			0.	.068	0.92	3	0.050		0.948
			0.	.000	0.99	9	0.0000		0.9998
			Con	npositions of	coexisting pha	ases			
		x'_1	<i>x</i> [′] ₂	x_1''	x_2''	w'_1	w2'	w_1''	w ["] ₂
°C	T/K (compiler)	hydrocarbor	-rich phase	water-ri	ch phase		n-rich phase piler)		rich phase mpiler)
5.0	298.2	0.141	0.830	0.141	0.004	0.107	0.886	0.350	0.014
		0.203	0.746	0.202	0.012	0.161	0.827	0.445	0.037
		0.247	0.680	0.245	0.021	0.202	0.780	0.496	0.059
		0.292	0.592	0.290	0.032	0.253	0.717	0.539	0.083
		0.359	0.435	0.354	0.089	0.349	0.591	0.548	0.193

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the titration method, as described in Ref. 1. The formation of a cloudy mixture was observed visually on shaking after addition of a known mass of the third component; syringes were precisely weighed. Tie line compositions were determined by the refractive index method, Ref. 2, and a complementary method using the Karl Fischer titration, Ref. 3. Measurements were made at pressure of 94.7 kPa.

Source and Purity of Materials:

Merck; AR grade; refluxed with Mg and I₂, distilled; purity >99.9 mole % by glc.
 BDH; Gold label grade; used as received; purity >99.9 mole % by glc.

(3) not specified.

Estimated Error:

composition ± 0.005 mole fraction (binodal curve), ± 0.01 mole fraction (tie lines).

References:

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. **18**, 1037 (1986).

²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. **35**, 411 (1943).

³T. M. Letcher, P. Siswana, P. van der Watt, and S. Radloff, J. Chem. Thermodyn. **21**, 1053 (1989).

Components:

(1) 2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O;
 [67-63-0]
 (2) Cyclohexane; C₆H₁₂; [110-82-7]
 (3) Water; H₂O; [7732-18-5]

Variables: T/K=298

 $t/^{\circ}C$

25

Compiled by: A. Skrzecz

(1992).

Original Measurements:

D. Plackov and I. Stern, Fluid Phase Equilib. 71, 189-209

		ental Data the saturation curve		
T/K			<i>w</i> ₁	<i>w</i> ₂
(compiler)	<i>x</i> ₁	<i>x</i> ₂	(com	piler)
298.2	0.0378	0.9601	0.0273	0.9722
	0.1031	0.8793	0.0770	0.9191
	0.1359	0.8384	0.1031	0.8910
	0.1982	0.7497	0.1568	0.8308
	0.2534	0.6608	0.2104	0.7683
	0.3105	0.5500	0.2766	0.6861
	0.3632	0.4141	0.3596	0.5742
	0.3841	0.3260	0.4141	0.4922
	0.3966	0.2270	0.4794	0.3842
	0.3909	0.1665	0.5165	0.3081
	0.3747	0.1147	0.5443	0.2333
	0.3547	0.0856	0.5522	0.1860
	0.3030	0.0442	0.5405	0.1104
	0.2258	0.0197	0.4708	0.0575
	0.1880	0.0081	0.4269	0.0258
	0.1624	0.0043	0.3883	0.0144
	0.1314	0.0026	0.3330	0.0092
	0.0981	0.0006	0.2658	0.0023
	0.0790	0.0004	0.2222	0.0016
	0.0508	0.0003	0.1513	0.0013
	0.0220	0.0002	0.0698	0.0009

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w '1	w2'	w_1''	w_2''
t/°C	T/K (compiler)	hydrocarbon-rich phase		water-rich phase		hydrocarbon-rich phase (compiler)		water-rich phase (compiler)	
25	298.2	0.020	0.977	0.051	0.000	0.014	0.985	0.152	0.000
		0.077	0.908	0.096	0.002	0.057	0.940	0.260	0.008
		0.147	0.807	0.146	0.004	0.114	0.875	0.359	0.014
		0.188	0.755	0.184	0.007	0.149	0.838	0.422	0.022
		0.218	0.708	0.203	0.009	0.177	0.805	0.449	0.028
		0.269	0.624	0.257	0.024	0.229	0.744	0.508	0.066
		0.325	0.531	0.311	0.041	0.292	0.669	0.553	0.102

SKRZECZ, SHAW, AND MACZYNSKI

Method/Apparatus/Procedure:

Binodal compositions were determined by titration with the corresponding, less-soluble component until the appearance of turbidity.¹ The analytical method was used for determination of tie-lines. This was based on refractive indexes and densities of the samples,¹ combined with the oxidation of the alcohol with an excess of potassium dichromate and determination of unreduced dichromate with Na₂S₂O₃. Alcohol in the organic layer was determined after extraction with water.

Source and Purity of Materials:

Kemika (Zagreb); analytical grade; presumably used as received; n=1.3475, p(25 °C)=780.8 kg/m³, b.p.=81.1 °C.
 Merck Alkaloid; purity not specified; presumably used as received; n=1.4232, p(25 °C)=773.4 kg/m³, b.p.=80.1 °C.
 twice distilled in the presence of KMnO₄.

Estimated Error:

composition $<\!0.0005$ mass fraction, binodal, (relative); composition $\pm 2\%,$ tie line.

References:

¹D. Plackov, and I. Stern, Fluid Phase Equilib. 57, 327 (1990).

(1) 2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O;
 [67-63-0]
 (2) Hexane (*n*-hexane); C₆H₁₄; [110-54-3]
 (3) Water; H₂O; [7732-18-5]

Components:

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1996.05)

6.4. 2-Propanol + Water + Hexane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 2-propanol-hexane-water is given in Table 61.

TABLE 61. Summar	y of experimental	l data for the system	2-propanol-hexane-water

Author(s)	T/K	Type of data ^a	Ref.
Vorobeva and Karapetyants, 1967	298	sat. (11), eq. (12)	1
Morozov et al., 1978	331	eq. (6)	2

^aNumber of experimental points in parentheses.

Saturation curve

The system 2-propanol–hexane–water forms a miscibility gap of type 1. Compositions along the saturation curve was reported only in Ref. 1 at 298 K. Only one binary pair of components, hexane–water, is partially miscible. The data for this system were compiled and critically evaluated in a previously published SDS volume.³ The recommended values of mutual solubility of hexane–water system at 298.2 K are: x'_2 =0.999 53 and x''_2 =2.3·10⁻⁶. Two compositions in equilibrium at 331.2 K² were reported to be binary mixtures (concentration of the third component became equal 0.0). It seems that the analytical method used (glc) did not detect low concentrations of water and therefore these data are treated as inaccurate.

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system 2–propanol–hexane–water were reported in both references. There is no distribution of alcohol between the phases at 298.2 K¹ (concentration of 2-propanol expressed in mole fractions is practically constant). Composition of a plait point obtained graphically by the authors of Ref. 1 is equal to x_1 =0.416 and x_2 =0.240. Equilibrium data at 298.2 K are in agreement with data on the saturation curve and are also consistent with other ternary systems 2-propanol–hydrocarbon–water reported in Ref. 1. The larger miscibility gap and different direction of tie lines at 331.2 K than those at 298.2 K further show that the data of Ref. 2 are inaccurate. The data of Vorobeva and Karapetyants¹ at 298.2 K are treated as tentative and they are presented in Fig. 31.

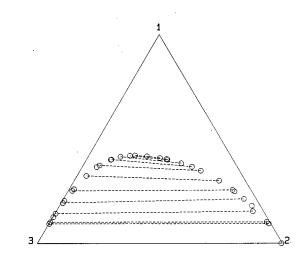


FIG. 31. Phase diagram of the system 2-propanol (1)—hexane (2)—water (3) at 298.2 K. O—experimental data, Ref. 1, dashed lines—experimental tie lines, Ref. 1.

References:

¹A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim, 41, 1984 (1967).

²A. V. Morozov, A. G. Sarkisov, V. B. Turovskii, and V. I. Ilyaskin, Dep. Doc. VINITI 102-78, 1 (1978).

 3 D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

Components:	
-------------	--

2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O;
 [67-63-0]
 Hexane (*n*-hexane); C₆H₁₄; [110-54-3]
 Water; H₂O; [7732-18-5]

Original Measurements: A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 41, 1984–9 (1967). [Eng. transl. Russ. J. Phys. Chem. 41, 1061–3 (1967)].

Variables: T/K=298

Experimental Data Compositions along the saturation curve						
	T/K	<i>x</i> ₁	<i>x</i> ₂			
t/ °C	(compiler)	(compiler)		w_1	w_2	
25	298.2	0.0000	0.9952	0.000	0.999	
		0.1790	0.7858	0.136	0.856	
		0.2480	0.6813	0.199	0.784	
		0.3476	0.4941	0.315	0.642	
		0.4030	0.3269	0.423	0.492	
		0.4203	0.1888	0.520	0.335	
		0.3994	0.0994	0.577	0.206	
		0.3649	0.0585	0.587	0.135	
		0.2601	0.0179	0.518	0.051	
		0.2039	0.0076	0.452	0.024	
		0.1263	0.0014	0.324	0.005	

Compiled by:

A. Skrzecz

				compositions	of coexisting	phases			
		x'_1	x'_2	x_1''	x_2''	w '1	w2'	w_1''	w_2''
t∕ °C	<i>T</i> /K (compiler)	hydrocarbon- rich phase (compiler)		water-rich phase (compiler)		hydrocarbon-rich phase		water-rich phase	
25	298.2	0.094	0.897	0.0939	0.0010	0.068	0.930	0.256	0.004
		0.102	0.885	0.1020	0.0010	0.074	0.923	0.274	0.004
		0.153	0.803	0.1424	0.0025	0.116	0.874	0.354	0.009
		0.212	0.737	0.1930	0.0068	0.165	0.823	0.436	0.022
		0.255	0.670	0.2517	0.0155	0.206	0.776	0.510	0.045
		0.300	0.593	0.3235	0.0373	0.254	0.719	0.569	0.094
		0.348	0.494	0.3729	0.0666	0.315	0.642	0.586	0.150
		0.366	0.449	0.4003	0.1013	0.344	0.604	0.576	0.209
		0.383	0.397	0.4141	0.1320	0.376	0.559	0.560	0.256
		0.400	0.332	0.4185	0.1683	0.418	0.498	0.534	0.308
		0.408	0.297	0.4203	0.1888	0.442	0.462	0.520	0.335
		0.416	0.240	0.416	0.240	0.482	0.398	0.482	0.398 ^a

Compositions of coexisting phases

^aCritical point obtained graphically by the authors.

1146

Method/Apparatus/Procedure:

The experimental methods were described in Ref. 1. Water impurities in alcohol were taken into account in the measurements. Critical point of liquid-liquid equilibrium was obtained graphically by the method reported in Ref. 2.

Source and Purity of Materials:

(1) source and method of preparation were reported in Ref. 1. (2) source not specified; pure grade; distilled; water concentration was analyzed by the Karl Fischer method. (3) doubly distilled.

Estimated Error:

Not specified.

References:

¹A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 40, 3018 (1966).

²E. F. Zilberman, Zh. Fiz. Khim. 26, 1458 (1952).

Components:

Variables:

T/K = 331

(1) 2-Propanol (isopropanol, isopropyl alcohol); C3H8O; [67-63-0] (2) Hexane (n-hexane); C₆H₁₄; [110-54-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

A. Skrzecz

A. V. Morozov, A. G. Sarkisov, V. B. Turovskii, and V. I. Ilyaskin, Dep. Doc. VINITI 102-78, 1-9 (1978).

		x'1	Con x'2	Experimentary approximation positions of x_1''	ntal Data coexisting ph	w'1	w2	w"1	w"2
/ °C	T/K (compiler)	2	n-rich phase piler)	water-rich phase (compiler)		hydrocarbon-rich phase		water-rich phase	
58	331.2	0.123	0.877	0.0425	0.0000	0.089	0.911	0.129	0.000
		0.171	0.829	0.1046	0.0004	0.126	0.874	0.280	0.0015
		0.289	0.601	0.1635	0.0035	0.244	0.728	0.391	0.012
		0.332	0.487	0.2880	0.0255	0.306	0.644	0.543	0.069
		0.399	0.341	0.3744	0.1113	0.413	0.506	0.544	0.232
		0.396	0.178	0.3957	0.1782	0.508	0.328	0.508	0.328

Auxiliary Information

Method/Apparatus/Procedure:

The analytical method was used. The compositions of both phases were determined by glc.

Source and Purity of Materials:

(1) source not specified; dried, distilled, n(20 °C,D) = 1.3771, $d(25 \ ^{\circ}C, 4 \ ^{\circ}C) = 0.7829.$ (2) source not specified; twice distilled, n(20 °C,D) = 1.3748, $d(25 \ ^{\circ}C, 4 \ ^{\circ}C) = 0.6544.$ (3) doubly distilled.

Estimated Error:

comp. <5% relative, max. for water.

Components:

[67-63-0]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.03)

6.5. 2-Propanol + Water + Toluene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 2-propanol-toluene-water is given in Table 62.

TABLE 62. Summary of experimental data for the system 2-propanol-toluene-water

Author(s)	T/K	Type of data ^a	Ref.	
Leikola, 1940	293	sat. (4)	1	
Washburn and Beguin, 1940	298	sat. (24), eq. (13)	2	
Stankova et al., 1970	293, 349-352	sat. (52)	3	
Borisova et al., 1978	293, 349-354	eq. (17)	4	
Letcher and Siswana, 1992	298	sat. (14), eq. (6)	5	

^aNumber of experimental points in parentheses.

(1) 2-Propanol (isopropanol, isopropyl alcohol); C3H8O;

(2) Toluene (methylbenzene); C7H8; [108-88-3]

(3) Water; H₂O; [7732-18-5]

Saturation curve

The ternary system 2-propanol-toluene-water forms a miscibility gap of type 1. The system was measured at 293 K, 298 K, and at boiling temperatures at 101.3 kPa. Only toluene-water binary system forms a miscibility gap. The data of this binary system were compiled and critically evaluated in a previously published SDS volume.⁶ The recommended values of mutual solubility of toluene-water system at 298 K are: $x'_2 = 0.9972$ and $x''_2 = 0.000 \ 104.^6$ This critical evaluation is based on the original papers with the exception of data of Leikola,¹ which were taken from the handbook of Kafarov;⁷ this data set was also taken into account during evaluation but is not reported as a compilation sheet because it does not contribute further to knowledge of the system. At 293 K the experimental data of Borisova et al.⁴ present a slightly larger miscibility gap than those of Stankova et al.³ which are very close to the results at 298 K. The data for the saturation curve are consistent within each data set, as well as with one another. The miscibility gap decreases with increasing temperature. A maximum value of 2-propanol concentration on saturation curve observed at 298 K is equal to $x_1 = 0.39 \pm 0.01$ (differences between data sets, Refs. 2,5 are about 0.02 mole fraction). The saturation curve was described by the equation proposed by Hlavaty⁸ and used also with success by Letcher et al.9 for the description of saturation curves of ternary systems containing alcohols

$x_1 = a_1 \cdot z_1 \cdot \ln(z_1) + a_2 \cdot z_2 \ln(z_2) + a_3 \cdot z_1 \cdot z_2$

where: $z_1 = (x_2 + 0.5 \cdot x_1 - x_{20}'')/(x_{20}' - x_{20}''), z_2 = (x_{20}' - x_2 - 0.5 \cdot x_1)/(x_{20}' - x_{20}''), x_1, x_2$ —mole fractions of component (1) and (2), respectively. tively, x'_{20} , x''_{20} —values of x_2 on the saturation curve which cuts the $x_1 = 0$ axis.

All experimental compositions on the saturation curve at 298.2 K (compositions of tie lines were included), Refs. 2 and 5, as well as the "best" mutual solubility values of the binary system, Ref. 6, were used in the calculations. The parameters calculated by the least-squares method are: $a_1 = -0.319$ 92, $a_2 = -0.005$ 56, $a_3 = 1.107$ 75. The standard error of estimate was 0.0071. The compositions of the saturation curve calculated by the proposed equation at 298.2 K are presented in Table 63 and in Fig. 32.

x ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.0000	0.000 104 Ref. 6	0.3245	0.5200
0.1982	0.0200	0.3149	0.5400
0.2479	0.0400	0.3049	0.5600
0.2828	0.0600	0.2944	0.5800
0.3093	0.0800	0.2835	0.6000
0.3300	0.1000	0.2722	0.6200
0.3464	0.1200	0.2605	0.6400
0.3594	0.1400	0.2484	0.6600
0.3696	0.1600	0.2360	0.6800
0.3774	0.1800	0.2232	0.7000
0.3833	0.2000	0.2101	0.7200
0.3874	0.2200	0.1967	0.7400
0.3900	0.2400	0.1830	0.7600
0.3912	0.2600	0.1689	0.7800
0.3912	0.2800	0.1546	0.8000
0.3901	0.3000	0.1401	0.8200
0.3879	0.3200	0.1252	0.8400
0.3848	0.3400	0.1101	0.8600
0.3809	0.3600	0.0948	0.8800
0.3761	0.3800	0.0792	0.9000
0.3706	0.4000	0.0633	0.9200
0.3645	0.4200	0.0473	0.9400
0.3576	0.4400	0.0310	0.9600
0.3502	0.4600	0.0144	0.9800
0.3421	0.4800	0.0000	0.9972 Ref. 6
0.3336	0.5000		

Phases in equilibrium

The phases in equilibrium were measured also at 293 K, 298 K, and at boiling temperatures at 101.3 kPa. The tie lines cover the whole area of miscibility gap. They are consistent within each data set, as well as with one another. However, the tie lines reported at 298.2 K,^{2,5} cross slightly as could be noticed if a large scale graph were plotted. The tie lines are treated as tentative.

The plait point of the system changes with temperature. At 293.2 K it was reported to be $x_1 = 0.292$, $x_2 = 0.069$, (Ref. 4) at 298.2 K $-x_1=0.27$, $x_2=0.07$ (Ref. 5) while at 101 kPa at boiling temperature (348.9 \pm 0.1 K) it was estimated by the evaluator to be $x_1 = 0.370 \pm 0.004, x_2 = 0.209 \pm 0.001.$

1148

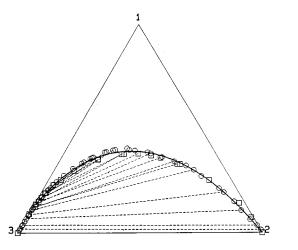


FIG. 32. Phase diagram of the system 2-propanol (1)-toluene (2)-water (3) at 298.2 K. Solid line-calculated saturation curve, O-experimental results of Ref. 2, D-experimental results of Ref. 5, dashed lines-experimental tie lines, Refs. 2 and 5.

References:

¹E. Leikola, Suomen Kemistil. B. 13, 13 (1940).

²E. R. Washburn and A. E. Beguin, J. Am. Chem. Soc. 62, 579 (1940).

³L. Stankova, F. Vesely, and J. Pick, Collect. Czech. Chem. Commun. 35, 1 (1970).

⁴I. A. Borisova, V. G. Vatskova, A. I. Gorbunov, and N. M. Sokolov, Khim. Prom-st (Moscow) 347 (1978).

⁵T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203 (1992).

⁶D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon New York, 1989).

⁷V. V. Kafarov, ed., Spravochnik po Rastvorimosti, Vol. 2, Troinye, Mnogokomponentnye Sistemy, Kniga II (Izd. Akademii Nauk SSSR, Moskva, 1963).

⁸K. Hlavaty, Collect. Czech Chem. Commun. 37, 4005 (1972).

⁹T. M. Letcher, S. Ravindran, and S. E. Radloff, Fluid Phase Equilib. 69, 251 (1991).

Components:

Variables:

T/K = 298

(1) 2-Propanol (isopropanol, isopropyl alcohol); C3H8O; [67-63-0] (2) Toluene (methylbenzene); C7H8; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

A. Skrzecz

E. R. Washburn and A. E. Beguin, J. Am. Chem. Soc. 62, 579-81 (1940).

Experimental Data Compositions along the saturation curve

		x .	r-		
	T/K	<i>x</i> ₁	<i>x</i> ₂		
t/ °C	(compiler)	(com	piler)	<i>w</i> ₁	w_2
25.00	298.15	0.0131	0.0003	0.0425	0.0013
		0.0349	0.0004	0.1076	0.0018
		0.0561	0.0007	0.1650	0.0030
		0.0842	0.0009	0.2340	0.0038
		0.1159	0.0027	0.3016	0.0107
		0.1385	0.0049	0.3438	0.0188
		0.1714	0.0120	0.3944	0.0422
		0.2044	0.0206	0.4364	0.0675
		0.2453	0.0362	0.4753	0.1074
		0.2756	0.0512	0.4957	0.1413
		0.3084	0.0720	0.5101	0.1827
		0.3333	0.0958	0.5117	0.2255
		0.3627	0.1289	0.5089	0.2773
		0.3882	0.1710	0.4961	0.3350
		0.3983	0.2016	0.4814	0.3736
		0.4052	0.2475	0.4559	0.4270
		0.3946	0.2848	0.4255	0.4709
		0.3861	0.3394	0.3905	0.5263
		0.3634	0.4097	0.3430	0.5928
		0.3228	0.5270	0.2745	0.6872
		0.2715	0.6144	0.2176	0.7550
		0.2127	0.7162	0.1597	0.8243
		0.1493	0.8096	0.1064	0.8848
		0.0636	0.9172	0.0431	0.9530

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'2	w_1''	w_2''
T/K t/°C (compiler)	hydrocarbon-rich phase (compiler)			water-rich phase (compiler)		hydrocarbon-rich phase		water-rich phase	
25.00	298.15	0.0136	0.9864	0.0216	0.0000	0.0089	0.9911	0.0687	0.0001
		0.0343	0.9612	0.0400	0.0006	0.0227	0.9764	0.1216	0.0030
		0.1069	0.8592	0.0690	0.0006	0.0745	0.9184	0.1977	0.0028
		0.1942	0.7444	0.0875	0.0012	0.1434	0.8430	0.2414	0.0052
		0.3019	0.5686	0.1102	0.0025	0.2490	0.7190	0.2900	0.0102
		0.3426	0.4696	0.1222	0.0032	0.3062	0.6435	0.3140	0.0125
		0.3805	0.3549	0.1377	0.0038	0.3790	0.5420	0.3434	0.0146
		0.3976	0.2600	0.1570	0.0081	0.4423	0.4435	0.3740	0.0296
		0.3962	0.1934	0.1745	0.0123	0.4857	0.3635	0.3992	0.0433
		0.3859	0.1643	0.1911	0.0165	0.4995	0.3260	0.4210	0.0558
		0.3602	0.1251	0.2087	0.0219	0.5100	0.2716	0.4413	0.0709
		0.3558	0.1200	0.2167	0.0268	0.5105	0.2640	0.4473	0.0847
		0.3396	0.1019	0.2331	0.0311	0.5120	0.2356	0.4650	0.0950

Method/Apparatus/Procedure:

The titration method, as described in Refs. 1, 2, was used. Refractive indexes of mixtures were measured by Abbe refractometer. Binary mixtures of known composition placed in small Erlenmeyer flasks were titrated with water or toluene from weighed pipettes and shaken mechanically in a constant temperature bath. Measured refractive indexes of saturated solutions were plotted for each component. These plots were used further to determine concentration of equilibrium phases. Tie lines were obtained by adding alcohol to water-toluene mixtures and shaking the samples from time to time during the twenty-four hours while they were kept in a constant temperature bath. After separation, refractive indexes of both phase were measured and concentration of each component was read from the plots. The sum of calculated phase concentrations was always equal to 1.0000±0.0001.

Source and Purity of Materials:

(1) Eastman Kodak Company; refluxed with CaO, distilled, middle fraction was used; b.p.=81.7-81.9 °C, d(25 °C,4 °C) $= 0.780 \ 87, \ n(25 \ ^{\circ}C,D) = 1.3748.$

(2) Eastman Kodak Company; used as received; n(25 °C,D) = 1.4938.

(3) distilled over KMnO₄.

Estimated Error:

temp. ± 0.01 °C.

References:

¹R. Vold and E. R. Washburn, J. Am. Chem. Soc. 54, 4217 (1932).

²E. R. Washburn and H. C. Spencer, J. Am. Chem. Soc. 56, 361 (1934).

Components:

(1) 2-Propanol (isopropanol, isopropyl alcohol); C3H8O; [67-63-0] (2) Toluene (methylbenzene); C₇H₈; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

L. Stankova, F. Vesely, and J. Pick, Collect. Czech. Chem. Commun. 1970, 35, 1-12.

Variables: T/K=293-352

Compiled by: A. Skrzecz

SKRZECZ, SHAW, AND MACZYNSK

Experimental Data Compositions along the saturation curve										
	T/K	<i>x</i> ₁	<i>x</i> ₂							
t/ °C	(compiler)	(com	piler)	w_1	w ₂					
20.00	293.15	0.0301	0.0004	0.0936	0.0017					
		0.0445	0.0005	0.1342	0.0024					
		0.0721	0.0007	0.2053	0.0029					
		0.0981	0.0013	0.2650	0.0053					
		0.1225	0.0028	0.3148	0.0111					
		0.1453	0.0055	0.3559	0.0206					
		0.1667	0.0094	0.3893	0.0338					
		0.1865	0.0143	0.4163	0.0490					
		0.2050	0.0204	0.4375	0.0668					
		0.2219	0.0275	0.4538	0.0861					
		0.2756	0.0512	0.4957	0.1413					
		0.3039	0.0713	0.5060	0.1821					
		0.3366	0.0939	0.5168	0.2211					
		0.3432	0.1132	0.5049	0.2554					
		0.3548	0.1293	0.5013	0.2802					
		0.3696	0.1595	0.4894	0.3237					
		0.3936	0.1957	0.4819	0.3674					
		0.3919	0.2393	0.4508	0.4220					
		0.3909	0.2770	0.4271	0.4641					
		0.3870	0.3268	0.3974	0.5145					
		0.3703	0.3867	0.3574	0.5723					
		0.3399	0.4651	0.3058	0.6416					
		0.2910	0.5772	0.2394	0.7281					
		0.2501	0.6402	0.1978	0.7762					
		0.1992	0.7185	0.1503	0.8311					
		0.1322	0.8063	0.0953	0.8914					

Compositions along the saturation curve at normal boiling point (p/kPa=101.32)

	T/K	<i>x</i> ₁	<i>x</i> ₂		
t/ °C	(compiler)	(com	piler)	w_1	w2
77.25	350.40	0.1517	0.0134	0.3591	0.0486
76.95	350.10	0.1997	0.0297	0.4194	0.0956
76.00	349.15	0.2495	0.0536	0.4615	0.1520
76.75	349.90	0.3193	0.0971	0.4965	0.2314
76.90	350.05	0.3290	0.1097	0.4944	0.2527
76.70	349.85	0.3736	0.1885	0.4706	0.3640
77.00	350.15	0.3732	0.2309	0.4412	0.4185
76.70	349.85	0.3693	0.3063	0.3945	0.5016
76.85	350.00	0.3292	0.4073	0.3188	0.6047
76.75	349.90	0.2597	0.5860	0.2156	0.7460
79.30	352.45	0.2022	0.6842	0.1573	0.8162

Method/Apparatus/Procedure:

The titration method was used. A binary mixture of known composition (alcohol-hydrocarbon or alcohol-water) and total mass of about 10-15 g placed in thermostat was titrated by the third component from a calibrated microburette until permanent turbidity was formed. The both branches of solubility curve were in mutual agreement. The binodal curve at normal boiling point was measured in a modified Washburn's ebulliometer¹ until the first lasting turbidity by the titration method. Temperatures were recalculated to the pressure of 760 Torr.

Source and Purity of Materials:

(1) source not specified, analytical grade; dried by CuSO₄, distilled with 20 vol % of benzene, the middle fraction was used; $n(20 \circ C,D) = 1.3771, d(20 \circ C,4 \circ C) = 0.7851, b.p. = 82.2 \circ C.$ (2) source not specified, technical grade; twice distilled with 10 vol % of propyl alcohol, twice distilled with 10 vol % of 2-butanone; n(20 °C,D)=1.4967, d(20 °C,4 °C)=0.8667, b.p. = 110.6 $^{\circ}$ C. (3) distilled.

Estimated Error:

temp. $\pm\,0.05~^\circ C$ (compiler); comp. $\pm 0.01~mL$ (accuracy of titration).

References:

¹E. R. Washburn and A. Beguin, J. Am. Chem. Soc. 62, 579 (1940).

Components:

Variables:

(1) 2-Propanol (isopropanol, isopropyl alcohol); C3H8O; [67-63-0] (2) Toluene (methylbenzene); C7H8; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

I. A. Borisova, V. G. Vatskova, A. I. Gorbunov, and N. M. Sokolov, Khim. Prom-st (Moscow) 347 (1978).

T/K = 293/N354

Compiled by: A. Skrzecz

			С		nental Data f coexisting p	hases			
		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
<i>T/</i> K <i>t</i> /°C (compiler)	hydrocarbon- rich phase (compiler)		ph	water-rich phase (compiler)		hydrocarbon- rich phase		water-rich phase	
20	293.2	0.0299	0.9502	0.0338	0.0001	0.0200	0.9760	0.1045	0.0005
		0.0530	0.9263	0.0539	0.0001	0.0358	0.9600	0.1595	0.0005
		0.1584	0.8133	0.0906	0.0017	0.1120	0.8820	0.2480	0.0070
		0.2169	0.7226	0.1104	0.0030	0.1615	0.8250	0.2900	0.0120
		0.3320	0.5472	0.1365	0.0050	0.2750	0.6950	0.3400	0.0190
		0.3751	0.4255	0.1506	0.0051	0.3450	0.6000	0.3660	0.0190
		0.3896	0.3519	0.1638	0.0072	0.3870	0.5360	0.3870	0.0260
		0.3946	0.2470	0.1806	0.0115	0.4480	0.4300	0.4100	0.0400
		0.3839	0.1992	0.1998	0.0168	0.4715	0.3750	0.4340	0.0560
		0.2918	0.0692	0.2918	0.0692	0.4950	0.1800	0.4950	0.1800 ^a
80.0	353.2	0.0600	0.9031	0.0350	0.0050	0.0412	0.9512	0.1060	0.0232 ^b
79.0	352.2	0.0920	0.8559	0.0440	0.0050	0.0648	0.9242	0.1307	0.0228 ^b
78.0	351.2	0.1570	0.7632	0.0581	0.0060	0.1162	0.8661	0.1669	0.0265 ^b
77.0	350.2	0.2149	0.6821	0.0800	0.0100	0.1664	0.8097	0.2174	0.0416 ^b
76.0	349.2	0.3370	0.4671	0.1631	0.0220	0.3031	0.6441	0.3697	0.0765 ^b
75.8	349.0	0.3775	0.3077	0.2421	0.0580	0.4000	0.5000	0.4476	0.1645 ^b
75.7	348.9	0.3742	0.2098	0.3681	0.2082	0.4560	0.3920	0.4520	0.3920 ^{a,b,}

^aCritical solubility point.

^bTemperatures are the boiling temperatures of the two-phase mixtures. ^cBoiling temperature estimated by the compiler.

Auxiliary Information

Method/Apparatus/Procedure:

The method of description of concentration of phases in equilibrium was the same as reported in Ref. 1. No more details were reported in the paper.

Source and Purity of Materials:

(1) source not specified; properties were in agreement with literature data. (2) source not specified; properties were in agreement with literature data. (3) not specified.

Estimated Error:

Not reported.

References:

¹A. S. Mozzhukhin, L. A. Serafimov, and V. A. Mitropolskaya, Zh. Fiz. Khim. 41, 1687 (1967).

Variables:

T/K = 298

Components: (1) 2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O; [67-63-0] (2) Toluene (methylbenzene); C₇H₈; [108-88-3] (2) Wetter, H Q: [7722-18-6]

Original Measurements:

T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203–17 (1992).

(2) Toluene (methylbenzene); C₇H₈; [108-∂ (3) Water; H₂O; [7732-18-5]

Compiled by: A. Skrzecz

Experimental Data Compositions along the saturation curve									
	<i>T</i> (17			w_1	w2				
t/°C	T/K (compiler)	x_1	<i>x</i> ₂	(com	piler)				
25.0	298.2	0.000	0.000	0.000	0.000				
		0.091	0.001	0.249	0.004				
		0.138	0.005	0.343	0.019				
		0.193	0.019	0.421	0.064				
		0.255	0.049	0.473	0.139				
		0.298	0.083	0.488	0.208				
		0.353	0.154	0.479	0.320				
		0.378	0.247	0.435	0.436				
		0.371	0.362	0.369	0.552				
		0.329	0.500	0.287	0.668				
		0.252	0.656	0.196	0.782				
		0.142	0.834	0.099	0.896				
		0.073	0.918	0.049	0.949				
		0.000	0.999	0.000	0.9998				

Compositions of coexisting phases

t/°C	<i>T</i> /K (compiler)	x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
		hyrocarbon- rich phase		water-rich phase		hydrocarbon- rich phase (compiler)		water-rich phase (compiler)	
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000
		0.330	0.488	0.125	0.008	0.291	0.661	0.315	0.031
		0.360	0.405	0.150	0.010	0.342	0.591	0.360	0.037
		0.380	0.305	0.170	0.012	0.403	0.496	0.392	0.042
		0.377	0.238	0.192	0.016	0.440	0.426	0.423	0.054
		0.351	0.154	0.230	0.030	0.477	0.321	0.462	0.092

Auxiliary Information

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of a known mass of one component to a mixture of known masses of the other two components. Precision weighing syringes were used as described in Ref. 1. Tie line compositions were determined by the refractive index method reported in Ref. 2 and a complementary method using the Karl Fischer tirations as reported in Ref. 3. Source and Purity of Materials:

(1) Merck, AR grade; distilled, dried by refluxing with Mg and I₂; purity better than 99.6 mole % by glc; d=0.78151, n = 1.3752.

(2) BDH; used as received; purity better than 99.6 mole % by

glc. (3) not specified.

Estimated Error:

estimated comp. 0.005 mole fraction on the binodal curve and 0.01 mole fraction for tie lines (estimated by the authors).

References:

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. **18**, 1037 (1986).

²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. **35**, 411 (1943).

³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff, J. Chem. Thermodyn. **21**, 1053 (1989).

SKRZECZ, SHAW, AND MACZYNSKI

Components:

(1) 2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O; [67-63-0] (2) 1-Heptene; C₇H₁₄; [592-76-7] (3) Water; H₂O; [7732 - 18-5]

Variables: T/K=298

6.6. 2-Propanol + Water + 1-Heptene

Original Measurements:

Compiled by:

A. Skrzecz

J. Chem. Eng. Data 39, 320-3 (1994).

T. M. Letcher, B. C. Bricknell, J. D. Sewery, and S. E. Radloff,

Experimental Data Compositions along the saturation curve

	T/K	<i>x</i> ₁	<i>x</i> ₂			
	(compiler)	(com	(compiler)		w_2	
25.0 298.2	298.2	0.000	1.000	0.000	1.000	
		0.184	0.773	0.126	0.865	
		0.281	0.632	0.210	0.771	
	0.365	0.468	0.309	0.648		
	0.407	0.330	0.397	0.526		
		0.417	0.227	0.466	0.415	
		0.402	0.145	0.519	0.306	
		0.378	0.084	0.559	0.203	
		0.349	0.050	0.571	0.134	
		0.273	0.021	0.526	0.066	
		0.242	0.011	0.500	0.037	
		0.059	0.005	0.170	0.023	
		0.027	0.001	0.084	0.005	
		0.000	0.000	0.000	0.000	

Compositions of coexisting phases

t/°C	T/K (compiler)	x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''	
		hyrocarbon- rich phase		water-rich phase		hydrocarbon- rich phase (compiler)		water-rich phase (compiler)		
25.0	25.0	298.2	0.390	0.595	0.412	0.270	0.285	0.711	0.434	0.465
		0.372	0.450	0.412	0.185	0.321	0.633	0.493	0.362	
		0.342	0.518	0.382	0.092	0.278	0.688	0.554	0.218	
		0.291	0.616	0.300	0.032	0.220	0.759	0.543	0.095	
		0.190	0.764	0.197	0.009	0.131	0.860	0.438	0.033	

Auxiliary Information

Method/Apparatus/Procedure:

The experimental methods have been described in Ref. 1. No more details were reported in the paper.

Source and Purity of Materials:

(1) source not specified. (2) Aldrich; distilled; purity >99.8 mole % by glc, $\rho = 0.692$ 65 g cm⁻³. (3) not specified.

Estimated Error: Not reported.

References:

¹T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. **74**, 203 (1992).

Components:

2-Propanol (isopropanol isopropyl alcohol); C₃H₈O;
 [67-63-0]
 Heptane (n-heptane); C₇H₁₆; [142-82-5]
 Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1996.05)

6.7. 2-Propanol + Water + Heptane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 2-propanol-heptane-water is given in Table 64.

TABLE 64.	Summary of	f experimental	data for	the system	2-propanol-heptane-water	
-----------	------------	----------------	----------	------------	--------------------------	--

Author(s)	T/K	Type of data ^a	Ref.
Vorobeva and Karapetyants, 1967	298	sat. (14), eq. (10)	1
Letcher et al., 1986	298	sat. (8), eq. (3)	2

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system 2-propanol–heptane–water forms a large miscibility gap of type 1 covering the majority of the concentration triangle. Only the heptane–water binary system forms a miscibility gap. The data of this binary system were compiled and critically evaluated in a previously published SDS volume.³ The recommended mutual solubilities of the binary system heptane–water at 298.2 K³ are x_2^{\prime} = 4.3 · 10⁻⁷ and x_3^{\prime} = 5.6 · 10⁻⁴. Solubility of water in heptane, x_3^{\prime} = 5.5 · 10⁻³, reported by Vorobeva and Karapetyants¹ is 10 times higher but it is consistent with the accuracy of experiments -0.001 mass fraction. A heptane free point on the saturation curve (x_1 = 0.049) in the data of Letcher *et al.*² ought to be treated as an artifact of the experimental accuracy. The data are not sufficiently accurate to describe the regions of low concentration of 2-propanol. All compositions of coexisting phases in equilibrium in both data sets are consistent with independently measured saturation curve and with one another. The data of Lecter *et al.*², show slightly larger solubility for the heptane-poor phase in the region of x_2 =0.2–0.4. The maximum of 2-propanol concentration sobserved on saturation curve which at 298.2 K were used for calculation of saturation curve. (Water-rich and hydrocarbon-rich branches were treated together.) These data were described by the equation:

$x_1 = 0.651\ 25 + 0.083\ 32\ \ln(x_2) - 0.261\ 69x_2 - 0.404\ 01x_2^2$.

The least-squares method was used and the standard error of estimate was 0.0186. The equation describes the saturation curve for $x_2 < 0.91$ mole fraction. The compositions on the saturation curve, calculated by the proposed equation are presented in Table 65 for the selected concentrations of heptane in the mixture and in Fig. 33 as calculated binodal curve (solid line).

-

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.0000	4.3.10 ⁻⁷ Ref. 6	0.3807	0.4600
0.0754	0.0010	0.3714	0.4800
0.2649	0.0100	0.3616	0.5000
0.3199	0.0200	0.3514	0.5200
0.3719	0.0400	0.3408	0.5400
0.3997	0.0600	0.3297	0.5600
0.4173	0.0800	0.3182	0.5800
0.4292	0.1000	0.3062	0.6000
0.4374	0.1200	0.2939	0.6200
0.4429	0.1400	0.2811	0.6400
0.4463	0.1600	0.2679	0.6600
0.4482	0.1800	0.2544	0.6800
0.4487	0.2000	0.2404	0.7000
0.4480	0.2200	0.2260	0.7200
0.4463	0.2400	0.2113	0.7400
0.4437	0.2600	0.1961	0.7600
0.4402	0.2800	0.1806	0.7800
0.4361	0.3000	0.1647	0.8000
0.4312	0.3200	0.1485	0.8200
0.4257	0.3400	0.1318	0.8400
0.4196	0.3600	0.1148	0.8600
0.4128	0.3800	0.0974	0.8800
0.4056	0.4000	0.0797	0.9000
0.3978	0.4200	0.0000	0.999 44 Ref.
0.3895	0.4400		

TABLE 65. Calculated compositons along the saturation curve at 298.2 K

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system 2-propanol–heptane–water were reported in both references at the same temperature 298 K. A plait point of liquid–liquid equilibrium obtained graphically by Vorobeva and Karapetyants¹ was $x_1 = 0.440$ and $x_2 = 0.279$. The tie lines of Ref. 1 cover the whole range of miscibility gap, while only three tie lines of Ref. 2 cover the middle region of miscibility gap $0.1 < x_1 < 0.27$. The compositions of phases in equilibrium reported in Refs. 1 and 2 are consistent. The system behavior, calculated saturation curve as well as the experimental data are presented in Fig. 33.

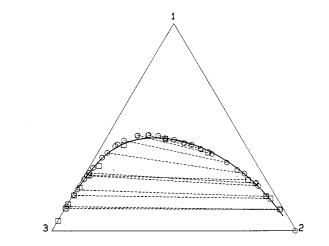


FIG. 33. Phase diagram of the system 2-propanol (1)—heptane (2)—water (3) at 298.2 K. Solid line—calculated saturation curve, O—experimental data, Ref. 1, D—experimental data, Ref. 2, dashed lines—experimental tie lines, Refs. 1 and 2.

References:

¹A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 41, 1984 (1967).

²T. M. Letcher, S. Wootton, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037 (1986).

³D. G. Shaw, ed., *Solubility Data Series*, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

Components:

2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O;
 [67-63-0]
 Heptane (*n*-heptane); C₇H₁₆; [142-82-5]
 Water, H₂O; [7732-18-5]

Variables: T/K=298 _____

Compiled by: A. Skrzecz

(1967)].

Original Measurements:

A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 41,

1984-9 (1967). [Eng. transl. Russ. J. Phys. Chem. 41, 1061-3

Experimental Data Compositions along the saturation curve								
	<i>m</i> (17	x_1	<i>x</i> ₂					
t/°C	T/K (compiler)	(com	piler)	w_1	w_2			
25	298.2	0.0000	0.9945	0.000	0.999			
		0.2315	0.7202	0.160	0.83			
		0.2940	0.6119	0.219	0.76			
		0.3932	0.4129	0.345	0.604			
		0.4236	0.3287	0.405	0.524			
		0.4467	0.2397	0.475	0.42			
		0.4629	0.1637	0.546	0.322			
		0.4584	0.1200	0.584	0.25			
		0.4168	0.0598	0.619	0.14			
		0.4091	0.0538	0.620	0.13			
		0.3540	0.0281	0.604	0.08			
		0.3043	0.0160	0.569	0.050			
		0.2494	0.0079	0.514	0.027			
		0.1740	0.0020	0.410	0.00			

Compositions of coexisting phases w_1'' x'_1 x'_2 x_1'' x_2'' w'_1 w'_2 w_2'' hyrocarbonwater-rich T/Krich phase hydrocarbonwater-rich phase $t/^{\circ}C$ (compiler) (compiler) (compiler) rich phase phase 25 298.2 0.001 0.933 0.004 0.101 0.883 0.119 0.064 0.310 0.165 0.795 0.200 0.004 0.110 0.882 0.450 0.014 0.216 0.736 0.267 0.010 0.148 0.842 0.533 0.034 0.229 0.718 0.281 0.012 0.159 0.830 0.547 0.040 0.276 0.650 0.377 0.038 0.200 0.784 0.612 0.104 0.330 0.550 0.436 0.077 0.257 0.715 0.614 0.180 0.372 0.468 0.460 0.120 0.310 0.650 0.585 0.255 0.396 0.410 0.461 0.163 0.348 0.601 0.545 0.322 0.415 0.205 0.557 0.509 0.379 0.363 0.459 0.382 0.440 0.279 0.440 0.279 0.445 0.470 0.445 0.470^{a}

^aCritical point obtained graphically by the authors.

Auxiliary Information

Method/Apparatus/Procedure:

The experimental methods were described in Ref. 1. Water impurities in alcohol were taken into account in the measurements. Critical point of liquid–liquid equilibrium was obtained graphically by the method reported in Ref. 2.

Source and Purity of Materials:

source and method of preparation were reported in Ref. 1.
 source not specified; pure grade; distilled; water concentration was analyzed by the Karl Fischer method.
 doubly distilled.

Estimated Error:

Not specified.

References:

¹A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. **40**, 3018 (1966).
 ²E. F. Zilberman, Zh. Fiz. Khim. **26**, 1458 (1952).

Components: (1) 2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O; [67-63-0] (2) Heptane (n-heptane); C₇H₁₆; [142-82-5] (3) Water; H₂O; [7732-18-5]

Original Measurements:

T. M. Letcher, S. Wootton, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037-42 (1986).

Variables: T/K=298	Compiled by: A. Skrzecz				
			ental Data the saturation curve		
t/°C				w_1	w2
(compiler)	T/K	<i>x</i> ₁	<i>x</i> ₂	(compiler)	
25	298.2	0.049	0.000	0.147	0.000
		0.128	0.002	0.326	0.009
		0.209	0.009	0.456	0.033
		0.313	0.035	0.552	0.103
		0.413	0.087	0.583	0.205
		0.444	0.242	0.472	0.429
		0.378	0.449	0.321	0.635
		0.167	0.793	0.111	0.881

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C (compiler)	T/K	2	rbon-rich ase	water-rich phase		hydrocarbon-rich phase (compiler)		water-rich phase (compiler)	
25	298.2	0.245	0.680	0.268	0.019	0.175	0.809	0.522	0.062
		0.155	0.817	0.171	0.005	0.102	0.893	0.401	0.020
		0.102	0.880	0.108	0.002	0.065	0.932	0.286	0.009

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, adapted from Ref. 1, was used to determine the coexistence curve. The third component was added from a weighed gas-tight syringe to a weighed mixture of the other two components in 100 mL long-neck flask until one drop (weighing less than 0.01 g) resulted in cloudiness. The flask was immersed in a well controlled water bath and shaken continuously. Refractive indexes of these mixtures were measured at 298.3 K to ensure that separation did not take place. Tie lines were determined from mixtures of known composition in the immiscible region. The flasks were shaken well and the phases allowed to separate. Refractive indexes of samples of both phases were measured and related to compositions on the coexistence curve. Each tie line was checked to ensure that it passed through the composition of the overall mixture.

Source and Purity of Materials:

(1) Aldrich, Gold label, 99.5 mole %; dried with potassium carbonate, distilled.

(2) Analytical Carbo Erba, purity 99.5 mole %; purified by passing through columns containing silica gel and basic alumina.(3) de-ionized.

Estimated Error:

composition ± 0.005 mole fraction for measured points, ± 0.01 mole fraction for tie-lines extremities in the worst case (authors).

References:

¹S. W. Briggs and E. W. Commings, Ind. Eng. Chem. **35**, 411 (1943).

Components:

Variables:

T/K = 298

 $\begin{array}{l} (1) \ 2\text{-Propanol} \ (isopropanol, \ isopropyl \ alcohol); \ C_3H_8O; \\ [67-63-0] \\ (2) \ m-Xylene \ (1,3\text{-dimethylbenzene, } 1,3\text{-xylene}); \ C_8H_{10} \ ; \\ [108-38-3] \\ (3) \ Water; \ H_2O; \ [7732-18-5] \end{array}$

Original Measurements:

T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. **74**, 203–17 (1992).

Compiled by: A. Skrzecz

6.8. 2-Propanol	+	Water	+	<i>m</i> -Xylene
Expe	rim	ental Data	ı	

Compositions along the saturation curve

	T / IZ	<i>x</i> ₁	<i>x</i> ₂	w_1	w_2
t/°C	T/K (compiler)	(com	piler)	(com	piler)
25.0	298.2	0.000	0.000	0.000	0.000
		0.091	0.001	0.249	0.005
		0.139	0.002	0.347	0.009
		0.195	0.010	0.432	0.039
		0.261	0.028	0.498	0.094
		0.322	0.078	0.503	0.215
		0.367	0.139	0.482	0.323
		0.391	0.221	0.436	0.435
		0.390	0.330	0.369	0.552
		0.353	0.466	0.287	0.669
		0.276	0.625	0.196	0.783
		0.157	0.806	0.099	0.894
		0.085	0.899	0.051	0.946
		0.000	0.997	0.000	0.999

		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''
t/°C	<i>T</i> /K (compiler)	2	carbon- phase		water- rich phase ric		rich	water- ich phase compiler)	
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000
		0.031	0.953	0.089	0.001	0.018	0.979	0.245	0.00
		0.134	0.823	0.129	0.002	0.084	0.908	0.328	0.00
		0.286	0.588	0.192	0.009	0.210	0.762	0.429	0.03
		0.366	0.407	0.234	0.020	0.317	0.624	0.475	0.072
		0.383	0.207	0.322	0.072	0.439	0.420	0.510	0.20

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of a known mass of one component to a mixture of known masses of the other two components. Precision weighing syringes were used as described in Ref. 1. Tie line compositions were determined by the refractive index method reported in Ref. 2 and a complementary method using the Karl Fischer titrations as reported in Ref. 3.

Source and Purity of Materials:

(1) Merck, AR grade; distilled, dried by refluxing with Mg and I₂; purity better than 99.6 mole % by glc; d=0.78151, n = 1.3752.

(2) BDH; used as received; purity better than 99.6 mole % by glc; d=0.860 32, n=1.54946.
(3) not specified.

Estimated Error:

estimated comp. $0.005\ {\rm mole}\ {\rm fraction}\ {\rm on}\ {\rm the}\ {\rm binodal}\ {\rm curve}\ {\rm and}\ 0.01\ {\rm mole}\ {\rm fraction}\ {\rm for}\ {\rm tie}\ {\rm (estimated}\ {\rm by}\ {\rm the}\ {\rm authors}).$

References:

 ¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. 18, 1037 (1986).
 ²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. 35, 411

(1943).

³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff, J. Chem. Thermodyn. **21**, 1053 (1989).

Components:

2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O;
 [67-63-0]
 (2) *o*-Xylene (1,2-dimethylbenzene, 1,2-xylene); C₈H₁₀;
 [95-47-6]
 (3) Water; H₂O; [7732-18-5]

Variables: T/K=298

6.9. 2-Propanol + Water + o-Xylene

Original Measurements:

17 (1992).

Compiled by:

A. Skrzecz

T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203-

Experimental Data Compositions along the saturation curve

	T/K			w_1	w_2		
t/°C	(compiler)	x_1	<i>x</i> ₂	(compiler)			
25.0	298.2	0.000	0.000	0.000	0.000		
		0.091	0.001	0.249	0.005		
		0.139	0.003	0.346	0.013		
		0.195	0.011	0.431	0.043		
		0.260	0.031	0.493	0.104		
		0.319	0.077	0.501	0.214		
		0.356	0.134	0.477	0.317		
		0.386	0.219	0.433	0.434		
		0.386	0.328	0.367	0.551		
		0.351	0.463	0.287	0.668		
		0.274	0.620	0.196	0.782		
		0.158	0.804	0.099	0.893		
		0.084	0.899	0.050	0.947		
		0.000	0.999	0.000	0.9998		

			Co	ompositions of	coexisting ph	nases					
		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''		
t∕°C	T/K (compiler)	2	hydrocarbon- water- ri		hydrocarbon- water- rich				phase	water- rich phase (compiler)	
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000		
		0.046	0.938	0.086	0.001	0.027	0.970	0.238	0.005		
		0.098	0.867	0.118	0.002	0.060	0.934	0.306	0.009		
		0.293	0.577	0.206	0.014	0.217	0.754	0.443	0.053		
		0.364	0.422	0.208	0.034	0.310	0.635	0.420	0.121		
		0.381	0.204	0.335	0.092	0.440	0.416	0.501	0.243		

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of a known mass of one component to a mixture of known masses of the other two components. Precision weighing syringes were used as described in Ref. 1. Tie line compositions were determined by the refractive index method reported in Ref. 2 and a complementary method using the Karl Fischer titrations as reported in Ref. 3.

Source and Purity of Materials:

(1) Merck, AR grade; distilled, dried by refluxing with Mg and ${\rm I_2}\,;$ purity better than 99.6 mole % by glc; $d\!=\!0.781\,51,~n$ = 1.3752.

(2) BDH; used as received; purity better than 99.6 mole % by glc; d=0.875 88, n=1.5029. (3) not specified.

Estimated Error:

estimated comp. 0.005 mole fraction on the binodal curve and 0.01 mole fraction for tie lines (estimated by the authors).

References

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. 18, 1037 (1986).

²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. 35, 411 (1943).

³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff, J. Chem. Thermodyn. 21, 1053 (1989).

Components:

(1) 2-Propanol (isopropanol, isopropyl alcohol); C3H8O; [67-63-0] (2) p-Xylene (1,4-dimethylbenzene, 1,4-xylene); C₈H₁₀; [106-42-3] (3) Water; H₂O; [7732-18-5]

Variables:

T/K

(compiler)

298.2

 $t/^{\circ}C$

25.0

hvdrocarbon-

rich phase

0.102

0.268

0.480

0.648

0.797

0.345

0.399

0.349

0.265

0.165

T/K = 298

Compiled by:

Original Measurements:

T. M. Letcher, P. M. Siswana, P. van der Watt, and S. Radloff, J. Chem. Thermodyn. 21, 1053-60 (1989).

A. Skrzecz

6.10. 2-Propanol + Water + p-Xylene **Experimental Data**

Compositions along the saturation curve

	T/K			w1		w2
t/°C	(compiler)	<i>x</i> ₁	x_2		(compiler)	
25.0	298.2	0.000	0.998	0.00)	0.9997
		0.083	0.892	0.050	0	0.946
		0.158	0.806	0.099	Ð	0.894
		0.277	0.627	0.19	5	0.784
		0.354	0.468	0.28	7	0.670
		0.391	0.332	0.36	Ð	0.553
		0.394	0.223	0.43	5	0.436
		0.366	0.138	0.483	3	0.321
		0.321	0.078	0.502	2	0.216
		0.273	0.039	0.49	8	0.126
		0.259	0.032	0.490	0	0.107
		0.195	0.011	0.43	1	0.043
		0.129	0.002	0.32	8	0.009
		0.050	0.001	0.149	Ð	0.005
		0.000	0.000	0.000	0	0.000
		Compositions of	of coexisting phase	es		
	x'_1	x'_2 x''_1	x_2''	w' ₁ w' ₂	w_1''	w
				hydrocarbon-	wa	ter-rich

water-rich

phase

0.017

0.010

0.005

0.002

0.000

0.220

0.178

0.128

0.075

0.043

rich phase

(compiler)

0.261

0.487

0.679

0.797

0.889

0.499

0.410

0.280

0.185

0.104

SKRZECZ,
SHAW,
AND
MACZYNSKI

phase

(compiler)

0.460

0.405

0.323

0.211

0.130

0.063

0.040

0.022

0.010

0.000

Method/Apparatus/Procedure:

The titration method was used to determine binodal curve. A binary mixture of known composition was titrated with the third component until cloudiness was observed. Tie line compositions were related to the coexistence curve; water was determined by the Karl Fischer titration. The methods were described in Ref. 1.

Source and Purity of Materials:

source not specified; used as received.
 source not specified; recrystallized three times.
 not specified.

Estimated Error:

comp. <0.005 mole fraction (estimated authors' precision on binodal curve), <0.01 mole fraction (estimated authors' precision of tie lines).

References:

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. **18**, 1037 (1986).

Components:

Variables:

T/K = 298

2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O;
 [67-63-0]
 Ethylbenzene (phenylethane); C₈H₁₀; [100-41-4]
 Water; H₂O; [7732-18-5]

Original Measurements:

E. T. Knypl and S. Z. Wojdylo, J. Appl. Chem. 17, 361-3 (1967).

Compiled by: A. Skrzecz

6.11. 2-Propanol + Water + Ethylbenzene Experimental Data

Compositions along the saturation curve										
		<i>x</i> ₁	<i>x</i> ₂							
t/°C	T/K (compiler)	(com	piler)	w_1	w_2					
25.0	298.15	0.0681	0.0036	0.1930	0.0180					
		0.0690	0.0002	0.1980	0.0010					
		0.1056	0.0003	0.2823	0.0015					
		0.1186	0.0102	0.2982	0.0454					
		0.1304	0.0023	0.3305	0.0105					
		0.1482	0.0032	0.3630	0.0140					
		0.1784	0.0071	0.4100	0.0290					
		0.2278	0.0179	0.4692	0.0651					
		0.3194	0.0652	0.5160	0.1860					
		0.3751	0.1270	0.5010	0.2996					
		0.3974	0.2012	0.4551	0.4071					
		0.3992	0.2737	0.4070	0.4930					
		0.3785	0.3931	0.3316	0.6084					
		0.1656	0.8129	0.1030	0.8930					

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		hydrocarbon- rich phase		water- rich phase	
25.0	298.15	0.0175	0.9825	0.0348	0.0006	0.010	0.990	0.107	0.003
		0.0535	0.9465	0.0624	0.0008	0.031	0.969	0.181	0.004
		0.1189	0.8646	0.0888	0.0012	0.072	0.925	0.244	0.006
		0.1753	0.7982	0.1137	0.0015	0.110	0.885	0.298	0.007
		0.2824	0.6234	0.1484	0.0035	0.200	0.780	0.363	0.015
		0.3356	0.5327	0.1766	0.0086	0.255	0.715	0.405	0.035
		0.3928	0.4172	0.2276	0.0179	0.331	0.621	0.469	0.065
		0.3961	0.2990	0.2790	0.0391	0.390	0.520	0.505	0.125
		0.3927	0.1927	0.3119	0.0565	0.458	0.397	0.519	0.16
		0.3657	0.1033	0.3657	0.1033	0.517	0.258	0.517	0.258

^aCritical point of solubility.

Method/Apparatus/Procedure:

The saturation isotherm was obtained by cloud-point titration method. Liquid–liquid equilibrium was determined by the synthetic method. Physical properties of phases in equilibrium, refractive index and density, were measured and compositions were found from relationships obtained in the isothermal measurements.

Source and Purity of Materials:

(1) Chemical Works "Oswiecim" (Poland), laboratory grade; used as received; d(20 °C,4 °C)=0.7864, n(20 °C,D) = 1.3768.
(2) Chemical Works "Oswiecim" (Poland), laboratory grade; used as received; d(20 °C,4 °C)=0.8665, n(20 °C,D)

= 1.4958. (3) distilled.

Estimated Error: temp. ± 0.05 °C (estimated by the compiler).

Components:

Variables:

T/K = 293 - 360

 $\begin{array}{l} (1) \ 2\text{-Propanol} \ (isopropanol, isopropyl alcohol); \ C_3H_8O; \\ [67-63-0] \\ (2) \ 1,7\text{-Octadiene; } C_8H_{14}; \ [3710-30-3] \\ (3) \ Water; \ H_2O; \ [7732-18-5] \end{array}$

Original Measurements:

A. O. Emelyanov, L. V. Melnik, and B. N. Bobylev, Zh. Prikl. Khim. (Leningrad) 64, 1700–4 (1991). [Eng. transl. Russ. J. Appl. Chem. (Leningrad) 64, 1555–8 (1991)].

Compiled by: A. Skrzecz

6.12. 2-Propanol + Water + 1,7-Octadiene

Experimental Data Compositions along the saturation curve

	(T.			w_1	w_2
t/°C	T/K (compiler)	<i>x</i> ₁	<i>x</i> ₂	(con	piler)
25.00	293.15	0.0000	0.0003	0.0000	0.0018
		0.2325	0.0045	0.4952	0.0176
		0.3765	0.0668	0.5654	0.1840
		0.4010	0.1155	0.5292	0.2795
		0.4099	0.1787	0.4761	0.3806
		0.4103	0.2466	0.4250	0.4684
		0.3904	0.3632	0.3454	0.5892
		0.2874	0.6409	0.1936	0.7919
		0.1453	0.8351	0.0864	0.9101
		0.0000	0.9998	0.0000	0.99997
87.00	360.15	0.0000	0.0149	0.0000	0.0847
		0.0000	0.9995	0.0000	0.99992

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''
t/°C	T/K (compiler)	hydrocarbon- rich phase		2		hydrocarbon- rich phase (compiler)		water- rich phase (compiler)	
20.00	293.15	0.0366	0.9595	0.0490	0.0005	0.0204	0.9790	0.1463	0.0027
		0.1115	0.8736	0.1045	0.0005	0.0649	0.9325	0.2796	0.0025
		0.1687	0.8052	0.1368	0.0005	0.1021	0.8932	0.3452	0.0023
		0.2415	0.7097	0.1792	0.8199	0.1551	0.8356	0.1065	0.8934
		0.2849	0.6449	0.2066	0.0019	0.1914	0.7945	0.4618	0.0078
		0.3342	0.5439	0.2407	0.0032	0.2443	0.7290	0.5086	0.0124
		0.3681	0.4404	0.2865	0.0098	0.2985	0.6549	0.5559	0.0349
		0.3898	0.3647	0.3062	0.0217	0.3443	0.5907	0.5593	0.0727
		0.4000	0.1130	0.4000	0.1130	0.5311	0.2751	0.5311	0.2751

Auxiliary Information

Method/Apparatus/Procedure:

Mutual solubility was determined by the standard isothermic titration method until turbidity was observed. Phase equilibrium was measured in the thermostated separator. Concentrations of 2-propanol and 1,7-octadiene in the equilibrium phases were determined by the glc analysis (FID detector). Water was analyzed by the Karl Fischer method.

Source and Purity of Materials:

(1) source not specified, pure grade; dried, distilled; b.p. = 355.54 K.

(2) synthesized in the laboratory; distilled; purity >99.5%;
b.p. = 390.65 K.
(3) doubly distilled.

Estimated Error: Not reported. 1160

Components:

(1) 2-Propanol (isopropanol, isopropyl alcohol); C3H8O; [67-63-0] (2) 2,2,4-Trimethylpentane (isooctane); C₈H₁₈; [540-84-1] (3) Water; H₂O; [7732-18-5]

Original Measurements: N. Arda and A. A. Sayar, Fluid Phase Equilib. 73, 129-38 (1992).

Variables:

T/K = 293

6.13. 2-Propanol + Water + 2,2,4-Trimethylpentane

Experimental Data

Compositions along the saturation curve

Compiled by:

A. Skrzecz

	T/K (compiler)	<i>x</i> ₁	<i>x</i> ₂		
t/°C		(compiler)		w_1	w_2
25.0	293.2	0.0000	0.0004	0.0000	0.0028
		0.0044	0.0010	0.0145	0.0060
		0.0126	0.0015	0.0406	0.0094
		0.0380	0.0022	0.1152	0.0125
		0.0541	0.0027	0.1582	0.015
		0.0673	0.0038	0.1907	0.0207
		0.0969	0.0038	0.2593	0.019
		0.1074	0.0044	0.2811	0.021
		0.1313	0.0044	0.3292	0.021
		0.1641	0.0056	0.3874	0.025
		0.1965	0.0070	0.4380	0.029
		0.2138	0.0076	0.4632	0.0312
		0.2471	0.0082	0.5086	0.0320
		0.3077	0.0163	0.5684	0.057
		0.3364	0.0222	0.5893	0.073
		0.3921	0.0380	0.6173	0.113
		0.4151	0.0489	0.6208	0.138
		0.4306	0.0613	0.6156	0.166
		0.4401	0.0838	0.5930	0.214
		0.4467	0.1031	0.5744	0.252
		0.4392	0.1333	0.5351	0.308
		0.4283	0.1496	0.5104	0.338
		0.4385	0.1615	0.5067	0.354
		0.4355	0.2121	0.4612	0.426
		0.4102	0.2588	0.4096	0.491
		0.3916	0.3179	0.3616	0.558
		0.3389	0.4632	0.2650	0.688
		0.2737	0.5775	0.1933	0.7752
		0.0995	0.8318	0.0585	0.9294
		0.0478	0.8823	0.0274	0.9600
		0.0000	0.9519	0.0000	0.992

t/°C		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
	T/K (compiler)	hydrocarbon- rich phase (compiler)		water-rich phase (compiler)		hydrocarbon- rich phase		water-rich phase	
25.0	293.2	0.3752	0.3983	0.3595	0.0266	0.3126	0.6308	0.6051	0.0852
		0.3207	0.4931	0.3199	0.0172	0.2441	0.7134	0.5802	0.0594
		0.2851	0.5706	0.2709	0.0124	0.2018	0.7676	0.5320	0.0461
		0.2517	0.6497	0.2337	0.0080	0.1660	0.8145	0.4908	0.0319
		0.2094	0.6888	0.2079	0.0082	0.1352	0.8451	0.4535	0.0339
		0.1761	0.7329	0.1684	0.0056	0.1103	0.8726	0.3947	0.0251
		0.1691	0.7342	0.1499	0.0064	0.1061	0.8757	0.3613	0.0293
		0.1489	0.7587	0.1277	0.0060	0.0920	0.8909	0.3202	0.0288
		0.1152	0.7848	0.0985	0.0057	0.0704	0.9113	0.2607	0.0285
		0.1022	0.8078	0.0867	0.0040	0.0614	0.9224	0.2363	0.0207
		0.0672	0.8481	0.0518	0.0029	0.0394	0.9457	0.1521	0.0164
		0.0562	0.8623	0.0430	0.0029	0.0327	0.9531	0.1287	0.0162
		0.0378	0.8903	0.0277	0.0019	0.0216	0.9661	0.0859	0.0110
		0.0198	0.9104	0.0140	0.0004	0.0112	0.9770	0.0450	0.0022

Compositions of coexisting phase

Auxiliary Information

Method/Apparatus/Procedure:

Solubility measurements were made in an equilibrium cell with a stirrer¹ by titration of binary mixtures of known composition with the third component. This was done using 2-propanol for heterogeneous hydrocarbon-water mixtures, until the turbidity had disappeared and 2,2,4-trimethylpentane for homogeneous alcohol-water mixtures until cloudiness was observed. Tie lines were measured in the same cell filled with ternary heterogeneous mixtures of known composition. Mixtures were stirred for 1 h and after separation the samples of each phase were twice analyzed; 2-propanol concentration was determined by glc using Supelco Carbopack-C 0.2%, CW-1500, 60/80 column on Aerograph Hydrogen-Flame, Model 600-C (N₂, 12-13 mL/s, 373 K). Water was determined by the Karl Fischer method.

Source and Purity of Materials:

(1) Merck; dried over anhydrous K2CO3, distilled, with the middle 80% collected; impurities < 0.1% by glc; b.p. = 355.7 ± 0.1 K, n(293 K,D) = 1.3756 ± 0.0005 , $\rho(293$ K) = 783.2 $\pm 0.1 \text{ kg m}^{-3}$.

(2) Merck; dried over anhydrous K2CO3, distilled, with the middle 60% collected; impurities <0.2% by glc; b.p. = 372.9 ± 0.1 K, n(293 K,D) = 1.3890 ± 0.0005 , $\rho(293$ K) = 695.8 $\pm 0.1 \text{ kg m}^{-3}$. (3) not specified.

Estimated Error:

temp. ±0.1 K; solubility curve ±0.0025 mass fraction, analysis: 2-propanol ±0.0050 mass fraction, water ±0.0025 mass fraction.

References:

¹A. A. Sayar, J. Chem. Eng. Data 36, 61 (1991).

Components: (1) 2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O; [67-63-0] (2) Octane (*n*-octane); C₈H₁₈; [111-65-9] (3) Water; H₂O; [7732-18-5]

Variables:

T/K = 298

Original Measurements:

A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 41, 1984–9 (1967). [Eng. transl. Russ. J. Phys. Chem. 41, 1061–3 (1967)].

Compiled by: A. Skrzecz

6.14. 2-Propanol + Water + Octane Experimental Data

Compositions along the saturation curve

t/°C	<i>m</i> (17	x_1	<i>x</i> ₂		
	T/K (compiler)	(com	piler)	w_1	w_2
25	298.2	0.0000	0.9937	0.000	0.999
		0.0870	0.9069	0.048	0.951
		0.2299	0.7164	0.143	0.847
		0.3690	0.4957	0.273	0.697
		0.4511	0.3252	0.397	0.544
		0.4858	0.2311	0.481	0.435
		0.5047	0.1610	0.554	0.336
		0.4984	0.0953	0.622	0.226
		0.4792	0.0672	0.645	0.172
		0.4388	0.0418	0.651	0.118
		0.3993	0.0272	0.641	0.083
		0.3472	0.0158	0.611	0.053
		0.2760	0.0066	0.548	0.025
		0.1796	0.0014	0.420	0.006

t/°C		x'_1	x'_2	x_1''	x_2''	w'_1	w2	w_1''	w_2''
	T/K (compiler)	organic-rich phase (compiler)		water-rich phase (compiler)		organic-rich phase		water-rich phase	
25	298.2	0.055	0.933	0.1404	0.0004	0.030	0.968	0.352	0.002
		0.163	0.803	0.2925	0.0076	0.096	0.898	0.566	0.028
		0.230	0.716	0.4106	0.0308	0.143	0.847	0.645	0.092
		0.281	0.643	0.4606	0.0532	0.184	0.801	0.651	0.143
		0.313	0.598	0.4809	0.0711	0.212	0.770	0.641	0.180
		0.411	0.435	0.5050	0.1551	0.320	0.644	0.560	0.327
		0.448	0.349	0.4919	0.2170	0.382	0.566	0.496	0.416
		0.464	0.306	0.4804	0.2549	0.416	0.522	0.460	0.464
		0.473	0.282	0.473	0.282	0.437	0.495	0.437	0.495

^aCritical point obtained graphically by the authors.

Auxiliary Information

Method/Apparatus/Procedure:

The experimental methods were described graphically in Ref. 1. Water impurity in alcohol were taken into account in the measurements. Critical point of liquid–liquid equilibrium was obtained graphically by the method reported in Ref. 2.

Source and Purity of Materials:

source and method of preparation were reported in Ref. 1.
 source not specified; pure grade; distilled; water concentration was analyzed by the Karl Fischer method.
 doubly distilled.

Estimated Error:

Not specified.

References:

¹A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 40, 3018 (1966).
 ²E. F. Zilberman, Zh. Fiz. Khim. 26, 1458 (1952).

(1) 2-Propanol (isopropanol, isopropyl alcohol); C3H8O; [67-63-0] (2) Mesitylene (1,3,5 -trimethylbenzene); C₉H₁₂; [108-67-8] (3) Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

A. Skrzecz

T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203-17 (1992).

Variables: T/K = 298

6.15. 2-Propanol + Water + Mesitylene

Experimental Data

Compositions along the saturation curve

	T/K			w_1	w_2
t/°C	(compiler)	x_1	<i>x</i> ₂	(com	piler)
25.0	298.2	0.000	0.000	0.000	0.000
		0.069	0.000	0.198	0.000
		0.113	0.001	0.297	0.005
		0.166	0.005	0.391	0.024
		0.229	0.014	0.473	0.058
		0.326	0.044	0.541	0.146
		0.389	0.093	0.533	0.255
		0.410	0.138	0.499	0.336
		0.415	0.207	0.440	0.439
		0.403	0.303	0.367	0.552
		0.370	0.433	0.286	0.669
		0.297	0.595	0.195	0.783
		0.174	0.783	0.099	0.893
		0.093	0.888	0.050	0.947
		0.000	0.999	0.000	0.999

Compositions of coexisting phase x'_1 x'_2 x_2'' w'2 x_1'' w'_1

t/°C	T/K (compiler)	2	carbon- phase		r-rich ase	rich	carbon- phase npiler)	ph	r-rich ase piler)
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000
		0.187	0.763	0.188	0.008	0.108	0.883	0.422	0.036
		0.270	0.640	0.270	0.027	0.171	0.812	0.505	0.101
		0.330	0.525	0.332	0.047	0.232	0.738	0.542	0.154
		0.387	0.380	0.390	0.096	0.318	0.625	0.530	0.261

Auxiliary Information

= 1.3752.

(3) not specified.

Estimated Error:

glc.

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of a known mass of one component to a mixture of known masses of the other two components. Precision weighing syringes were used as described in Ref. 1. Tie line compositions were determined by the refractive index method reported in Ref. 2 and a complementary method using the Karl Fischer titrations as reported in Ref. 3.

estimated comp. 0.005 mole fraction on the binodal curve and 0.01 mole fraction for tie lines (estimated by the authors). **References:**

(1) Merck, AR grade; distilled, dried by refluxing with Mg and I_2 ; purity better than 99.6 mole % by glc; d = 0.78151, n

(2) BDH; used as received; purity better than 99.6 mole % by

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. 18, 1037 (1986).

- ²S. W. Briggs, and E. W. Comings, Ind. Eng. Chem. 35, 411 (1943).
- ³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff,
- J. Chem. Thermodyn. 21, 1053 (1989).

Source and Purity of Materials:

 w''_1

 w_2''

Variables:

T/K = 298

Components: (1) 2-Propanol (isopropanol, isopropyl alcohol); C₃H₈O; [67-63-0] (2) Nonane (*n*-nonane); C₉H₂₀; [111-84-2] (3) Water; H₂O; [7732-18-5]

Original Measurements:

A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 41, 1984–9 (1967). [Eng. transl. Russ. J. Phys. Chem. 41, 1061-3 (1967)].

Compiled by: A. Skrzecz

6.16. 2-Propanol + Water + Nonane Experimental Data

Compositions along the saturation curve

	T/V	<i>x</i> ₁	<i>x</i> ₂		
t/°C	T/K (compiler)	(compiler)		w_1	w_2
25	298.2	0.0000	0.9929	0.000	0.999
		0.1443	0.8301	0.075	0.921
		0.2908	0.6367	0.174	0.813
		0.4147	0.4446	0.295	0.675
		0.4623	0.3582	0.361	0.597
		0.4877	0.3134	0.401	0.550
		0.5232	0.2274	0.483	0.448
		0.5451	0.1572	0.562	0.346
		0.5432	0.0933	0.638	0.234
		0.5287	0.0682	0.665	0.183
		0.5084	0.0525	0.676	0.149
		0.4701	0.0340	0.680	0.105
		0.3706	0.0123	0.637	0.045
		0.2817	0.0047	0.557	0.020
		0.1666	0.0006	0.399	0.003

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	<i>T</i> /K (compiler)	ph	ic-rich ase piler)	ph	r-rich ase piler)	U	ic-rich ase		er-rich aase
25	298.2	0.092	0.888	0.194	0.001	0.046	0.951	0.443	0.005
		0.152	0.816	0.334	0.009	0.080	0.915	0.608	0.034
		0.177	0.786	0.389	0.015	0.095	0.899	0.649	0.053
		0.219	0.733	0.449	0.027	0.122	0.870	0.676	0.088
		0.291	0.637	0.519	0.060	0.174	0.813	0.671	0.166
		0.350	0.547	0.545	0.099	0.226	0.754	0.632	0.244
		0.374	0.516	0.546	0.120	0.248	0.730	0.605	0.284
		0.415	0.445	0.546	0.152	0.295	0.675	0.568	0.338
		0.452	0.385	0.541	0.192	0.342	0.621	0.525	0.397
		0.465	0.363	0.537	0.206	0.360	0.600	0.510	0.417
		0.490	0.311	0.521	0.242	0.404	0.547	0.470	0.466
		0.507	0.279	0.507	0.279	0.435	0.510	0.435	0.510 ^a

^aCritical point obtained graphically by the authors.

Auxiliary Information

Method/Apparatus/Procedure:

The experimental methods were described in Ref. 1. Water impurities in alcohol were taken into account in the measurements. Critical point of liquid–liquid equilibrium was obtained graphically by the method reported in Ref. 2.

Source and Purity of Materials:

source and method of preparation were reported in Ref. 1.
 source not specified; pure grade; distilled; water concentration was analyzed by the Karl Fischer method.
 doubly distilled.

Estimated Error:

Not specified.

References:

¹A. I. Vorobeva and M. Kh. Karapetyants, Zh. Fiz. Khim. 40, 3018 (1966).
 ²E. F. Zilberman, Zh. Fiz. Khim. 26, 1458 (1952).

7. 2-Methyl-1-propanol+Water

Components: (1) 2-Methyl-1-propanol (isobutanol, isobutyl alcohol); C₄H₁₀O; [78–83-1] (2) Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5] Evaluated by:

A. Skrecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.05)

7.1. 2-Methyl-1-propanol + Water + Benzene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 2-methyl-1-propanol-benzene-water is given in Table 66.

Author(s)	T/K	Type of data ^a	Ref.
Alberty and Washburn, 1945	298	sat. (14), eq. (10)	1
Letcher et al., 1990	298	sat. (13), eq. (4)	2

TABLE 66. Summary of experimental data for the system 2-methyl-1-propanol-benzene-water

^aNumber of experimental points in parentheses.

The ternary system 2-methyl-1-propanol–benzene–water forms a miscibility gap of type 2. Two binary systems, benzene–water and 2-methyl-1-propanol–water, form miscibility gaps. These binary systems were compiled and critically evaluated in previously published SDS volumes, Refs. 3 and 4, respectively. These recommended values of mutual solubility at 298 K are x'_2 =0.9970, x''_2 =0.000 409 for benzene–water system, and x'_1 =0.548, x=0.021 for 2-methyl-1-propanol–water system. The tie lines and experimental points along the saturation curve reported by Alberty and Washburn¹ are consistent with one another. The reported mutual solubility of the 2-methyl-1-propanol–water system, x'_1 =0.5425 and x''_1 =0.0020 are in good agreement with the recommended values. Data of Letcher *et al.*² were reported in graphical form only and therefore are not compiled. The maximum alcohol concentration on the binodal curve at 298 K, x_1 =0.55,¹ is consistent with the results of Alberty and Washburn,¹ x_1 =0.558. The experimental tie lines at 298.2 K, Ref. 1, are presented in Fig. 34 together with the experimental points along the saturation curve.

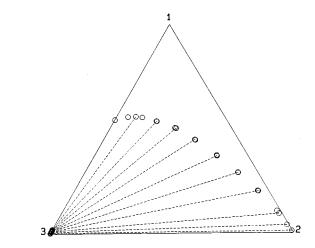


FIG. 34. Phase diagram of the system 2-methyl-1-propanol (1)—benzene (2)—water (3) at 298.2 K. O—experimental results of Ref. 1 dashed lines—experimental tie lines, Ref. 1.

References:

¹R. A. Alberty and E. R. Washburn, J. Phys. Chem. 49, 4 (1945).

²T. M. Letcher, J. Sewry, and S. Radloff, S. Afr. J. Chem. 43, 56 (1990).

³D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

⁴A. F. M. Barton, ed., Solubility Data Series, Vol. 15, Alcohols with Water (Pergamon, New York 1984).

Variables:

T/K = 298

Components: (1) 2-Methyl-1-propanol (isobutanol, isobutyl alcohol); C₄H₁₀O; [78-83-1] (2) Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5]

Original Measurements:

R. A. Alberty and E. R. Washburn, J. Phys. Chem. 49, 4-8 (1945).

Compiled by: A. Skrzecz

Experimental Data Compositions along the saturation curve								
	T/K	<i>x</i> ₁	<i>x</i> ₂					
t/°C	(compiler)	(com	piler)	w_1	w_2			
25.0	298.2	0.1050	0.8796	0.1014	0.8950			
		0.2015	0.7530	0.2003	0.7887			
		0.2890	0.6286	0.2975	0.6819			
		0.3714	0.5011	0.3992	0.5675			
		0.4450	0.3781	0.5020	0.4495			
		0.5038	0.2662	0.5996	0.3339			
		0.5361	0.1742	0.6785	0.2324			
		0.5543	0.1073	0.7394	0.1509			
		0.5564	0.0471	0.7922	0.0706			
		0.5425	0.0000	0.8299	0.0000			
		0.0208	0.0000	0.0802	0.0000			
		0.0156	0.0004	0.0610	0.0017			
		0.0101	0.0006	0.0402	0.0026			
		0.0051	0.0005	0.0205	0.0023			

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	ph	ic-rich ase piler)	ph	r-rich ase piler)	U	ic-rich ase		r-rich ase
25.0	298.2	0.0097	0.9873	0.0023	0.0005	0.0092	0.9901	0.0093	0.0020
		0.0377	0.9541	0.0058	0.0007	0.0361	0.9620	0.0233	0.0028
		0.0917	0.8946	0.0091	0.0006	0.0884	0.9084	0.0362	0.0027
		0.2002	0.7559	0.0108	0.0006	0.1987	0.7907	0.0430	0.0026
		0.2874	0.6303	0.0122	0.0005	0.2958	0.6836	0.0482	0.0020
		0.3681	0.5040	0.0133	0.0004	0.3957	0.5709	0.0523	0.0018
		0.4465	0.3751	0.0146	0.0003	0.5044	0.4466	0.0573	0.0014
		0.5014	0.2718	0.0154	0.0003	0.5948	0.3398	0.0604	0.0013
		0.5355	0.1761	0.0164	0.0003	0.6768	0.2346	0.0643	0.0011
		0.5580	0.0788	0.0188	0.0001	0.7651	0.1139	0.0732	0.0004

Auxiliary Information

Method/Apparatus/Procedure:

The titration method as in Ref. 1 was used. 50 mL flasks with dry stoppers were used for titration. Evaporation was monitored and was usually less than 0.0002 of the mass. Samples were shaken during titration and a titrant was added in drops (water drops weighed 5-7 mg, alcohol and benzene drops weighed 2-4 mg). An Abbe refractometer was used to measure the refractive indexes of the saturated solutions. Results were plotted for each component separately. Tie-lines were determined from the mixtures of equal volume, which were equilibrated for 4 h (evaporation smaller than 0.0004 of the mass). Refractive indexes of each phase were measured and compositions were determined by reference to the curves.

Source and Purity of Materials:

(1) Eastman Kodak Co.; refluxed 24 h with active CaO, distilled, refluxed 4 h with Ca, distilled; $n(20 \circ C,D)=1.396 15$, d(25 °C,4 °C)=0.798 11. (2) Source not specified; dried with Na, recrystallized several times; f.p. = 5.48 °C, n(20 °C,D)=1.501 24, d(25 °C,4 °C) = 0.873 57. (3) redistilled.

Estimated Error:

Not reported.

References:

¹E. R. Washburn, and C. V. Strandskov, J. Phys. Chem. 48, 241 (1944).

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

(1) 2-Methyl-1-propanol (isobutanol; isobutyl alcohol); C₄H₁₀O; [78-83-1] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1995.09)

7.2. 2-Methyl-1-propanol + Water + Cyclohexane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 2-methyl-1-propanol-cyclohexane-water is given in Table 67.

TABLE 67. Summary of experimental data for the system 2-methyl-1-propanol-cyclohexane-water

Author(s)	T/K	Type of data ^a	Ref.
Plackov and Stern, 1990	298	sat. (14), eq. (7)	1
Letcher et al., 1991	298	sat. (15), eq. (4)	2

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system 2-methyl-1-propanol–cyclohexane–water forms a miscibility gap of type 2. The system was studied at 298.2 K by titration method. Two binary systems cyclohexane–water and 2-methyl-1-propanol–water form miscibility gaps. The data of these binary systems were compiled and critically evaluated in previously published SDS volumes, Refs. 3 and 4, respectively. The recommended values of mutual solubility at 298 K are: for the cyclohexane–water system $x_2^{"}=1.2 \cdot 10^{-5}$ and $x_3^{'}=3.7 \cdot 10^{-4}$, 3 and for the 2-methyl-1-propanol–water system $x_1'=0.548$ and $x_1'=0.0210^4$ Letcher *et al.*² reported ternary data and mutual solubility data for the 2-methyl-1-propanol–water system reported in Ref. 2 as $x_1'=0.546$ and $x_1''=0.021$ are consistent with the "best values" reported in the critical evaluation.³ Plackov and Stern¹ reported the solubility of 2-methyl-1-propanol in water, $x_1''=0.021$. This result is also consistent with recommended data. These experimental data are consistent with one another. Phase equilibrium data were also used to construct the saturation curve of the organic–rich phase. Data at 298.2 K are consistent with the equation:

 $x_1 = 0.694\ 59 + 0.031\ 38\ \ln(x_2) - 0.410\ 19x_2 - 0.293\ 07x_2^2$.

The model describes the region $0.01 < x_2 < 0.99$. The parameters were calculated by the least-squares method. The standard error of estimate was 0.0062. The points on the saturation curve calculated by this equation for selected concentrations of cyclohexane in the mixture are presented in Table 68 and in Fig. 35 as a calculated binodal curve (solid line).

TABLE 68. Calculated compositons along the saturation curve at 298.2 K

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	x_2
0.548	0.0000 Ref. 4	0.3683	0.5400
0.5635	0.0200	0.3548	0.5600
0.5767	0.0400	0.3410	0.5800
0.5806	0.0600	0.3269	0.6000
0.5806	0.0800	0.3126	0.6200
0.5784	0.1000	0.2980	0.6400
0.5746	0.1200	0.2832	0.6600
0.5697	0.1400	0.2680	0.6800
0.5639	0.1600	0.2527	0.7000
0.5574	0.1800	0.2370	0.7200
0.5503	0.2000	0.2211	0.7400
0.5426	0.2200	0.2050	0.7600
0.5345	0.2400	0.1885	0.7800
0.5259	0.2600	0.1719	0.8000
0.5168	0.2800	0.1550	0.8200

0.5074	0.3000	0.1378	0.8400
0.4976	0.3200	0.1203	0.8600
0.4874	0.3400	0.1027	0.8800
0.4769	0.3600	0.0847	0.9000
0.4660	0.3800	0.0666	0.9200
0.4549	0.4000	0.0481	0.9400
0.4434	0.4200	0.0294	0.9600
0.4316	0.4400	0.0105	0.9800
0.4195	0.4600	0.0010	0.9900
0.4071	0.4800	0.0000	0.999 63 Ref. 3
0.3945	0.5000	0.0000	0.000 012 Ref. 3
0.3815	0.5200	0.0210	0.000 0 Ref. 4

Compositions of the water-rich phase of the ternary system, Refs. 1 and 2, were reported as a binary 2-methyl-1-propanol-water mixture; the analytical methods could not detect cyclohexane. Therefore the water-rich branch could not be evaluated.

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system 2-methyl-1-propanol–cyclohexane–water were reported in two references at 298.2 K using similar experimental procedures. First the equilibrium was reached, then the phase was determinated. Compositions of water-rich phase in equilibrium were reported as binary 2-methyl-1propanol–water mixture. The analytical methods could not detect cyclohexane. The tie lines cover the whole area of the miscibility gap and are consistent within each data set and with one another with the exception of one experimental tie line of Letcher *et al.*² at the lowest 2-methyl-1-propanol concentration $(x_1^n = 0.007)$, which is in disagreement with the corresponding tie line of Plackov and Stern.¹ This could be noticed if a large scale graph were plotted. Both data sets are treated as tentative. All experimental data points at 298.2 K are reported in Fig. 35.

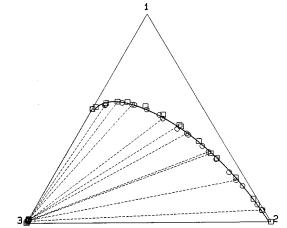


FIG. 35. Phase diagram of the system 2-methyl-1-propanol (1)—cyclohexane (2)—water (3) at 298.2 K. Solid line—calculated binodal curve, O—experimental results of Ref. 1, □—experimental results of Ref. 2, dashed lines—experimental tie lines, Refs. 1 and 2.

References:

¹D. Plackov and I. Stern, Fluid Phase Equilib. 57, 327 (1990).

²T. M. Letcher, P. Siswana, and S. E. Radloff, S. Afr. J. Chem. 44, 118 (1991).

³D. G. Shaw, ed., *Solubility Data Series*, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

⁴A. F. M. Barton, ed., Solubility Data Series, Vol. 15, Alcohols with Water (Pergamon, New York, 1984).

Components: (1) 2-Methyl-1-propanol (isobutanol, isobutyl alcohol); C₄H₁₀O; [78-83-1] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water; H₂O; [7732-18-5]

Original Measurements:

D. Plackov and I. Stern, Fluid Phase Equilib. 57, 327-40 (1990).

ariables: /K=298			Compiled by: A. Skrzecz					
Experimental Data Compositions along the saturation curve								
	T/K			w_1	w_2			
t/°C	(compiler)	<i>x</i> ₁	<i>x</i> ₂	(com	piler)			
25.00	298.15	0.0825	0.9031	0.0742	0.9226			
		0.1721	0.7992	0.1584	0.8352			
		0.2384	0.7120	0.2251	0.7635			
		0.3017	0.6276	0.2925	0.6908			
		0.3654	0.5394	0.3650	0.6118			
		0.4192	0.4555	0.4336	0.5349			
		0.4484	0.3949	0.4796	0.4796			
		0.5156	0.2883	0.5789	0.3676			
		0.5426	0.2230	0.6363	0.2969			
		0.5648	0.1624	0.6926	0.2261			
		0.5748	0.1069	0.7431	0.1569			
		0.5667	0.0436	0.7971	0.0696			
		0.5470	0.0000	0.8324	0.0000			
		0.0207	0.0000	0.0800	0.0000			

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	<i>T</i> /K (compiler)	organic-rich phase		water-rich phase		organic-rich phase (compiler)		water-rich phase (compiler)	
25.00	298.15	0.057	0.934	0.009	0.000	0.051	0.947	0.036	0.000
		0.199	0.760	0.012	0.000	0.186	0.805	0.048	0.000
		0.337	0.579	0.013	0.000	0.332	0.648	0.051	0.000
		0.426	0.445	0.014	0.000	0.442	0.525	0.055	0.000
		0.498	0.311	0.015	0.000	0.555	0.393	0.059	0.000
		0.566	0.152	0.017	0.000	0.701	0.215	0.066	0.000
		0.563	0.043	0.019	0.000	0.796	0.069	0.074	0.000

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, as reported in Ref. 1, was used to determine the solubility curve. Mixtures of known composition, mixed by means of a magnetic stirrer and placed in the thermostated double-wall Erlenmayer flask, were titrated with the less soluble component until the appearance of turbidity. The analytical method was used to determine liquid-liquid equilibria. The mixture was shaken for at least 20 min. Equilibration took place in a thermostated double-walled separatory funnel of 250 mL over 2 h. The refractive index and density of both phases were measured. The composition was calculated numerically from the calibration data by polynomial regression analysis. The third order polynomials were used. Each experiment was repeated three times.

Source and Purity of Materials:

(1) Kemoka (Zagreb), analytical grade; used as received; n= 1.3933, $\rho(25 \text{ °C})$ =794.4 kg m⁻³, b.p. = 107.9 °C. (2) Kemika (Zagreb), analytical grade; used as received; n =1.4232, $\rho(25 \text{ °C})=773.6 \text{ kg m}^{-3}$, b.p. = 80.0 °C. (3) double distilled in the presence of KMnO₄.

Estimated Error:

temp. $\pm\,0.02$ °C; composition $<\pm0.05\%$ (by mass) relative error.

References:

¹E. R. Washburn, C. L. Graham, G. B. Arnold, and L. F. Transuel, J. Am. Chem. Soc. 62, 1454 (1940).

(1) 2-Methyl-1-propanol (isobutanol, isobutyl alcohol); C₄H₁₀O; [78-83-1] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water; H₂O; [7732-18-5]

Original Measurements:

T. M. Letcher, P. Siswana, and S. E. Radloff, S. Afr. J. Chem. 44, 118-21 (1991).

Variables:

Compiled by:

			ntal Data the saturation curve		
4/8C				<i>w</i> ₁	w2
t/°C (compiler)	T/K	<i>x</i> ₁	<i>x</i> ₂	(com	piler)
25.0	298.2	0.000	0.000	0.000	0.000
		0.021	0.000	0.081	0.000
		0.546	0.000	0.832	0.000
		0.555	0.009	0.827	0.015
		0.574	0.042	0.803	0.067
		0.579	0.127	0.729	0.181
		0.558	0.211	0.654	0.281
		0.517	0.304	0.571	0.381
		0.460	0.405	0.483	0.483
		0.389	0.513	0.391	0.585
		0.306	0.629	0.295	0.689
		0.213	0.752	0.198	0.794
		0.110	0.874	0.099	0.897
		0.055	0.937	0.049	0.949
		0.055 0.000	0.937 0.999	0.049 0.0000	0.949 0.999

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C (compiler)	T/K	U	ic-rich ase		r-rich ase	ph	ic-rich ase piler)	ph	r-rich ase piler)
25.0	298.2	0.546	0.000	0.021	0.000	0.832	0.000	0.081	0.000
		0.580	0.086	0.018	0.000	0.764	0.129	0.070	0.000
		0.467	0.395	0.014	0.000	0.492	0.473	0.055	0.000
		0.330	0.592	0.007	0.000	0.323	0.658	0.028	0.000

Auxiliary Information

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the titration method, as described in Ref. 1. The formation of a cloudy mixture was observed visually on shaking after addition of a known mass of the third component; syringes were precisely weighed. Tie line compositions were determined by the refractive index method,² and a mplementary method using the Karl Fischer titration.3 easurements were made at pressure of 94.7 kPa.

Source and Purity of Materials:

(1) Merck; AR grade; dried by addition of anhydrous K2CO3, distilled; purity > 99.9 mole % by glc. (2) BDH; Gold label grade; used as received; purity > 99.9 mole % by glc. (3) not specified.

Estimated Error:

composition \pm 0.005 mole fraction (binodal curve), ± 0.01 mole fraction (tie lines).

Reference

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037 (1986). ²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. 35, 411 (1943). ³T. M. Letcher, P. Siswana, P. van der Watt, and S. Radloff, J. Chem. Thermodyn. 21, 1053 (1989).

Variables:

T/K = 298

Components: (1) 2-Methyl-1-propanol (isobutanol, isobutyl alcohol); C₄H₁₀O; [78-83-1] (2) Toluene (methylbenzene); C7H8; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

T. M. Letcher, and P. M. Siswana, Fluid Phase Equilib. 74, 203-17 (1992).

Compiled by: A. Skrzecz

7.3. 2-Methyl-1-propanol + Water + Toluene

Experimental Data Compositions along the saturation curve

	T/K			w ₁	w_2
t/°C	(compiler)	x_1	<i>x</i> ₂	(compiler)	
25.0	298.2	0.000	0.000	0.000	0.000
		0.021	0.000	0.081	0.000
		0.546	0.000	0.832	0.000
		0.568	0.031	0.807	0.055
		0.572	0.054	0.784	0.092
		0.568	0.111	0.724	0.176
		0.546	0.186	0.648	0.274
		0.511	0.277	0.563	0.380
		0.462	0.372	0.479	0.479
		0.397	0.479	0.388	0.582
		0.315	0.593	0.293	0.686
		0.214	0.722	0.190	0.796
		0.117	0.849	0.099	0.894
		0.060	0.924	0.049	0.947

			Co	mpositions of	coexisting ph	ases			
		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''
t/°C	T/K (compiler)	organic-r	ich phase	water-ri	ch phase		rich phase npiler)		ch phase piler)
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000
		0.171	0.783	0.005	0.000	0.148	0.842	0.020	0.000
		0.426	0.432	0.011	0.000	0.427	0.538	0.044	0.000
		0.550	0.181	0.017	0.000	0.654	0.268	0.066	0.000
		0.546	0.000	0.021	0.000	0.832	0.000	0.081	0.000

Auxiliary Information

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of a known mass of one component to a mixture of known masses of the other two components. Precision weighing syringes were used as described in Ref. 1. Tie line compositions were determined by the refractive index method reported in Ref. 2 and a complementary method using the Karl Fischer titrations as reported in Ref. 3.

estimated comp. 0.005 mole fraction on the binodal curve and 0.01 mole fraction for tie lines (estimated by the authors).

(1) Merck, AR grade; distilled, dried by the addition of

anhydrous potassium carbonate, distilled; purity better than 99.6

(2) BDH; used as received; purity better than 99.6 mole % by

References:

mole % by glc.

(3) not specified.

Estimated Error:

glc.

Source and Purity of Materials:

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. 18, 1037 (1986).

²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. 35, 411 (1943).

³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff, J. Chem. Thermodyn. 21, 1053 (1989).

(1) 2-Methyl-1-propanol (isobutanol, isobutyl alcohol); C₄H₁₀O; [78-83-1] (2) 1-Heptene; C₇H₁₄; [592-76-7] (3) Water; H₂O, [7732-18-5]

Variables:

T/K = 298

7.4. 2-Methyl-1-propanol + Water + 1-Heptene

Original Measurements:

Compiled by:

A. Skrzecz

Chem. Eng. Data 39, 320-3 (1994).

T. M. Letcher, B. C. Bricknell, J. D. Sewry, and S. E. Radloff, J.

Experimental Data

Compositions along the saturation curve

	T/K			w_1	w_2	
°C	(compiler)	<i>x</i> ₁	<i>x</i> ₂	(compiler)		
25.0	298.2	0.000	1.000	0.000	1.000	
		0.134	0.848	0.106	0.890	
		0.235	0.725	0.195	0.797	
		0.365	0.565	0.323	0.662	
		0.450	0.440	0.425	0.550	
		0.492	0.372	0.483	0.484	
		0.519	0.326	0.525	0.433	
		0.540	0.285	0.562	0.393	
		0.560	0.239	0.605	0.342	
		0.576	0.201	0.643	0.293	
		0.587	0.162	0.680	0.249	
		0.596	0.121	0.722	0.194	
		0.599	0.106	0.738	0.173	
		0.594	0.071	0.772	0.122	
		0.584	0.043	0.798	0.078	
		0.548	0.000	0.833	0.000	
		0.021	0.000	0.081	0.000	
		0.000	0.000	0.000	0.000	

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	<i>T</i> /K (compiler)	organic-r	ich phase	water-ri	ch phase	0	rich phase ppiler)		ch phase piler)
25.0	298.2	0.595 0.549 0.424	0.111 0.271 0.480	0.018 0.015 0.010	0.000 0.000 0.000	0.731 0.577 0.391	0.181 0.377 0.587	0.070 0.059 0.040	0.000 0.000 0.000

Auxiliary Information

Method/Apparatus/Procedure:

The experimental methods have been described in Ref. 1. No more details were reported in the paper.

Source and Purity of Materials:

(1) source not specified. (2) Aldrich; distilled; purity >99.8 mole % by glc, ρ $= 0.692 65 \text{ gcm}^{-3}$. (3) not specified.

Estimated Error: Not reported.

References:

¹T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203 (1992).

Components:

(1) 2-Methyl-1-propanol (isobutanol, isobutyl alcohol); C₄H₁₀O; [78-83-1] (2) p-Xylene (1,4-dimethylbenzene, 1,4-xylene); C₈H₁₀; [106-42-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

T. M. Letcher, P. M. Siswana, P. van der Watt, and S. Radloff, J. Chem. Thermodyn. 21, 1053-60 (1989).

Variables:

Compiled by: T/K = 298A. Skrzecz

7.5. 2-Methyl-1-propanol + Water + p-Xylene

Experimental Data

Compositions along the saturation curve

t/°C							w_1		w_2	
(compiler)		T/K		<i>x</i> ₁		<i>x</i> ₂		(compiler)		
25.0		298.2	(0.000	0.99	8	0.000		0.9997	
			(0.069	0.91	6	0.050		0.948	
			(0.135	0.84	3	0.100		0.896	
			(0.249	0.69	5	0.198		0.791	
			(0.345	0.56	1	0.295		0.686	
			(0.422	0.44	4	0.387		0.583	
			(0.530	0.24	7	0.565		0.377	
			(0.558	0.16	7	0.646		0.277	
			(0.571	0.10	5	0.714		0.188	
			(0.572	0.01	1	0.830		0.023	
			(0.548	0.000	0	0.833		0.000	
			(0.021	0.00	0	0.081		0.000	
			Co	mpositions of	coexisting pha	ases				
		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''	
t/°C (compiler)				water-rich phase		pl	organic-rich phase (compiler)		water-rich phase (compiler)	
25.0	298.2	0.548	0.000	0.021	0.000	0.833	0.000	0.081	0.000	
		0.510	0.282	0.014	0.000	0.529	0.419	0.055	0.000	
		0.257	0.685	0.008	0.000	0.205	0.784	0.032	0.000	

Auxiliary Information

0.000

0.000

Method/Apparatus/Procedure:

The titration method was used to determine binodal curve. A binary mixture of known composition was titrated with the third component until cloudiness was observed. Tie line compositions were related to the coexistence curve; water was determined by the Karl Fischer titration. The methods were described in Ref. 1.

0.000

0.998

Source and Purity of Materials:

0.000

(1) source not specified; used as received. (2) source not specified; recrystallized three times. (3) not specified.

Estimated Error:

comp. <0.005 mole fraction (estimated authors' precision on binodal curve), <0.01 mole fraction (estimated authors' precision of tie lines).

0.9997

0.000

0.000

References:

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037 (1986).

Variables:

T/K = 298

2-Methyl-1-propanol (isobutanol, isobutyl alcohol);
 C₄H₁₀O; [78-83-1]
 Mesitylene (1,3,5-trimethylbenzene); C₉H₁₂; [108-67-8]
 Water; H₂O; [7732-18-5]

Original Measurements:

T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203–17 (1992).

A. Skrzecz

Compiled by:

7.6. 2-Methyl-1-propanol + Water + Mesitylene

Experimental Data

Compositions	along	the	saturation	curve

	T/V			w 1	w_2	
t/°C	T/K (compiler)	x_1	<i>x</i> ₂	(compiler)		
25.0	298.2	0.000	0.000	0.000	0.000	
		0.021	0.000	0.081	0.000	
		0.546	0.000	0.832	0.000	
		0.560	0.021	0.805	0.049	
		0.577	0.089	0.719	0.180	
		0.568	0.150	0.646	0.276	
		0.549	0.226	0.566	0.378	
		0.504	0.311	0.479	0.479	
		0.445	0.413	0.387	0.583	
		0.368	0.531	0.294	0.687	
		0.271	0.670	0.198	0.792	
		0.149	0.825	0.100	0.896	
		0.077	0.906	0.050	0.948	
		0.000	0.999	0.000	0.9998	

			Co	mpositions of	coexisting ph	ases			
		x'_1	$x'_1 \qquad x'_2 \qquad x''_1 \qquad x''_2 \qquad w'_1 \qquad w'_2 \qquad w'_1$					w_1''	w_2''
t/°C	T/K (compiler)	organic-r	ich phase		r-rich ase	pl	nic-rich nase npiler)		ch phase piler)
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000
		0.205	0.752	0.007	0.000	0.143	0.850	0.028	0.000
		0.382	0.509	0.011	0.000	0.310	0.669	0.044	0.000
		0.503	0.312	0.016	0.000	0.477	0.480	0.063	0.000
		0.546	0.000	0.021	0.000	0.832	0.000	0.081	0.000

Auxiliary Information

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of a known mass of one component to a mixture of known masses of the other two components. Precision weighing syringes were used as described in Ref. 1. Tie line compositions were determined by the refractive index method reported in Ref. 2 and a complementary method using the Karl Fischer titrations as reported in Ref. 3.

Source and Purity of Materials:

(1) Merck, AR grade; distilled, dried by the addition of anhydrous potassium carbonate, distilled; purity better than 99.6 mole % by glc.

(2) BDH; used as received; purity better than 99.6 mole % by glc.

(3) not specified.

Estimated Error:

estimated comp. 0.005 mole fraction on the binodal curve and 0.01 mole fraction for tie lines (estimated by the authors).

Referencs:¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. 18, 1037 (1986).
 ²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. 35, 411

(1943).

³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radolff, J. Chem. Thermodyn. **21**, 1053 (1989).

8. 2-Methyl-2-propanol+Water

Components:	Original Measurements:
(1) 2-Methyl-2-propanol (tert-butanol, tert-butyl alcohol);	I. I. Vasileva, A. A. Naymova, A. A. Polyakov, T. N. Tyvina, V
C ₄ H ₁₀ O; [75-65-0]	V. Fokina, and N. G. Khrabrova, Zh. Prikl. Khim. (Leningrad
(2) 1-Butene; C ₄ H ₈ ; [106-98-9]	63, 1432-6 1990. [Eng. transl. Russ. J. Appl. Chem. (Leningrad
(3) Water; H ₂ O; [7732-18-5]	63 , 589–95 (1990)].
Variables:	Compiled by:
T/K=293-453	A. Skrzecz

8.1. 2-Methyl-2-propanol + Water + 1-Butene

Experimental Data Compositions along the saturation curve

				w_1	w_2	
t/°C	T/K (compiler)	<i>x</i> ₁	<i>x</i> ₂	(compiler)		
48.0	321.15	0.0582	0.0012	0.2023	0.0032	
174.6	447.75	0.0944	0.0057	0.2974	0.0136	
137.8	410.95	0.1030	0.0039	0.3189	0.0091	
10.0	283.15	0.1034	0.0039	0.3198	0.0091	
180.8	453.95	0.1156	0.0110	0.3438	0.0248	
126.2	399.35	0.1161	0.0053	0.3480	0.0120	
136.4	409.55	0.1399	0.0070	0.3968	0.0150	
39.0	312.15	0.1399	0.0073	0.3967	0.0157	
182.0	455.15	0.1652	0.0231	0.4348	0.0460	
133.8	406.95	0.1662	0.0109	0.4438	0.0220	
40.5	313.65	0.1664	0.0114	0.4439	0.0230	
138.6	411.75	0.2155	0.0172	0.5193	0.0314	
79.9	353.05	0.2542	0.0237	0.5679	0.0401	
107.0	380.15	0.2542	0.0237	0.5679	0.0401	
129.2	402.35	0.3220	0.0564	0.6243	0.0828	
118.0	391.15	0.3271	0.0542	0.6309	0.0791	
57.0	330.15	0.3271	0.0542	0.6309	0.0791	
100.0	373.15	0.3559	0.0735	0.6468	0.1011	
135.6	408.75	0.3875	0.1167	0.6498	0.1481	
105.0	378.15	0.4374	0.3487	0.5806	0.3504	
143.0	416.15	0.3780	0.4415	0.5000	0.4420	
180.0	453.15	0.3152	0.4680	0.4365	0.4906	

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	<i>T</i> /K (compiler)	hydrocarbon- rich phase		water- rich phase		hydrocarbon- rich phase (compiler)		water- rich phase (compiler)	
20	293.2	0.000 00	0.999 906	0.000 00	0.000 23	0.000 00	0.999 97	0.000 00	0.000 72
		0.000 70	0.998 10	0.002 90	0.000 23	0.000 93	0.998 69	0.011 82	0.000 71
		0.0204	0.9774	0.010 80	0.000 27	0.0268	0.9725	0.042 97	0.000 81
		0.0347	0.9624	0.016 00	0.000 27	0.0454	0.9536	0.062 67	0.000 80
		0.1389	0.0070	0.1389	0.0070	0.3948	0.0151	0.3948	0.0151 ^a
40	313.2	0.1389	0.0070	0.1389	0.0070	0.3948	0.0151	0.3948	0.0151 ^a

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''	
<i>T</i> /K compiler)		hydroc rich j			ter- phase	rich	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)	
80	353.2	0.0000	0.9916	0.0000	0.000 27	0.0000	0.9973	0.000 00	0.000 84	1200
		0.0149	0.9753	0.0019	0.000 27	0.0197	0.9771	0.007 77	0.000 84	1160
		0.0615	0.9123	0.0068	0.000 30	0.0811	0.9105	0.027 38	0.000 91	1080
		0.3384	0.0709	0.0452	0.000 73	0.6318	0.1002	0.162 80	0.001 99	690
		0.1389	0.0070	0.1389	0.0070	0.3948	0.0151	0.3948	0.0151	390 ^a
138	411.2	0.0000	0.9575	0.000 00	0.000 58	0.0000	0.9859	0.000 00	0.001 80	3790
		0.1068	0.8255	0.003 90	0.000 58	0.1428	0.8352	0.015 83	0.001 78	3230
		0.4102	0.3232	0.015 80	0.007 60	0.5700	0.3400	0.061 02	0.022 22	2450
		0.3323	0.0584	0.042 50	0.001 09	0.6334	0.0843	0.154 11	0.002 99	1530
		0.1389	0.0070	0.1389	0.0070	0.3948	0.0151	0.3948	0.0151	1000 ^a
154	427.2	0.1396	0.0093	0.1396	0.0093	0.3949	0.0199	0.3949	0.0199	1840 ^a
180	453.2	0.1384	0.0141	0.1384	0.0141	0.3898	0.0301	0.3898	0.0301	2500 ^a

^aPlait point.

Auxiliary Information

Method/Apparatus/Procedure:

The synthetic method with glass ampoules, described in Ref. 1, was used to visually determine the phase transition (mass of components in the vapor phase was neglected). Temperature was measured with a mercury thermometer. Compositions of coexisting phases in equilibrium (two liquids and vapor) were determined in a static apparatus. The liquid phases were analyzed by glc. (The pressure was reported during the measurements at temperatures higher than 353.2 K).

Source and Purity of Materials: (1) source not specified. (2) source not specified. (3) not specified.

Estimated Error:

temp. $\pm\,0.2~^\circ C$ (saturation curve) and $\pm\,0.5~^\circ C$ (phase equilibrium).

References:

¹C. M. Khodeeva, and E. C. Lebedeva, Zh. Fiz. Khim. 40, 3105 (1966).

Evaluated by:

(1) 2-Methyl-2-propanol (tert-butanol, tert-butyl alcohol); C₄H₁₀O; [75-65-0] (2) Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5]

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.05)

8.2. 2-Methyl-2-propanol + Water + Benzene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 2-methyl-2-propanol-benzene-water is given in Table 69.

TABLE 69. Summary of experimental data for the system 2-methyl-2-propanol-benzene-water

Author(s)	T/K	Type of data ^a	Ref.
Simonsen and Washburn, 1946	298	sat. (34), eq. (11)	1
Letcher et al., 1990	298	sat. (13), eq. (4)	2

^aNumber of experimental points in parentheses.

The ternary system 2-methyl-2-propanol–benzene–water forms a miscibility gap of type 1. Only one binary system benzene–water forms a miscibility gap. These binary data were compiled and critically evaluated in a previously published SDS volume, Ref. 3. The recommended values of mutual solubility at 298 K are $x'_2 = 0.9970$, $x''_2 = 0.000409$. The mutual solubility of benzene and water was also reported by Simonsen and Washburn, $1 (x'_2 = 0.9970, x''_2 = 0.0003)$; these are consistent with the recommended values. Letcher *et al.*² reported data only in graphical form. Therefore these data are not compiled. The plait point estimated by Letcher and Siswana⁴ was $x_1 = 0.16$ and $x_2 = 0.02$, while the maximum alcohol concentration on the binodal curve is $x_1 = 0.41$. This point is consistent with the results of Simonsen and Washburn measurements, $x_1 = 0.38$.¹ The experimental tie lines at 298.2 K¹ are presented in Fig. 36 together with the experimental points along the saturation curve.

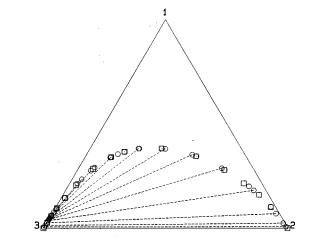


FIG. 36. Phase diagram of the system 2-methyl-2-propanol (1)—benzene (2)—water (3) at 293.2 K. O—experimental results, Ref. 1, set 1, D—experimental results, Ref. 1, set 2, dashed lines—experimental tie lines, Ref. 1.

References:

¹D. R. Simonsen and E. R. Washburn, J. Am. Chem. Soc. 68, 235 (1946).

²T. M. Letcher, J. Sewry, and S. Radloff, S. Afr. J. Chem. 43, 56 (1990).

³D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

⁴T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203 (1992).

(1) 2-Methyl-2-propanol (tert-butanol, tert-butyl alcohol); C₄H₁₀O; [75-65-0]

Original Measurements:

D. R. Simonsen and E. R. Washburn, J. Am. Chem. Soc. 68, 235-7 (1946).

Variables: T/K=298			Compile A. Skrze			
			Experimental Data ions along the saturation	on curve		
	T/K	<i>x</i> ₁	<i>x</i> ₂			
t/°C	(compiler)			w_1	w_2	
25.0	298.15	0.1022	0.8779	0.0990	0.8963	(series I)
		0.1991	0.7404	0.2003	0.7849	
		0.2776	0.6027	0.2947	0.6744	
		0.3433	0.4542	0.3941	0.5494	
		0.3814	0.2925	0.4960	0.4009	
		0.3802	0.2008	0.5481	0.3051	
		0.3642	0.1470	0.5709	0.2429	
		0.3534	0.1260	0.5768	0.2167	
		0.3369	0.1029	0.5794	0.1865	
		0.2894	0.0629	0.5640	0.1292	
		0.2131	0.0311	0.4961	0.0762	
		0.1442	0.0140	0.3967	0.0406	
		0.0950	0.0056	0.2974	0.0184	
		0.0576	0.0014	0.2001	0.0052	
		0.0413	0.0011	0.1501	0.0041	
		0.0260	0.0007	0.0988	0.0027	
25.0	298.15	0.0000	0.9970	0.0000	0.9993	(series II
		0.1006	0.8781	0.0976	0.8974	
		0.1595	0.8009	0.1574	0.8331	
		0.2137	0.7115	0.2177	0.7638	
		0.2771	0.6010	0.2948	0.6737	
		0.3430	0.4524	0.3945	0.5483	
		0.3814	0.2915	0.4965	0.4000	
		0.3651	0.1475	0.5714	0.2432	
		0.3393	0.1055	0.5795	0.1900	
		0.2832	0.0594	0.5602	0.1238	
		0.2058	0.0290	0.4873	0.0724	
		0.1450	0.0147	0.3976	0.0424	
		0.0962	0.0058	0.3002	0.0190	
		0.0584	0.0014	0.2024	0.0051	
		0.0268	0.0007	0.1014	0.0026	
		0.0000	0.0003	0.0000	0.0015	

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_1''
t/°C	T/K (compiler)	rich	carbon- phase piler)	rich phase		ise hydrocarbon-		water-rich phase	
25.0	298.15	0.0068	0.9876	0.0040	0.0004	0.0065	0.9922	0.0162	0.0017
		0.0234	0.9680	0.0124	0.0005	0.0224	0.9756	0.0490	0.0022
		0.0695	0.9151	0.0247	0.0007	0.0670	0.9294	0.0940	0.0027
		0.1803	0.7689	0.0357	0.0008	0.1798	0.8079	0.1317	0.0033
		0.2854	0.5865	0.0415	0.0010	0.3054	0.6613	0.1508	0.0038
		0.3504	0.4334	0.0455	0.0011	0.4076	0.5313	0.1636	0.0040
		0.3793	0.3086	0.0490	0.0011	0.4861	0.4167	0.1744	0.0043
		0.3799	0.1979	0.0528	0.0013	0.5497	0.3018	0.1858	0.0047
		0.3388	0.1053	0.0618	0.0017	0.5793	0.1897	0.2123	0.0060
		0.2742	0.0551	0.0767	0.0031	0.5537	0.1172	0.2526	0.0108
		0.2332	0.0379	0.0905	0.0049	0.5178	0.0888	0.2867	0.0164

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used to determine the solubility curve. Binary mixtures were titrated until the second phase appeared in 50 mL flasks with mechanical shaker placed in thermostated bath. Very small drops (5 mg of water and 4 mg of benzene) were added from capillary-tipped pipettes. An hour of shaking, after the last drop, was sufficient for complete saturation. Two independent series were made. In the series I, refractive indexes were measured by Abbe refractometer; in the series II, specific gravities were measured by glass-stoppered, capillary steamed 5 mL pycnometers and viscosities were measured by ordinary Ostwald viscometers. Conjugate solutions were prepared by adding calculated amounts of each component successively to 25 mL glass-stoppered flasks. Shaking in a constant temperature bath was continued until constant refractive indexes of both phases were observed. After 1/2 h separation the final refractive indexes of both phases were measured and the compositions were determined from the previously prepared graphs. The method was similar to that described in Refs. 1, 2, 3.

Source and Purity of Materials:

(1) Eastman Kodak Company, recrystallized several times; $d(25 \ ^{\circ}C, 4 \ ^{\circ}C) = 0.780 \ 43, \qquad n(25 \ ^{\circ}C, D) = 1.384 \ 83,$ f.p. =25.66 °C.

(2) Coleman and Bell, reagent quality grade, dried with Na and slowly distilled; middle fraction was recrystallized several times; $d(25 \circ C, 4 \circ C) = 0.780 43$, $n(25 \circ C, D) = 1.384 83$, f.p. =25.66 °C. (3) redistilled

Estimated Error:

temp. ± 0.04 °C (temperature of the bath).

References:

¹E. R. Washburn, V. Hnizda, and R. Vold, J. Am. Chem. Soc.

53, 3237 (1931). ²E. R. Washburn and C. V. Strandskov, J. Phys. Chem. 48, 241 (1944).

³Alberty and E. R. Washburn, J. Phys. Chem. 49, 4 (1945).

Components:	Evaluated by:	
 2-Methyl-2-propanol (tert-butanol, tert-butyl alcohol); C₃H₁₀O; [75-65-0] Cyclohexane; C₆H₁₂; [110-82-7] Water; H₂O; [7732-18-5] 	A. Skrzecz, (1997.03)	

8.3. 2-Methyl-2-propanol + Water + Cyclohexane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 2-methyl-2-propanol-cyclohexane-water is given in Table 70.

TABLE 70. Summary of experimental data for the system 2-methyl-2-propanol-cyclohexane-water

Author(s)	T/K	Type of data ^a	Ref.
Plackov and Stem, 1990	298	sat. (19), eq. (7)	1
Letcher et al., 1991	298	sat. (15), eq. (5)	2

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system 2-methyl-2-propanol–cyclohexane–water forms a miscibility gap of type 1. The system was investigated twice at 298 K by tirration method. Only the binary system cyclohexane–water forms a miscibility gap. Data of this system were compiled and critically evaluated in a previously published SDS volume,³ the recommended values at 298 K are: $x_2'' = 1.2 \cdot 10^{-5}$ and $x_3' = 3.7 \cdot 10^{-4}$. The saturated binary cyclohexane–water mixtures reported in Ref. 2 as $x_2'' = 0.0$ and $x_3' = 0.001$ are the result of the limited analytical methods used. The systems 2-methyl-2-propanol–water and 2-methyl-2-propanol–cyclohexane are miscible. The saturation data^{1,2} are consistent with one another and with the recommended values for the binary system. All experimental solubility and equilibrium data reported in Refs. 1 and 2 were used for calculation of saturation curve. These data were described by the equation:

$x_1 = a_1 \cdot (-\ln z_1)^{a_2} \cdot z_1^{a_3},$

where: $z_1 = (x_2 + 0.5 \cdot x_1 - x_{20}')/(x_{20}' - x_{20}')$, x_1 , x_2 —mole fractions of component (1) and (2), respectively, x_{20}' , x_{20}'' —values of x_2 on the binodal curve which cuts the $x_1 = 0$ axis.

This equation has been proposed by Letcher *et al.*⁴ for the description of saturation curves of ternary alcohol–ether–water systems. It gives better results (the smallest standard deviation) for the investigated system than any other tested equation. The parameters obtained by the least-squares method for the whole range of miscibility gap (water-rich and hydrocarbon-rich branches were described together) are: $a_1 = 1.469$ 36, $a_2 = 0.972$ 29, $a_3 = 1.277$ 11. The standard error of estimate was 0.0044. For selected concentrations of cyclohexane in the mixture the saturation curve was calculated. The results are presented in Table 71 and in Fig. 37 as solid line.

TABLE 71. Calculated compositons along the saturation curve at 298.2 K

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.0000	0.000 012 Ref. 3	0.3465	0.5200
0.1574	0.0100	0.3360	0.5400
0.2112	0.0200	0.3251	0.5600
0.2753	0.0400	0.3137	0.5800
0.3165	0.0600	0.3020	0.6000
0.3462	0.0800	0.2898	0.6200
0.3685	0.1000	0.2773	0.6400
0.3855	0.1200	0.2644	0.6600
0.3986	0.1400	0.2512	0.6800
0.4085	0.1600	0.2376	0.7000
0.4158	0.1800	0.2237	0.7200
0.4210	0.2000	0.2096	0.7400
0.4243	0.2200	0.1951	0.7600
0.4260	0.2400	0.1803	0.7800
0.4262	0.2600	0.1653	0.8000

0.4252	0.2800	0.1500	0.8200
0.4230	0.3000	0.1344	0.8400
0.4199	0.3200	0.1185	0.8600
0.4158	0.3400	0.1024	0.8800
0.4108	0.3600	0.0860	0.9000
0.4050	0.3800	0.0694	0.9200
0.3985	0.4000	0.0525	0.9400
0.3913	0.4200	0.0353	0.9600
0.3834	0.4400	0.0178	0.9800
0.3750	0.4600	0.0089	0.9900
0.3660	0.4800	0.0000	0.999 63 Ref. 3
0.3565	0.5000		

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the 2-methyl-2-propanol–cyclohexane–water system were reported in both references and similar experimental procedures were used. In the first step the equilibrium was reached and then the phases were separated and the composition of each phase was analyzed. Compositions of water-rich phase of the ternary system in both references show very low concentration of cyclohexane (0–0.001 and 0.003–0.007 mole fraction in Refs. 1 and 2, respectively). The tie lines cover the whole area of the miscibility gap. They are consistent within each data set. Data of Plackov and Stern¹ cover the area of the lower concentrations of cyclohexane while the data of Letcher *et al.*² cover the area of the higher concentrations of hydrocarbon. The areas overlap slightly with one another; their directions differ a little. Letcher *et al.*² report lower concentrations of alcohol in water-rich phase than Plackov and Stern;¹ consequently the tie lines cross. Both data sets are treated as tentative. All experimental points at 298.2 K, both saturation and for phases in equilibrium, Refs. 1 and 2, are presented in Fig. 37.

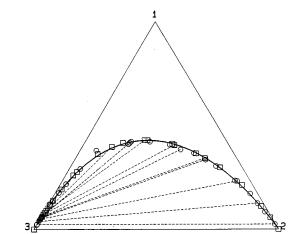


FIG. 37. Phase diagram of the system 2-methyl-2-propanol (1)—cyclohexane (2)—water (3) at 298.2 K. Solid line—calculated binodal curve, O—experimental results, Ref. 1, □—experimental results, Ref. 2, dashed lines—experimental tie lines, Refs. 1 and 2.

References:

¹D. Plackov and I. Stern, Fluid Phase Equilib. 57, 327 (1990).

²T. M. Letcher, P. Siswana, and S. E. Radloff, S. Afr. J. Chem. 44, 118 (1991).

³D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

⁴T. M. Letcher, S. Ravindran, and S. E. Radloff, Fluid Phase Equilib. 69, 251 (1991).

2-Methyl-2-propanol (tert-butanol, tert-butyl alcohol);
 C₄H₁₀O; [75-65-0]
 Cyclohexane; C₆H₁₂; [110-82-7]
 Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

A. Skrzecz

D. Plackov and I. Stern, Fluid Phase Equilib. 57, 327-40 (1990).

Variables: T/K=298

Experimental Data Compositions along the saturation curve										
	T/K	<i>x</i> ₁	<i>x</i> ₂							
t/°C	(compiler)	(com	piler)	w ₁	w_2					
25.00	298.15	0.0832	0.9018	0.0749	0.9218					
		0.1702	0.7982	0.1570	0.8359					
		0.2321	0.7045	0.2224	0.7631					
		0.3036	0.5923	0.3032	0.6716					
		0.3658	0.4723	0.3886	0.5696					
		0.4071	0.3537	0.4696	0.4633					
		0.4217	0.2654	0.5277	0.3771					
		0.4164	0.1850	0.5757	0.2904					
		0.3783	0.0658	0.6432	0.1270					
		0.2903	0.0439	0.5783	0.0993					
		0.2178	0.0224	0.5090	0.0594					
		0.1753	0.0142	0.4513	0.0415					
		0.1342	0.0076	0.3819	0.0246					
		0.1027	0.0035	0.3171	0.0123					
		0.0731	0.0010	0.2443	0.0038					
		0.0599	0.0004	0.2074	0.0016					
		0.0510	0.0003	0.1809	0.0012					
		0.0455	0.0002	0.1639	0.0008					
		0.0216	0.0002	0.0832	0.0009					

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	hydrocarbon- rich phase		water- rich phase		hydrocarbon- rich phase (compiler)		water- rich phase (compiler)	
25.00	298.15	0.024	0.972	0.024	0.000	0.021	0.978	0.092	0.000
		0.124	0.851	0.038	0.000	0.113	0.881	0.140	0.000
		0.231	0.715	0.047	0.001	0.219	0.769	0.168	0.004
		0.334	0.535	0.053	0.001	0.343	0.624	0.187	0.004
		0.383	0.409	0.055	0.001	0.426	0.517	0.193	0.004
		0.422	0.188	0.059	0.001	0.578	0.292	0.204	0.004
		0.410	0.183	0.064	0.001	0.572	0.290	0.219	0.004

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, as reported in Ref. 1, was used to determine the solubility curve. Mixtures of known composition, mixed by means of a magnetic stirrer and placed in the thermostated double-wall Erlenmayer flask, were titrated with the less soluble component until the appearance of turbidity. The analytical method was used to determine liquid-liquid equilibria. The mixture was shaken for at least 20 min. Equilibration took place in a thermostated double-walled separatory funnel of 250 mL over 2 h. The refractive index and density of both phases were measured. The composition was calculated numerically from the calibration data by polynomial regression analysis. The third order polynomials were used. Each experiment was repeated three times.

Source and Purity of Materials:

(1) Merck, analytical grade; used as received; n = 1.3847, b.p. = 99.3 °C.

(2) Kemika (Zagreb), analytical grade; used as received; n = 1.4232, ρ(25 °C)=773.6 kg m⁻³, b.p.=80.0 °C.
(3) double distilled in the presence of KMnO₄.

Estimated Error:

temp. $\pm\,0.02~^\circ\text{C};$ composition $<\pm\,0.05\%$ (by mass) relative error.

References:

¹E. R. Washburn, C. L. Graham, G. B. Arnold, and L. F. Transuel, J. Am. Chem. Soc. **62**, 1454 (1940).

Variables:

Components: (1) 2-Methyl-2-propanol (tert-butanol, tert-butyl alcohol); C₄H₁₀O; [75-65-0] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

T. M. Letcher, P. Siswana, and S. E. Radloff, S. Afr. J. Chem. 44, 118-21 (1991).

T/K = 298A. Skrzecz **Experimental Data** Compositions along the saturation curve w_1 w_2 t/°C (compiler) T/K(compiler) x_1 x_2 25.0 298.2 0.000 0.000 0.000 0.000 0.115 0.006 0.343 0.020 0.138 0.009 0.388 0.029 0.192 0.017 0.476 0.048 0.259 0.031 0.555 0.075 0.080 0.155 0.361 0.614 0.416 0.157 0.596 0.255 0.429 0.252 0.541 0.361 0.411 0.362 0.469 0.469 0.364 0.481 0.384 0.576 0.612 0.297 0.293 0.685 0.212 0.744 0.199 0.791 0.110 0.873 0.100 0.897 0.056 0.938 0.050 0.949 0.000 0.999 0.0000 0.9998

Compositions of coexisting phases

	T/K (compiler)	x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C		hydrocarbon- rich phase		water- rich phase		hydrocarbon- rich phase (compiler)		water- rich phase (compiler)	
25.0	298.2	0.342	0.528	0.060	0.003	0.351	0.616	0.206	0.012
		0.405	0.373	0.072	0.003	0.459	0.480	0.240	0.011
		0.429	0.240	0.080	0.004	0.549	0.348	0.260	0.015
		0.396	0.121	0.090	0.005	0.609	0.211	0.285	0.018
		0.275	0.038	0.120	0.007	0.567	0.089	0.353	0.023

Auxiliary Information

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the titration method, as described in Ref. 1. The formation of a cloudy mixture was observed visually on shaking after addition of a known mass of the third component; syringes were precisely weighed. Tie line compositions were determined by the refractive index method, Ref. 2, and a complementary method using the Karl Fischer titration, Ref. 3. Measurements were made at pressure of 94.7 kPa.

Source and Purity of Materials:

(1) Merck; AR grade; dried by addition of anhydrous K2CO3, distilled; purity >99.9 mole % by glc. (2) BDH; Gold label grade; used as received; purity >99.9 mole % by glc. (3) not specified.

Estimated Error:

composition ± 0.005 mole fraction (binodal curve), ± 0.01 mole fraction (tie lines).

References:

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037 (1986). ²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. 35, 411 (1943).

³T. M. Letcher, P. Siswana, P. van der Watt, and S. Radloff, J. Chem. Thermodyn. 21, 1053 (1989).

(1) 2-Methyl-2-propanol (tert-butanol, tert-butyl alcohol); C₄H₁₀O; [75-65-0] (2) Toluene (methylbenzene); C7H8; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203-17 (1992).

Variables: T/K = 298

Compiled by: A. Skrzecz

8.4. 2-Methyl-2-propanol + Water + Toluene

Experimental Data

Compositions along the saturation curve

	T/K			w ₁	w_2
t/°C	(compiler)	x_1	<i>x</i> ₂	(compiler)	
25.0	298.2	0.000	0.000	0.000	0.000
		0.057	0.002	0.198	0.009
		0.138	0.010	0.386	0.035
		0.191	0.021	0.467	0.064
		0.257	0.038	0.540	0.099
		0.307	0.062	0.571	0.143
		0.375	0.129	0.572	0.244
		0.411	0.205	0.541	0.336
		0.391	0.319	0.456	0.462
		0.363	0.438	0.380	0.570
		0.305	0.573	0.291	0.680
		0.220	0.707	0.197	0.783
		0.116	0.855	0.098	0.896
		0.060	0.928	0.049	0.948

		x'1	x ₂ '	ompositions o x_1''	f coexisting pl	w'	w'2	w″1	w ₂ "
	<i>T</i> /K (compiler)	hydrocarbon- rich phase		water-rich phase		hydrocarbon- rich phase (compiler)		water-rich phase (compiler)	
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000
		0.140	0.835	0.025	0.001	0.118	0.877	0.095	0.005
		0.256	0.653	0.040	0.002	0.235	0.745	0.145	0.009
		0.361	0.416	0.058	0.003	0.387	0.555	0.200	0.013
		0.398	0.203	0.077	0.004	0.533	0.338	0.252	0.016
		0.372	0.127	0.090	0.006	0.571	0.242	0.284	0.024
		0.298	0.060	0.114	0.009	0.564	0.141	0.337	0.033

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of a known mass of one component to a mixture of known masses of the other two components. Precision weighing syringes were used as described in Ref. 1. Tie line compositions were determined by the refractive index method reported in Ref. 2 and a complementary method using the Karl Fischer titrations as reported in Ref. 3.

Source and Purity of Materials:

(1) Merck, AR grade; distilled, dried by the addition of anhydrous potassium carbonate, distilled; purity better than 99.6 mole % by glc. (2) BDH; used as received; purity better than 99.6 mole % by

(3) not specified.

Estimated Error:

estimated comp. 0.005 mole fraction on the binodal curve and 0.01 mole fraction for tie lines (estimated by the authors).

References:

glc.

Auxiliary Information

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. 18, 1037 (1986).

- ²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. 35, 411 (1943).
- ³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff,
- J. Chem. Thermodyn. 21, 1053 (1989).

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

Components: (1) 2-Methyl-2-propanol (tert-butanol, tert-butyl alcohol); C₄H₁₀O; [75-65-0] (2) 1-Heptene; C₇H₁₄; [592-76-7] (3) Water; H₂O; [7732-18-5]

Variables:

T/K = 298

Original Measurements:

T. M. Letcher, B. C. Bricknell, J. D. Sewry, and S. E. Radloff, J. Chem. Eng. Data **39**, 320–3 (1994).

Compiled by:

A. Skrzecz

8.5. 2-Methyl-2-propanol + Water + 1-Heptene

Experimental Data

	T/K			w_1	w_2
e∕°C	(compiler)	<i>x</i> ₁	x_2	(com	piler)
25.0	298.2	0.000	1.000	0.000	1.000
		0.151	0.820	0.121	0.873
		0.255	0.688	0.216	0.772
		0.346	0.563	0.311	0.670
		0.403	0.421	0.402	0.556
		0.437	0.283	0.497	0.426
		0.430	0.200	0.548	0.338
		0.401	0.122	0.591	0.238
		0.345	0.061	0.605	0.142
		0.299	0.040	0.583	0.103
		0.219	0.021	0.507	0.064
		0.189	0.012	0.474	0.040
		0.152	0.009	0.413	0.032
		0.109	0.003	0.332	0.012
		0.079	0.001	0.260	0.004
		0.000	0.000	0.000	0.000

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C (compiler)		hydrocarbon- rich phase		water -rich phase		hydrocarbon- rich phase (compiler)		water- rich phase (compiler)	
25.0	298.2	0.275	0.033	0.032	0.001	0.565	0.090	0.119	0.005
		0.355	0.070	0.045	0.001	0.604	0.158	0.162	0.005
		0.398	0.116	0.055	0.002	0.594	0.229	0.192	0.009
		0.437	0.241	0.074	0.003	0.524	0.383	0.245	0.013
		0.409	0.422	0.105	0.004	0.405	0.554	0.321	0.016
		0.345	0.565	0.135	0.005	0.309	0.671	0.385	0.019

Auxiliary Information

Method/Apparatus/Procedure:

The experimental methods have been described in Ref. 1. No more details were reported in the paper.

Source and Purity of Materials:

(1) source not specified. (2) Aldrich; distilled; purity>99.8 mole% by glc, $\rho = 0.692$ 65 g cm⁻³. (3) not specified.

Estimated Error:

Not reported.

References:

¹T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. **74**, 203 (1992).

(1) 2-Methyl-2-propanol (tert-butanol, tert-butyl alcohol); C₄H₁₀O; [75-65-0] (2) Heptane (n-heptane); C₇H₁₆; [142-82-5] (3) Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

A. Skrzecz

T. M. Letcher, S. Wootton, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037-42 (1986).

Variables: T/K = 298

8.6. 2-Methyl-2-propanol + Water + Heptane

Experimental Data

Compositions along the saturation curve

t/°C				w_1	w_2
compiler)	T/K	<i>x</i> ₁	<i>x</i> ₂	(compiler)	
25.0	298.2	0.072	0.000	0.242	0.000
		0.154	0.006	0.420	0.022
		0.191	0.014	0.474	0.047
		0.330	0.055	0.596	0.134
		0.404	0.120	0.592	0.238
		0.432	0.295	0.482	0.445
		0.342	0.557	0.305	0.673
		0.267	0.683	0.222	0.768
		0.078	0.911	0.059	0.939

	Compositions of coexisting phases									
		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''	
t/°C (compiler)	T/K	2	hydrocarbon- water rich phase -rich phase		hydrocarbon- rich phase (compiler)		water- rich phase (compiler)			
25.0	298.2	0.427	0.160	0.090	0.000	0.574	0.291	0.289	0.000	
		0.423	0.351	0.054	0.000	0.444	0.498	0.190	0.000	
		0.212	0.762	0.019	0.000	0.170	0.825	0.074	0.000	
		0.127	0.863	0.009	0.000	0.098	0.900	0.036	0.000	

Auxiliary Information

Method/Apparatus/Procedure: The titration method, adapted from Ref. 1, was used to

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

determine the coexistence curve. The third component was added from a weighed gas-tight syringe to a weighed mixture of the other two components in 100 mL long-neck flask until one drop (weighing less than 0.01 g) resulted in cloudiness. The flask was immersed in a well controlled water bath and shaken continuously. Refractive indexes of these mixtures were measured at 298.3 K to ensure that separation did not take place. Tie lines were determined from mixtures of known composition in the immiscible region. The flasks were shaken well and the phases allowed to separate. Refractive indexes of samples of both phases were measured and related to compositions on the coexistence curve. Each tie line was checked to ensure that it passed through the composition of the overall mixture.

Source and Purity of Materials:

(1) Aldrich, Gold label, 99.5 mole %; dried with anhydrous potassium carbonate, filtrated, distilled.

(2) Analytical Carbo Erba, purity 99.5 mole %; purified by passing through columns containing silica gel and basic alumina. (3) de-ionized.

Estimated Error:

composition ± 0.005 mole fraction for measured points, ± 0.01 mole fraction for tie-lines extremities in the worst case (authors).

References:

¹S. W. Briggs and E. W. Commings, Ind. Eng. Chem. 35, 411 (1943).

Components:

Variables:

T/K = 298

(1) 2-Methyl-2-propanol (tert-butanol, tert-butyl alcohol); C₄H₁₀O; [75-65-0] (2) p-Xylene (1,4-dimethylbenzene, 1,4-xylene); C₈H₁₀; [106-42-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

T. M. Letcher, P. M. Siswana, P. van der Watt, and S. Radloff, J. Chem. Thermodyn, 21, 1053-60 (1989).

Compiled by: A. Skrzecz

8.7. 2-Methyl-2-propanol + Water + p-Xylene

Experimental Data

Compositions along the saturation curve

				w_1	w_2	
t/°C (compiler)	T/K	<i>x</i> ₁	<i>x</i> ₂	(compiler)		
25.0	298.2	0.000	0.998	0.000	0.9997	
		0.070	0.915	0.051	0.947	
		0.133	0.837	0.099	0.895	
		0.243	0.680	0.197	0.788	
		0.327	0.533	0.291	0.679	
		0.385	0.403	0.380	0.569	
		0.412	0.287	0.460	0.459	
		0.411	0.191	0.526	0.350	
		0.369	0.111	0.564	0.243	
		0.310	0.054	0.572	0.143	
		0.224	0.023	0.509	0.075	
		0.164	0.012	0.430	0.045	
		0.115	0.005	0.342	0.021	
		0.041	0.003	0.148	0.015	
		0.000	0.000	0.000	0.000	

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C (compiler)	T/K	hydrocarbon- rich phase		water- rich phase		hydrocarbon- rich phase (compiler)		water-rich phase (compiler)	
25.0	298.2	0.246	0.030	0.123	0.009	0.529	0.092	0.355	0.037
		0.382	0.131	0.055	0.002	0.555	0.273	0.192	0.010
		0.409	0.305	0.030	0.001	0.447	0.477	0.112	0.00
		0.367	0.444	0.018	0.001	0.350	0.606	0.070	0.00
		0.332	0.522	0.015	0.000	0.298	0.670	0.059	0.00
		0.212	0.723	0.005	0.000	0.168	0.820	0.020	0.00

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used to determine binodal curve. A binary mixture of known composition was titrated with the third component until cloudiness was observed. Tie line compositions were related to the coexistence curve; water was determined by the Karl Fischer titration. The methods were described in Ref. 1.

Source and Purity of Materials:

(1) source not specified; used as received. (2) source not specified; recrystallized three times. (3) not specified.

Estimated Error:

comp. <0.005 mole fraction (estimated authors' precision on binodal curve), <0.01 mole fraction (estimated authors' precision of tie lines).

References:

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037 (1986).

Components:

Varia

(1) 2-Methyl-2-propanol (tert-butanol, tert-butyl alcohol); C₄H₁₀O; [75-65-0] (2) 2,4,4-Trimethylpentene (diisobutylene isomer not specified); C₈H₁₆; [25167-70-8] (3) Water; H₂O; [7732-18-5]

Original Measurements:

Y. Y. Lee, Y.-W. Lee, W.-H. Hong, and H. Lee, J. Chem. Eng. Data 33, 258-60 (1988).

Variables:	Compiled by:
T/K = 298 - 348	A. Skrzecz

8.8. 2-Methyl-2-propanol + Water + 2,4,4-Trimethylpentene

Experimental Data

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	<i>T</i> /K t/°C (compiler)	hydrocarbon- rich phase			water- rich phase		carbon- phase piler)	water- rich phase (compiler)	
25.0	298.2	0.0387	0.9601	0.0192	0.0001	0.0259	0.9739	0.0745	0.0006
		0.1208	0.8762	0.0267	0.0002	0.0834	0.9161	0.1013	0.0011
		0.2003	0.7372	0.0359	0.0003	0.1504	0.8382	0.1327	0.0017
		0.2953	0.6267	0.0416	0.0003	0.2338	0.7512	0.1513	0.0017
		0.3817	0.4700	0.0462	0.0003	0.3380	0.6301	0.1659	0.0016
		0.4155	0.3617	0.0507	0.0003	0.4085	0.5383	0.1799	0.0016
		0.4313	0.2478	0.0550	0.0003	0.4877	0.4242	0.1929	0.0016
		0.4108	0.1374	0.0590	0.0004	0.5638	0.2855	0.2047	0.0021
		0.3474	0.0702	0.0718	0.0007	0.5836	0.1785	0.2407	0.0036
		0.1132	0.0028	0.1132	0.0028	0.3407	0.0128	0.3407	0.0128
45.0	318.2	0.0525	0.9212	0.0154	0.0001	0.0361	0.9595	0.0604	0.0006
		0.1412	0.8321	0.0230	0.0001	0.1003	0.8951	0.0883	0.0006
		0.2361	0.7058	0.0279	0.0001	0.1790	0.8103	0.1056	0.0006
		0.3318	0.5555	0.0321	0.0001	0.2765	0.7007	0.1200	0.0006
		0.3888	0.4504	0.0354	0.0002	0.3504	0.6144	0.1311	0.0011
		0.4309	0.3314	0.0396	0.0001	0.4351	0.5066	0.1450	0.0006
		0.4367	0.2243	0.0427	0.0002	0.5086	0.3955	0.1549	0.0011
		0.4164	0.1365	0.0470	0.0002	0.5691	0.2824	0.1685	0.0011
		0.3587	0.0657	0.0550	0.0004	0.5998	0.1663	0.1929	0.0021
		0.0984	0.0016	0.0984	0.0016	0.3079	0.0076	0.3079	0.0076
75.0	348.2	0.0856	0.9030	0.0099	0.0004	0.0588	0.9393	0.0394	0.0024
		0.1705	0.7806	0.0167	0.0001	0.1250	0.8663	0.0653	0.0006
		0.2641	0.6683	0.0205	0.0001	0.2044	0.7829	0.0792	0.0006
		0.3438	0.5375	0.0252	0.0002	0.2898	0.6859	0.0960	0.0012
		0.4112	0.4282	0.0272	0.0002	0.3743	0.5901	0.1031	0.0011
		0.4433	0.3105	0.0295	0.0002	0.4555	0.4830	0.1111	0.0011
		0.4578	0.2155	0.0326	0.0002	0.5302	0.3778	0.1217	0.0011
		0.4407	0.1342	0.0368	0.0002	0.5898	0.2719	0.1357	0.0011
		0.3834	0.0662	0.0415	0.0002	0.6210	0.1623	0.1511	0.0011
		0.0762	0.0009	0.0762	0.0009	0.2524	0.0045	0.2524	0.0045

^aPlait points estimated by the authors.

Auxiliary Information

Method/Apparatus/Procedure:

The tubes, of 1.5 cm internal diameter and 16 cm long, containing about 20 cm² liquid, were placed in a thermostated bath. After 2 h of shaking, mixtures were allowed to separate for 5 h. Samples of each phase were analyzed by glc (Propak-Q, 250 °C, He 50 mL/min) equipped with a thermal conductivity detector connected with integration unit. (Syringes were heated to prevent phase separation.) Mean of four analyzes was reported. Plait points were estimated by the Treybal's method.¹

Source and Purity of Materials:

 Junsei Chem. Co., Ltd., guaranteed reagent grade, certified purity >99.5 mole %; used as received; purity >99.9% by glc.
 Wako Pure Chem. Ind. Ltd., guaranteed reagent grade, certified purity >99.5 mole %; used as received; purity >99.9% by glc.

(3) de-ionized, distilled.

Estimated Error:

temp. $\pm 0.2~^{\circ}C$ (accuracy of bath control); conc. ± 0.0005 mole fraction.

References:

¹R. E. Treybal, L. D. Weber, and J. F. Daley, Ind. Eng. Chem. 38, 817 (1946).

Components:

 2-Methyl-2-propanol (tert-butanol, tert-butyl alcohol); C₄H₁₀O; [75-65-0]
 2,2,4-Trimethylpentane (isooctane); C₈H₁₈; [540-84-1]
 Water; H₂O; [7732-18-5]

Original Measurements:

A. S. Dubovskaya and M. Kh. Karapetyants, Tr. Inst. - Mosk. Khim.-Tekhnol. Inst. im. D. I. Mendeleeva 58, 92–7 (1968).

Variables: Compiled by: T/K=298-303 A. Skrzecz

8.9. 2-Methyl-2-propanol + Water + 2,2,4-Trimethylpentane

Experimental Data

			ental Data the saturation curve		
	T/K	<i>x</i> ₁	<i>x</i> ₂		
t/°C	(compiler)	(com	piler)	w_1	w2
0.0	273.2	0.2042	0.7320	0.1515	0.8370
		0.1118	0.8094	0.0811	0.9050
		0.1245	0.7770	0.0925	0.8897
		0.3662	0.4593	0.3280	0.6340
		0.4089	0.4012	0.3810	0.5760
		0.4357	0.3181	0.4420	0.4973
		0.4254	0.2335	0.4900	0.4145
		0.4275	0.2288	0.4950	0.4083
		0.4009	0.1152	0.5760	0.2550
		0.4008	0.1123	0.5790	0.2500
		0.3929	0.0984	0.5880	0.2270
		0.3485	0.0630	0.5920	0.1650
		0.3406	0.0567	0.5930	0.1520
		0.3267	0.0471	0.5925	0.1315
		0.3130	0.0474	0.5780	0.1350
		0.2294	0.0172	0.5225	0.0605
		0.2176	0.0145	0.5100	0.0525
		0.1723	0.0059	0.4520	0.0240
20.0	293.2	0.2042	0.7320	0.1515	0.8370
		0.1118	0.8094	0.0811	0.9050
		0.1245	0.7770	0.0925	0.8897
		0.3662	0.4593	0.3280	0.6340
		0.4089	0.4012	0.3810	0.5760
		0.4254	0.2335	0.4900	0.4145
		0.4275	0.2288	0.4950	0.4083
		0.4398	0.1701	0.5520	0.3290
		0.4291	0.1691	0.5450	0.3310
		0.4282	0.1438	0.5680	0.2940
		0.3993	0.0969	0.5950	0.2225
		0.3335	0.0494	0.5960	0.1360
		0.3260	0.0476	0.5910	0.1330
		0.3158	0.0445	0.5850	0.1270
		0.2694	0.0303	0.5540	0.0960
		0.2138	0.0146	0.5044	0.0531
		0.2084	0.0136	0.4980	0.0500
		0.1726	0.0074	0.4502	0.0298
		0.1274	0.0045	0.3688	0.0202
30.0	303.2	0.1148	0.7986	0.0840	0.9006
2.010	505.2	0.1520	0.7469	0.1145	0.8670
		0.1520	0.7402	0.1140	0.0070

IUPAC-NIST SOLUBILITY DATA SERIES

0.2721	0.6267	0.2155	0.7650
0.1576	0.7274	0.1206	0.8580
0.4162	0.3618	0.4050	0.5425
0.4385	0.2608	0.4800	0.4400
0.4418	0.1684	0.5550	0.3260
0.4155	0.1027	0.6015	0.2290
0.4126	0.1028	0.5990	0.2300
0.3470	0.0519	0.6055	0.1395
0.3430	0.0509	0.6030	0.1380
0.3492	0.0516	0.6080	0.1385
0.2785	0.0315	0.5630	0.0980
0.2292	0.0196	0.5185	0.0685
0.2162	0.0142	0.5085	0.0515
0.2101	0.0146	0.4990	0.0535
0.1754	0.0075	0.4550	0.0300
0.1501	0.0046	0.4140	0.0195
0.1477	0.0042	0.4100	0.0178
0.1463	0.0044	0.4070	0.0190
0.1376	0.0033	0.3916	0.0144
0.1179	0.0016	0.3526	0.0074
0.1012	0.0004	0.3160	0.0019
0.0883	0.0000	0.2850	0.0000

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''	
t/°C	T/K (compiler)	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		2	hydrocarbon- rich phase		water- rich phase	
30.0	303.2	0.1404	0.7708	0.0269	0.0002	0.1040	0.8800	0.1020	< 0.0010	
		0.3028	0.5767	0.0381	0.0002	0.2480	0.7280	0.1400	< 0.0010	
		0.3768	0.4570	0.0456	0.0002	0.3360	0.6280	0.1640	< 0.0010	
		0.4288	0.2968	0.0560	0.0002	0.4500	0.4800	0.1960	< 0.0010	
		0.4397	0.1931	0.0636	0.0004	0.5320	0.3600	0.2180	0.0020	
		0.4233	0.1205	0.0744	0.0004	0.5880	0.2580	0.2480	0.0020	
		0.4098	0.1035	0.0803	0.0002	0.5960	0.2320	0.2640	< 0.0010	
		0.3891	0.0789	0.0841	0.0002	0.6080	0.1900	0.2740	< 0.0010	
		0.3560	0.0562	0.0904	0.0002	0.6080	0.1480	0.2900	< 0.0010	
		0.2829	0.0275	0.1172	0.0009	0.5740	0.0860	0.3520	0.0040	
		0.1844	0.0087	0.1844	0.0087	0.468	0.034	0.468	0.034 ^a	
		0.1839	0.0082	0.1839	0.0082	0.468	0.032	0.468	0.032 ^b	
		0.1797	0.0055	0.1797	0.0055	0.465	0.022	0.465	0.022 ^c	

The authors calculated critical points: (a) by Alekseev's, Ref. 1, (b) by Izmailov's, Ref. 2, and (c) by Zilberman's, Ref. 3, methods, respectively.

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used to determine the solubility curve. Binary hydrocarbon-alcohol mixtures were titrated with water until turbidity was observed, as described in Ref. 4. The titration was repeated several times to eliminate errors. The relationship of density versus composition of saturated mixture was used later to calculate equilibrium. The method was tested on the ethanol-heptane-water system and the results were in agreement with literature data. The analytical method was used to determine liquid-liquid equilibria. A binary mixture of known composition was placed in a special thermostated vessel and the third component was added to obtain a two-phase mixture. This mixture was agitated for 3-4 h to ensure equilibrium. The mixture was allowed to stand 1-2 h to become clear and then both phases were taken for density measurements. On the basis the previously constructed relationship of density versus composition of the saturated mixture, the composition of the mixture in equilibrium was calculated. Concentrations of 2,2,4-trimethylpentane in the water-rich phase were reported in the paper for several experimental points as <0.0010 of mass fraction while the sums of water and alcohol concentrations were equal to 1.0000. Recalculations to mole fraction were made treating them as real values.

Source and Purity of Materials:

(1) source not specified; d(20 °C,20 °C) = 0.7894, n(25 °C,D) = 1.3860, m,p. = 25 °C; used as received.
 (2) source not specified; d(20 °C,20 °C) = 0.6890, n(25 °C,D) = 1.3890.
 (3) doubly distilled.

Estimated Error:

temp. ± 0.1 K; conc. ± 0.0001 .

References:

¹V. F. Alekseev, Gorn. Zh. 2, 385 (1985).
 ²N. A. Izmajlov and A. K. Franke, Zh. Fiz. Khim. 29, 120 (1955).
 ³E. N. Zilberman Zh. Fiz. Khim. 28, 1458 (1952).

⁴W. D. Bancroft, Phys. Rev. **3**, 21 (1896).

1

 $\begin{array}{l} (1) \ 2-Methyl-2-propanol (tert-butanol, tert-butyl alcohol); \\ C_{4}H_{10}O; \ [75-65-0] \\ (2) \ Mesitylene \ (1,3,5-trimethylbenzene); \ C_{9}H_{12} ; \ [108-67-8] \\ (3) \ Water, \ H_{2}O; \ [7732-18-5] \end{array}$

Original Measurements:

T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203–17 (1992).

Variables: T/K=298

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

Compiled by: A. Skrzecz

8.10. 2-Methyl-2-propanol + Water + Mesitylene

Experimental Data

Compositions along the saturation curve

	77 / 1Z			w ₁	w2	
t/°C	T/K (compiler)	<i>x</i> ₁	<i>x</i> ₂	(compiler)		
25.0	298.2	0.000	0.000	0.000	0.000	
		0.115	0.003	0.344	0.015	
		0.164	0.011	0.429	0.047	
		0.224	0.022	0.506	0.08	
		0.304	0.047	0.565	0.142	
		0.375	0.099	0.565	0.242	
		0.413	0.170	0.523	0.349	
		0.425	0.262	0.459	0.459	
		0.401	0.371	0.379	0.569	
		0.349	0.504	0.290	0.680	
		0.267	0.660	0.197	0.790	
		0.149	0.827	0.100	0.896	
		0.000	0.999	0.000	0.999	

Compositions of coexisting phases									
		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''
t/°C	T/K (compiler)	hydrocarbo	n-rich phase	water-ri	ch phase	~	on-rich phase npiler)		ch phase piler)
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000
		0.290	0.615	0.030	0.000	0.221	0.761	0.113	0.000
		0.381	0.430	0.038	0.000	0.339	0.620	0.140	0.000
		0.421	0.228	0.055	0.000	0.481	0.422	0.193	0.000
		0.362	0.088	0.080	0.001	0.567	0.224	0.262	0.005
		0.282	0.041	0.100	0.002	0.550	0.130	0.311	0.010

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of a known mass of one component to a mixture of known masses of the other two components. Precision weighing syringes were used as described in Ref. 1. Tie line compositions were determined by the refractive index method reported in Ref. 2 and a complementary method using the Karl Fischer titrations as reported in Ref. 3.

Source and Purity of Materials: (1) Merck, AR grade; distilled, dried by the addition of anhydrous potassium carbonate distilled; purity better than 99.6

anhydrous potassium carbonate, distilled; purity better than 99.6mole % by glc.(2) BDH; used as received; purity better than 99.6 mole % by

glc. (3) not specified.

Estimated Error:

estimated comp. 0.005 mole fraction on the binodal curve and 0.01 mole fraction for tie lines (estimated by the authors).

References:

Auxiliary Information

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. **18**, 1037 (1986).

- ²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. **35**, 411 (1943).
- ³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff,
- J. Chem. Thermodyn. 21, 1053 (1989).

Component (1) 2-Meth $C_4H_{10}O;$ [7 (2) Tetrade (3) Water; Variables: T/K = 298

Components: (1) 2-Methyl-2-propanol (tert-butanol, tert-butyl alcohol); C₄H₁₀O; [75-65-0] (2) Tetradecane (*n*-tertadecane); C₁₄H₃₀; [629-59-4] (3) Water; H₂O; [7732-18-5]

8.11. 2-Methyl-2-propanol + Water + Tetradecane

Original Measurements:

Equilib. 59, 247-62 (1990).

Compiled by:

A. Skrzecz

M. K. Silva, M. J. Michnick, and G. P. Willhite, Fluid Phase

Experimental Data

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		hydrocarbon- rich phase		water- rich phase	
25.0	298.2	0.2503	0.6653	0.1415	0.0004	0.122	0.868	0.403	0.003
		0.2533	0.6474	0.1530	0.0008	0.126	0.862	0.424	0.006
		0.2684	0.6335	0.1983	0.0024	0.135	0.853	0.497	0.016
		0.2737	0.6359	0.2038	0.0023	0.137	0.852	0.506	0.015
		0.2786	0.6313	0.2129	0.0025	0.140	0.849	0.519	0.016
		0.2819	0.6282	0.2212	0.0025	0.142	0.847	0.531	0.016
		0.2835	0.6267	0.2229	0.0027	0.143	0.846	0.533	0.017
		0.2922	0.6260	0.2447	0.0033	0.147	0.843	0.561	0.020
		0.2954	0.6230	0.2506	0.0035	0.149	0.841	0.568	0.021
		0.3003	0.6185	0.2602	0.0039	0.152	0.838	0.579	0.023
		0.3019	0.6170	0.2651	0.0039	0.153	0.837	0.585	0.023
		0.3668	0.4529	0.4110	0.0196	0.226	0.747	0.683	0.087
		0.3807	0.4308	0.4306	0.0234	0.241	0.730	0.688	0.100
		0.3974	0.4070	0.4460	0.0289	0.259	0.710	0.685	0.119
		0.4108	0.3818	0.4577	0.0348	0.277	0.689	0.679	0.138
		0.4439	0.3250	0.4834	0.0503	0.324	0.635	0.661	0.184

Comments: Data reported in the above table were adjusted by the compiler so that the sum of mass fractions equaled 1.000, the presented results were always within the authors' 95% confidence interval.

Auxiliary Information

Method/Apparatus/Procedure:

The analytical method was used. Mixtures containing approximately equal volumes of each phase, in vials capped with tefton-lined septa were vigorously shaken and then allowed to equilibrate at least 24 h in a thermostated water bath. Six to 14 glc analyses¹ with ethanol as the internal standard, were performed on each sample. Reported concentrations of each component were bounded by estimated 95% confidence interval, but the sum of mass fraction differed from 1.000.

References:

sodium.

Source and Purity of Materials:

wt %, verified by glc.

verified by glc.

Estimated Error:

(estimated by the authors).

¹M. K. Silva, Dissertation, Univ. of Kansas, Lawrence, Kansas, 1990.

(1) Fisher Scientific, certified; used as received; purity >99

(2) Aldrich, certified; used as received; purity >99 wt %,

(3) de-ionized and distilled, sodium concentration <0.025 ppm

temp. ± 0.1 °C; composition 0.3%-3.0% of the measured value

9. 1-Butanol +Water

Components:

1-Butanol (*n*-butanol, butyl alcohol, *n*-butyl alcohol);
 C₄H₁₀O; [71-36-3]
 Benzene; C₆H₆; [71-43-2]
 Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.03)

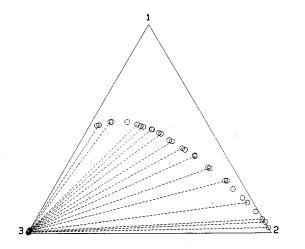
9.1. 1-Butanol + Water + Benzene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 1-butanol-benzene-water is given in Table 72.

TABLE 72. Summary of experimental data for the system 1-butanol-benzene-water

Author(s)	T/K	Type of data ^a	Ref.
Perrakis, 1925	292	sat. (10)	1
Washburn and Strandskov, 1944	298, 308	sat. (20), eq. (28)	2
Staveley et al., 1951	287-333	sat. (28)	3
Letcher et al., 1990	298	sat. (14), eq. (3)	4


^aNumber of experimental points in parentheses.

Saturation curve

The system 1-butanol–benzene–water forms a miscibility gap of type 2. Two binary systems, 1-butanol–water and benzene–water are partially miscible. The data of these systems were compiled and critically evaluated in previously published SDS volumes, Refs. 5 and 6, respectively. Data on the saturation curve of the organic–rich phase were presented in all four references, while data for the water-rich phase were presented only in Ref. 2 as saturation compositions and as a part of equilibrium data. Data of Letcher *et al.*⁴ were presented in graphical form only and therefore are not presented here as a compilation sheet. The data of Staveley *et al.*³ show the relationship of saturation composition to temperature; the data describe the region of low 1-butanol concentrations (<0.1 mole fraction) and high benzene concentrations (>0.88 mole fraction). The paper of Peraksis¹ at 292 K reports a much smaller solubility gap than other data sets at slightly higher temperatures. This paper also reports outlying results for other alcohol–benzene–water systems and therefore these data are rejected and not compiled. The other data sets are treated as tentative. The temperature of 298.2 K as a standard temperature in which various alcohol–hydrocarbon–water systems are presented, was chosen to present the behavior of the system ⁵ and $x_1'=0.488$, x_1'' = 0.0191 for 1-butanol–water. The maximum 1-butanol concentration in organic-rich phase of this ternary system was observed to be $x_1=0.532$, Ref. 2; similar values were presented as a graph in Ref. 4. The water-rich phase compositions are very closed to the side of concentration triangle diagram and are consistent with recommended binary data.^{5,6}

Phases in equilibrium

Compositions of coexisting phases in equilibrium of the ternary 1-butanol-benzene-water system were reported by Washburn and Strandskov² at 298.2 K and 308 K and cover the whole range of the miscibility gap. Graphical data of Letcher *et al.*⁴ at 298 K were not taken into account. The tie lines are consistent within each data set and are consistent with one another. Both equilibrium data sets are treated as tentative. The experimental tie lines at 298.2 K, are presented in Fig. 38.

Components: (1) 1-Butanol (n-butanol, butyl alcohol, n-butyl alcohol); $C_4H_{10}O;$ [71-36-3] (2) Benzene; $C_6H_6;$ [71-43-2] (3) Water; $H_2O;$ [7732-18-5] Variables: $T/K=298$ and 308			Original Measurements: E. R. Washburn and C. V. Strandskov, J. Phys. Chem. 48, 24 (1944).			
			Compiled by: A. Skrzecz			
		•	imental Data ong the saturation curve			
	T/K	<i>x</i> ₁	<i>x</i> ₂			
t/°C	(compiler)	(0	compiler)	w_1	w2	

0.8843

0.7976

0.7362

0.6848

0.5820

0.4991

0.4464

0.3586

0.2995

0.2640

0.2095

0.1456

0.0810

0.0294

0.0007

0.0005

0.9168

0.8640

0.8032

0.7017

0.5777

0.4881

0.4146

0.2946

0.2373

0.1475

0.0757

0.0324

0.0007

0.0004

0.0988

0.1656

0.2119

0.2546

0.3306

0.4006

0.4397

0.5108

0.5645

0.5955

0.6397

0.6960

0.7480

0.7840

0.0358

0.0237

0.0681

0.1129

0.1632

0.2379

0.3389

0.4063

0.4607

0.5626

0.6071

0.6829

0.7406

0.7747

0.0508

0.0190

0.8981

0.8263

0.7755

0.7298

0.6432

0.5658

0.5188

0.4342

0.3720

0.3343

0.2758

0.2011

0.8296

0.1025

0.1685

0.2120

0.2518

0.3152

0.3724

0.3987

0.4445

0.4789

0.4956

0.5121

0.5312

0.5323

0.5147

0.0090

0.0059

0.0708

0.1165

0.1665

0.2356

0.3243

0.3748

0.4097

0.4722

0.4892

0.5127

0.5130

0.5045

0.0129

0.0047

FIG. 38. Phase diagram of the system 1-butanol (1)-benzene (2)-water (3) at 298.2 K. O-experimental data, Ref. 2, dashed linesexperimental tie lines, Ref. 2.

References:

¹N. Perrakis, J. Chem. Phys. 22, 280 (1925). ²E. R. Washburn and C. V. Strandskov, J. Phys. Chem. 48, 241 (1944). ³L. A. K. Staveley, R. G. S. Johns, and B. C. Moore, J. Chem. Soc. 2516 (1951). ⁴T. M. Letcher, J. Sewry, and S. Radloff, S. Afr. J. Chem. 43, 56 (1990). ⁵D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989). ⁶A. F. M. Barton, ed., Solubility Data Series, Vol. 15, Alcohols with Water (Pergamon, New York, 1984).

35.0

25.0

298.15

308.15

		<i>x</i> ₁	<i>x</i> ² ₂	<i>x</i> ₁ ''	<i>x</i> ₂	w' ₁	w ₂	w''_1	w ₂	
t/°C	<i>T</i> /K (compiler)		ganic-rich phase (compiler)		water-rich phase (compiler)		organic-rich phase		water-rich phase	
25.0	298.15	0.0253	0.9747	0.0047	0.0005	0.024	0.976	0.019	0.002	
		0.0515	0.9485	0.0062	0.0005	0.049	0.951	0.025	0.002	
		0.0659	0.9297	0.0072	0.0005	0.063	0.936	0.029	0.002	
		0.2505	0.6923	0.0095	0.0007	0.252	0.734	0.038	0.003	
		0.3102	0.5914	0.0103	0.0007	0.324	0.651	0.041	0.003	
		0.3687	0.5014	0.0114	0.0010	0.397	0.569	0.045	0.004	
		0.4059	0.4312	0.0124	0.0007	0.451	0.505	0.049	0.003	
		0.4390	0.3732	0.0127	0.0010	0.500	0.448	0.050	0.004	
		0.4750	0.3105	0.0135	0.0007	0.556	0.383	0.053	0.003	
		0.4966	0.2608	0.0140	0.0007	0.598	0.331	0.055	0.003	
		0.5091	0.2216	0.0148	0.0007	0.630	0.289	0.058	0.003	
		0.5197	0.1907	0.0153	0.0007	0.657	0.254	0.060	0.003	
		0.5316	0.0758	0.0164	0.0007	0.752	0.113	0.064	0.003	
		0.5177	0.0366	0.0172	0.0005	0.779	0.058	0.067	0.002	
35.0	308.15	0.0376	0.9538	0.0042	0.0005	0.036	0.962	0.017	0.002	
		0.0890	0.8939	0.0067	0.0007	0.086	0.910	0.027	0.003	
		0.1568	0.8179	0.0077	0.0007	0.153	0.841	0.031	0.003	
		0.2128	0.7338	0.0088	0.0005	0.213	0.774	0.035	0.002	
		0.2813	0.6423	0.0095	0.0005	0.288	0.693	0.038	0.002	
		0.3309	0.5708	0.0100	0.0007	0.346	0.629	0.040	0.003	
		0.3842	0.4725	0.0111	0.0007	0.419	0.543	0.044	0.003	
		0.4340	0.3720	0.0116	0.0007	0.497	0.449	0.046	0.003	
		0.4642	0.3154	0.0124	0.0007	0.546	0.391	0.049	0.003	
		0.4826	0.2637	0.0129	0.0007	0.587	0.338	0.051	0.003	
		0.5029	0.1924	0.0134	0.0005	0.645	0.260	0.053	0.002	
		0.5135	0.1334	0.0148	0.0005	0.694	0.190	0.058	0.002	
		0.5102	0.0475	0.0166	0.0000	0.764	0.075	0.065	0.000	

Compositions of coexisting phases

Auxiliary Information

Method/Apparatus/Procedure:

Solubilities were determined by titration of weighed solutions to permanent appearance of a second phase. Observations were made with both reflected and transmitted light and against a light or dark background. The titrant was added from a pipet which ended with in fine capillary; the amount added was determined by weight. The total mass of the mixture was 18–25 g. Refractive indexes of saturated solutions were measured and plotted as a function of concentration. Tie-lines were determined by adding alcohol in varying amounts to binary water–benzene mixtures. After separation, refractive indexes of conjugate layers were determined and the concentrations were read from the plots.

r'

r'

Source and Purity of Materials:

 Eastman Kodak Co., better grade; dried by refluxing over active lime, distilled; d(25 °C,4 °C)=0.806 49.
 Coleman and Bell, reagent quality grade; dried with Na, crystallized several times; f.p. =5.45 °C.
 doubly distilled over KMnO₄.

w'

w"

...."

Estimated Error: temp. ± 0.05 °C.

Components:

Variables:

T/K = 286 - 333

 $t/^{\circ}C$

24.7

32.6

1-Butanol (*n*-butanol, butyl alcohol, *n*-butyl alcohol);
 C₄H₁₀O; [71-36-3]
 Benzene; C₆H₆; [71-43-2]
 Water; H₂O; [7732-18-5]

Original Measurements:

L. A. K. Staveley, R. G. S. Johns, and B. C. Moore, J. Chem. Soc. 2516–23 (1957).

Compiled by: A. Skrzecz

Experimental Data

Compositions along the saturation curve T/K (compiler) x1 x2 w1 297.85 0.008 02 0.988 708 0.007 633 305.75 0.008 02 0.987 635 0.007 639 315.45 0.008 02 0.983 756 0.007 662 289.95 0.014 05 0.982 584 0.013 376 308.75 0.014 05 0.977 741 0.013 406

42.3	315.45	0.008 02	0.985 953	0.007 649	0.990 954
51.5	324.65	0.008 02	0.983 756	0.007 662	0.990 429
16.8	289.95	0.014 05	0.982 584	0.013 376	0.985 845
35.6	308.75	0.014 05	0.979 741	0.013 406	0.985 154
45.1	318.25	0.014 05	0.977 894	0.013 425	0.984 704
54.2	327.35	0.014 05	0.975 570	0.013 449	0.984 136
18.8	291.95	0.026 15	0.969 185	0.024 937	0.973 982
26.8	299.95	0.026 15	0.968 104	0.024 958	0.973 709
35.0	308.15	0.026 15	0.966 882	0.024 981	0.973 401
44.0	317.15	0.026 15	0.965 339	0.025 011	0.973 010
51.9	325.05	0.026 15	0.963 580	0.025 045	0.972 564
14.8	287.95	0.0329	0.961 345	0.031 411	0.967 254
26.4	299.55	0.0329	0.960 018	0.031 443	0.966 912
34.3	307.45	0.0329	0.959 035	0.031 467	0.966 658
45.9	319.05	0.0329	0.957 355	0.031 508	0.966 223
57.9	331.05	0.0329	0.955 300	0.031 559	0.965 690
12.6	285.75	0.0561	0.935 951	0.053 716	0.944 434
24.1	297.25	0.0561	0.934 520	0.053 776	0.944 039
35.9	309.05	0.0561	0.932 89	0.053 844	0.943 587
47.2	320.35	0.0561	0.931 23	0.053 914	0.943 127
60.2	333.35	0.0561	0.929 23	0.053 998	0.942 570
13.8	286.95	0.0973	0.890 40	0.093 681	0.903 441
24.3	297.45	0.0973	0.888 51	0.093 820	0.902 855
35.6	308.75	0.0973	0.886 45	0.093 971	0.902 215
46.8	319.95	0.0973	0.884 33	0.094 127	0.901 554
59.5	332.65	0.0973	0.881 73	0.094 320	0.900 740

Auxiliary Information

Method/Apparatus/Procedure:

The synthetic method was used. Mixtures were prepared in a closed apparatus; components were degassed by repeated freezing, evacuation, and melting; a known amount of each component was introduced into a tube by condensation and the tube was sealed. The volume of each tube was about 30 mL.

Source and Purity of Materials:

(1) source not specified; dried by refluxing over freshly ignited lime, and then with aluminum amalgam, distilled. (1) source not specified; used as received.

(2) source not specified; chemically purified, crystallized, distilled, dried over phosphoric anhydride.(3) not specified.

Estimated Error:

composition <0.2%; temp. <0.2 °C.

 w_2

0.991 611

0.991 355

1-Butanol (*n*-butanol; butyl alcohol; *n*-butyl alcohol);
 C₄H₁₀O; [71-36-3]
 Cyclohexane; C₆H₁₂; [110-82-7]
 Water, H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1995.09)

9.2. 1-Butanol + Water + Cyclohexane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 1-butanol-cyclohexane-water is given in Table 73.

TABLE 73. Summary of experimental data for the system 1-butanol-cyclohexane-water

Author(s)	T/K	Type of data ^a	Ref.
Plackov and Stern, 1990	298	sat. (13), eq. (6)	1
Letcher et al., 1991	298	sat. (14), eq. (5)	2

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system 1-butanol-cyclohexane-water forms a miscibility gap of type 2. The system was studied by titration method at 298.2 K in both cases. Two binary systems, cyclohexane-water and 1-butanol-water, form miscibility gaps. The data of these binary systems were compiled and critically evaluated in previously published SDS volumes, Refs. 3 and 4, respectively. The recommended values of mutual solubility at 298 K are: for cyclohexane-water system $x_1'=1.2 \cdot 10^{-5}$ and $x_1'=3.7 \cdot 10^{-4}$, 3^{-1} and for 1-butanol-water system $x_1'=0.488$ and $x_1''=0.0191$.⁴ Letcher *et al.*² reported ternary data and the mutual solubility of the binary systems. The end points of the saturation curve were reported to be $x_2=0.999$ and pure water which is inconsistent with recommended values but within the accuracy of experimental measurements (0.001 mole fraction) stated by the authors. Binary solubility data of the 1-butanol-water system reported in Ref. 2 as $x_1=0.488$ and $x_1=0.019$ were consistent with the "best values" reported in the critical evaluation, Ref. 3. Plackov and Stern¹ reported the solubility of 1-butanol in water to be $x_1''=0.0187$. This result is also consistent with recommended data. These experimental data are consistent with one another. Compositions of the water-rich phase of the ternary system, Refs. 1 and 2, were reported as binary 1-butanol-water mixtures; the analytical methods used could not detect cyclohexane. Therefore the water-rich branch cannot be evaluated. Phase equilibrium data were included with the description of the saturation curve of the organic-rich phase and data at 298.2 K were described by the equation:

$x_1 = 0.695\ 74 + 0.046\ 03\ \ln(x_2) - 0.440\ 62x_2 - 0.259\ 44x_2^2$

The model applies to the region $0.02 < x_2 < 0.99$. The parameters were calculated by the least-squares method. The standard error of estimate was 0.0043. The points on the saturation curve calculated by the above equation for selected concentrations of cyclohexane in the mixture are presented in Table 74 and in Fig. 39 as a calculated binodal curve (solid line).

TABLE 74. Calculated compositions along the	e saturation curve at 298.2 K (organic-rich phase)
---	---------------------------------	---------------------

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.488	0.000 Ref. 4	0.3538	0.5400
0.5068	0.0200	0.3409	0.5600
0.5295	0.0400	0.3278	0.5800
0.5389	0.0600	0.3145	0.6000
0.5426	0.0800	0.3008	0.6200
0.5431	0.1000	0.2869	0.6400
0.5415	0.1200	0.2728	0.6600
0.5385	0.1400	0.2584	0.6800
0.5342	0.1600	0.2438	0.7000
0.5291	0.1800	0.2289	0.7200
0.5232	0.2000	0.2138	0.7400
0.5166	0.2200	0.1984	0.7600
0.5094	0.2400	0.1828	0.7800
0.5016	0.2600	0.1669	0.8000

0.4934	0.2800	0.1508	0.8200
0.4848	0.3000	0.1345	0.8400
0.4757	0.3200	0.1180	0.8600
0.4663	0.3400	0.1012	0.8800
0.4565	0.3600	0.0842	0.9000
0.4463	0.3800	0.0669	0.9200
0.4358	0.4000	0.0495	0.9400
0.4250	0.4200	0.0318	0.9600
0.4139	0.4400	0.0138	0.9800
0.4024	0.4600	0.0048	0.9900
0.3907	0.4800	0.0000	0.99963 Ref. 3
0.3787	0.5000	0.0000	0.000012 Ref. 3
0.3664	0.5200	0.0191	0.0000 Ref. 4

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system 1-butanol–cyclohexane–water were reported in two references at 298.2 K by similar experimental procedures. First equilibrium was reached, then the phases were separated and the composition of each was determined. Compositions of the water-rich phase in equilibrium were reported as binary 1-butanol–water mixtures; the analytical methods could not detect cyclohexane. The tie lines cover the whole area of the miscibility gap and they are consistent within each data set. Distribution of 1-butanol differs between data sets with Letcher *et al.*² reporting lower concentrations of alcohol in the water-rich phase than the data of Plackov and Stern.¹ The data become similar only in the area of low cyclohexane concentrations (x'_2 <0.090 in the organic-rich phase). Both data sets are treated as tentative. All experimental data points at 298.2 K are shown in Fig. 39.

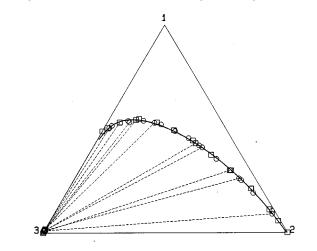


FIG. 39. Phase diagram of the system 1-butanol (1)—cyclohexane (2)—water (3) at 298.2 K. Solid line—calculated binodal curve, O—experimental results of Ref. 1, D—experimental results of Ref. 2, dashed lines—experimental tie lines, Refs. 1 and 2.

References:

¹D. Plackov and I. Stern, Fluid Phase Equilib. 57, 327 (1990).

²T. M. Letcher, P. Siswana, and S. E. Radloff, S. Afr. J. Chem. 44, 118 (1991).

³D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

⁴A. F. M. Barton, ed., Solubility Data Series, Vol. 15, Alcohols with Water (Pergamon, New York, 1984).

Components: (1) 1-Butanol (n-butanol, butyl alcohol, n-butyl alcohol); C₄H₁₀O; [71-36-3] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water; H₂O; [7732-18-5]

Original Measurements:

D. Plackov, and I. Stern, Fluid Phase Equilib. 57, 327-40 (1990).

Variables: T/K=298	Compiled by: A. Skrzecz						
Experimental Data Compositions along the saturation curve							
	T/K			<i>w</i> ₁	w2		
t/ °C	(compiler)	<i>x</i> ₁	<i>x</i> ₂	(com	piler)		
25.00	298.15	0.1028	0.8853	0.0925	0.9049		
		0.1899	0.7657	0.1775	0.8125		
		0.2526	0.6851	0.2416	0.7439		
		0.3008	0.6153	0.2950	0.6851		
		0.3553	0.5324	0.3599	0.6124		
		0.4204	0.4290	0.4453	0.5159		
		0.4552	0.3686	0.4966	0.4566		
		0.4889	0.2958	0.5574	0.3829		
		0.5204	0.2228	0.6226	0.3027		
		0.5381	0.1425	0.6921	0.2081		
		0.5371	0.0806	0.7444	0.1268		
		0.5143	0.0251	0.7855	0.0435		
		0.0187	0.0000	0.0727	0.0000		

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	U	ic-rich ase		r-rich ase	U	ich phase piler)		ch phase piler)
25.00	298.15	0.089	0.893	0.010	0.000	0.080	0.916	0.040	0.000
		0.261	0.672	0.012	0.000	0.251	0.733	0.048	0.000
		0.411	0.446	0.013	0.000	0.432	0.532	0.051	0.000
		0.528	0.192	0.015	0.000	0.649	0.268	0.059	0.000
		0.530	0.089	0.016	0.000	0.732	0.140	0.063	0.000
		0.504	0.020	0.018	0.000	0.785	0.035	0.070	0.000

Auxiliary Information

Method/Apparatus/Procedure:

experiment was repeated three times.

The titration method, as reported in Ref. 1, was used to

analytical method was used to determine liquid-liquid equilibria. The mixture was shaken for at least 20 min.

Equilibration took place in a thermostated double-walled separatory funnel of 250 mL over 2 h. The refractive index

and density of both phases were measured. The composition was calculated from the calibration data by polynomial

regression analysis. Third order polynomials were used. Each

composition, stirred magnetically and placed in a temperature

controlled double-wall Erlenmayer flask, were titrated with the

less soluble component until the appearance of turbidity. The

determine the solubility curve. Mixtures of known

Source and Purity of Materials:

(1) Zorka (Sabac), analytical grade; used as received; n =1.3972, $\rho(25 \circ C)$ =805.9 kg m⁻³, b.p. =117.4 °C. (2) Kemika (Zagreb), analytical grade; used as received; n = 1.4232, $\rho(25 \text{ °C}) = 773.6 \text{ kg m}^{-3}$, b.p. = 80.0 °C. (3) double distilled in the presence of KMnO₄.

Estimated Error:

temp. ± 0.02 °C; composition $< \pm 0.05\%$ (by mass) relative error.

References:

¹E. R. Washburn, C. L. Graham, G. B. Arnold, and L. F. Transuel, J. Am. Chem. Soc. 62, 1454 (1940).

Components:

Variables:

T/K = 298

(1) 1-Butanol (n-butanol, butyl alcohol, n-butyl alcohol); C₄H₁₀O; [71-36-3] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water; H₂O; [7732-18-5]

0.300

0.615

Original Measurements:

Compiled by:

A. Skrzecz

T. M. Letcher, P. Siswana, and S. E. Radloff, S. Afr. J. Chem. 44, 118-21 (1991).

Experimental values: Compositions along the saturation curve

t/ °C				w1	w_2
(compiler)	T/K	<i>x</i> ₁	<i>x</i> ₂	(com	piler)
25.0	298.2	0.000	0.000	0.000	0.000
		0.019	0.000	0.074	0.000
		0.488	0.000	0.797	0.000
		0.502	0.014	0.790	0.025
		0.546	0.120	0.715	0.178
		0.530	0.201	0.644	0.277
		0.493	0.289	0.564	0.375
		0.444	0.392	0.478	0.479
		0.375	0.501	0.385	0.584
		0.300	0.620	0.293	0.688
		0.212	0.746	0.198	0.792
		0.110	0.871	0.100	0.896
		0.056	0.934	0.050	0.948
		0.000	0.999	0.0000	0.9998

Compositions of coexisting phases x'_1 x'_2 x_1'' x_2'' w'_1 w'_2 w_1'' w_2'' t/ °C organic-rich water-rich organic-rich phase water-rich phase (compiler) T/Kphase phase (compiler) (compiler) 25.0 298.2 0.488 0.000 0.019 0.000 0.797 0.000 0.074 0.000 0.530 0.082 0.050 0.016 0.000 0.769 0.063 0.000 0.542 0.110 0.014 0.000 0.721 0.166 0.055 0.000 0.431 0.409 0.009 0.000 0.461 0.497 0.036 0.000

0.000

0.294

0.685

0.020

0.000

0.005

Auxiliary Information

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the titration method, as described in Ref. 1. The formation of a cloudy mixture was observed visually on shaking after addition of a known mass of the third component; syringes were precisely weighted. Tie line compositions were determined by the refractive index method, Ref. 2, and a complementary method using the Karl Fischer titration, Ref. 3. Measurements were made at pressure of 94.7 kPa.

Source and Purity of Materials:

 Merck; AR grade; dried by addition of anhydrous K₂CO₃, distilled; purity >99.9 mole % by glc.
 BDH; Gold label grade; used as received; purity >99.9 mole % by glc.

(3) not specified.

Estimated Error:

composition ± 0.005 mole fraction (binodal curve), ± 0.01 mole fraction (tie lines).

References:

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. **18**, 1037 (1986).

²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. **35**, 411 (1943).
 ³T. M. Letcher, P. Siswana, P. van der Watt, and S. Radloff, J.

Chem. Thermodyn. 21, 1053 (1989).

Components:

1-Butanol (*n*-butanol; butyl alcohol; *n*-butyl alcohol);
 C₄H₁₀O; [71-36-3]
 Hexane (*n*-hexane); C₆H₁₄; [110-54-3]
 Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1995.09)

9.3. 1-Butanol + Water + Hexane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 1-butanol-hexane-water is given in Table 75.

TABLE 75.	Summary of	experimental	data for the	system	1-butanol-1-h	exane-water
-----------	------------	--------------	--------------	--------	---------------	-------------

Author(s)	T/k	Type of data ^a	Ref.
Sugi and Katayama, 1977	298	sat. (15), eq. (7)	1
Morozov et al., 1978	333	sat. (7)	2

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system 1-butanol–hexane–water forms a miscibility gap of type 2. The system was studied by the titration method in both cases and is presented below at 298.2 K. Two binary systems, hexane–water and 1-butanol–water, form miscibility gaps. The data for these binary systems were compiled and critically evaluated in previously published SDS volumes, Refs. 3 and 4, respectively. The recommended values of mutual solubility at 298 K are: for hexane–water system $x_2'=2.3 \cdot 10^{-6}$ and $x_2'=0.999$ 53, Ref. 3, and for 1-butanol–water system $x_1'=0.488$ and $x_1''=0.0191$, Ref. 4. The solubility of water in hexane, reported by Sugi and Katayama¹ ($x_2'=0.99949$) is consistent with recommended value of Ref. 3, while mutual solubility of 1-butanol–water system $(x_1''=0.0151$ and $x_1''=0.05032$) differ a little from recommended data, Ref. 4. Both data sets measured at various temperatures are mutually consistent and are treated as tentative. Compositions of water-rich phase were reported as hexane free in Ref. 1 and therefore this branch cannot be evaluated. The organic-rich phase data of Ref. 1 (saturation and equilibrium data together) were described by the equation:

$x_1 = 0.694\ 76 + 0.046\ 08\ \ln(x_2) - 0.404\ 41x_2 - 0.283\ 19x_2^2.$

The model applies to the region $0.03 \le x_2 \le 0.86$, as data reported in Ref. 1. The parameters were calculated by the least-squares method. The standard error of estimate was 0.0017. The points on the saturation curve calculated by the above equation for selected concentrations of hexane in the mixture are presented in Table 76 and in Fig. 40 as a calculated binodal curve (solid line).

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.488	0.000 Ref. 4	0.4016	0.4800
0.5208	0.0300	0.3898	0.5000
0.5298	0.0400	0.3778	0.5200
0.5398	0.0600	0.3654	0.5400
0.5442	0.0800	0.3528	0.5600
0.5454	0.1000	0.3398	0.5800
0.5445	0.1200	0.3266	0.6000
0.5420	0.1400	0.3131	0.6200
0.5384	0.1600	0.2994	0.6400
0.5338	0.1800	0.2853	0.6600
0.5284	0.2000	0.2710	0.6800
0.5223	0.2200	0.2565	0.7000
0.5156	0.2400	0.2416	0.7200
0.5084	0.2600	0.2265	0.7400
0.5007	0.2800	0.2112	0.7600
0.4925	0.3000	0.1956	0.7800
0.4838	0.3200	0.1797	0.8000
0.4748	0.3400	0.1636	0.8200
0.4654	0.3600	0.1472	0.8400
0.4556	0.3800	0.1306	0.8600
0.4455	0.4000	0.0000	0.99953 Ref. 3
0.4350	0.4200	0.0000	2.3 · 10 ⁻⁶ Ref. 1
0.4242	0.4400	0.0191	0.0000 Ref. 4
0.4130	0.4600		

TABLE 76. Calculated compositions along the saturation curve at 298.2 K.

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system 1-butanol-hexane-water were reported only by Sugi and Katayama.¹ Concentration of hexane in the water-rich phase in equilibrium was assumed to be 0.0. The tie lines cover the whole area of the miscibility gap and are consistent within data set. Consequently they are treated as tentative. All experimental data points at 298.2 K are shown in Fig. 40.

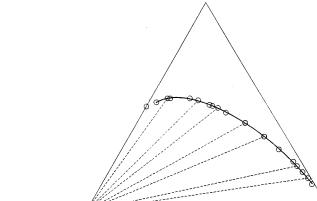


FIG. 40. Phase diagram of the system 1-butanol (1)—hexane (2)—water (3) at 298.2 K. Solid line—calculated binodal curve, O—experimental results of Ref. 1, dashed lines—experimental tie lines, Ref. 1.

1

References:

¹H. Sugi and T. Katayama, J. Chem. Eng. Jpn. 10, 400 (1977).

30

²A. V. Morozov, A. G. Sarkisov, V. B. Turovskii, and V. I. Ilyaskin, Dep. Doc. VINITI 102-78, 1 (1978).

³D. G. Shaw, ed., *Solubility Data Series*, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

⁴A. F. M. Barton, ed., Solubility Data Series, Vol. 15, Alcohols with Water (Pergamon, New York, 1984).

(1) 1-Butanol (n-butanol; butyl alcohol; n-butyl alcohol); C₄H₁₀O; [71-36-3] (2) Hexane (n-hexane); C₆H₁₄; [110-54-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

H. Sugi and T. Katayama, J. Chem. Eng. Jpn. 10, 400-2 (1977).

Variables:

T/K = 298

Compiled by: A. Skrzecz

Experimental Data Compositions along the saturation curve							
	T/K			<i>w</i> ₁	w_2		
t/°C	(compiler)	<i>x</i> ₁	<i>x</i> ₂	(con	piler)		
25.0	298.2	0.0000	0.99949	0.0000	0.9998		
		0.1255	0.8630	0.1109	0.8866		
		0.1839	0.7960	0.1650	0.8306		
		0.2337	0.7342	0.2134	0.7795		
		0.2928	0.6459	0.2766	0.7093		
		0.3548	0.5557	0.3470	0.6318		
		0.4220	0.4460	0.4339	0.5331		
		0.4709	0.3427	0.5148	0.4356		
		0.5035	0.2714	0.5763	0.3611		
		0.5091	0.2560	0.5894	0.3446		
		0.5407	0.1598	0.6765	0.2324		
		0.5413	0.0792	0.7460	0.1269		
		0.5229	0.0310	0.7835	0.0540		
		0.5032	0.0000	0.8065	0.0000		
		0.0151	0.0000	0.0593	0.0000		

Compositions of coexisting phases w''_1 w_2'' x'_1 x'_2 x_1'' x_2'' w'_1 w'_2 organic-rich water-rich T/Korganic-rich water-rich phase phase $t/^{\circ}C$ (compiler) phase phase (compiler) (compiler) 25.0 298.2 0.1540 0.8328 0.0066 0.0000 0.1368 0.8603 0.0266 0.0000 0.2118 0.7601 0.0071 0.0000 0.1921 0.8017 0.0286 0.0000 0.3547 0.5571 0.0080 0.0000 0.3464 0.6326 0.0321 0.0000 0.4207 0.4460 0.0090 0.0000 0.4330 0.5337 0.0360 0.0000 0.4942 0.2983 0.0102 0.0000 0.5544 0.3890 0.0407 0.0000 0.5311 0.1989 0.0120 0.0000 0.6414 0.2793 0.0476 0.0000 0.5413 0.0669 0.0129 0.0000 0.7578 0.1089 0.0510 0.0000

Auxiliary Information

Method/Apparatus/Procedure:

of hexane was assumed to be 0).

mixture and composition of the organic phase (concentration

Source and Purity of Materials: A combination of a titration and analytical method was used. (1) Merck Uvasol, spectrograde; used as received; densities The apparatus and experimental procedure were described in agreed within 0.0003 with literature values. Ref. 1. For glc analysis a 1.6 m column filled with Poropak-Q (2) Merck Uvasol, spectrograde; used as received; densities was used. Solubility of water in hexane was determined by the agreed within 0.0003 with literature values. Karl Fischer method. Composition of the water-rich phase was (3) de-ionized, twice distilled. determined by the gross composition of phase split liquid

Estimated Error:

Not reported.

References:

¹H. Sugi, T. Nitta, and T. Katayama, J. Chem. Eng. Jpn. 9, 12 (1976).

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

Components: (1) 1-Butanol (*n*-butanol, butyl alcohol, *n*-butyl alcohol); C₄H₁₀O; [71-36-3] (2) Hexane (*n*-hexane); C₆H₁₄; [110-54-3] (3) Water, H₂O; [7732-18-5]

Original Measurements:

A. V. Morozov, A. G. Sarkisov, V. B. Turovskii, and V. I. Ilyaskin, Dep. Doc. VINITI 102-78, 1–9 (1978).

Variables: Compiled by: T/K = 333A. Skrzecz **Experimental Data** Compositions along the saturation curve w_1 w_2 T/K(compiler) $t/^{\circ}C$ (compiler) x_2 x_1 333.2 0.7487 0.0759 60 0.4875 0.0425 0.4890 0.0469 0.7451 0.0831 0.6966 0.1742 0.5055 0.1087 0 4980 0.1840 0.6310 0 2711 0.4193 0.3607 0.4700 0.4701 0.5827 0.6784 0.2902 0.2906 0.1010 0.8340 0.0930 0.8925

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used. The composition of the organic-rich phase was presented; the composition of the water-rich phase was not investigated.

Source and Purity of Materials:

 source not specified; dried, distilled, n(20 °C,D)=1.3991, d(25 °C,4 °C)=0.8010.
 source not specified; twice distilled, n(20 °C,D)=1.3748, d(25 °C,4 °C)=0.6544.
 doubly distilled.

Estimated Error: Not reported.

Components:

1-Butanol (*n*-butanol, butyl alcohol, *n*-butyl alcohol);
 C₄H₁₀O; [71-36-3]
 Toluene (methylbenzene); C₇H₈; [108-88-3]
 Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1996.12)

9.4. 1-Butanol + Water + Toluene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 1-butanol-toluene-water is given in Table 77.

TABLE 77. Summary of experimental data for the system 1-butanol-toluene-water

Author(s)	T/k	Type of data ^a	Ref.
Fuoss, 1943	303	sat. (27), eq. (14)	1
Shanahan, 1948	293	sat. (5)	2
Letcher and Siswana, 1992	298	sat. (15). eq. (5)	3

^aNumber of experimental points in parenthescs.

Saturation curve

The system 1-butanol-toluene-water forms a miscibility gap of type 2. Two binary systems, 1-butanol-water and toluene-water, are partially miscible. The data of these systems were compiled and critically evaluated in previously published SDS volumes, Refs. 4 and 5, respectively. The recommended values of mutual solubility at 298.2 K are: $x'_2 = 0.9972$, $x''_2 = 0.000$ 104 for toluene-water system⁴ and $x'_1 = 0.488$, $x''_1 = 0.0191$ for 1-butanol-water.⁵ The saturation curve for the organic-rich phase was measured by Fuoss¹ by the conductance method; the water-rich phase was assumed to be toluene free. Shanahan² measured only the saturation curve at 293 K. Letcher and Siswana reported both saturation and equilibrium results at 298 K. Each of these reported measurements was made at a different temperature and therefore no recommendation can be made. However, all these data are consistent with one another. All three data sets are treated as tentative. The maximum 1-butanol concentration was observed in the organic-rich branch of the saturation curve at each reported temperatures, in the area of $x_1 = 0.54 \pm 0.01$ and $x_2 = 0.11 \pm 0.02$. The saturation mixtures of the water-rich branch contained undetectably small amounts of toluene; the water-rich phase was reported as a binary 1-butanol-water mixture by both Refs. 1 and 3. The temperature of 298 K was chosen for graphical presentation and therefore only experimental data of Letcher and Siswana³ are shown in Fig. 41. The binary data reported with ternary data sets are in agreement with the previously recommended binary solubility data.

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary 1-butanol-toluene-water system were reported in Refs. 1 and 3, at 303 and 298 K respectively, and cover the whole range of the miscibility gap. The tie lines are consistent within each data set, but the data sets are inconsistent with one another because tie lines cross. It is unlikely that a temperature difference of 5 K gives such large changes in phase composition e.g., water-rich phase $x_1 = 0.007$ in equilibrium with organic-rich phase $x_1 = 0.341$, $x_2 = 0.570$ at T/K = 298, Ref. 3; and water-rich phase $x_1 = 0.0063$ in equilibrium with organic-rich phase $x_1 = 0.0609$, $x_2 = 0.9291$ at T/K = 303, Ref. 1. Both equilibrium data sets are treated as tentative. The experimental tie lines at 298 K by Letcher and Siswana, Ref. 3, are presented in Fig. 41.

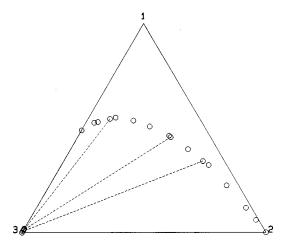


FIG. 41. Phase diagram of the system 1-butanol (1)-toluene (2)-water (3) at 298.2 K. O-experimental data, Ref. 3, dashed linesexperimental tie lines, Ref. 3.

References:

¹ R. M. Fuoss, J. Am. Chem. Soc. 65 , 78 (1943).
² C. E. A. Shanahan, Analyst (London) 73, 502 (1948).
³ T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74 , 203 (1992).
⁴ D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C ₅ to C ₇ (Pergamon,
New York, 1989).
⁵ A. F. M. Borton, ed., S. I. I. Hill, Data Social Vol. 15, Alashala with Water (Decomposed New York, 1094)

⁵A. F. M. Barton, ed., Solubility Data Series, Vol. 15, Alcohols with Water (Pergamon, New York, 1984).

Components:

Variables:

(1) 1-Butanol (n-butanol, butyl alcohol, n-butyl alcohol); $C_4H_{10}O; [71-36-3]$ (2) Toluene (methylbenzene); $C_7H_8; [108-88-3]$ (3) Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

R. M. Fuoss, J. Am. Chem. Soc. 65, 78-81 (1943).

		E Composition	curve			
	T/K	<i>x</i> ₁	<i>x</i> ₂			
t/ °C	(compiler)	(com	piler)	w_1	w2	
30.0	303.15	0.2231	0.7228	0.1966	0.7918	set A
		0.2260	0.7186	0.1995	0.7886	
		0.3874	0.4745	0.3833	0.5835	
		0.4696	0.3221	0.5101	0.4349	
		0.5131	0.2136	0.6072	0.3142	
		0.5299	0.1384	0.6771	0.2199	
		0.5280	0.0736	0.7371	0.1277	
		0.5151	0.0339	0.7724	0.0632	
		0.4834	0.0000	0.7938	0.0000	
30.0	303.15	0.0884	0.8981	0.0732	0.9241	set E
		0.2244	0.7219	0.1977	0.7908	
		0.3897	0.4701	0.3865	0.5797	
		0.4961	0.2668	0.5603	0.3746	
		0.5284	0.1444	0.6711	0.2279	
		0.5204	0.0465	0.7614	0.0846	
		0.4834	0.0000	0.7938	0.0000	
30.0	303.15	0.0884	0.8981	0.0732	0.9241	set C
		0.1742	0.7908	0.1494	0.8433	
		0.2238	0.7202	0.1976	0.7904	
		0.3008	0.6252	0.2745	0.7091	
		0.3526	0.5317	0.3385	0.6345	
		0.4525	0.3571	0.4800	0.4709	
		0.4946	0.2647	0.5607	0.3730	
		0.5166	0.2025	0.6175	0.3009	
		0.5300	0.1406	0.6753	0.2227	
		0.5323	0.1079	0.7061	0.1779	
		0.5257	0.0625	0.7473	0.1104	
		0.5016	0.0213	0.7788	0.0412	
		0.4834	0.0000	0.7938	0.0000	

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/ °C (compiler)		ph	ic-rich ase piler)	water-rich phase (compiler)		organic-rich phase		water-rich phase	
30.0	303.15	0.012	0.988	0.0021	0.0000	0.010	0.990	0.0085	0.0000
		0.025	0.975	0.0038	0.0000	0.020	0.980	0.0155	0.0000
		0.037	0.963	0.0049	0.0000	0.030	0.970	0.0200	0.0000
		0.049	0.946	0.0058	0.0000	0.040	0.959	0.0235	0.0000
		0.061	0.929	0.0063	0.0000	0.050	0.948	0.0255	0.0000
		0.119	0.861	0.0080	0.0000	0.100	0.896	0.0320	0.0000
		0.226	0.718	0.0094	0.0000	0.200	0.788	0.0375	0.0000
		0.319	0.580	0.0104	0.0000	0.300	0.677	0.0415	0.0000
		0.401	0.455	0.0115	0.0000	0.400	0.565	0.0455	0.0000
		0.463	0.332	0.0126	0.0000	0.500	0.446	0.0500	0.0000
		0.509	0.220	0.0137	0.0000	0.600	0.322	0.0540	0.0000
		0.531	0.114	0.0149	0.0000	0.700	0.186	0.0585	0.0000
		0.519	0.056	0.0162	0.0000	0.750	0.101	0.0635	0.0000
		0.484	0.000	0.0182	0.0000	0.794	0.000	0.0710	0.0000

Auxiliary Information

Method/Apparatus/Procedure:

The conductance method (set A) was used to obtain compositions along the saturation curve. Weighed mixtures of about 150 g of toluene and butanol in glass-stoppered Erlenmeyer flasks were placed in a thermostat and portions of water, containing a trace (<0.5%) of HCl, were added. As long as water dissolves in the organic phase, its conductance increases. With the appearance of an aqueous phase the conductance of the organic phase drops on further addition of water, because the aqueous phase extracts HCl from the organic phase. Set B and set C present the compositions of the saturated organic phase used for refractive index (on an Abbe refractometer) and density (in 25 mL pyknometer) measurements. The refractive index and density of binary butanol-water mixtures were measured in similar way. Solubility of toluene in the butanol-water mixture was estimated to be about 0.03% and its effect on density and refractive index of aqueous phase was assumed to be negligible. Large scale plots of composition functions for refractive index and density were used to determine the compositions of phases in equilibrium. To determine equilibrium, the mixtures of three components were shaken together and after separation samples of both phases were taken for density and refractive index measurements.

Source and Purity of Materials:

(1) source not specified, c.p. products; distilled; densities and refractive indexes were in agreement with "International Critical Tables".

(2) source not specified, c.p. product; distilled; densities and refractive indexes were in agreement with "International Critical Tables". (3) not specified.

Estimated Error:

Not reported.

Components:

Variables:

T/K = 293

(1) 1-Butanol (n-butanol, butyl alcohol, n-butyl alcohol); C₄H₁₀O; [71-36-3] (2) Toluene (methylbenzene); C₇H₈; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

A. Skrzecz

C. E. A. Shanahan, Analyst (London) 73, 502-3 (1948).

Compiled by:

Experimental Data

Compositions along the saturation curve

	<i>m</i> (17	<i>x</i> ₁	<i>x</i> ₂	<i>w</i> ₁	w_2
t/ °C	T/K (compiler)	(compiler)		(com	piler)
20	293.15	0.4950	0.0000	0.8013	0.0000
	293.15	0.5314	0.1518	0.6667	0.2367
	293.15	0.4439	0.3807	0.4625	0.4931
	293.15	0.2605	0.6710	0.2344	0.7506
	293.15	0.0000	0.9949	0.0000	0.9990

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used. Binary toluene-butanol mixtures (100 g) of known composition in 300 mL glass stoppered bottles were titrated with distilled water until a second phase appeared and persisted on prolonged vigorous shaking.

Source and Purity of Materials:

(1) source not specified. (2) source not specified. (3) not specified.

Estimated Error: Not reported.

(1) 1-Butanol (n-butanol, butyl alcohol, n-butyl alcohol); C₄H₁₀O; [71-36-3] (2) Toluene (methylbenzene); C₇H₈; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203-17 (1992).

Variables: T/K = 298

A. Skrzecz

Compiled by:

Experimental Data Compositions along the saturation curve

	T/K			w ₁	w_2
t/ °C	(compiler)	x_1	<i>x</i> ₂	(con	ipiler)
25.0	298.2	0.000	0.000	0.000	0.000
		0.019	0.000	0.074	0.000
		0.488	0.000	0.797	0.000
		0.524	0.034	0.778	0.063
		0.527	0.047	0.765	0.085
		0.548	0.110	0.714	0.178
		0.534	0.190	0.638	0.282
		0.506	0.271	0.564	0.376
		0.462	0.372	0.479	0.479
		0.398	0.481	0.388	0.583
		0.322	0.603	0.295	0.688
		0.225	0.725	0.198	0.792
		0.118	0.858	0.099	0.896
		0.060	0.928	0.049	0.948
		0.000	0.999	0.000	0.999

Compositions of coexisting phases

t/ °C		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
	t∕ °C	T/K (compiler)	U	organic-rich phase		water-rich phase		organic-rich phase (compiler)	ph
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000
		0.341	0.570	0.007	0.000	0.318	0.661	0.028	0.000
		0.455	0.382	0.012	0.000	0.469	0.490	0.048	0.000
		0.542	0.090	0.016	0.000	0.729	0.151	0.063	0.000
		0.488	0.000	0.019	0.000	0.797	0.000	0.074	0.000

Source and Purity of Materials:

Auxiliary Information

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of

a known mass of one component to a mixture of known

masses of the other two components. Precision weighing

compositions were determined by the refractive index method

reported in Ref. 2 and a complementary method using the Karl

syringes were used as described in Ref. 1. Tie line

Fischer titrations as reported in Ref. 3.

(1) Merck, AR grade; distilled, dried by the addition of anhydrous potassium carbonate, distilled; purity better than 99.6 mole % by glc. (2) BDH; used as received; purity better than 99.6 mole % by

glc.

(3) not specified.

Estimated Error:

estimated comp. 0.005 mole fraction on the binodal curve and 0.01 mole fraction for tie lines (estimated by the authors).

References:

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. 18, 1037 (1986).

²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. 35, 411 (1943).

³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff,

J. Chem. Thermodyn. 21, 1053 (1989).

Variables:

T/K = 298

Components: (1) 1-Butanol (n-butanol, butyl alcohol, n-butyl alcohol); C₄H₁₀O; [71-36-3] (2) 1-Heptene; C₇H₁₄; [592-76-7] (3) Water; H₂O; [7732-18-5]

9.5. 1-Butanol + Water + 1-Heptene

Original Measurements:

Compiled by:

A. Skrzecz

Chem. Eng. Data 39, 320-3 (1994).

T. M. Letcher, B. C. Bricknell, J. D. Sewry, and S. E. Radloff, J.

Experimental Data

		<i>x</i> ₁		w_1	w_2
t/ °C	T/K (compiler)		<i>x</i> ₂	(com	piler)
25.0	298.2	0.000	1.000	0.000	1.000
		0.142	0.834	0.113	0.882
		0.259	0.683	0.220	0.768
		0.354	0.546	0.321	0.657
		0.432	0.426	0.419	0.547
		0.491	0.317	0.513	0.439
		0.527	0.231	0.591	0.343
		0.545	0.150	0.666	0.243
		0.549	0.091	0.725	0.159
		0.532	0.038	0.775	0.073
		0.485	0.000	0.795	0.000
		0.019	0.000	0.074	0.000
		0.010	0.001	0.040	0.005

Compositions of coexisting phases									
		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t∕ °C	T/K (compiler)	organic-rich r) phase		water-rich phase		organic-rich phase (compiler)		water-rich phase (compiler)	
25.0	298.2	0.543 0.396 0.190	0.168 0.487 0.780	0.015 0.009 0.004	0.000 0.001 0.000	0.650 0.370 0.154	0.266 0.603 0.840	0.059 0.036 0.016	0.000 0.005 0.000

Auxiliary Information

Method/Apparatus/Procedure:

The experimental methods have been described in Ref. 1. No more details were reported in the paper.

Source and Purity of Materials:

(1) source not specified. (2) Aldrich; distilled; purity>99.8 mole % by glc, ρ $= 0.692 65 \text{ gc m}^{-3}$. (3) not specified.

Estimated Error: Not reported.

References: ¹T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203 (1992).

Components:

(1) 1-Butanol (n-butanol, butyl alcohol, n-butyl alcohol); C₄H₁₀O; [71-36-3] (2) Heptane (n-heptane); C₇H₁₆; [142-82-5] (3) Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

T. M. Letcher, S. Wootton, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037-42 (1986).

Variables: T/K = 298

A. Skrzecz

9.6. 1-Butanol + Water + Heptane

Experimental Data Compositions along the saturation curve

100				<i>w</i> ₁	w_2
t/ °C (compiler)	T/K	<i>x</i> ₁	<i>x</i> ₂	(com	piler)
25	298.2	0.495	0.000	0.801	0.000
		0.545	0.044	0.774	0.084
		0.525	0.209	0.602	0.324
		0.492	0.311	0.512	0.438
		0.369	0.534	0.331	0.648
		0.148	0.836	0.115	0.882
		0.014	0.000	0.055	0.000

Compositions of coexisting phases

t/ °C (compiler)		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
	organic-rich T/K phase			water-rich phase		organic-rich phase (compiler)		water-rich phase (compiler)	
25	298.2	0.525	0.131	0.011	0.000	0.668	0.225	0.044	0.000
		0.409	0.491	0.008	0.000	0.373	0.605	0.032	0.000
		0.129	0.865	0.005	0.000	0.099	0.900	0.020	0.000

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, adapted from Ref. 1, was used to determine the coexistence curve. The third component was added from a weighed gas-tight syringe to a weighed mixture of the other two components in 100 mL long-neck flask until one drop (weighing less than 0.01 g) resulted in cloudiness. The flask was immersed in a well controlled water bath and shaken continuously. Refractive indexes of these mixtures were measured at 298.3 K to ensure that separation did not take place. Tie lines were determined from mixtures of known composition in the immiscible region. The flasks were shaken well and the phases allowed to separate. Refractive indexes of samples of both phases were measured and related to compositions on the coexistence curve. Each tie line was checked to ensure that it passed through the composition of the overall mixture.

Source and Purity of Materials:

(1) Aldrich, 99 mole %; dried with magnesium metal activated with iodine, distilled.

(2) Analytical Carbo Erba, purity 99.5 mole %; purified by passing through columns containing silica gel and basic alumina. (3) de-ionized.

Estimated Error:

composition ± 0.005 mole fraction for measured points, ± 0.01 mole fraction for tie-lines extremities in the worst case (authors).

References:

¹S. W. Briggs and E. W. Comings, Ind. Eng. Chem. 35, 411 (1943).

 $\begin{array}{l} (1) \ 1\text{-Butanol} \ (n\text{-butanol}, \ butyl \ alcohol, \ n\text{-butyl} \ alcohol); \\ C_4H_{10}O; \ [71-36-3] \\ (2) \ p\text{-Xylene} \ (1,4\text{-dimethylbenzene}, \ 1,4\text{-xylene}); \ C_8H_{10}; \\ [106-42-3] \\ (3) \ Water; \ H_2O; \ [7732-18-5] \end{array}$

Variables:

T/K = 298

Compiled by: A. Skrzecz

Original Measurements:

J. Chem. Thermodyn. 21, 1053-60 (1989).

T. M. Letcher, P. M. Siswana, P. van der Watt, and S. Radloff,

9.7. 1-Butanol + Water + p-Xylene

Experimental Data Compositions along the saturation curve

							w 1		w_2
t/ °C (compiler)		T/K		<i>x</i> ₁	x_2			(compiler)	
25.0		298.2	(0.000	0.998		0.000		0.9997
			(0.070	0.915		0.051		0.947
			(0.133	0.837		0.099		0.895
			(0.248	0.691		0.198		0.790
			(0.341	0.557		0.293		0.686
			0.415		0.434		0.387		0.579
		(0.474			0.477	0.477 0.4		
		(0.514			0.561		0.374	
			(0.534	0.093		0.705		0.176
			(0.539	0.070		0.734		0.137
			(0.491	0.003		0.794		0.007
			(0.488	0.000		0.797		0.000
			(0.020	0.000		0.077		0.000
			Co	mpositions of	coexisting phas	ses			
		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w'_2
						orgar	nic-rich	wate	er-rich
t/ °C		0	ic-rich		r-rich		nase		nase
ompiler)	T/K	ph	ase	ph	ase	(con	(compiler)		npiler)
25.0	298.2	0.488	0.000	0.020	0.000	0.797	0.000	0.077	0.00
		0.542	0.140	0.015	0.000	0.661	0.245	0.059	0.00

Components: (1) 1-Butanol (n-h

 1-Butanol (*n*-butanol, butyl alcohol, *n*-butyl alcohol); C₄H₁₀O; [71-36-3]
 Mesitylene (1,3,5-trimethylbenzene); C₉H₁₂; [108-67-8]
 Water; H₂O; [7732-18-5]

Original Measurements:

T. M. Letcher and P. M. Siswana, Fluid Phase Equilib, **74**, 203–17 (1992).

Variables: T/K=298

Compiled by: A. Skrzecz

9.8. 1-Butanol + Water + Mesitylene

Experimental Data

Compositions along the saturation curve

	T/K			w_1	w_2
t/ °C	(compiler)	<i>x</i> ₁	<i>x</i> ₂	(con	piler)
25.0	298.2	0.000	0.000	0.000	0.000
		0.019	0.000	0.074	0.000
		0.488	0.000	0.797	0.000
		0.493	0.002	0.796	0.005
		0.530	0.034	0.767	0.080
		0.546	0.083	0.708	0.175
		0.541	0.143	0.637	0.273
		0.496	0.306	0.477	0.477
		0.436	0.404	0.386	0.580
		0.365	0.525	0.294	0.685
		0.269	0.664	0.198	0.791
		0.146	0.814	0.099	0.894
		0.077	0.902	0.050	0.947
		0.000	0.999	0.000	0.999

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''	
t∕ °C			ic-rich ase		water-rich phase		organic-rich phase (compiler)		water-rich phase (compiler)	
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000	
		0.361	0.530	0.007	0.000	0.290	0.689	0.028	0.000	
		0.491	0.315	0.010	0.000	0.468	0.487	0.040	0.000	
		0.545	0.070	0.015	0.000	0.725	0.151	0.059	0.000	
		0.488	0.000	0.019	0.000	0.797	0.000	0.074	0.000	

IUPAC-NIST SOLUBILITY DATA SERIES

The titration method was used to determine binodal curve. A binary mixture of known composition was titrated with the third component until cloudiness was observed. Tie line compositions were related to the coexistence curve; water was

determined by the Karl Fischer titration. The methods were

Method/Apparatus/Procedure:

described in Ref. 1.

0.399

0.170

0.000

0.463

0.788

0.998

0.010

0.005

0.000

Source and Purity of Materials:

0.364

0.130

0.000

0.000

0.000

0.000

Auxiliary Information

source not specified; used as received.
 source not specified; recrystallized three times.
 not specified.

Estimated Error:

comp. $<\!0.005$ mole fraction (estimated authors' precision on binodal curve), $<\!0.01$ mole fraction (estimated authors' precision of tie lines).

0.605

0.862

0.9997

0.040

0.020

0.000

0.000

0.000

0.000

References:

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. **18**, 1037 (1986).

Auxiliary Information

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of a known mass of one component to a mixture of known masses of the other two components. Precision weighing syringes were used as described in Ref. 1. Tie line compositions were determined by the refractive index method reported in Ref. 2 and a complementary method using the Karl Fischer titrations as reported in Ref. 3.

Source and Purity of Materials:

 Merck, AR grade; distilled, dried by the addition of anhydrous potassium carbonate, distilled; purity better than 99.6 mole % by glc.

(2) BDH; used as received; purity better than 99.6 mole % by glc.

(3) not specified.

Estimated Error:

estimated comp. 0.005 mole fraction on the binodal curve and 0.01 mole fraction for tie lines (estimated by the authors).

References:

 ¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. 18, 1037 (1986).
 ²S. W. Briggs and E. W. Comings, Ind. Eng. Chem. 35, 411

(1943).

³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff, J. Chem. Thermodyn. **21**, 1053 (1989).

10. 2-Butanol+Water

Components:

 2-Butanol (sec-butanol, sec-butyl alcohol, (RS)-2-butanol, dl-2-butanol, DL-2-butanol); C₄H₁₀; [78-92-2]
 Butane (*n*-butane); C₄H₁₀; [106-97-8]
 Water; H₂O; [7732-18-5]

Variables:

T/K = 393 - 449

Compiled By: A. Skrzecz

Original Measurements:

M. Radosz, Fluid Phase Equilib. 29, 515-23 (1986).

10.1. 2-Butanol + Water + Butane

Experimental Data

Compositions of coexisting phases

			x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C (compiler)	T/K	p/MPa	rich	carbon- phase piler)	rich	ter- phase piler)	2	carbon- phase		ter- phase
119.7	392.9	0.50	_	_	_	_	_	_	_	a
119.7	392.9	0.61	0.0580	0.0004	0.2444	0.0083	0.202	0.001	0.565	0.015
120.2	393.4	2.03	0.0169	0.0003	0.3483	0.4813	0.066	0.001	0.454	0.492
119.7	392.9	2.05	_	_	_	_	_	_	_	b
174.9	448.1	3.03	_	_	_	_	_	_	_	a
174.9	448.1	3.45	0.0473	0.0018	0.3250	0.0906	0.169	0.005	0.604	0.132
175.4	448.6	3.45	0.0106	0.0006	0.0944	0.6737	0.042	0.002	0.139	0.778
176.1	449.3	3.45	0.0150	0.0006	0.1201	0.6440	0.059	0.002	0.176	0.740
174.7	447.9	4.48	0.0258	0.0010	0.3506	0.3720	0.098	0.003	0.494	0.411
175.4	448.6	4.48	0.0108	0.0006	0.0919	0.7487	0.043	0.002	0.128	0.818
175.9	449.1	4.48	0.0137	0.0006	0.1112	0.7207	0.054	0.002	0.155	0.788
174.9	448.1	4.96	—	_	—	_	—	_	—	b

^aLower pressure end point for liquid–liquid–vapor equilibrium. ^bUpper pressure end point for liquid–vapor equilibrium.

Auxiliary Information

Method/Apparatus/Procedure:

A variable-volume circulation apparatus with two circulation pumps was used for investigation of three-phase (liquid–liquid– vapor) equilibria. A batch windowed cell (mixing and separating vessel) allows on visual observation of phase transition. Analysis were made by an on-line gas chromatograph. The experimental equipment was reported in Ref. 1.

Source and Purity of Materials: (1) Fischer Scientific Co., 99 + % purity; used as received.

(1) Instate Became Co., *S* + *N* party, used as received.
(2) Mathenson Gas Products, "Instrument Purity" 99.5 + % purity; used as received.
(3) not specified.

Estimated Error:

Not reported.

References:

¹M. Radosz, Ber. Bunsen-Ges. Phys. Chem. 88, 859 (1984).

Evaluated by:

(1) 2-Butanol (sec-butanol, sec-butyl alcohol, (RS)-2-butanol, dl-2-butanol), DL-2-butanol); C4H₁₀O; [78-92-2] (2) Benzene: C₆H₆; [71-43-2] (3) Water: H₂O; [7732-18-5] A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1997.05)

10.2. 2-Butanol + Water + Benzene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 2-butanol-benzene-water is given in Table 78.

TABLE 78. Summary of experimental data for the system 2-butanol-benzene-water

Author(s)	T/K	Type of data ^a	Ref.
Davis and Evans, 1960	303	sat. (17), eq. (10)	1
Letcher et al., 1990	298	sat. (13), eq.(4)	2

^aNumber of experimental points in parentheses.

The ternary system 2-butanol-benzene-water forms a miscibility gap of type 2. Two binary systems, benzene-water and 2-butanolwater, form miscibility gaps. These systems were compiled and critically evaluated in previously published SDS volumes, Refs. 3 and 4, respectively. These recommended values of mutual solubility at 303 K are x'_2 =0.996 40, x''_2 =0.000 418 for the benzene-water system, and x'_1 =0.318, x''_1 =0.0491 for the 2-butanol-water system. Both types of data reported by Davis and Evans¹ are consistent with one another as a binodal curve. The data of Letcher *et al.*² were reported in graphical form only and therefore are not compiled. The maximum alcohol concentration on the binodal curve at 298 K, x_1 =0.50, Ref. 2, is consistent with the results of Davis and Evans at 303 K, ¹ x_1 =0.499. The experimental tie lines at 303.2 K¹ are shown in Fig. 42 together with the experimental points along the saturation curve. ashed non,

FIG. 42. Phase diagram of the system 2-butanol (1)—benzene (2)—water (3) at 303.2 K. O—experimental results of Ref. 1, dashed lines—experimental tie lines, Ref. 1.

References:

¹J. R. Davis and L. R. Evans, J. Chem. Eng. Data 5, 401 (1960).

²T. M. Letcher, J. Sewry, and S. Radloff, S. Afr. J. Chem. 43, 56 (1990).

³D. G. Shaw, ed., *Solubility Data Series*, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

⁴A. F. M. Barton, ed., Solubility Data Series, Vol. 15, Alcohols with Water (Pergamon, New York, 1984).

Components: (1) 2-Butanol (sec-butanol, sec-butyl alcohol, (RS)-2-butanol,

dl-2-butanol, DL-2-butanol); C₄H₁₀O; [78-92-2] (2) Benzene; C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5]

Original Measurements

J. R. Davis and L. R. Evans, J. Chem. Eng. Data 5, 401-2 (1960)

Variables: Compiled by: T/K=303 A. Skrzecz									
		Experimental Data Compositions along the saturation curve							
		<i>x</i> ₁	<i>x</i> ₂						
t/°C	T/K (compiler)	(com	piler)	w_1	w_2				
30.0	303.15	0.0326	0.9627	0.0311	0.9678				
		0.0606	0.9321	0.0580	0.9403				
		0.1024	0.8793	0.0991	0.8966				
		0.1977	0.7591	0.1961	0.7935				
		0.2954	0.6537	0.2964	0.6912				
		0.3685	0.5254	0.3887	0.5841				
		0.4221	0.3999	0.4760	0.4752				
		0.4682	0.2825	0.5665	0.3602				
		0.4939	0.2083	0.6285	0.2794				
		0.4989	0.1145	0.6992	0.1691				
		0.4275	0.0348	0.7187	0.0616				
		0.0315	0.0002	0.1180	0.0006				
		0.0202	0.0001	0.0783	0.0006				
		0.0102	0.0002	0.0407	0.0007				
		0.0046	0.0003	0.0186	0.0012				
		0.3254	0.0000	0.6650	0.0000				
		0.0418	0.0000	0.1523	0.0000				

	Compositions of coexisting phases									
		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''	
t/°C (compile	T/K (compiler)	organic-rich phase (compiler)		water-rich phase (compiler)		organic-rich phase		water-rich phase		
30.0	303.15	0.0162	0.9791	0.0054	0.0002	0.0154	0.9835	0.0218	0.0008	
		0.0912	0.8918	0.0134	0.0002	0.0881	0.9079	0.0530	0.0008	
		0.1959	0.7629	0.0177	0.0001	0.1940	0.7961	0.0690	0.0006	
		0.2882	0.6578	0.0202	0.0001	0.2898	0.6970	0.0781	0.0006	
		0.3601	0.5402	0.0221	0.0001	0.3776	0.5970	0.0849	0.0004	
		0.4260	0.3910	0.0257	0.0001	0.4827	0.4669	0.0978	0.0005	
		0.4666	0.2891	0.0263	0.0001	0.5617	0.3668	0.0999	0.0005	
		0.4847	0.2010	0.0271	0.0001	0.6271	0.2741	0.1028	0.0004	
		0.4968	0.1114	0.0307	0.0001	0.7003	0.1655	0.1154	0.0005	
		0.4231	0.0318	0.0365	0.0001	0.7182	0.0569	0.1347	0.0003	

Auxiliary Information

Method/Apparatus/Procedure:

The solubilities and tie lines were measured in 25 mL glass-stoppered flasks, mounted in an air-shaker and immersed in a constant temperature bath by titration of weighed mixtures to the appearance of a permanent second phase. The third component was added by hypodermic syringe. Drops were 2-3 mg. The experimental results were accepted when the loss of vapors was smaller than 17 mg (about 0.2% of the total volume). Refractive indexes of the saturation solutions were measured at 30 °C by an Abbe 3 L refractometer and plotted as a concentration function for each component. The tie lines were determined by adding alcohol to binary benzene-water mixtures. After separation, refraction indexes were measured for each phase and the concentrations were read from prepared plots. The sum of calculated concentration was always 1.000 ± 0.001 of mass fraction.

Source and Purity of Materials:

(1) Matheson Co.; dried over Na, distilled; n(20 °C)=1.3974, $d(20 \ ^{\circ}\text{C}) = 0.8050.$

(2) source not specified; dried over Na, distilled; n(20 °C) $= 1.5001, d(20 \circ C) = 0.8795.$

(3) de-ionized, distilled from $KMnO_4$; $n(20 \circ C) = 1.3343$, $d(20 \ ^{\circ}C) = 0.9979.$

Estimated Errors:

bath temp. ±0.05 °C (solubility), ±0.02 °C (tie line).

1202

(1) 2-Butanol (sec-butanol; sec-butyl alcohol; (RS)-2-butanol; dl-2-butanol); DL-2-butanol); C₄H₁₀O; [78-92-2] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1995.09)

10.3. 2-Butanol + Water + Cyclohexane

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 2-butanol-cyclohexane-water is given in Table 79.

TABLE 79. Summary of experimental data for the system 2-butanol-cyclohexane-water

Author(s)	T/K	Type of data ^a	Ref.
Plackov and Stern, 1990	298	sat. (13), eq. (8)	1
Letcher et al., 1991	298	sat. (16), eq. (5)	2

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system 2-butanol-cyclohexane-water forms a miscibility gap of type 2. The system was studied by titration method at 298.2 K by both investigators. Two binary systems cyclohexane-water and 2-butanol-water form miscibility gaps. The data for these binary systems were compiled and critically evaluated in previously published SDS volumes, Refs. 3 and 4, respectively. The recommended values of mutual solubility at 298 K are: for cyclohexane-water system $x_2^{\prime}=1.2 \cdot 10^{-5}$ and $x_3^{\prime}=3.7 \cdot 10^{-4}$, Ref. 3, and for 2-butanol-water system $x_1^{\prime}=0.322$ and $x_1^{\prime}=0.051$, Ref. 4. Letcher *et al.*² reported ternary data and mutual solubility for binary systems. The end points of saturation curve were reported to be $x_2^{\prime}=0.999$ and pure water. This is inconsistent with the recommended values but within the accuracy of experimental measurements (0.001 mole fraction) stated by the authors. Binary solubility data of the 2-butanol-water system reported in Ref. 2 as $x_1^{\prime}=0.312$ and $x_1^{\prime}=0.051$ are consistent with the "best values" reported in the critical evaluation, Ref. 3. Plackov and Stern¹ reported only solubility of 2-butanol in water, $x_1^{\prime}=0.0544$. This result is also consistent with recommended data. These experimental data are consistent with one another.

Compositions of the water-rich phase of the ternary system, Refs. 1 and 2, were reported as binary 2-butanol-water mixtures. The analytical methods could not detect cyclohexane. Therefore the water-rich branch could not be evaluated. Phase equilibrium data were used to construct the saturation curve for the organic-rich phase. Data for 298.2 K were described by the equation:

 $x_1 = 0.683 \ 11 + 0.066 \ 20 \ \ln(x_2) - 0.341 \ 40x_2 - 0.349 \ 78x_2^2$

The model describes the region $0.01 < x_2 < 0.96$. The parameters were calculated by the least-squares method. The standard error of estimate was 0.0061. The points on the saturation curve calculated by this equation for selected concentrations of cyclohexane in the mixture are presented in Table 80 and in Fig. 43 as a calculated binodal curve (solid line).

TABLE 80. Calculated compositions along the saturation curve at 298.2 K

<i>x</i> ₁	x_2	x_1	<i>x</i> ₂
0.322	0.000 Ref. 4	0.3677	0.5200
0.3748	0.0100	0.3560	0.5400
0.4172	0.0200	0.3438	0.5600
0.4558	0.0400	0.3314	0.5800
0.4751	0.0600	0.3185	0.6000
).4863	0.0800	0.3053	0.6200
0.4930	0.1000	0.2918	0.6400
0.4967	0.1200	0.2779	0.6600
0.4983	0.1400	0.2637	0.6800
0.4982	0.1600	0.2491	0.7000
0.4968	0.1800	0.2342	0.7200
0.4943	0.2000	0.2190	0.7400
0.4908	0.2200	0.2034	0.7600

0.4865	0.2400	0.1876	0.7800
0.4815	0.2600	0.1714	0.8000
0.4758	0.2800	0.1548	0.8200
0.4695	0.3000	0.1380	0.8400
0.4626	0.3200	0.1208	0.8600
0.4552	0.3400	0.1033	0.8800
0.4472	0.3600	0.0855	0.9000
0.4388	0.3800	0.0674	0.9200
0.4299	0.4000	0.0490	0.9400
0.4206	0.4200	0.0303	0.9600
0.4108	0.4400	0.0000	0.99963 Ref. 3
0.4006	0.4600	0.0000	0.000012 Ref. 3
0.3901	0.4800	0.051	0.0000 Ref. 4
0.3791	0.5000		

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system 2-butanol-cyclohexane-water were reported in two references at 298.2 K using similar experimental procedures. First equilibrium was reached, then the phases were separated and the composition of each phase was determined. Compositions of water-rich phase in equilibrium were reported as binary 2-butanol-water mixtures; the analytical methods could not detect cyclohexane. The tie lines cover the whole area of the miscibility gap and are consistent within each data set. Distribution of 2-butanol differs between data sets with Letcher *et al.*² reporting lower concentrations of alcohol in the water-rich phase than Plackov and Stern.¹ Both data sets are treated as tentative. All experimental data points at 298.2 K are reported in Fig. 43.

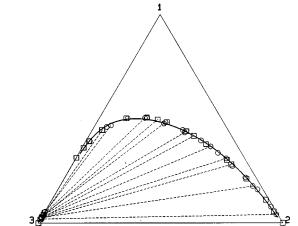


FIG. 43. Phase diagram of the system 2-butanol (1)—cyclohexane (2)—water (3) at 298.2 K. Solid line—calculated binodal curve, O—experimental results of Ref. 1, D—experimental results of Ref. 2, dashed lines—experimental tie lines, Refs. 1 and 2.

References:

¹D. Plackov and I. Stern, Fluid Phase Equilib 57, 327 (1990).

²T. M. Letcher, P. Siswana, and S. E. Radloff, S. Afr. J. Chem. 44, 118 (1991).

³D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

⁴A. F. M. Barton, ed., Solubility Data Series, Vol. 15, Alcohols with Water (Pergamon, New York, 1984).

<u>ب</u>

Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

Components:

(1) 2-Butanol (sec-butanol, sec-butyl alcohol (RS)-2-butanol, dl-2-butanol, DL-2-butanol); C₄H₁₀O; [78-92-2] (2) Cyclohexane; C₆H₁₂; [110-82-7] (3) Water; H₂O; [7732-18-5]

Original Measurements:

D. Plackov and I. Stern, Fluid Phase Equilib. 57, 327-40 (1990).

Variables: T/K=298										
Experimental Data Compositions along the saturation curve										
	T/K			<i>w</i> ₁	w2					
t/°C	(compiler)	x_1	<i>x</i> ₂	(compiler)						
25.00	298.15	0.0779	0.9118	0.0698	0.9279					
		0.1610	0.8160	0.1473	0.8476					
		0.2181	0.7386	0.2044	0.7858					
		0.2727	0.6585	0.2629	0.7209					
		0.3354	0.5677	0.3342	0.6423					
		0.3943	0.4688	0.4108	0.5545					
		0.4450	0.3680	0.4899	0.4600					
		0.4815	0.2793	0.5620	0.3701					
		0.5025	0.1943	0.6306	0.2769					
		0.4998	0.1160	0.6895	0.1817					
		0.4591	0.0500	0.7228	0.0894					
		0.3916	0.0152	0.7081	0.0312					
		0.0544	0.0000	0.1914	0.0000					

Compositions of coexisting phases

t/°C	T/K (compiler)	x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
		organic-rich phase		water-rich phase		organic-rich phase (compiler)		water-rich phase (compiler)	
25.00	298.15	0.041	0.952	0.018	0.000	0.036	0.962	0.070	0.000
		0.177	0.789	0.024	0.000	0.164	0.829	0.092	0.000
		0.309	0.615	0.026	0.000	0.301	0.681	0.099	0.000
		0.366	0.522	0.027	0.000	0.371	0.601	0.102	0.000
		0.433	0.382	0.036	0.000	0.475	0.476	0.133	0.000
		0.475	0.276	0.038	0.000	0.559	0.369	0.140	0.000
		0.502	0.185	0.039	0.000	0.637	0.266	0.143	0.000
		0.466	0.064	0.042	0.000	0.714	0.111	0.153	0.000

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, as reported in Ref. 1, was used to determine the solubility curve. Mixtures of known composition, mixed by means of a magnetic stirrer and placed in the thermostated double-wall Erlenmayer flask, were titrated with the less soluble component until the appearance of turbidity. The analytical method was used to determine liquid-liquid equilibria. The mixture was shaken for at least 20 min. Equilibration took place in a thermostated double-walled separatory funnel of 250 mL over 2 h. The refractive index and density of both phases were measured. The composition was calculated numerically from the calibration data by polynomial regression analysis. The third order polynomials were used. Each experiment was repeated three times.

Source and Purity of Materials:

(1) Merck, analytical grade; used as received; n = 1.3943, $\rho(25 \text{ °C}) = 802.5 \text{ kg m}^{-3}, \text{ b.p.} = 99.3 \text{ °C}.$ (2) Kemika (Zagreb), analytical grade; used as received; n =1.4232, $\rho(25 \text{ °C})=773.6 \text{ kg m}^{-3}$, b.p. = 80.0 °C. (3) double distilled in the presence of KMnO₄.

Estimated Error:

temp $\pm\,0.02$ °C; composition $<\pm\,0.05\%$ (by mass) relative error.

References:

¹E. R. Washburn, C. L. Graham, G. B. Arnold, and L. F. Transuel, J. Am. Chem. Soc. 62, 1454 (1940).

(1) 2-Butanol (sec-butanol, sec-butyl alcohol, (RS)-2-butanol, dl-2-butanol, DL-2-butanol); C₄H₁₀O; [78-92-2] (2) Cyclohexane; C₆H₁₂; [110-82-7]

Original Measurements:

T. M. Letcher, P. Siswana, and S. E. Radloff, S. Afr. J. Chem. 44, 118-21 (1991).

(3) Water; H₂O; [7732-18-5]

Variables: T/K = 298

 $t/^{\circ}C$

(compiler)

25.0

Compiled by: A. Skrzecz

		TI. DRIZCEZ		
		erimental Data along the saturation cu	rve	
			<i>w</i> ₁	w2
T/K	x_1	<i>x</i> ₂		(compiler)
298.2	2 0.000	0.000	0.000	0.000
	0.051	0.000	0.181	0.000
	0.312	0.000	0.651	0.000
	0.360	0.006	0.691	0.013
	0.391	0.013	0.710	0.027
	0.445	0.038	0.725	0.070
	0.500	0.110	0.695	0.174
	0 504	0.191	0.634	0.273

0.445	0.038	0.725	0.070
0.500	0.110	0.695	0.174
0.504	0.191	0.634	0.273
0.482	0.284	0.560	0.374
0.438	0.386	0.477	0.477
0.377	0.498	0.388	0.581
0.302	0.621	0.294	0.687
0.212	0.746	0.198	0.792
0.111	0.875	0.100	0.897
0.055	0.935	0.049	0.949
0.000	0.999	0.0000	0.9998

		x'_1	Co x ₂ '	mpositions of x_1''	coexisting ph x_2''	ases w ₁ '	w2'	w_1''	w_2''
t/°C (compiler)	T/K	organi	ic-rich ase		r-rich ase	ph	ic-rich ase piler)	ph	r-rich ase ipiler)
25.0	298.2	0.312	0.000	0.051	0.000	0.651	0.000	0.181	0.000
		0.445	0.040	0.042	0.000	0.723	0.074	0.153	0.000
		0.495	0.241	0.030	0.000	0.594	0.329	0.113	0.000
		0.416	0.428	0.025	0.000	0.443	0.517	0.095	0.000
		0.280	0.650	0.018	0.000	0.271	0.713	0.070	0.000

Source and Purity of Materials The points on the binodal curve were determined by the

Auxiliary Information

Method/Appratus/Procedure:

titration method, as described in Ref. 1. The formation of a

addition of a known mass of the third component; syringes

determined by the refractive index method, Ref. 2, and a

complementary method using the Karl Fischer titration, Ref. 3.

cloudy mixture was observed visually on shaking after

were precisely weighed. Tie line compositions were

Measurements were made at pressure of 94.7 kPa.

(1) Merck; AR grade; dried by addition of anhydrous K2CO3, distilled; purity >99.9 mole % by glc. (2) BDH; Gold label grade; used as received; purity >99.9 mole % by glc. (3) not specified.

Estimated Error:

composition ± 0.005 mole fraction (binodal curve), ± 0.01 mole fraction (tie lines).

References:

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037 (1986). ²S. W. Briggs, and E. W. Comings, Ind. Eng. Chem. 35, 411 (1943). ³T. M. Letcher, P. Siswana, P. van der Watt, and S. Radloff, J. Chem. Thermodyn. 21, 1053 (1989).

 2-Butanol (sec-butanol, sec-butyl alcohol, (RS)-2-butanol, dl-2-butanol); C₄H₁₀O; [78-92-2]
 Toluene (methylbenzene); C₇H₈; [108-88-3]
 Water, H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1996.06)

10.4. 2-Butanol + Water + Toluene

Critical Evaluation:

A survey of reported compositions along the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 2-butanol-toluene-water is given in Table 81.

TABLE 81. Summary of experimental data for the system 2-butanol-toluene-water

Author(s)	T/K	Type of data ^a	Ref.
Evans and Lin, 1968	298	sol. (21), eq. (5)	1
Letcher and Siswana, 1992	298	sol. (15), eq. (4)	2

^aNumber of experimental points in parentheses.

Saturation curve

The system 2-butanol-toluene–water forms a miscibility gap of type 2. Two binary systems, 2-butanol–water and toluene–water are partially miscible. The data of these systems were compiled and critically evaluated in previously published SDS volumes, Refs. 3 and 4, respectively. The recommended values of mutual solubility of toluene–water system at 298.2 K are: $x_2'=0.9972$ and $x_2''=0.000$ 104 (Ref. 3). The mutual solubility of 2-butanol–water system at 298.2 K calculated on the basis of Ref. 4 are: $x_1'=0.322$ and $x_1''=0.0510$. Letcher and Siswana² report at 298.2 K mutual solubility of the binary systems toluene–water and 2-butanol–water as $x_2'=0.999$, $x_2''=0.000$ and $x_1'=0.312$, $x_1''=0.010$ mole fraction). The experimental data on saturation curve were reported in Refs. 1 and 2 at the same temperature and are consistent with one another. Data presented by Evans and Lin¹ show the miscibility gap slightly to be smaller (of about 0.02–0.03 mole fraction of water) than found by Letcher and Siswana,² especially in the region of $0.25 < x_2 < 0.75$. The maximum 2-butanol concentration observed on the organic-rich branch of the saturation curve at 298 K is $x_1 = 0.489 \pm 0.005$. The data for the organic-rich phase of the saturation curve, 1.2 (points reported as phases in equilibrium were included) were used to construct the equation:

$x_1 = 0.618\ 84 + 0.053\ 26\ \ln(x_2) - 0.183\ 05x_2 - 0.452\ 04x_2^2$

The model applies to the region $0.004 \le x_2 \le 0.94$. The parameters were calculated by the least-squares method and the standard error of estimate was 0.0083. There was an error (presumably a typographic) in Ref. 2 at the point $x_1 = 0.120 x_2 = 0.885$ on saturation curve (the sum of compositions was greater than 1.0) and this experimental point was rejected. Selected points on the saturation curve, calculated by the above equation together with the "best" values of Refs. 3 and 4 are presented in Table 82 and as solid line in Fig. 44. The water-rich branch of saturation curve contains small amount of toluene ($x_2 \le 0.0001$) and toluene concentration was not reported in either paper. These experimental points were not described by any model.

TABLE 82. Calculated compositions along the saturation curve at 298.2 k (organic-rich phase	TABLE 82.	Calculated (compositions	along the	saturation	curve at	298.2 k (e	organic-rich	phase))
---	-----------	--------------	--------------	-----------	------------	----------	------------	--------------	--------	---

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂
0.312	0.0000 Ref. 4	0.3774	0.5000
0.3717	0.0100	0.3666	0.5200
0.4066	0.0200	0.3554	0.5400
0.4394	0.0400	0.3437	0.5600
0.4564	0.0600	0.3316	0.5800
0.4668	0.0800	0.3191	0.6000
0.4734	0.1000	0.3061	0.6200
0.4774	0.1200	0.2928	0.6400
0.4796	0.1400	0.2790	0.6600
0.4804	0.1600	0.2648	0.6800
0.4799	0.1800	0.2502	0.7000
0.4784	0.2000	0.2198	0.7400

0.3877	0.4800	0.1510	0.0000 Ref. 4
0.3976	0.4600	0.0000	0.000 104 Ref. 3
0.4071	0.4400	0.0000	0.9972 Ref. 3
0.4160	0.4200	0.0441	0.9400
0.4245	0.4000	0.0634	0.9200
0.4325	0.3800	0.0823	0.9000
0.4399	0.3600	0.1009	0.8800
0.4469	0.3400	0.1191	0.8600
0.4533	0.3200	0.1368	0.8400
0.4591	0.3000	0.1542	0.8200
0.4644	0.2800	0.1712	0.8000
0.4689	0.2600	0.1878	0.7800
0.4729	0.2400	0.2040	0.7600
0.4761	0.2200	0.2198	0.7400

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system 2-butanol-toluene-water were reported in both references at 298.2 K and cover the whole range of the miscibility gap. The compositions of phases in equilibrium reported in Refs. 1 and 2 are consistent with one another. Both data sets are considered tentative. All experimental tie lines are presented in Fig. 44 together with experimental points forming the solubility curve.

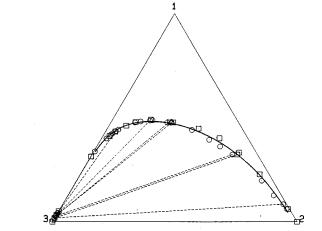


FIG. 44. Phase diagram of the system 2-butanol (1)—toluene (2)—water (3) at 298.2 K. Solid line—recommended saturation curve, O—experimental data, Ref. 1, □—experimental data, Ref. 2, dashed lines—experimental tie lines, Refs. 1 and 2.

Referencs:

¹L. R. Evans and J. S. Lin, J. Chem. Eng. Data 13, 14 (1968).

²T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203 (1992).

³D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

⁴A. F. M. Barton, ed., Solubility Data Series, Vol. 15, Alcohols with Water (Pergamon, New York, 1984).

 $\begin{array}{l} (1) \ 2-Butanol \ (sec-butanol, sec-butyl alcohol, \ (RS)-2-butanol, \\ dl-2-butanol), \ C_{4}H_{10}O; \ [78-92-2] \\ (2) \ Toluene \ (methylbenzene); \ C_{7}H_{5}; \ [108-88-3] \\ (3) \ Water, \ H_{2}O; \ [7732-18-5] \end{array}$

Original Measurements:

L. R. Evans and J.-S. Lin, J. Chem. Eng. Data 13, 14-6 (1968).

Variables:

T/K = 295

Compiled by: A. Skrzecz

		Experime Compositions along	ental Data the saturation curve		
	T/K	<i>x</i> ₁	<i>x</i> ₂		
t/°C	(compiler)	(com	piler)	w_1	w_2
25.0	298.15	0.0617	0.9263	0.0507	0.9469
		0.1268	0.8407	0.1075	0.8858
		0.1970	0.7571	0.1714	0.8189
		0.3221	0.5756	0.3032	0.6734
		0.3606	0.5057	0.3529	0.6153
		0.3928	0.4453	0.3985	0.5616
		0.4395	0.3511	0.4742	0.4709
		0.4744	0.2468	0.5588	0.3614
		0.4757	0.2307	0.5705	0.3439
		0.4862	0.1656	0.6260	0.2650
		0.4758	0.0982	0.6784	0.1740
		0.4412	0.0472	0.7068	0.0940
		0.4226	0.0319	0.7104	0.0667
		0.4170	0.0289	0.7097	0.0611
		0.3985	0.0197	0.7061	0.0434
		0.3364	0.0036	0.6710	0.0090
		0.0424	0.0000	0.1541	0.0000
		0.0276	0.0000	0.1044	0.0000
		0.0179	0.0000	0.0696	0.0000
		0.0062	0.0000	0.0251	0.0000

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	ph	ic-rich ase piler)	ph	r-rich ase piler)		ic-rich ase		r-rich ase
25.0	298.15	0.0845	0.9006	0.0166	0.0000	0.0700	0.9270	0.0650	0.0000
		0.3222	0.5747	0.0254	0.0000	0.3035	0.6729	0.0970	0.0000
		0.4748	0.2499	0.0304	0.0000	0.5570	0.3645	0.1141	0.0001
		0.4848	0.1551	0.0331	0.0000	0.6336	0.2520	0.1235	0.0000
		0.4340	0.0401	0.0398	0.0000	0.7095	0.0815	0.1457	0.0000

Auxiliary Information

Method/Apparatus/Procedure:

Solubilities and tie lines were measured in 50 mL glass-stoppered flasks, mounted in a motor-driven shaker and immersed in a constant temperature bath. To obtain solubilities, the weighed mixtures were titrated to the appearance of a permanent second phase. The third component was added by hypodermic syringe in drops of about 4 mg. Equilibrium was reached when the second phase persisted after 1 h shaking in the bath. The evaporation loss was about 20 mg (0.1%-0.2% of the total solution). Refractive indexes of the saturated solutions were measured at 20 °C with a Bausch and Lomb 3 L refractometer and plotted as a concentration function for each component. The tie lines were determined by shaking three-component mixtures of known composition in a constant temperature bath for 6 h. After separation, refractive indexes were measured for each phase and the concentrations were read from prepared plots. The sum of calculated concentrations was always 1.000±0.001 when expressed as mass fraction. The procedure was the same as in Ref. 1.

Source and Purity of Materials:

(1) Eastman Kodak. Co.; treated with MgSO₄, dried over Na, distilled; n(20 °C)=1.3973, d(20 °C)=0.8059.
(2) J. T. Barker Chemical Co.; dried over Na, distilled; n(20 °C)=1.4963, d(20 °C)=0.8667.
(3) de-ionized, distilled from KMnO₄; n(20 °C)=1.3324, d(20 °C)=0.9983.

Estimated Error:

bath temp. $\pm\,0.05$ °C (solubility).

References:

¹J. R. Davis and L. R. Evans, J. Chem. Eng. Data 5, 401 (1960).

Components:

(1) 2- Butanol (sec-butanol, sec-butyl alcohol, (RS)-2-butanol, dl-2-butanol, DL-2-butanol);C₄H₁₀O;[78-92-2] (2) Toluene (methylbenzene); C₇H₈; [108-88-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

T. M. Letcher, and P. M. Siswana, Fluid Phase Equilib. 74, 203-17 (1992).

Variables: T/K=298	Compiled by: A. Skrzecz								
Experimental Data Compositions along the saturation curve									
	T (V			<i>w</i> ₁	w ₂				
t/°C	T/K (compiler)	<i>x</i> ₁	<i>x</i> ₂	(com	piler)				
25.0	298.2	0.000	0.000	0.000	0.000				
		0.051	0.000	0.181	0.000				
		0.312	0.000	0.651	0.000				
		0.410	0.027	0.706	0.058				
		0.432	0.039	0.709	0.080				
		0.460	0.070	0.696	0.132				
		0.478	0.100	0.678	0.176				
		0.489	0.157	0.635	0.253				
		0.476	0.256	0.554	0.370				
		0.446	0.375	0.467	0.488				
		0.400	0.483	0.389	0.584				
		0.331	0.598	0.303	0.681				
		0.227	0.734	0.198	0.794				
		0.061	0.933	0.050	0.949				

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w2'	w_1''	w_2''
t/°C	<i>T</i> /K (compiler)	U	ic-rich ase		r-rich ase	pl	nic-rich nase npiler)	ph	r-rich ase piler)
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000
		0.322	0.595	0.018	0.000	0.298	0.684	0.070	0.000
		0.480	0.240	0.033	0.000	0.567	0.352	0.123	0.000
		0.312	0.000	0.051	0.000	0.651	0.000	0.181	0.000

Auxiliary Information

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of a known mass of one component to a mixture of known masses of the other two components. Precision weighing syringes were used as described in Ref. 1. Tie line compositions were determined by the refractive index method reported in Ref. 2 and a complementary method using the Karl Fischer titrations as reported in Ref. 3.

Estimated Error:

Source and Purity of Materials:

estimated comp. 0.005 mole fraction on the binodal curve and 0.01 mole fraction for tie lines (estimated by the authors).

(1) Merck, AR grade; distilled, dried by the addition of

anhydrous potassium carbonate, distilled; purity better than 99.6

(2) BDH; used as received; purity better than 99.6 mole % by

References:

mole % by glc.

(3) not specified.

glc.

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. 18, 1037 (1986).

²S. W. Briggs and E. W Comings, Ind. Eng. Chem 35, 411 (1943).

³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff, J. Chem. Thermodyn. 21, 1053 (1989).

(1) 2-Butanol (sec-butanol, sec-butyl alcohol, (RS)-2-butanol, dl-2-butanol, DL-2 butanol); C₄H₁₀O; [78-92-2] (2) 1-Heptene; C₇H₁₄; [592-76-7] (3) Water; H₂O; [7732-18-5]

Variables: T/K = 298

Compiled by: A. Skrzecz

Original Measurements:

Chem. Eng. Data 39, 320-3 (1994).

T. M. Letcher, B. C. Bricknell, J. D. Sewry, and S. E. Radloff, J.

10.5. 2-Butanol + Water + 1-Heptene

Experimental Data

Compositions along the saturation curve

	T/K			<i>w</i> ₁	w2
С	(compiler)	x_1	<i>x</i> ₂	(compiler)	
25.0	298.2	0.000	1.000	0.000	1.000
		0.142	0.828	0.114	0.880
		0.255	0.683	0.217	0.770
		0.391	0.489	0.366	0.607
		0.430	0.426	0.418	0.548
		0.485	0.323	0.505	0.446
		0.520	0.231	0.587	0.345
		0.521	0.147	0.654	0.245
		0.498	0.082	0.703	0.153
		0.452	0.037	0.723	0.078
		0.322	0.000	0.661	0.000
		0.054	0.000	0.190	0.000
		0.023	0.001	0.088	0.005
		0.000	0.000	0.000	0.000

Compositions of coexisting phases										
		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''	
t/°C	T/K C (compiler)	U	organic-rich water-rich phase phase			r			water-rich phase (compiler)	
25.0	298.2	0.527	0.183	0.042	0.000	0.627	0.289	0.153	0.000	
		0.400	0.478	0.027	0.001	0.376	0.596	0.102	0.005	
		0.170	0.785	0.011	0.000	0.139	0.852	0.044	0.000	

Auxiliary Information

Method/Apparatus/Procedure:

The experimental methods have been described in Ref. 1. No more details were reported in the paper.

Source and Purity of Materials:

(1) source not specified. (2) Aldrich; distilled; purity >99.8 mole % by glc, ρ $= 0.692 65 \text{ g cm}^{-3}$. (3) not specified.

Estimated Error: Not reported.

References:

¹T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203 (1992).

Components:

Variables:

T/K = 298

(1) 2-Butanol (sec-butanol, sec-butyl alcohol, (RS)-2-butanol, dl-2-butanol, DL-2-butanol); C₄H₁₀O; [78-92-2] (2) Heptane (*n*-heptane); C₇H₁₆; [142-82-5] (3) Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

A. Skrzecz

T. M. Letcher, S. Wootton, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037-42 (1986).

10.6. 2-Butanol + Water + Heptane

Experimental Data Compositions along the saturation curve

∕°C				w1	w2
(compiler)	T/K	x_1	<i>x</i> ₂	(com	piler)
25	298.2	0.348	0.000	0.687	0.000
		0.443	0.028	0.727	0.062
		0.513	0.143	0.649	0.245
		0.484	0.305	0.511	0.435
		0.367	0.528	0.332	0.645
		0.159	0.825	0.124	0.873
		0.057	0.000	0.199	0.000

Compositions of coexisting phases x'_1 x'_2 x_1'' w'_1 w'_2 w''_1 w_2'' x_2'' organic-rich water-rich $t/^{\circ}C$ organic-rich water-rich phase nhase (compiler) T/Kphase phase (compiler) (compiler) 0.374 0.505 25 298.2 0.453 0.030 0.000 0.453 0.113 0.000 0.224 0.736 0.025 0.000 0.182 0.810 0.095 0.000 0.127 0.862 0.017 0.000 0.098 0.900 0.066 0.000

Auxiliatry Information

Method/Apparatus/Procedure:

The titration method, adapted from Ref. 1, was used to determine the coexistence curve. The third component was added from a weighed gas-tight syringe to a weighed mixture of the other two components in 100 mL long-neck flask until one drop (weighing less than 0.01 g) resulted in cloudiness. The flask was immersed in a well controlled water bath and shaken continuously. Refractive indexes of these mixtures were measured at 298.3 K to ensure that separation did not take place. Tie lines were determined from mixtures of known composition in the immiscible region. The flasks were shaken well and the phases allowed to separate. Refractive indexes of samples of both phases were measured and related to compositions on the coexistence curve. Each tie line was checked to ensure that it passed through the composition of the overall mixture.

Source and Purity of Materials:

(1) Aldrich, Gold label, 99.5 mole %; dried with anhydrous potassium carbonate, filtrated, distilled.

(2) Analytical Carbo Erba, purity 99.5 mole %; purified by passing through columns containing silica gel and basic alumina. (3) de-ionized.

Estimated Error:

composition ± 0.005 mole fraction for measured points, ± 0.01 mole fraction for tie-lines extremities in the worst case (authors).

References:

¹S. W. Brigg, and E. W. Comings, Ind. Eng. Chem. 35, 441 (1993).

Variables:

T/K = 298

(1) 2-Butanol (sec-butanol, sec-butyl alcohol, (RS)-2-butanol, dl-2-butanol, DL-2-butanol); C₄H₁₀O; [78-92-2] (2) p-Xylene (1,4-dimethylbenzene, 1,4-xylene); C₈H₁₀; [106-42-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

T. M. Letcher, P. M. Siswana, P. van der Watt, and S. Radloff, J. Chem. Thermodyn. 21, 1053-60 (1989).

 w'_2

 w''_1

 w_2''

Compiled by:

A. Skrzecz

10.7. 2-Butanol + Water + p-Xylene

Experimental Data

Compositions	along	the	saturation	curve

				w_1	w_2
t/°C (compiler)	T/K	<i>x</i> ₁	<i>x</i> ₂	(con	piler)
25.0	298.2	0.000	0.998	0.000	0.9997
		0.070	0.916	0.051	0.947
		0.134	0.842	0.100	0.896
		0.248	0.693	0.198	0.791
		0.341	0.555	0.294	0.685
		0.412	0.431	0.386	0.578
		0.462	0.322	0.474	0.473
		0.494	0.231	0.554	0.371
		0.503	0.150	0.627	0.268
		0.486	0.085	0.683	0.171
		0.414	0.021	0.712	0.052
		0.360	0.006	0.689	0.016
		0.330	0.002	0.666	0.006
		0.322	0.000	0.661	0.000
		0.051	0.000	0.181	0.000

Compositions of coexisting phases x'_1 x'_2 x_1'' x_2'' w'_1

t/°C	T/K	U	ic-rich ase		r-rich ase	U	nic-rich nase		r-rich ase
25.0	298.2	0.322	0.000	0.051	0.000	0.661	0.000	0.181	0.000
		0.490	0.230	0.040	0.000	0.552	0.371	0.146	0.000
		0.385	0.480	0.026	0.000	0.348	0.622	0.099	0.000
		0.130	0.843	0.015	0.000	0.097	0.898	0.059	0.000
		0.000	0.998	0.000	0.000	0.000	0.9997	0.000	0.000

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used to determine binodal curve. A binary mixture of known composition was titrated with the third component until cloudiness was observed. Tie line compositions were related to the coexistence curve; water was determined by the Karl Fischer titration. The methods were described in Ref. 1.

Source and Purity of Materials:

(1) source not specified; used as recieved. (2) source not specified; recrystallized three times. (3) not specified.

Estimated Error:

comp. <0.005 mole fraction (estimated authors' precision on binodal curve), <0.01 mole fraction (estimated authors' precision of tie lines).

References:

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037 (1986).

 $\begin{array}{l} (1) \ 2\mbox{-Butanol (sec-butanol, sec-butyl alcohol, (RS)-2-butanol, dl-2-butanol, DL-2-butanol); C_4H_{10}O; [78-92-2]$ (2) Mesitylene (1,3,5-trimethylbenzene); C_9H_{12}; [108-67-8]$ (3) Water; H_2O; [7732-18-5]$ } \end{array}$

Variables: T/K=298

Compiled by: A. Skrzecz

Original Measurements:

17 (1992).

T. M. Letcher and P. M. Siswana, Fluid Phase Equilib. 74, 203-

10.8. 2-Butanol + Water + Mesitylene

Experimental Data

Compositions along the saturation curve

	T/K			w1	w2
t/°C	(compiler)	<i>x</i> ₁	<i>x</i> ₂	(con	piler)
25.0	298.2	0.000	0.000	0.000	0.000
		0.051	0.000	0.181	0.000
		0.312	0.000	0.651	0.000
		0.392	0.018	0.694	0.052
		0.435	0.033	0.704	0.087
		0.482	0.074	0.679	0.169
		0.504	0.134	0.623	0.268
		0.505	0.208	0.554	0.370
		0.479	0.295	0.473	0.473
		0.431	0.399	0.385	0.578
		0.369	0.520	0.298	0.680
		0.269	0.663	0.198	0.790
		0.142	0.828	0.095	0.900
		0.077	0.913	0.049	0.949
		0.000	0.999	0.000	0.999

		<i>x</i> ₁	x2	×1	x2	w 1	w 2	w ₁	w 2
t/°C	T/K (compiler)	U	nic- phase		ter- phase	pl	nic-rich nase npiler)	ph	r-rich ase piler)
25.0	298.2	0.000	0.999	0.000	0.000	0.000	0.9998	0.000	0.000
		0.133	0.836	0.010	0.000	0.089	0.906	0.040	0.000
		0.320	0.591	0.020	0.000	0.246	0.737	0.077	0.000
		0.495	0.253	0.035	0.000	0.512	0.424	0.130	0.000
		0.312	0.000	0.051	0.000	0.651	0.000	0.181	0.000

Auxiliary Information

Method/Apparatus/Procedure:

The points on the binodal curve were determined by the formation of a cloudy mixture on shaking after the addition of a known mass of one component to a mixture of known masses of the other two components. Precision weighing syringes were used as described in Ref. 1. Tie line compositions were determined by the refractive index method reported in Ref. 2 and a complementary method using the Karl Fischer titrations as reported in Ref. 3.

Source and Purity of Materials:

(1) Merck, AR grade; distilled, dried by the addition of anhydrous potassium carbonate, distilled; purity better than 99.6 mole % by glc.
(2) BDH, used as received; purity better than 99.6 mole % by

(3) not specified.

Estimated Error:

estimated comp. 0.005 mole fraction on the binodal curve and 0.01 mole fraction for tie lines (estimated by the authors).

References:

glc.

¹T. M. Letcher, S. Wootten, B. Shuttleworth, and C. Heward, J. Chem. Thermodyn. **18**, 1037 (1986).

- ²S. W. Briggs and F. W. Comings, Ind. Eng. Chem. **35**, 411 (1943).
- ³T. M. Letcher, P. M. Siswana, P. Van der Watt, and S. Radloff,
- J. Chem. Thermodyn. 21, 1053 (1989).

11. 3-Methyl-3-buten-1-ol+Water

Components: (1) 3-Methyl-3-buten-1-ol; C₅H₁₀O; [763-32-6] (2) 2-Methyl-1,3-butadiene (isoprene, isopentadiene); C5H8; [78-79-5] (3) Water; H₂O; [7732-18-5]

Original Measurements: Yu. M. Blazhin. S. K. Ogorodnikov, A. I. Morozova, L. N.

Compiled by:

A. Skrzecz

Volkova, L. V. Artem'eva, and N. S. Bad'ina, Zh, Prikl. Khim. (Leningrad) 47, 1103-6 (1974) [Eng. transl. Russ. J. Appl. Chem. (Leningrad) 47, 1128-30 (1974)].

Variables: T/K = 288

11.1. 3-Methyl-3-buten-1-ol + Water + 2-Methyl-1, 3-butadiene

Experimental Data Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	hydrocarbon- rich phase (compiler)		water- rich phase (compiler)		hydrocarbon- rich phase		water- rich phase	
15.0	288.15	0.5234	0.0000	0.0191	0.0000	0.840	0.000	0.085	0.000
		0.5077	0.1361	0.0169	0.0003	0.736	0.156	0.076	0.001
		0.4885	0.2041	0.0157	0.0003	0.684	0.226	0.071	0.001
		0.4554	0.2964	0.0141	0.0003	0.614	0.316	0.064	0.001
		0.3588	0.5265	0.0118	0.0003	0.449	0.521	0.054	0.001
		0.2802	0.6356	0.0107	0.0003	0.350	0.628	0.049	0.001
		0.2816	0.6487	0.0107	0.0003	0.348	0.634	0.049	0.001
		0.2117	0.7419	0.0095	0.0003	0.262	0.726	0.044	0.001

Auxiliary Information

Method/Apparatus/Procedure:

The analytical method was used. Two-phase mixtures of known composition were placed into a thermostat and shaken for 30 min. After separation both phases were analyzed by glc.

(1) source not specified. (2) source not specified. (3) not specified.

Source and Purity of Materials:

Estimated Error:

temp. ± 0.1 °C.

12. 1-Pentanol+Water

Components:

(1) 1-Pentanol (pentyl alcohol, amyl alcohol, n-amyl alcohol); C₅H₁₂O; [71-41-0] (2) Benzene: C₆H₆; [71-43-2] (3) Water; H₂O; [7732-18-5]

Original Measurements:

Complied by:

A. Skrzecz

L. A. K. Staveley, R. G. S. Johns, and B. C. Moore, J. Chem. Soc. 2516-23 (1951).

Variables:

T/K = 284 - 341

12.1. 1-Pentanol + Water + Benzene

Experimental Data Compositions along the saturation curve

				w_1	w_2
t/°C	T/K (compiler)	<i>x</i> ₁	<i>x</i> ₂	(com	piler)
17.2	290.35	0.006 98	0.990 830	0.007 886	0.991 493
27.8	300.95	0.006 98	0.989 217	0.007 893	0.991 228
38.0	311.15	0.006 98	0.987 591	0.007 903	0.990 841
48.2	321.35	0.006 98	0.985 602	0.007 915	0.990 366
57.8	330.95	0.006 98	0.983 010	0.007 931	0.989 745
12.8	285.95	0.0119	0.985 174	0.013 439	0.985 886
17.9	291.05	0.0119	0.984 706	0.013 443	0.985 773
22.7	295.85	0.0119	0.984 173	0.013 449	0.985 644
31.7	304.85	0.0119	0.983 005	0.013 461	0.985 361
36.3	309.45	0.0119	0.982 172	0.013 470	0.985 159
41.9	315.05	0.0119	0.981 037	0.013 482	0.984 883
49.6	322.75	0.0119	0.979 064	0.013 502	0.984 403
56.7	329.85	0.0119	0.977 020	0.013 524	0.983 903
15.0	288.15	0.0223	0.973 897	0.025 167	0.973 956
15.4	288.55	0.0223	0.973 863	0.025 167	0.973 948
23.2	296.35	0.0223	0.972 861	0.025 187	0.973 696
30.4	303.55	0.0223	0.971 906	0.025 205	0.973 456
37.6	310.75	0.0223	0.970 902	0.025 225	0.973 204
37.9	311.05	0.0223	0.970 753	0.025 228	0.973 166
47.3	320.45	0.0223	0.968 898	0.025 264	0.972 698
58.3	331.45	0.0223	0.966 120	0.025 318	0.971 995
16.7	289.85	0.0281	0.966 134	0.031 737	0.966 933
17.4	290.55	0.0281	0.966 047	0.031 739	0.966 910
29.0	302.15	0.0281	0.964 932	0.031 766	0.966 624
37.4	310.55	0.0281	0.964 059	0.031 787	0.966 400
45.0	318.15	0.0281	0.963 049	0.031 812	0.966 140
51.8	324.95	0.0281	0.962 049	0.031 837	0.965 882
18.1	291.25	0.0486	0.943 586	0.054 831	0.943 367
31.2	304.35	0.0486	0.941 986	0.054 899	0.942 928
43.1	316.25	0.0486	0.940 190	0.054 975	0.942 433
52.0	325.15	0.0486	0.938 650	0.055 040	0.942 009
68.0	341.15	0.0486	0.936 460	0.055 134	0.941 403
11.2	284.35	0.084 25	0.904 960	0.094 835	0.902 683
28.4	301.55	0.084 25	0.902 230	0.095 034	0.901 849
43.3	316.45	0.084 25	0.899 660	0.095 223	0.901 061
57.8	330.95	0.084 25	0.896 850	0.095 429	0.900 196

Auxiliary Information

Method/Apparatus/Procedure:

The synthetic method was used. Mixtures were prepared in a closed apparatus; components were degassed by repeated freezing, evacuation and melting; a known amount of each component was introduced into a tube by condensation and the tube was sealed. The volume of each tube was about 30 mL.

Source and Purity of Materials:

 source not specified; dried by refluxing over freshly-ignited lime, and then with aluminum amalgam, distilled.
 source not specified; chemically purified, crystallized, distilled, dried over phosphoric anhydride.
 not specified.

Estimated Error:

composition <0.2%; temp. <0.2 °C.

Components:

1-Pentanol (pentyl alcohol, *n*-amyl alcohol); C₅H₁₂O;
 [71-41-0]
 Hexane (*n*=hexane); C₆H₁₄; [110-54-3]
 Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, A. Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1995.09)

12.2. 1-Pentanol + Water + Hexane

Critical Evaluation:

A survey of reported compositions along, the saturation curve (sat.) and compositions of coexisting phases in equilibrium (eq.) for the system 1-pentanol-hexane-water is given in Table 83.

TABLE 83. Summary of experimental data for the system 1-pentanol-hexane-water

Author(s)	T/K	Type of data ^a	Ref.	
Charykov et al., 1978	293	sat. (7)	1	
Gorovits et al., 1986	298-338	eq. (39)	2	

^aNumber of experimental points in parentheses.

Saturation curve

The ternary system 1-pentanol-hexane-water forms a miscibility gap of type 2. The system 1-pentanol-hexane is miscible. Two binary systems hexane-water and 1-pentanol-water, form miscibility gaps. Data for these binary systems were complied and critically evaluated in previously published SDS volumes, Refs. 3 and 4, respectively. The recommended values of mutual solubility at 293 K are: for hexane-water system $x_2''=2.5.10^{-6}$ and $x_2'=0.99947$,³ and for 1-pentanol-water system $x_1'=0.679$ and $x_1''=0.004$ 81.⁴ Solubility of water in hexane reported by Charykov *et al.*,¹ ($x_2'=0.9996$) is slightly smaller than the recommended value, Ref. 3, while the solubility of water in 1-pentanol ($x_1'=0.670$) is in qualitative agreement with Ref. 4. Similarly, the solubility of water in 1-pentanol ($x_1'=0.667$), is in qualitative agreement with Ref. 4. Similarly, the solubility of water in 1-pentanol ($x_1'=0.676$), differs a little from that recommended in Ref. 4. ($x_1'=0.674$). The differences are within experimental error. Equilibrium data of Gorovits *et al.*² were taken into account during discussion of the binodal curve at temperature range 298.2–338.2 K and are self-consistent showing slightly increasing solubility with temperature. Solubility data of Charykov *et al.*¹ at 293.2 K show a slightly higher solubility at high hexane concentrations than data of Ref. 2, measured at even higher temperatures. However, these differences are within the likely experimental arrors. One experimental saturation point reported in Ref. 1, ($x_1=0.73$, $x_2=0.016$) appears to be in error. Both data sets are treated as tentative.

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system 1-pentanol-hexane-water were reported by Gorovits *et al.*,² at three temperatures 298.2, 318.2, 338.2 K as well as at isobaric conditions at the pressure 16.13 kPa. All tie lines constructed on the basis of experimental points are consistent with one another. The assumption made in Ref. 2, that the concentration of hexane in the water-rich phase is negligible may be acceptable because of the very low hexane concentrations and accuracy of analytical method. The equilibrium data are treated as tentative. As an example of the system behavior, the experimental data at 298.2 K, Ref. 2, are presented in Fig. 45.

1213

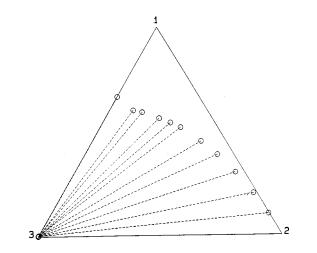


FIG. 45. Phase diagram of the system 1-pentanol (1)—hexane (2)—water (3) at 298.2 K. O—experimental results, Ref. 2, dashed lines—experimental tie line, Ref. 2.

References:

¹A. K. Charykov, V. I. Tikhomirov, and T. M. Potapoya, Zh. Obshch. Khim, 48, 1916 (1978).

²B. I. Gorovits, N. P. Markuzin, and T. M. Lesteva, Vestn. Leningr. Univ., Ser. 4: Fiz. Khim. 4, 100 (1986).

 3 D. G. Shaw, ed., Solubility Data Series, Vol. 37, Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ and C₇ (Pergamon, New York, 1989).

⁴A . F. M. Barton, ed., Solubility Data Series, Vol. 15, Alcohols with Water (Pergamon, New York, 1984).

Components:

Variables:

T/K = 293

1-Pentanol (pentyl alcohol, amyl alcohol, *n*-amyl alcohol);
 C₅H₁₂O; [71-41-0]
 Hexane (*n*-hexane); C₆H₁₄; [110-54-3]
 Water; H₂O; [7732-18-5]

Original Measurements: A. K. Charykov, V. I. Tikhomirov, and T. M. Potapova, Zh. Obshch. Khim. 48, 1916-21 (1978). [Eng. transl. Russ. J. Gen. Chem. 48, 1748-50 (1978)].

Experimental Data Compositions along the saturation curve									
	T/K	<i>x</i> ₁	<i>x</i> ₂	w_1	w2				
t/°C	(compiler)	(compiler)		(compiler)					
20	293.2	0.000	0.99954	0.000	0.99990				
		0.103	0.886	0.106	0.892				
		0.207	0.761	0.216	0.777				
		0.389	0.522	0.424	0.556				
		0.530	0.320	0.607	0.358				
		0.735	0.016	0.917	0.020				
		0.669	0.000	0.908	0.000				

Compiled by:

A. Skrzecz

Auxiliary Information

Method/Apparatus/Procedure:

Water solubility was determined by the analytical method. Saturated mixtures were obtained by the shaking of known volumes of reagents for 2-3 h after which the concentration of water in organic phase was determined by the Karl Fischer method. The mean of three analyses was reported. The saturation concentrations were reported in the units mole/L.

Source and Purity of Materials: (1) source not specified. (2) source not specified. (3) source not specified.

Estimated Error: Not reported.

(1)1-Pentanol (pentyl alcohol, amyl alcohol, *n*-amyl alcohol); C₃H₁₂O; [71-41-0] (2) Hexane (*n*-hexane); C₆H₁₄; [110-54-3] (3) Water; H₂O; [7732-18-5]

Variables: Compiled by: T/K = 298-338A. Skrzecz **Experimental Data** Composition of coexisting phases x'_1 x'_2 x_1'' w''_1 x_2'' w'_1 w'_2 w_2'' organic-rich water-rich organic-rich water-rich phase phase T/Kphase (compiler) (compiler) p/kPa phase 298.2 0.102 0.8940 0.0013 0.000 02 0.1044 0.8947 0.006 33 0.000 10 18.00 0.201 0.7838 0.0018 0.000 02 0.2071 0.7897 0.008 75 0.000 09 17.66 0.301 0.6610 0.0022 0.000 02 0.3152 0.6767 0.010 67 0.000 09 0.387 0.5448 0.0027 0.000 02 0.4145 0.5705 0.013 07 0.000 09 0.451 0 4 4 7 0.0032 0.000 02 0 4 9 6 2 0 4808 0.015 46 0.000 09 0.518 0.331 0.0036 0.000 02 0.5937 0.3709 0.017 37 0.000 09 16.77 0.541 0.0040 0.000 02 0.3207 0.019 27 0.000 09 0 279 0.6361 16.13 0.562 0.223 0.0044 0.000 02 0.6821 0.2646 0.021 17 0.000 09 15.26 0.592 0.139 0.0048 0.000 01 0.7562 0.1736 0.023 05 0.000 05 0.601 0.098 0.0054 0.000 01 0.7925 0.1263 0.025.88 0.000 05 5.85 0.666 0.000 0.0060 0.000 0 0.9070 0.0000 0.028 69 0.000 00 318.2 0.090 0.000 02 0.007 78 0.000 10 0.9050 0.0016 0.0922 0 9067 0.197 0.7846 0.0021 0.000 02 0.2036 0.7926 0.010 19 0.000 09 0.300 0.6599 0.0025 0.000 02 0.3147 0.6767 0.012 11 0.000 09 0.386 0.000 02 0.014 99 0.000 09 0.5422 0.0031 0.4147 0.5695 0.444 0.442 0.0036 0.000 02 0.4937 0.4804 0.017 37 0.000 09 0.019 74 0.512 0.329 0.0041 0.000 02 0.5911 0.3713 0.000 09 0.537 0.277 0.0044 0.000 02 0.6349 0.3202 0.021 17 0.000 09 38.00 0.548 0.221 0.0052 0.000 02 0.6755 0.2663 0.024 94 0.000 09 35.99 0.584 0.026 35 0.138 0.0055 0.000 01 0.7528 0.1739 0.000 05 34.00 0.028 22 0.593 0.089 0.0059 0.000 01 0.7960 0.1168 0.000 05 0.00 00 0.031 49 0.000 00 0.661 0.000 0.0066 0.9051 0.0000 338.2 0.0906 0.9030 0.0019 0.000 02 0.0930 0.9057 0.009 23 0.000 09 0.199 0.0029 0.000 02 0.2059 0.7899 0.014 03 0.000 09 0.7810 0.296 0.6578 0.0029 0.000 02 0.3121 0.6780 0.014 03 0.000 09 0.386 0.0034 0.000 02 0.016 42 0.000 09 0.5390 0.4158 0.5677 0.019 27 0.440 0.0040 0.000 02 0.4808 0.000 09 0.440 0.4918 0.512 0.325 0.0044 0.000 02 0.5933 0.3681 0.021 17 0.000 09 0.534 0.274 0.0048 0.000 02 0.6349 0.3185 0.023 05 0.000 09 0.539 0.220 0.0056 0.000 02 0.6710 0.2677 0.026 81 0.000 09 0.574 0.136 0.0059 0.000 01 0.7491 0.1735 0.028 22 0.000 05 0.585 0.030 09 0.000 05 0.096 0.0063 0.000 01 0.7862 0.1261 0.659 0.000 0.0069 0.0000 0.9044 0.0000 0.032 88 0.000 00

Original Measurements:

B. I. Gorovits, N. P. Markuzin, and T. M. Lesteva, Vestn. Leningr. Univ., Ser. 4: Fiz. Khim. 4, 100-2 (1986).

Compositions of coexisting phases at constant pressure p = 16.13 kPa

	x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''	
T/K	organic-rich K phase		water-rich phase		organic-rich phase (compiler)		water-rich phase (compiler)		p/kPa
331.3	0.660	0.000	0.0064	0.00000	0.905	0.000	0.03055	0.00000	16.13
303.3	0.581	0.139	0.0060	0.00001	0.751	0.175	0.02869	0.00005	16.13
299.6	0.559	0.221	0.0048	0.00001	0.682	0.263	0.02305	0.00005	16.13
298.2	0.541	0.279	0.0040	0.00002	0.636	0.321	0.01927	0.00009	16.13
297.2	0.511	0.335	0.0040	0.00002	0.587	0.376	0.01927	0.00009	16.13
296.4	0.448	0.447	0.0036	0.00002	0.494	0.482	0.01737	0.00009	16.13

Auxiliary Information

Method/Apparatus/Procedure:

The analytical method was used. After separation both phases were analyzed. Water in the organic-rich phase was analyzed by the Karl Fischer method. The samples were analyzed by glc with propanol as the internal standard. A known amount of decane (about 10% by weight) was added to the water-rich phase and then after separation, samples of upper phase were analyzed by glc (the assumption was made that there was no hexane in lower phase). Vapor pressures over the two-phase mixtures were measured by static method described in Ref. 1.

Source and Purity of Materials:

 source not specified; pure for analysis grade; twice distilled on a column of 20 theoretical plates, stored over zeolite; b,p.=411.2 K, d(20 °C,4 °C)=0.8145, n(20 °C,D)=1.4102; the properties (b,p, d,n) were in agreement with literature data.
 source not specified; pure for analysis grade; twice distilled on the column of 20 theoretical plates, stored over zeolite; b,p. = 341.9 K, d(20 °C,4 °C)=0.6594, n(20 °C,D)=1.3750; the properties (b,p, d,n) were in agreement with literature data.
 distilled water.

Estimated Error:

temp. ±0.1 K; relative errors of analysis: hexane and 1-pentanol in the water-rich phase, 20%-25% and 5%-7% respectively; water in the organic-rich phase, 3%.

References:

¹I. A. Zvereva, I. M. Balashova, and N. A. Smirnova, Vestn. Leningr. Univ., Ser. 4: Fiz. Khim. 22, 107 (1977).

Variables:

T/K = 298

13. 2-Pentanol+Water

 I-Pentanol (pentyl alcohol, amyl alcohol, *n*-amyl alcohol); C₅H₁₂O; [71-41-0]
 Heptane (*n*-heptane); C₇H₁₆; [142-82-5]
 Water; H₂O; [7732-18-5]

12.3. 1-Pentanol + Water + Heptane

Experimental Data

Original Measurements:

Compiled by:

A. Skrzecz

Chem. Thermodyn. 18, 1037-42 (1986).

T. M. Letcher, S. Wootton, B. Shuttleworth, and C. Heyward, J.

compositions	aiong	une	suturution	curve

				w ₁	w2
t/°C (compiler)	T/K	<i>x</i> ₁	<i>x</i> ₂	(com	piler)
25	298.2	0.699	0.000	0.919	0.000
		0.703	0.057	0.861	0.079
		0.694	0.130	0.791	0.168
		0.640	0.228	0.691	0.280
		0.581	0.324	0.600	0.380
		0.495	0.450	0.486	0.503
		0.318	0.656	0.297	0.698
		0.110	0.884	0.099	0.900
		0.004	0.000	0.019	0.000

			Co	mpositions of	coexisting ph	ases			
		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C (compiler)	T/K	U	ic-rich ase		r-rich ase	ph	ic-rich ase apiler)	ph	r-rich ase piler)
25	298.2	0.640 0.370 0.111	0.228 0.595 0.884	0.004 0.003 0.002	0.000 0.000 0.000	0.691 0.351 0.099	0.280 0.642 0.900	0.019 0.015 0.010	0.000 0.000 0.000

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, adapted from Ref. 1, was used to determine the coexistence curve. The third component was added from a weighed gas-tight syringe to a weighed mixture of other two components in 100 cm³ long-neck flask until one drop (weighing less than 0.01 g) results cloudiness. The flask was immersed in a well controlled water bath and shaken continuously. Refractive indexes of these mixtures were measured at temperature of 298.3 K to ensure that separation did not take place. The tie lines were determined from mixtures of well known composition in the immiscible region. The flasks were well shaken and left for separation. The refractive indexes of the samples of the both phases were measured and related to compositions the coexisting curve. Each tie line was checked to ensure that it passed through the composition of the overall mixture.

Source and Purity of Materials:

(1) Analytical Carlo Erba, 99 mole %; dried with anhydrous potassium carbonate, distilled.

(2) Analytical Carbo Erba, purity 99.5 mole %; purified by passing through column containing silica gel and basic alumina.(3) de-ionized.

Estimated Error:

composition ± 0.005 mole fraction for measured points, ± 0.01 mole fraction for tie-lines extremities in the worst case (authors).

References:

 $^1\mathrm{S.}$ W. Briggs and E. W. Comings, Ind. Eng. Chem. **35**, 411 (1943).

Components:

Variables:

T/K = 298

2-Pentanol (dl-2-pentanol, (RS)-2-pentanol); C₅H₁₂O;
 [6032-29-7]
 Heptane (*n*-heptane); C₇H₁₆; [142-82-5]
 Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

A. Skrzecz

T. M. Letcher, S. Wootton, B. Shuttleworth, and C. Heyward, J. Chem. Thermodyn. 18, 1037–42 (1986).

13.1. 2-Pentanol + Water + Heptane

Experimental Data

		Compositions along	the saturation curve		
t/SDC (compiler)	T/K	<i>x</i> ₁	<i>x</i> ₂	(com	w ₂ piler)
25	298.2	0.651	0.000	0.901	0.000
		0.598	0.175	0.709	0.236
		0.500	0.358	0.534	0.435
		0.362	0.595	0.346	0.646
		0.115	0.853	0.105	0.889
		0.009	0.000	0.043	0.000

Compositions of coexisting phase

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C (compiler)	T/K	organic-rich water-rich phase phase			organic-rich phase (compiler)		water-rich phase (compiler)		
25	298.2	0.609 0.390	0.159 0.530	0.005 0.004	0.000 0.000	0.727 0.387	0.216 0.597	0.024 0.019	0.000 0.000
		0.110	0.880	0.002	0.000	0.099	0.899	0.010	0.000

Auxiliary Information

Method/Apparatus/Procedure:

The titration method, adapted from Ref. 1, was used to determine the coexistence curve. The third component was added from a weighed gas-tight syringe to a weighed mixture of the other two components in 100 mL long-neck flask until one drop (weighing less than 0.01 g) resulted in cloudiness. The flask was immersed in a well controlled water bath and shaken continuously. Refractive indexes of these mixtures were measured at 298.3 K to ensure that separation did not take place. Tie lines were determined from mixtures of known composition in the immiscible region. The flasks were shaken well and the phases allowed to separate. Refractive indexes of samples of both phases were measured and related to compositions on the coexistence curve. Each tie line was checked to ensure that it passed through the composition of the overall mixture.

Source and Purity of Materials:

(1) source not specified.

(2) Analytical Carbo Erba, purity 99.5 mole %; purified by passing through columns containing silica gel and basic alumina.
 (3) de-ionized.

Estimated Error:

composition ± 0.005 mole fraction for measured points, ± 0.01 mole fraction for tie-lines extremities in the worst case (authors).

References:

¹S. W. Briggs and E. W. Comings, Ind. Eng. Chem. **35**, 411 (1943).

14. 1-Hexanol+Water

Components:	Original Measurements:
 1-Hexanol (hexyl alcohol); C₆H₁₄O; [111-27-3] Heptane (<i>n</i>-heptane); C₇H₁₆; [142-82-5] Water; H₂O; [7732-18-5] 	T. M. Letcher, S. Wootton, B. Shuttleworth, and C. Heyward, Chem. Thermodyn. 18 , 1037–42 (1986).
Variables: T/K=298	Compiled By: A. Skrzecz

14.1. 1-Hexanol + Water + Heptane

Experim	ental Data
Compositions along	g the saturation curve

			Comp	ositions along	ule saturation	i cuive				
t/°C							w_1		w_2	
(compiler)		T/K		<i>x</i> ₁			(compiler)			
25		298.2	(0.708	0.00	0	0.932		0.000	
			(0.701	0.06	2	0.872		0.076	
			(0.625	0.22	7	0.715		0.255	
			(0.518	0.40	4	0.558		0.427	
			(0.180	0.81	2	0.184		0.814	
			(0.001	0.00	0	0.006		0.000	
			Co	ompositions of	coexisting ph	ase				
		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''	
t/°C compiler)	T/K		ic-rich ase	water	r-rich ase	ph	organic-rich phase (compiler)		water-rich phase (compiler)	
25	298.2	0.687	0.105	0.001	0.000	0.831	0.125	0.006	0.00	
		0.476	0.456	0.001	0.000	0.509	0.478	0.006	0.00	
		0.097	0.897	0.001	0.000	0.099	0.099	0.006	0.00	

Auxiliary Information

Method/Apparatus/Procedure:

<u>ب</u>

Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

The titration method, adapted from Ref. 1, was used to determine the coexistence curve. The third component was added from a weighed gas-tight syringe to a weighed mixture of the other two components in 100 mL long-neck flask until one drop (weighing less than 0.01 g) resulted in cloudiness. The flask was immersed in a well controlled water bath and shaken continuously. Refractive indexes of these mixtures were measured at 298.3 K to ensure that separation did not take place. Tie lines were determined from mixtures of known composition in the immiscible region. The flasks were shaken well and the phases allowed to separate. Refractive indexes of samples of both phases were measured and related to compositions on the coexistence curve. Each tie line was checked to ensure that it passed through the composition of the overall mixture.

Source and Purity of Materials:

(1) Fluka, puriss. quality; dried with anhydrous potassium carbonate, filtrated, distilled.

(2) Analytical Carbo Erba, purity 99.5 mole %; purified by passing through columns containing silica gel and basic alumina.(3) de-ionized.

Estimated Error:

composition ± 0.005 mole fraction for measured points, ± 0.01 mole fraction for tie-lines extremities is the worst case (authors).

References:

¹S. W. Briggs and E. W. Comings, Ind. Eng. Chem. **35**, 411 (1943).

15. Benzyl alcohol+Water

Components:	Original Measurements:
 Benzyl alcohol (benzenemethanol); C₇H₈O; [100-51-6] Hexane (<i>n</i>-hexane); C₆H₁₄; [110-54-3] Water; H₂; [7732-18-5] 	G. G. Ivanova, T. N. Telichko, G. Ya. Kolyuchkina, V. S. Timofeev, and L. A. Serafimov, Tr. InstMosk. Inst. Tonkoi Khim. Tekhnol. im. M. V. Lomonosova 3(1), 88–94 (1973).
Variables: <i>T</i> /K=373–298	Compiled by: A. Skrzecz

15.1. Benzyl alcohol + Water + Hexane

Experimental Data

Compositions of coexisting phases

t/°C		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
	<i>T</i> /K (compiler)	hydrocarbon- rich phase		water- rich phase		hydrocarbon- rich phase (compiler)		water- rich phase (compiler)	
20	293.2	0.008	0.990	0.002	< 0.001	0.010	0.989	0.012	0.000
		0.013	0.984	0.003	< 0.001	0.016	0.983	0.018	0.000
		0.020	0.975	0.005	< 0.001	0.025	0.974	0.029	0.000 ^a
62.2	335.4	0.019	0.978	0.002	< 0.001	0.024	0.976	0.012	0.000 ^b
62.8	336.0	0.034	0.960	0.003	< 0.001	0.042	0.956	0.018	0.000 ^b
63.1	336.3	0.050	0.940	0.004	< 0.001	0.062	0.935	0.023	0.000 ^t
63.4	336.6	0.063	0.921	0.005	< 0.001	0.079	0.918	0.029	0.000 ^a

		x_{1}'''	x_{2}'''	x_1''	x_2''	w_{1}'''	w_2'''	w_1''	w_2''
t/°C	T/K (compiler)	alcohol- rich phase		water- rich phase		alcohol- rich phase (compiler)		rich	tter- phase piler)
20	293.2	0.879	0.000	0.005	0.000	0.978	0.000	0.029	0.000
		0.830	0.009	0.005	< 0.001	0.961	0.008	0.029	0.000
		0.768	0.020	0.005	< 0.001	0.937	0.019	0.029	0.000
		0.707	0.028	0.005	< 0.001	0.914	0.029	0.029	0.000
		0.668	0.032	0.005	< 0.001	0.898	0.034	0.029	0.000 ^a
99.9	373.1	0.420	0.000	0.005	< 0.001	0.813	0.000	0.029	0.000 ^c
92	365	0.458	0.021	0.005	< 0.001	0.816	0.030	0.029	0.000 ^c
82	355	0.491	0.044	0.005	< 0.001	0.813	0.058	0.029	0.000
72	345	0.513	0.067	0.005	< 0.001	0.806	0.084	0.029	0.000 ^c
63.4	336.6	0.529	0.089	0.005	< 0.001	0.797	0.107	0.029	0.000 ^a

Compositions of coexisting phases

		x'_1	x'_2	$x_{1}^{\prime \prime \prime }$	x_{2}'''	w'_1	w'_2	w_1'''	w_2'''
t/°C	<i>T</i> /K (compiler)	hydrocarbon- rich phase		alcohol- rich phase		hydrocarbon- rich phase (compiler)		alcohol- rich phase (compiler)	
20	293.2	0.052	0.948	0.817	0.183	0.064	0.936	0.849	0.151
		0.040	0.958	0.798	0.099	0.050	0.950	0.892	0.088
		0.034	0.963	0.780	0.056	0.042	0.957	0.915	0.052
		0.028	0.968	0.731	0.039	0.035	0.964	0.913	0.039
		0.025	0.970	0.700	0.037	0.031	0.968	0.905	0.038
		0.020	0.975	0.668	0.032	0.025	0.974	0.898	0.034 ^a
67.0	340.2	0.090	0.895	0.631	0.220	0.112	0.885	0.759	0.211 ^b
66.0	339.2	0.084	0.901	0.623	0.157	0.104	0.892	0.794	0.159 ^b
65.3	338.5	0.082	0.903	0.599	0.138	0.102	0.895	0.796	0.146 ^b
64.5	337.7	0.070	0.915	0.569	0.119	0.087	0.910	0.795	0.132 ^b
64.0	337.2	0.068	0.916	0.550	0.104	0.085	0.912	0.796	0.120 ^k
63.4	336.6	0.063	0.921	0.529	0.089	0.079	0.918	0.797	0.107 ^a

^aThree liquid phases in equilibrium.

^{b,c}Boiling temperature estimated by the compiler; (b) ± 0.5 K; (c) ± 5 K.

Auxiliary Information

Method/Apparatus/Procedure:

The analytical method was used. Composition of samples was determined by glc analysis with 2-propanol as an inert standard. (Column: 1.8 m×5 mm internal diameter, 10% squalane on polichromom, temp. 130 °C, H₂–9 L/h). Solubility at 293 K was determined by Alekseev's method; at boiling point in the apparatus reported in Ref. 1. The three liquid phases in equilibrium were observed in the system.

Source and Purity of Materials:

 source not specified, "chromatographic purity;" used as received; n(20 °C,D)=1.5401, b.p.=205.20 °C.
 source not specified, "chromatographic purity;" used as received; n(20 °C,D)=1.3747, b.p.=68.70 °C.
 doubly distilled.

Estimated Error:

concentration $\pm 0.5\%$ of glc analysis.

References:

¹G. Ya. Kolyuchkina, V. S. Timofeev, and L. A. Serafimov, Tr. Inst.-Mosk. Inst. Tonkoi Khim. Tekhnol. im. M. V. Lomonosova **1(3)**, 65 (1971).

Components:

Variables:

T/K = 293 - 373

Benzyl alcohol (benzenemethanol); C₇H₈O; [100-51-6]
 Toluene (methylbenzene); C₇H₈; [108-88-3]
 Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

A. Skrzecz

M. P. Susarev and A. I. Gorbunov, Zh. Prikl. Khim. (Leningrad) 36, 459–61 (1963). [Eng. transl. Russ. J. Appl. Chem. (Leningrad) 56, 197–9 (1963)].

15.2. Benzyl alcohol + Water + Toluene

Experimental Data

Compositions along the saturation curve

	T/K			<i>x</i> ₁	<i>x</i> ₂	w ₁	w2	
°C	(compiler)	m_a	m_b	(com	piler)	(com	(compiler)	
20	293.2	30.0	0.8a)	0.2564	0.7022	0.2976	0.6944	
		40.0	1.6a)	0.3328	0.5859	0.3936	0.5904	
		50.0	2.3 a	0.4071	0.4778	0.4885	0.4885	
		60.0	2.8a)	0.4830	0.3779	0.5832	0.3888	
		70.0	4.0a)	0.5376	0.2704	0.6720	0.2880	
		80.0	5.5a)	0.5780	0.1696	0.7560	0.1890	
		90.0	7.2a)	0.6069	0.0791	0.8352	0.0928	
		100.0	9.2a)	0.6218	0.0000	0.9080	0.0000	
		50.0	99.8b)	0.0002	0.0002	0.0010	0.0010	
		60.0	99.7b)	0.0003	0.0002	0.0018	0.0012	
		70.0	99.6b)	0.0005	0.0002	0.0028	0.0012	
		80.0	98.8b)	0.0016	0.0005	0.0096	0.0024	
		90.0	98.1b)	0.0029	0.0004	0.0171	0.0019	
		100.0	95.8b)	0.0073	0.0000	0.0420	0.0000	

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	organic-rich phase (compiler)		water-rich phase (compiler)		organic-rich phase		water-rich phase	
87.0	360.2	0.1813	0.8082	0.0071	0.0008	0.208	0.790	0.041	0.004
87.7	360.9	0.2544	0.6846	0.0073	0.0008	0.300	0.688	0.042	0.004
88.0	361.2	0.3223	0.5553	0.0082	0.0008	0.395	0.580	0.047	0.004
88.0	361.2	0.3770	0.4279	0.0093	0.0008	0.487	0.471	0.053	0.004
88.6	361.8	0.4201	0.3158	0.0100	0.0008	0.573	0.367	0.057	0.004
89.7	362.9	0.4652	0.2212	0.0119	0.0006	0.659	0.267	0.067	0.003
91.9	365.1	0.4629	0.1347	0.0137	0.0006	0.718	0.178	0.077	0.003
95.9	369.1	0.4493	0.0543	0.0145	0.0004	0.777	0.080	0.081	0.002
97.6	370.8	0.4096	0.0221	0.0149	0.0002	0.783	0.036	0.083	0.001
100.0	373.2	0.3810	0.0000	0.0150	0.0000	0.787	0.000	0.084	0.000

ma-alcohol concentration (mass %) in binary benzyl alcohol-toluene mixture.

 m_b —water concentration (mass %): (a) in organic-rich phase; (b) in water-rich phase.

SKRZECZ, SHAW, AND MACZYNSKI

Auxiliary Information

Method/Apparatus/Procedure:

The titration method was used to measure solubility curve at 20 °C. Binary benzyl alcohol-toluene mixtures were titrated with water and water was titrated with binary benzyl alcohol-toluene mixtures. The analytical method was used to determine liquid–liquid–vapor equilibrium (LLVE) data at boiling temperature at 101.32 kPa. Samples of hot liquid organic rich phase taken from the apparatus were cooled to 20 °C and titrated with a binary benzyl alcohol-toluene mixture (the mixture composition was the same as used to prepare the primary sample for LLVE measurements) until homogenization was obtained. The assumption was made that the ratio of benzyl alcohol to toluene in hot liquid phase was the same as at the beginning of experiment in binary mixture. The fraction of water rich phase was always small. The concentration was calculated from mass balance.

Source and Purity of Materials:

- source not specified; purified; b.p.=205.5 °C, n(20 °C,D) = 1.5406, d(20 °C,4 °C) = 1.0459.
 source not specified; purified; b.p.=110.6 °C, n(20 °C,D)
- = 1.4968, d(20 °C,4 °C) = 0.8670. (3) not specified.

Estimated Error:

Not reported.

Components:

Benzyl alcohol (benzenemethanol); C₇H₈O; [100-51-6]
 Heptane (*n*- heptane); C₇H₁₆; [142-82-5]
 Water; H₂O; [7732-18-5]

Original Measurements:

G. G. Ivanova, T. N. Telichko, G. Ya. Kolyuchkina, V. S. Timofeev, and L. A. Serafimov, Tr. Inst.-Mosk. Inst. Tonkoi Khim. Tekhnol. im. M. V. Lomonosova **3(2)**, 99–105 (1973).

Variables:	Compiled by:	
T/K = 293 - 373	A. Skrzecz	

15.3. Benzyl alcohol + Water + Heptane

Experimental Data

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	<i>T</i> /K (compiler)	hydrocarbon- rich phase		water- rich phase		hydrocarbon- rich phase (compiler)		water- rich phase (compiler)	
20	293.2	0.006	0.992	0.002	0.000	0.006	0.993	0.012	0.000
		0.012	0.985	0.003	0.000	0.013	0.986	0.018	0.000
		0.017	0.979	0.005	0.000	0.018	0.981	0.029	0.000 ^a
79.4	352.6	0.031	0.960	0.002	0.000	0.034	0.965	0.012	0.000 ^b
	352.6	0.052	0.929	0.003	0.000	0.057	0.940	0.018	0.000 ^b
	352.6	0.068	0.904	0.004	0.000	0.075	0.920	0.024	0.000 ^b
79.7	352.9	0.081	0.879	0.005	0.000	0.090	0.903	0.029	0.000^{a}

Compositions of coexisting phases

		x_{1}'''	x_{2}'''	x_1''	x_2''	w_{1}'''	w_2'''	w_1''	w_2''
	<i>T</i> /K (compiler)	alcohol- rich phase		water- rich phase		alcohol- rich phase (compiler)		water- rich phase (compiler)	
20	293.2	0.879	0.000	0.005	0.000	0.978	0.000	0.029	0.000
		0.818	0.010	0.005	0.000	0.956	0.011	0.029	0.000
		0.777	0.014	0.005	0.000	0.942	0.016	0.029	0.000
		0.730	0.020	0.005	0.000	0.924	0.023	0.029	0.000
		0.678	0.028	0.005	0.000	0.900	0.034	0.029	0.000 ^a
00	373	0.420	0.000	0.005	0.000	0.813	0.000	0.029	0.000
92	365	0.450	0.010	0.005	0.000	0.819	0.017	0.029	0.000
89	362	0.462	0.029	0.005	0.000	0.805	0.047	0.029	0.000
83	356	0.480	0.050	0.005	0.000	0.794	0.077	0.029	0.000
79.7	352.9	0.489	0.066	0.005	0.000	0.783	0.098	0.029	0.0004

Compositions of coexisting phases

		x'_1	x'_2	x_{1}'''	x_{2}'''	w'_1	w'_2	w_{1}'''	w ₂ '''
t/°C	T/K (compiler)	2	carbon- phase		hol- phase	rich	carbon- phase piler)	rich	phol- phase piler)
20	293.2	0.049	0.951	0.847	0.153	0.053	0.947	0.857	0.143
		0.047	0.952	0.827	0.108	0.051	0.949	0.882	0.107
		0.035	0.963	0.800	0.070	0.038	0.962	0.902	0.073
		0.024	0.973	0.751	0.029	0.026	0.974	0.922	0.033
		0.017	0.979	0.678	0.028	0.018	0.981	0.900	0.034 ^a
81.0	354.2	0.198	0.724	0.555	0.226	0.225	0.761	0.693	0.261 ^b
80.9	354.1	0.170	0.760	0.560	0.199	0.192	0.795	0.714	0.235 ^b
80.6	353.8	0.140	0.800	0.553	0.160	0.157	0.832	0.738	0.198 ^b
80.2	353.4	0.113	0.837	0.540	0.133	0.126	0.865	0.752	0.172 ^b
79.9	353.1	0.097	0.860	0.516	0.094	0.108	0.884	0.772	0.130 ^b
79.7	352.9	0.081	0.879	0.489	0.066	0.090	0.903	0.783	0.098 ^a

Auxiliary Information

^aThree liquid phases in equilibrium.

 $^{b,c}\mbox{Boiling}$ temperature estimated by the compiler; (b) ± 0.3 K; (c) ± 5 K.

Method/Apparatus/Procedure:

The analytical method was used Composition of samples was determined by glc analysis with 2-propanol as an inert standard. (Column: 1.8 m×5 mm internal diameter, 10% squalane on polichromom, temp. 130 °C, H₂-9 Lh). Solubility at 293 K was determined by Alekseev's method; at boiling point—in the apparatus reported in Ref. 2. The description of the method was taken from Ref. 1. Three liquid phases in equilibrium were observed in the system.

Source and Purity of Materials:

(1) source not specified, "chromatographic purity"; used as received; n(20 °C,D) = 1.5401, b.p.=205.20 °C; the same as in Ref. 1.

(2) source not specified; used as received; n(20 °C,D) = 1.3877, b.p. =98.4 °C.

(3) doubly distilled; the same as in Ref. 1.

Estimated Error:

concentration ± 0.5 % of glc analysis, Ref. 1.

References:

 ¹G. G. Ivanova, T. N. Telichko, G. Ya. Kolyuchkina, V. S. Timofeev, and L. A. Serafimov, Tr. Inst.-Mosk. Inst. Tonkoi Khim Tekhnol. im. M. V. Lomonosova **3(1)**, 88 (1973).
 ²G. Ya. Kolyuchkina, V. S. Timofeev, and L. A. Serafimov, Tr. Inst.-Mosk. Inst. Tonkoi Khim. Tekhnol. im. M. V. Lomonosova **1(3)**, 65 (1971).

Components:

 $\begin{array}{l} (1) \; Benzyl \; alcohol \; (benzenemethanol); \; C_7H_8O; \; [100-51-6] \\ (2) \; 1,2,3,4\mbox{-}Tetrahydronaphthalene \; (tetralin); \; C_{10}H_{12}; \\ [119-64-2] \\ (3) \; Water; \; H_2O; \; [7732-18-5] \end{array}$

Original Measurements:

S. Goto, M. Matsubara, and K. Washino, Kagaku Kogaku 38, 869–73 (1974).

Variables:	Compiled by:
T/K=363	A. Skrzecz

15.4. Benzyl alcohol + Water + 1,2,3,4-Tetrahydronaphthalene

Experimental Data

Compositions along the saturation curve

	T/K	<i>x</i> ₁	<i>x</i> ₂		
t/°C	(compiler)	(com	piler)	<i>w</i> ₁	w_2
90	363.2	0.2367	0.7227	0.2100	0.7840
		0.4347	0.4958	0.4130	0.5760
		0.5076	0.3741	0.5155	0.4645
		0.5574	0.2830	0.5994	0.3720
		0.6235	0.2034	0.6920	0.2760
		0.5909	0.1126	0.7596	0.1769
		0.5850	0.0495	0.8281	0.0857
		0.5400	0.0000	0.8757	0.0000

Compositions of coexisting phases

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C	T/K (compiler)	organic-rich phase (compiler)		water-rich phase (compiler)		organic-rich phase		water-rich phase	
90	363.2	0.0394	0.9091	0.0017	0.0003	0.0340	0.9586	0.0100	0.0019
		0.0910	0.8560	0.0028	0.0002	0.0794	0.9129	0.0168	0.0016
		0.1989	0.7505	0.0044	0.0003	0.1768	0.8157	0.0260	0.0020
		0.3930	0.5102	0.0075	0.0011	0.3805	0.6039	0.0430	0.0075
		0.5387	0.2949	0.0098	0.0003	0.5811	0.3890	0.0560	0.0020
		0.5270	0.1839	0.0107	0.0003	0.6588	0.2810	0.0607	0.0019
		0.5389	0.0247	0.0122	0.0000	0.8397	0.0470	0.0692	0.0002

Auxiliary Information

Method/Apparatus/Procedure:

The cloud point method was used to find compositions along the saturation curve. The analytical method was used to describe phases in equilibrium. The ternary samples of about 50 mL were thermostated for 1 h, then the phases were separated and the compositions were determined by glc analysis.

Source and Purity of Materials:

 source not specified, "high purity" commercial samples; used as received; purity > 99 mass % by glc.
 source not specified; "high purity" commercial samples; used as received; purity > 99 mass % by glc.
 distilled.

Estimated Error: Not reported.

16. *α*-Methyl-benzenemethanol+Water

Components:	Original Measurements:
 alpha-Methyl-benzenemethanol; C₈H₁₀O; [98-85-1] Ethylbenzene (phenylethane); C₈H₁₀; [100-41-4] Water; H₂O; [7732-18-5] 	A. F. Frolov, M. A. Loginova, E. A. Frolova, I. I. Skorokhodova and Z. V. Krupina, Uch. Zap. Yaroslav. Tekhnol. Inst. 28, 98 103 (1971).
Variables: T/K=298	Compiled by: A. Skrzecz

16.1. α -Methyl-benzenemethanol + Water + Ethylbenzene

Experimental Data

Compositions along the saturation curve							
T/K	<i>x</i> ₁	<i>x</i> ₂					
(compiler)	(com	w_1					
298.2	0.1878	0.7678	0.2180				
	0.7005	0.2124	0.7801				
	0.7841	0.1097	0.8760				

0.7841	0.1097	0.8760	0.1065
0.7984	0.1077	0.8814	0.1033
0.7948	0.0855	0.8963	0.0838
0.7971	0.0752	0.9045	0.0741
0.8648	0.0190	0.9625	0.0184
0.8538	0.0053	0.9711	0.0052
0.9347	0.0000	0.9898	0.0000
0.0011	0.0000	0.0072	0.0000

Auxiliary Information

 $t/^{\circ}C$

25

Method/Apparatus/Procedure: The titration method was used. Samples were titrated until turbidity was observed.

Source and Purity of Materials:

(1) source not specified; b.p.=205.0 °C, d(20 °C,4 °C) = 1.0153; n(20 °C,D) = 1.5214. (2) source not specified; b.p.=138.5 °C, d(20 °C,4 °C) $= 0.867; n(20 \circ C,D) = 1.4958.$ (3) distilled.

 w_2

0.7744 0.2056

Estimated Error:

Note reported.

17. 2-Ethyl-1-hexanol+Water

Components: (1)2-Ethyl-1-hexanol; C8H18O; [104-76-7] (2) Heaxne (n-hexane); C₆H₁₄; [110-54-3] (3) Water; H₂O; [7732-18-5]

Original Measurements:

A. M. Kiryukhin, T. M. Lesteva, and N. P. Markuzin, Prom-st Sint. Kauch. 12, 12-4 (1981).

Variables: Compiled by: T/K = 293 - 313A. Skrzecz

17.1. 2-Ethyl-1-hexanol + Water + Hexane

Experimental Data

				Compositions of	of coexisting phas	es			
	T/K	x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C (compiler)		organic-rich phase (compiler)		water-rich phase (compiler)		U	organic-rich phase		water-rich phase
25	293.2	0.0000	0.9995	0.000 000 0	0.000 007 1	0.0000	0.9999	0.000 00	0.000 034
		0.165	0.825	0.000 037 9	0.000 006 9	0.209	0.789	0.000 24	0.000 013
		0.302	0.667	0.000 063 1	0.000 005 9	0.373	0.621	0.000 40	0.000 028
		0.311	0.658	0.000 078 9	0.000 005 6	0.383	0.611	0.000 50	0.000 027
		0.373	0.580	0.000 088 4	0.000 005 4	0.456	0.535	0.000 56	0.000 026
		0.492	0.444	0.000 096 3	0.000 004 2	0.588	0.400	0.000 61	0.000 020
		0.541	0.384	0.000 099 4	0.000 003 8	0.642	0.344	0.000 63	0.000 018
		0.645	0.247	0.000 105 7	0.000 001 1	0.760	0.220	0.000 67	0.000 015
		0.710	0.165	0.000 110 5	0.000 002 5	0.831	0.146	0.000 70	0.000 012
		0.789	0.078	0.000 112 0	0.000 002 1	0.908	0.068	0.000 71	0.000 010
		0.836	0.000	0.000 123 1	0.000 000 0	0.970	0.000	0.000 78	0.000 000
40	313.2	0.0000	0.9995	0.000 000 0	0.000 010 7	0.0000	0.9999	0.000 00	0.000 051
		0.177	0.808	0.000 045 7	0.000 010 0	0.224	0.773	0.000 29	0.000 048
		0.311	0.673	0.000 050 5	0.000 009 4	0.379	0.618	0.000 32	0.000 045
		0.382	0.582	0.000 075 7	0.000 008 4	0.462	0.531	0.000 48	0.000 040
		0.447	0.495	0.000 086 8	0.000 006 7	0.539	0.450	0.000 55	0.000 012
		0.504	0.427	0.000 099 4	0.000 006 3	0.602	0.385	0.000 63	0.000 030
		0.590	0.319	0.000 115 2	0.000 004 2	0.698	0.285	0.000 73	0.000 020
		0.668	0.228	0.000 121 5	0.000 003 8	0.780	0.201	0.000 77	0.000 018
		0.713	0.167	0.000 129 4	0.000 002 1	0.831	0.147	0.000 82	0.000 010
		0.8480	0.0000	0.000 115 7	0.000 000 0	0.9725	0.000	0.000 86	0.000 000

Auxiliary Information

Method/Apparatus/Procedure:

After separation both phases were analyzed. Concentrations of organic components were determined by glc; water was determined by the Karl Fischer method. To determine hydrocarbon in the water-rich phase, samples were extracted by nonane.

Source and Purity of Materials:

(1) source not specified; distilled, dried over zeolite; purity > 99.9 % mass.

(2) source not specified; distilled; purity > 99.9 % mass. (3) not specified.

Estimated Error:

Not reported.

Variables:

T/K = 298

18. 1-Octanol+Water

(1) 2-Ethyl-1-hexanol; C₈H₁₈O; [104-76-7]
 (2) Decahydronaphthalene (cis+trans) (decalin, bicyclo[4.4.0]decane); C₁₀H₁₈; [91-17-8]
 (3) Water; H₂O; [7732-18-5]

17.2. + 2-Ethyl-1-hexanol + Water + Decahydronaphthalene (cis+trans)

Experimental Data

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w' ₃	w_1''	w_2''
t∕°C	T/K (compiler)	ph	ic-rich ase piler)	water pha (comp	ise	01	ganic-rich ph	ase	water- pha	
25.0	298.2	0.864	0.000	0.000 134	0.000 00	0.976	0.000	0.0242	0.000 85	0.999 ^a
		0.745	0.155	0.000 110	0.000 00	0.786	0.198	0.0167	0.000 70	0.999
		0.599	0.331	0.000 093	0.000 00	0.593	0.396	0.0110	0.000 59	0.999
		0.427	0.531	0.000 066	0.000 00	0.397	0.597	0.0061	0.000 42	1.000
		0.227	0.754	0.000 063	0.000 00	0.199	0.798	0.0026	0.000 40	1.000
		0.000	1.000	0.000 000	0.000 00	0.000	1.000	0.0000	0.000 00	1.000 ^b

Auxiliary Information

^aResult of phase equilibria measurement of binary system 2-ethyl-1-hexanol-water.

^bResult of phase equilibria measurement of binary system decahydronaphthalene-water.

Method/Apparatus/Procedure:

organic phase.

The analytical method was used. Mixtures of known overall

settle for 2 h at constant temperature bath. Samples of each

separation.) Analytical conditions: column 2 m×3 mm,

composition, by weight, were stirred intensely and allowed to

phase were taken and analyzed by glc method with 1-propanol as internal standard. (1-Propanol also prevented phase

packed with Chromosorb 101 100/120, temp. 190 °C, thermal

conductivity detector for the organic phase, flame ionization

Decahydronaphthalene was reported to be undetectable in the

detector for aqueous phase, helium flow rate-40 mL/min.

Source and Purity of Materials:

Original Measurements:

317-27 (1988).

Compiled by:

A. Skrzecz

F. Ruiz, V. Gomis and R. F. Botella, Fluid Phase Equilib. 43,

Merck; used as received; <0.2 wt % impurities by glc.
 Merck; used as received; mixture of cis- and trans- isomers.
 not reported.

Estimated Error:

temp ± 0.1 °C.

Components:

Variables:

T/K = 293

1-Octanol (octyl alcohol, capryl alcohol); C₈H₁₈O;
 [111-87-5]
 (2) Pentane (*n*-pentane); C₅H₁₂; [109-66-0]
 (3) Water; H₂O; [7732-18-5]

Original Measurements:

Compiled by:

A. Skrzecz

A. M. Kiryukhin, T. M. Lesteva, and N. P. Markuzin, Prom-st Sint. Kauch. 12, 12-4 (1981).

18.1. 1-Octanol + Water + Pentane

Experimental Data

Compositions	of	coexisting	phase

		x'_1	x'_2	x_1''	x_2''	w'_1	w'_2	w_1''	w_2''
t/°C (compiler)	T/K	F	nnic-rich bhase mpiler)	ph	r-rich ase piler)	0	anic-rich phase		er-rich nase
25	293.2	0.000	0.999736	0.000 000 0	0.000 012 0	0.000	0.999 934	0.000 00	0.000 048
		0.164	0.809	0.000 011 1	0.000 011 2	0.266	0.728	0.000 08	0.000 045
		0.273	0.680	0.000 027 7	0.000 009 2	0.416	0.574	0.000 20	0.000 037
		0.425	0.528	0.000 034 6	0.000 007 2	0.587	0.404	0.000 25	0.000 029
		0.455	0.442	0.000 038 7	0.000 006 5	0.637	0.343	0.000 28	0.000 026
		0.474	0.412	0.000 038 7	0.000 006 2	0.660	0.318	0.000 28	0.000 025
		0.541	0.366	0.000 041 5	0.000 004 7	0.715	0.268	0.000 30	0.000 019
		0.563	0.262	0.000 048 4	0.000 004 2	0.769	0.198	0.000 35	0.000 017
		0.655	0.131	0.000 052 6	0.000 004 0	0.865	0.096	0.000 38	0.000 016
		0.709	0.040	0.000 056 7	0.000 004 0	0.926	0.028	0.000 41	0.000 016
		0.742	0.000	0.000 058 1	0.000 000 0	0.954	0.000	0.000 42	0.000 000

Auxiliary Information

Method/Apparatus/Procedure:

After separation both phases were analyzed. Concentrations of organic components were determined by glc; water was determined by the Karl Fischer method. To determine hydrocarbon in the water-rich phase, samples were extracted by nonane.

Source and Purity of Materials:

soruce not specified; distilled, dried over zeolite; purity >99.9% mass.
 source not specified; distilled; purity >99.9% mass.
 not specified.

Estimated Error:

Not reported.

1-Octanol (octyl alcohol, capryl alcohol); C₈H₁₈O;
 [111-87-5]
 Benzene; C₆H₆; [71-43-2]
 Water; H₂O; [7732-18-5]

Variables: T/K=287-335

Compiled by: A. Skrzecz

Original Measurements:

Soc. 2516-23 (1951).

L. A. K. Staveley, R. G. S. Johns, and B. C. Moore, J. Chem.

18.2. 1-Octanol + Water + Benzene

Experimental Data

Compositions along the saturation curve

				w_1	w_2
t/°C	T/K (compiler)	<i>x</i> ₁	<i>x</i> ₂	(compiler)	
22.5	295.65	0.0166	0.980 665	0.027 429	0.971 946
31.0	304.15	0.0166	0.979 665	0.027 450	0.971 695
33.0	306.15	0.0166	0.979 045	0.027 463	0.971 540
49.5	322.65	0.0166	0.977 116	0.027 504	0.971 056
62.1	335.25	0.0166	0.974 844	0.027 552	0.970 484
14.3	287.45	0.0314	0.965 007	0.051 415	0.947 771
23.7	296.85	0.0314	0.964 079	0.051 451	0.947 524
28.4	301.55	0.0314	0.963 248	0.051 483	0.947 303
41.65	314.80	0.0314	0.961 400	0.051 555	0.946 809
26.0	299.15	0.0435	0.950 801	0.070 779	0.927 938
33.5	306.65	0.0435	0.949 879	0.070 828	0.927 681
35.8	308.95	0.0435	0.949 242	0.070 862	0.927 503
38.9	312.05	0.0435	0.948 548	0.700 899	0.927 308
46.7	319.85	0.0435	0.947 152	0.070 973	0.926 917
53.4	326.55	0.0435	0.945 450	0.071 064	0.926 438

Auxiliary Information

Method/Apparatus/Procedure:

The synthetic method was used. Water was introduced into a tube by condensation of a known amount of vapor; the required amount of the octanol-benzene solution was siphoned into a tube which was then sealed.

Source and Purity of Materials:

 soruce not specified; dried by refluxing over freshly ignited lime, and then with aluminum amalgam, distilled.
 source not specified; chemically purified, crystallized, distilled, dried over phosphoric anhydride.
 not specified.

Estimated Error:

composition <0.2%; temp. <0.2 °C.

Components:

1-Octanol (octyl alcohol, capryl alcohol); C₈H₁₈O;
 [111-87-5]
 Hexane (*n*-hexane); C₆H₁₄; [110-54-3]
 Water; H₂O; [7732-18-5]

Evaluated by:

A. Skrzecz, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (1996.04)

18.3. 1-Octanol + Water + Hexane

Critical Evaluation:

A survey of reported compositions along the saturation curve and compositions of coexisting phases in equilibrium (eq.) for the system 1-octanol-hexane-water is given in Table 84.

TABLE 84.	Summary	of e	xperimental	data	for the	e system	1-octanol-	-hexane-v	vater

Author(s)	$T/{ m k}$	Type of data ^a	Ref.
Kiryukhin et al., 1981	293, 313	eq. (21)	1
Kiryukhin et al., 1983	335-373	eq. (12)	2

^aNumber of experimental points in parentheses.

Saturation curve

The system 1-octanol-hexane-water forms a large miscibility gap of type 2 covering the majority of the concentration triangle. Compositions along the saturation curves were not reported independently in the references; the saturation curves can be constructed on the basis of equilibrium compositions of phases. Two binary systems, hexane-water and 1-octanol-water, form miscibility gaps. The data for these systems were compiled and critically evaluated in previously published SDS volumes, Refs. 3 and 4, respectively. The recommended values of mutual solubility of the hexane-water system³ at 293 K are: $x'_1 = 0.99946$ and $x''_2 = 2.5 \cdot 10^{-6}$. The recommended values of mutual solubility of 1-octanol-water system⁴ at 298 K are: $x'_1 = 0.742$ and $x''_1 = 7.5 \cdot 10^{-5}$. Experimental solubilities of binary systems presented in Ref. 1 at 293.2 K are: $x'_1 = 0.99970$, $x''_2 = 7.1 \cdot 10^{-6}$ and $x''_1 = 5.1 \cdot 10^{-5}$, respectively.

Phases in equilibrium

Compositions of coexisting phases in equilibrium for the ternary system 1-octanol-hexane-water were reported in both references. The experimental procedure was reported very briefly in Ref. 1 and not at all in Ref. 2. All compositions of phases in equilibrium reported in Refs. 1 and 2 at various temperatures are consistent one with another. All presented data are treated as tentative. To present system behavior, experimental compositions of coexisting phases in equilibrium at 293.2 K¹ are presented in Fig. 46.

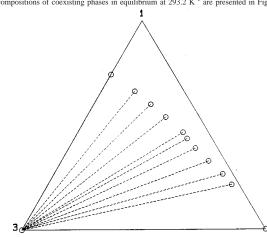


FIG. 46. Phase diagram of the system 1-octanol (1)—hexane (2)—water (3) at 293.2 K. O—experimental data, Ref. 1, dashed lines—experimental tie lines, Ref. 1.

References:

¹A. M. Kiryukhin, T. M. Lesteva, and N. P. Markuzin, Prom-st Sint. Kauch. 12, 12 (1981).

²A. M. Kiryukhin, T. M. Lesteva, and N. P. Markuzin, Prom-st Sint. Kauch. 12, 3 (1983).

³D. G. Shaw, ed., Solubility Data Series, Vol. 37. Hydrocarbons with Water and Seawater, Part I: Hydrocarbons C₅ to C₇ (Pergamon, New York, 1989).

⁴A. F. M. Barton, ed., Solubility Data Series, Vol. 15, Alcohols with Water (Pergamon, New York, 1984).

Components:

(1) 1-Octanol (octyl alcohol, capryl alcohol); C₈H₁₈O; [111-87-5] (2) Hexane (n-hexane); C₆H₁₄; [110-54-3] (3) Water; H₂O; [7732-18-5] _____

Original Measurements: A. M. Kiryukhin, T. M. Lesteva, and N. P. Markuzin, Prom-st Sint. Kauch. 12, 12-4 (1981).

(5) water, 11 ₂ O, [7752-16-5]		
Variables: <i>T</i> /K=293-313	Compiled by: A. Skrzecz	

1224

		x'_1	x'2	x"1	x"2	w'1	w2'	w_1''	w"2
		×1	×2	*1	*2	<i>w</i> ₁	w 2		w 2
°C	T/K (compiler)	I	anic-rich bhase mplier)	ph	r-rich ase piler)	U	anic-rich phase		er-rich nase
25	293.2	0.000	0.999 770	0.000 000 0	0.000 007 1	0.000	0.999 952	0.000 00	0.000 034
		0.214	0.755	0.000 009 7	0.000 006 7	0.298	0.696	0.000 07	0.000 032
		0.265	0.693	0.000 018 0	0.000 006 3	0.363	0.629	0.000 13	0.000 030
		0.327	0.604	0.000 022 1	0.000 005 6	0.444	0.543	0.000 16	0.000 027
		0.388	0.520	0.000 026 3	0.000 005 0	0.521	0.462	0.000 19	0.000 024
		0.434	0.463	0.000 029 1	0.000 004 2	0.575	0.406	0.000 21	0.000 020
		0.464	0.431	0.000 031 8	0.000 003 1	0.608	0.373	0.000 23	0.000 015
		0.536	0.325	0.000 038 7	0.000 003 6	0.696	0.279	0.000 28	0.000 017
		0.598	0.233	0.000 041 5	0.000 002 1	0.771	0.199	0.000 30	0.000 010
		0.661	0.137	0.000 048 4	0.000 001 7	0.848	0.116	0.000 35	0.000 008
		0.742	0.000	0.000 058 1	0.000 000 0	0.954	0.000	0.000 42	0.000 000
40	313.2	0.000	0.9995	0.000 000 0	0.000 010 7	0.000	0.9999	0.000 00	0.000 051
		0.272	0.676	0.000 016 6	0.000 007 7	0.374	0.616	0.000 12	0.000 037
		0.357	0.563	0.000 029 1	0.000 005 9	0.482	0.503	0.000 21	0.000 028
		0.394	0.519	0.000 030 4	0.000 005 2	0.526	0.458	0.000 22	0.000 025
		0.464	0.431	0.000 037 4	0.000 004 2	0.608	0.373	0.000 27	0.000 020
		0.469	0.400	0.000 038 7	0.000 003 8	0.624	0.352	0.000 28	0.000 018
		0.545	0.320	0.000 041 5	0.000 003 1	0.703	0.273	0.000 30	0.000 015
		0.577	0.276	0.000 044 3	0.000 002 1	0.740	0.234	0.000 32	0.000 010
		0.674	0.113	0.000 055 4	0.000 000 8	0.866	0.096	0.000 40	0.000 004
		0.733	0.000	0.000 066 4	0.000 000 0	0.952	0.000	0.000 48	0.000 000

Auxiliary Information

Method/Apparatus/Procedure:

After separation both phases were analyzed. Concentrations of organic components were determined by glc; water was determined by the Karl Fischer method. To determine hydrocarbon in the water-rich phase, samples were extracted by nonane.

Source and Purity of Materials:

(1) source not specified; distilled, dried over zeolite; purity >99.9% mass. (2) source not specified; distilled; purity >99.9% mass.

(3) not specified.

Estimated Error: Not reported.

1-Octanol (octyl alcohol, capryl alcohol); C₈H₁₈O;
 [111-87-5]
 Hexane (n-hexane); C₆H₁₄; [110-54-3]
 Water; H₂O; [7732-18-5]

Variables: p/kPa=101.3

Compiled by: A. Skrzecz

Original Measurements:

Sint. Kauch. 12, 3-6 (1983).

A. M Kiryukhim, T. M. Lesteva, and N. P. Markuzin, Prom-st

	x'_1	x'_2	x_1''	x_2''	w'_1	w2	w_1''	w_2''
p/kPa	Ų	ic-rich ase		r-rich ase	ph	ic-rich ase pliier)	ph	r-rich ase plier)
101.3	0.0000	0.9996	0.000 000	0.000 013	0.0000	0.9999	0.000 000	0.000 062
	0.1080	0.8785	0.000 029	0.000 025	0.1563	0.8410	0.000 210	0.000 12
	0.1990	0.7762	0.000 037	0.000 029	0.2779	0.7173	0.000 267	0.000 13
	0.2310	0.7351	0.000 040	0.000 033	0.3199	0.6736	0.000 289	0.000 15
	0.3160	0.6325	0.000 048	0.000 031	0.4261	0.5643	0.000 347	0.000 14
	0.3690	0.5575	0.000 054	0.000 027	0.4933	0.4931	0.000 390	0.000 12
	0.4380	0.4480	0.000 060	0.000 023	0.5838	0.3952	0.000 434	0.000 11
	0.5050	0.3500	0.000 062	0.000 021	0.6674	0.3061	0.000 448	0.000 10
	0.5510	0.2790	0.000 066	0.000 023	0.7258	0.2432	0.000 477	0.000 11
	0.6160	0.1670	0.000 071	0.000 019	0.8142	0.1461	0.000 513	0.000 09
	0.6700	0.0710	0.000 082	0.000 008	0.8900	0.0624	0.000 592	0.000 03
	0.7020	0.0000	0.000 090	0.000 000	0.9445	0.0000	0.000 650	0.000 00

Auxiliary Information

Method/Apparatus/Procedure:

The vapor–liquid–liquid equilibrium measurements were reported at pressure 101.3 kPa. Values of boiling temperatures were not reported. The experimental procedure was similar as in Ref. 1. No further details were reported in the paper.

Source and Purity of Materials:

source not specified.
 source not specified.
 not specified.

Estimated Error: Not reported.

References: ¹A. M. Kiryukhin et al., Prom-st Sint. Kauch. 7, 4 (1982).

Components:

1-Octanol (octyl alcohol, capryl alcohol); C₈H₁₈O;
 [111-87-5]
 (2) Heptane (*n*-heptane); C₇H₁₆; [142-82-5]
 (3) Water; H₂O; [7732-18-5]

Original Measurements:

A. M. Kiryukhin, T. M. Lesteva, and N. P. Markuzin, Prom-st Sint. Kauch. 12, 12–4 (1981).

Variables: *T*/K=293-333

Compiled by: A. Skrzecz

18.4. 1-Octanol + Water + Heptane Experimental Data

		,	,	"	"	,	,	"	"
		<i>x</i> ₁ '	x'_2	x"1	x ₂ "	w'1	w2'	w"1	w ["] ₂
°C	T/K (compiler)	organic-rich phase (complier)		water-rich phase (compiler)		organic-rich phase		water-rich phase	
25	293.2	0.0000	0.9994	0.000 000 0	0.000 000 5	0.0000	0.9999	0.000 00	0.000 00
		0.135	0.848	0.000 009 7	0.000 000 4	0.171	0.826	0.000 07	0.000 00
		0.277	0.676	0.000 022 1	0.000 000 4	0.345	0.647	0.000 16	0.000 00
		0.521	0.345	0.000 042 9	0.000 000 2	0.647	0.330	0.000 31	0.000 00
		0.593	0.239	0.000 048 4	0.000 000 2	0.741	0.230	0.000 35	0.000 00
		0.685	0.103	0.000 052 6	0.000 000 0	0.863	0.100	0.000 38	0.000 00
		0.742	0.000	0.000 058 1	0.000 000 0	0.954	0.000	0.000 42	0.000 00
40	313.2	0.0000	0.9994	0.000 000 0	0.000 001 1	0.0000	0.9999	0.000 00	0.000 00
		0.206	0.771	0.000 013 8	0.000 000 9	0.257	0.739	0.000 10	0.000 00
		0.369	0.567	0.000 031 8	0.000 000 7	0.453	0.536	0.000 23	0.000 00
		0.479	0.399	0.000 034 6	0.000 000 5	0.597	0.382	0.000 25	0.000 00
		0.527	0.334	0.000 038 7	0.000 000 4	0.656	0.320	0.000 28	0.000 00
		0.628	0.219	0.000 040 1	0.000 000 2	0.768	0.206	0.000 29	0.000 00
		0.659	0.175	0.000 047 0	0.000 000 2	0.807	0.165	0.000 34	0.000 00
		0.724	0.067	0.000 055 4	0.000 000 0	0.900	0.064	0.000 40	0.000 00
		0.733	0.000	0.000 066 4	0.000 000 0	0.952	0.000	0.000 48	0.000 00
60	333.2	0.0000	0.9989	0.000 000 0	0.000 002 9	0.0000	0.9998	0.000 00	0.000 01
		0.161	0.834	0.000 016 6	0.000 002 2	0.200	0.799	0.000 12	0.000 01
		0.346	0.584	0.000 027 7	0.000 001 8	0.430	0.558	0.000 20	0.000 01
		0.389	0.518	0.000 034 6	0.000 001 4	0.486	0.498	0.000 25	0.000 00
		0.441	0.454	0.000 038 7	0.000 000 9	0.548	0.434	0.000 28	0.000 00
		0.474	0.404	0.000 041 5	0.000 000 5	0.591	0.388	0.000 30	0.000 00
		0.497	0.360	0.000 044 3	0.000 000 4	0.626	0.349	0.000 32	0.000 00
		0.586	0.241	0.000 047 0	0.000 000 2	0.737	0.233	0.000 34	0.000 00
		0.676	0.112	0.000 054 0	0.000 000 0	0.854	0.109	0.000 39	0.000 00
		0.720	0.000	0.000 070 6	0.000 000 0	0.949	0.000	0.000 51	0.000 00

Auxiliary Information

Method/Apparatus/Procedure:

After separation both phases were analyzed. Concentrations of organic components were determined by glc; water was determined by the Karl Fischer method. To determine hydrocarbon in the water-rich phase, samples were extracted by nonane.

Source and Purity of Materials:

source not specified; distilled, dried over zeolite; purity >99.9% mass.
 source not specified; distilled; purity >99.9% mass.

(3) not specified. Estimated Error:

Not reported.

1225

19. 1-Nonanol+Water

Original Measurements:

Compiled by:

A. Skrzecz

V. P. Sazonov, M. F. Chernysheva, and A. G. Sarkisov, Zh.

Prikl. Khim. (Leningrad) 52, 2710-3 (1979). [Eng. transl. Russ.

J. Appl. Chem. (Leningrad) 52, 2565-8 (1979)].

Components: (1) 1-Nonanol (nonyl alcohol, nonanol); C₉H₂₀O; [143-08-8] (2) Naphthalene; C10H8; [91-20-3] (3) Water; H₂O; [7732-18-5]

			ntal Data the saturation curve		
	T/K	<i>x</i> ₁	<i>x</i> ₂		
t °C	(compiler)	(com	piler)	w_1	w_2
20.0	293.2	0.740	0.000	0.958	0.000
		0.716	0.040	0.916	0.045
		0.704	0.068	0.888	0.076
		0.691	0.086	0.869	0.096 ^a
		0.883	0.117	0.895	0.105 ^b
		0.740	0.097	0.874	0.102 ^b
23.0	296.2	0.740	0.000	0.958	0.000
		0.714	0.037	0.918	0.042
		0.695	0.066	0.887	0.075
		0.681	0.092	0.861	0.103
		0.674	0.099	0.853	0.111 ^a
		0.869	0.131	0.882	0.118 ^b
		0.734	0.109	0.863	0.114 ^b
40.0	313.2	0.726	0.000	0.955	0.000
		0.692	0.039	0.910	0.046
		0.683	0.063	0.886	0.073
		0.668	0.089	0.859	0.102
		0.636	0.142	0.805	0.160
		0.626	0.174	0.777	0.192 ^a
		0.779	0.221	0.799	0.201 ^b
		0.667	0.189	0.782	0.197 ^b

^aLiquid-liquid-solid equilibrium.

^bLiquid-solid equilibrium.

Auxiliary Information

Method/Apparatus/Procedure:

The procedure and details of the analytical method are described in Ref. 1. Equilibrium phases were analyzed by glc with a thermal conductivity detector. Glc analyses were made after separation of phases for up to 15 days. The water-rich phase contained only trace amounts of nonanol and naphthalene, therefore the experimental results were reported only as solubility data.

Source and Purity of Materials:

(1) source not specified, pure grade; dried over CaO, vacuum distilled several times; purity of the middle fraction >99 mass %; impurities-isomers and other higher alcohols. (2) source not specified, pure for analysis grade; twice crystallized from ethanol, dried; m.p. = 80.2 °C. (3) doubly distilled.

Estimated Error:

Not reported.

References:

¹V. P. Sazonov and M. F. Chernysheva, Zh. Prikl. Khim. (Leningrad) 51, 1019 (1978).

1226

Compositions along the saturation curve					
	T/V	<i>x</i> ₁	<i>x</i> ₂		
t °C	T/K – (compiler)	(con	(compiler)		w_2
20.0	293.2	0.740	0.000	0.958	0.000
		0.716	0.040	0.916	0.045
		0.704	0.068	0.888	0.076
		0.691	0.086	0.869	0.096
		0.883	0.117	0.895	0.105
		0.740	0.097	0.874	0.102
23.0	296.2	0.740	0.000	0.958	0.000
		0.714	0.037	0.918	0.042
		0.695	0.066	0.887	0.075
		0.681	0.092	0.861	0.103
		0.674	0.099	0.853	0.111
		0.869	0.131	0.882	0.118
		0.734	0.109	0.863	0.114
40.0	313.2	0.726	0.000	0.955	0.000
		0.692	0.039	0.910	0.046
		0.683	0.063	0.886	0.073
		0.668	0.089	0.859	0.102
		0.636	0.142	0.805	0.160
		0.626	0.174	0.777	0.192
		0.779	0.221	0.799	0.201
		0.667	0.189	0.782	0.197

J. Phys. Chem. Ref. Data, Vol. 2

Variables:

T/K = 293 - 333

20. System Index

Note: a letter E indicates presence of a Critical Evaluation

Note. a fetter E indicates presence of a critical Evaluation	
Benzene+Water	
+ 1-Butanol	1186–1188E
+ 2-Butanol	1201-1202E
+ Ethanol	1027-1042E
+ Methanol	995-1002E
+ 2-Methyl-1-propanol	1165–1166E
+ 2-Methyl-2-propanol	1174–1175E
+ 1-Octanol	1223
+ 1-Pentanol	1212–1213
+ 1-Propanol	1095-1100E
+ 2-Propanol	1130–1137E
Benzyl alcohol+Water	
+ Heptane	1219-1220
+ Hexane	1217-1218
+ 1, 2, 3, 4-Tetrahydronaphthalene	1220
+ Toluene	1218-1219
Butane+Water	
+ 2-Butanol	1200
+ Methanol	993
1-Butanol+Water	
+ Benzene	1186-1188E
+ Cyclohexane	1189–1191E
•	
+ Heptane	1198
+ 1-Heptene	1198
+ Hexane	1191–1194E
+ Mesitylene	1199–1200
+ Toluene	1194–1197E
+ p-Xylene	1199
2-Butanol+Water	
+ Benzene	1201-1202E
+ Butane	1200
+ Cyclohexane	1203-1205E
+ Heptane	1209
+ 1-Heptene	1209
+ Mesitylene	1209
•	1206–1208E
+ Toluene	
+ p-Xylene	1210
1-Butene+Water	
+ 2-Methyl-2-propanol	1173
Cyclohexane+Water	
+ 1-Butanol	1189–1191E
+ 2-Butanol	1203-1205E
+ Ethanol	1045-1052E
+ Methanol	1004-1007E
+ 2-Methyl-1-propanol	1167–1169E
+ 2-Methyl-2-propanol	1176–1178E
+ 1-Propanol	1100–1103E
*	
+ 2-Propanol	1139–1145E
Cyclohexene+Water	
+ Ethanol	1043-1044E
+ Methanol	1002-1004E
+ 2-Propanol	1138
Decahydronaphthalene (cis+trans)+Water	
+ Ethanol	1093-1094
+ 2-Ethyl-1-hexanol	1222
Decane+Water	
+ Ethanol	1094
+ 1-Propanol	1126–1129E
*	1120-1127E
2,2-Dimethylbutane+Water	1052
+ Ethanol	1052
Ethanol+Water	
+ Benzene	1027-1042E
+ Cyclohexane	1045-1052E
+ Cyclohexene	1043-1044E
+ Decahydronaphthalene (cis+trans)	1093-1094

SKRZECZ, SHAW, AND MACZYNSKI

+ Decane	1194
+ 2, 2-Dimethylbutane + Heptane	1052 1067–1071E
+ 1-Heptene	1066-1067
+ Hexane	1053–1057 1053–1058E
+ Mesitylene	1089–1091
+ Methylcyclohexane	1066
+ Nonane	1092
+ Octane	1088-1089
+ 1-Octene	1084–1085
+ Toluene	1059-1065E
+2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene	1093
+ 2, 2, 4-Trimethylpentane + 2, 4, 4-Trimethyl-1-pentene	1085–1088E 1084
+ 2, 4, 4-Timentyi-T-pentene + <i>m</i> -Xylene	1072–1076E
+ o-Xylene	1072-1070E
+ p-Xylene	1080-1083E
Ethylbenzene+Water	
+ alpha-Methyl-benzenemethanol	1221
+ 2-Propanol	1159–1160
2-Ethyl-1-hexanol+Water	
+ Decahydronaphthalene (cis+trans)	1222
+ Hexane	1221
Heptane+Water	1219-1220
+ Benzyl alcohol + 1-Butanol	1219-1220
+ 2-Butanol	1209
+ Ethanol	1067–1071E
+ 1-Hexanol	1217
+ Methanol	1015–1017E
+ 2-Methyl-2-propanol	1181
+ 1-Octanol	1225
+ 1-Pentanol	1216
+ 2-Pentanol	1216
+ 1-Propanol	1114–1118E
+ 2-Propanol	1153–1156E
1-Heptene+Water + 1-Butanol	1198
+ 2-Butanol	1209
+ Ethanol	1066–1067
+ Methanol	1014
+ 2-Methyl-1-propanol	1171
+ 2-Methyl-2-propanol	1180
+ 1-Propanol	1113
+ 2-Propanol	1153
Hexane+Water	
+ Benzyl alcohol	1217-1218
+ 1-Butanol + Ethanol	1191–1194E
+ 2+Ethyl-1-hexanol	1053–1058E 1221
+ Methanol	1008–1011E
+ 1-Octanol	1223–1225E
+ 1-Pentanol	1213–1215E
+ 1-Propanol	1103-1108E
+ 2-Propanol	1145–1147E
1-Hexanol+Water	
+ Heptane	1217
1-Hexene+Water	
+ Methanol	1008
Mesitylene+Water	1100 1000
+ 1-Butanol + 2-Butanol	1199-1200
+ 2-Butanol + Ethanol	1211 1089–1091E
+ Emanoi $+$ Methanol	1089-1091E
+ 2-Methyl-1-propanol	1172
+ 2-Methyl-2-propanol	1185
+ 1-Propanol	1122–1123
+ 2-Propanol	1163

IUPAC-NIST SOLUBILITY DATA SERIES

Methanol+Water	
+ Benzene	995-1002E
+ Butane	993
+ Cyclohexane	1004-1008E
+ Cyclohexene	1002-1004E
+ Heptane	1015–1017E
+ 1-Heptene	1014
+ Hexane	1008–1011E
+ 1-Hexene	1008
+ Mesitylene	1025-1026
+ 2-Methyl-1, 3-butadiene	994
+ 1-Methylnaphthalene	1027
+ Propane	993
+ Nonane	1026
+ Octane	1023–1025E
+ Toluene	1011-1014E
+ 2,2,4-Trimethylpentane	1021-1023E
+ <i>p</i> -Xylene	1018–1019E
+ Xylene	1020
α -Methyl-benzenemethanol+Water	
+ Ethylbenzene	1221
2-Methyl-1,3-butadiene+Water	
+ Methanol	994
+ 3-Methyl-3-buten-1-ol	1212
3-Methyl-3-buten-1-ol+Water	
+ 2-Methyl-1,3-butadiene	1212
Methylcyclohexane+Water	
+ Ethanol	1066
1-Methylnaphthalene+Water	
+ Methanol	1027
2-Methyl-1-propanol + Water	
+ Benzene	1165–1166E
+ Cyclohexane	1067–1169E
+ 1-Heptene	1170
+ Mesitylene	1172
+ Toluene	1170
+ p-Xylene	1171
2-Methyl-2-propanol + Water	
+ Benzene	1174–1175E
+ 1-Butene	1173
+ Cyclohexane	1176–1178E
+ Heptane	1181
+ 1-Heptene	1180
+ Mesitylene	1185
+ Tetradecane	1186
+ Toluene	1179
+ 2,2,4-Trimethylpentane	1183–1184
+ 2,4,4-Trimethylpentene	1182–1183
+ p-Xylene	1181–1182
Naphthalene + Water	
+ 1-Nonanol	1226
Nonane + Water	1220
+ Ethanol	1092
+ Methanol	1026
+ 1-Propanol	1123–1125E
+ 2-Propanol	1125 1125
-Nonanol + Water	110-
+ Naphthalene	1226
1,7-Octadiene + Water	1220
+ 2-Propanol	1160
+ 2-riopanoi Octane + Water	1100
+ Ethanol	1088-1089
+ Methanol	1023-1025E
+ 1-Propanol	1120-1121E
+ 2-Propanol	1162
1-Octanol + Water + Benzene + Hexane	1223 1223–1225E

+ Pentane	12
1-Octene + Water	
+ Ethanol	1084-10
Pentane + Water	
+ 1-Octanol	12
1-Pentanol + Water	
+ Benzene	1212-12
+ Hexane	1213-121
+ Heptane	12
2-Pentanol + Water	
+ Heptane	12
Propane + Water	1.
+ Methanol	
	1
1-Propanol + Water	1005 11/
+ Benzene	1095-110
+ Cyclohexane	1100-110
+ Decane	1126–112
+ Heptane	1114-111
+ 1-Heptene	1
+ Hexane	1103-110
+ Mesitylene	1122-1
+ Nonane	1123-112
+ Octane	1120-112
+ Toluene	1109–11
+ p-Xylene	1
2-Propanol + Water	1
+ Benzene	1130-113
+ Cyclohexane	1139–114
+ Cyclohexene	1
+ Ethylbenzene	1159–1
+ Heptane	1153–115
+ 1-Heptene	1
+ Hexane	1145-114
+ Mesitylene	1
+ Nonane	1
+ 1,7-Octadiene	1
+ Octane	1
+ Toluene	1148-115
+ 2,2,4-Trimethylpentane	1
+ m-Xylene	1156–1
+ o-Xylene	1150-1
•	
+ p-Xylene	1158–1
Tetradecane + Water	
+ 2-Methyl-2-propanol	1
1,2,3,4-Tetrahydronaphthalene + Water	
+ Benzyl alcohol	1
Toluene + Water	
+ Benzyl alcohol	1218-1
+ 1-Butanol	1194–119
+ 2-Butanol	1206-120
+ Ethanol	1059-10
+ Methanol	1011-10
+ 2-Methyl-1-propanol	1
+ 2-Methyl-2-propanol	1
+ 1-Propanol	1109–11
+ 2-Propanol	1109–11 1148–11:
	1148–113
2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene + Water	
+ Ethanol	1
2,2,4-Trimethylpentane + Water	
+ Ethanol	1085-10
+ Methanol	1021-102
+ 2-Methyl-2-propanol	1183-113
+ 2-Propanol	1
2,4,4-Trimethyl-1-pentene + Water	
+ Ethanol	10
2,4,4-Trimethylpentene + Water	1
+ 2-Methyl-2-propanol	1182-11

<i>m</i> -Xylene + Water	
+ Ethanol	1072-1076E
+ 2-Propanol	1156–1157
o-Xylene + Water	
+ Ethanol	1077-1079E
+ 2-Propanol	1157-1158
<i>p</i> -Xylene + Water	
+ 1-Butanol	1199
+ 2-Butanol	1210
+ Ethanol	1080-1083E
+ Methanol	1018-1019E
+ 2-Methyl-1-propanol	1171
+ 2-Methyl-2-propanol	1181–1182
+ 1-Propanol	1119
+ 2-Propanol	1158–1159
Xylene + Water	
+ Methanol	1020

21. Registry Number Index

64-17-5	1027-1094
67-56-1	993-1027
67-63-0	1130–1164
71-23-8	1095–1129
71-36-3	1186–1200
71-41-0	1212–1216
71-43-2	995-1002, 1027, 1042, 1095-1100, 1130-1137, 1165-1166, 1174-1175,
	1186–1188, 1201–1202, 1212–1213, 1223
74-98-6	993
75-65-0	1173–1186
75-83-2	1052
78-79-5	994. 1212
78-83-1	1165–1172
78-92-2	1200-1211
80-56-8	1093
90-12-0	1027
91-17-8	1093–1094, 1222
91-20-3	1226
95-47-6	1077–1079, 1157–1158
98-85-1	1221
100-41-4	1159–1160, 1221
100-51-6	1217-1220
104-76-7	1221-1222
106-42-3	1018-1019, 1080-1083, 1119, 1158-1159, 1171, 1181-1182, 1199, 1210
106-97-8	993, 1200
106-98-9	1173
107-39-1	1084
108-38-3	1072–1076, 1156–1157
108-67-8	1025-1026, 1089-1091, 1122-1123, 1163, 1172, 1185, 1199-1200, 1211
108-87-2	1066
108-88-3	1011-1014, 1059-1065, 1109-1113, 1148-1152, 1170, 1179, 1194-1197,
	1206–1208, 1218–1219
109-66-0	1222
110-54-3	1008–1011, 1053–1058, 1103–1108, 1145–1147, 1191–1194, 1213–1215,
	1217–1218, 1221, 1223–1225
110-82-7	1004–1007, 1045–1052, 1100–1103, 1139–1145, 1167–1169, 1176–1178,
	1189–1191, 1203–1205
110-83-8	1002–1004, 1043–1044, 1138
111-27-3	1217
111-65-9	1023–1025, 1088–1089, 1120–1122, 1162
111-66-0	1084–1085
111-84-2	1026, 1092, 1123–1125, 1164
111-87-5	1222-1225
119-64-2	1220
124-18-5	1094, 1126–1128
142-82-5	1015–1017, 1070–1071, 1114–1118, 1153–1156, 1181, 1198, 1209, 1216,
	1217, 1219–1220, 1225
143-08-8	1226
540-84-1	1021–1023, 1085–1088, 1161, 1183–1184

592-41-6 592-76-7 629-59-4 763-32-6 1330-20-7 3710-30-3 6032-29-7 7732-18-5 25167-70-8 1008 1014, 1066–1067, 1113, 1153, 1171, 1180, 1198, 1209 1186 1212 1020 1160 1216 993–1226 1182–1183

22. Author Index

Note: a letter E refers to evaluation texts.

Alberty, R. A. Alexandrova, M. V. Arda, N. Aristovich, V. Yu. Arnold, G. B. Artem'eva, L. V. Arzhanov, P. G. Badina, N. S. Baker, E. M. Bancroft, W. D. Barbaudy, J. Barton, A. F. M. Beckord, O. C. Beguin, A. E. Bell, N. M. Belousov, V. P. Bevia, F. R. Blazhin, Yu. M. Bobylev, B. N. Bonner, W. D. Borisova, I. A. Botella, R. F. Brandani, V. Bricknell, B. C. Brockway, C. E. Buchowski, H. Budantseva, L. S. Chang, Y. C. Charykov, A. K. Chernysheva, M. F. Chianese, A. Connemann, M. Craven, E. C. Curtis, C. B. Davies, W. R. Davis, J. R. Dawe, R. A. Deizenrot, I. V. Deming, P. Denzler, C. G. Desai, A. M. Dubovskaya, A. S. Emelyanov, A. O. Evans, L. R. Fenske, M. R. Fokina, V. V. Francis, A. W. Fridman, V. M. Frolov, A. F. Frolova, E. A. Fujita, S. Fuoss, R. M. Garber, Yu. N. Gaube, J. Gomis, V.

1165E, 1166 1094 1161 1115E, 1118, 1120E, 1122 1003, 1043E, 1044, 1138 1212 1060E, 1062 1212 1110E, 1110 996E, 1029E, 1037E 996E, 996, 1029E, 1032, 1034 1165E, 1167E, 1187E, 1189E, 1192E, 1195E, 1201E, 1203E, 1206E, 1214E, 1224E 1060E, 1061 1060E, 1061, 1149E, 1149 1073E, 1074 1029E, 1039 1060E, 1063 1212 1160 1009E, 1009, 1015E, 1016, 1029E, 1029, 1054E, 1054, 1060E, 1060, 1068E, 1069, 1073E, 1073, 1078E, 1078, 1081E, 1081, 1090E, 1090, 1093 1060E, 1063, 1149E, 1151 1093, 1222 1029E, 1042 1014, 1066, 1113, 1153, 1171, 1180, 1198, 1209 1101E, 1101, 1140E, 1140 1021E, 1022 996E, 1001, 1004, 1005E, 1006, 1008, 1009E, 1011, 1015E, 1017, 1021E, 1023, 1024E, 1025 1029E, 1038 1214E, 1214 1226 1029E, 1042 1046E, 1049 1054E, 1060E 1060E 996 1201E. 1202 1127E, 1128 1009E, 1010, 1015E, 1016, 1024E, 1024, 1026 1101E, 1101, 1140E, 1140 1096E, 1096 1027 1127E, 1127, 1183 1160 1201E, 1202, 1206E, 1207 1029E, 1036 1173 996E, 998 1009E, 1010, 1015E, 1016, 1024E, 1024, 1026 1221 1221 1073E, 1076, 1076E, 1079, 1081E, 1082 1195E, 1195 1060E. 1062 1046E, 1049 1093, 1222

J. Phys. Chem. Ref. Data, Vol. 28, No. 4, 1999

as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP 129.6.105.191 On: Fri, 05 Sep 2014 17:51:55

IUPAC-NIST SOLUBILITY DATA SERIES

Goto, S.

Holt, A.

Ishida, K.

Karrer, L.

Lee, H.

Lin. J.-S.

Gorbunov, A. I. 1060E, 1063, 1149E, 1151, 1218 Gorovits, B. I. 1214E, 1220 1220 Graham, C. L. 1003, 1043E, 1044, 1101E, 1119, 1138, 1140E, 1140 Hand, D. B. 996E Hartley, J. 1020 Hayakawa, T. 1073, 1076, 1078E, 1079, 1081E, 1082 Heyward, C. 1015E, 1017, 1068E, 1071, 1115E, 1118, 1154E, 1156, 1181, 1198, 1209, 1216, 1217 Hlavaty, K. 1096E, 1149E Hnizda, V. 1029E, 1034 Holmes, J. 996E, 1029E, 1096E 1073E, 1074 Hong, W.-H. 1182 Hopson, W. H. 1096E, 1097, 1105E, 1105, 1115E, 1115 Hubard, S. S. 1029E, 1037 Huber, J. F. K. 1086E, 1088 Hulsman, J. A. R. J. 1086E, 1088 Ilin, K. K. 1110E, 1101 Ilyaskin, V. I. 1146E, 1147, 1192E, 1194 993, 994 Ivanova, G. G. 1217, 1219 996E, 997, 1029E, 1037, 1187E, 1188, 1212, 1223 Johns, R. G. S. Jones, J. H. 1096E, 1097, 1105E, 1105, 1115E, 1115 Kafarov, V. V. 996E, 1012E, 1018E, 1054E, 1060E, 1073E, 1096E, 1110E, 1131E, 1149E Kamaevskaya, L. A. 1029E, 1040 Karapetyants, M. Kh. 1054E, 1056, 1068E, 1070, 1088, 1092, 1105E, 1106, 1115E, 1116, 1120E, 1121, 1124E, 1124, 1127E, 1127, 1146E, 1146, 1154E, 1155, 1162, 1164, 1183 1046E, 1047 Katavama, T. 1105E, 1108, 1192E, 1193 Khrabrova, N. G. 1173 Kimura, O. 1029E, 1035 1221, 1222, 1224E, 1224, 1225 Kiryukhin, A. M. Knypl, E. T. 1159 Kogan, V. B. 1009E, 1010, 1015E, 1016, 1024E, 1024, 1026 Kolyuchkina, G. Ya. 1217, 1219 Komarova, L. F. 1060E. 1062 Koshelkov, V. A. 1105E, 1107, 1124E, 1125 Koshel'kov, V. A. 1115E, 1118, 1120E, 1122 Kretschmer, C. B. 1043E, 1044, 1046, 1048, 1052, 1066, 1084, 1086E, 1086, 1087 Krupina, Z. V. 1221 Kubicek V. 1060E, 1064 Kulbyaeva, T. A. 1009E, 1010, 1015E, 1016, 1024E, 1024, 1026 1182 Lee, Y.-W. 1182 Lee, Y.Y. 1182 Legochkina, L. A. 1131E. 1134 Leikola, E. 996E, 1012E, 1018E, 1060E, 1073E, 1096E, 1110E, 1131E, 1149E Lesteva, T. M. 994, 996E, 1001, 1004, 1005E, 1006, 1008, 1009E, 1011, 1015E, 1017, 1021E, 1023, 1024E, 1025, 1214E, 1215, 1221 996E, 1005E, 1007, 1012E, 1013, 1014, 1015E, 1017, 1018E, 1019, 1025, 1029E, 1046E, 1050, Letcher, T. M. 1060E, 1065, 1066, 1068E, 1071, 1081E, 1083, 1090E, 1091, 1096E, 1101E, 1102, 1110E, 1112, 1113, 1115E, 1118, 1119, 1122, 1131E, 1140E, 1143, 1149E, 1152, 1153, 1154E, 1156, 1157, 1158, 1163, 1165E, 1167E, 1169, 1170, 1171, 1172, 1174E, 1176E, 1178, 1179, 1180, 1181, 1185, 1187E, 1189E, 1190, 1195E, 1197, 1198, 1199, 1201E, 1203E, 1205, 1206E, 1208, 1209, 1210, 1211, 1216, 1217 1206E, 1207 Lincoln, A. T. 1029E Linke, W. F. 1073E Loginova, M. A. 1221 Lorah, J. R. 1068E. 1069 Lorimer, J. W. 1005E, 1009E, 1015E, 1021E, 1024E Maczynski, A. 1005E, 1009E, 1015E, 1021E, 1024E Mahers, E. G. 1127E, 1128 Markuzin, N. P. 1214E, 1215, 1221, 1222, 1224E, 1224, 1225 Mason, L. S. 1012E, 1013 Matous, J. 1060E, 1064 Matsubara, M. 1220 1054E, 1058 Matsuura, H.

Mazanko, T. F. McCants, J. F. Meijers, C. A. M. Melnik, L. V. Mertslin, R. V. Michnick, M. J. Mochalov, K. I. Mondain-Monval, P. Moore, B. C. Morachevskii, A. G. Moriyoshi, T. Morozov, A. V. Morozova, A. I. Morozova, V. I. Moulton, R. W. Nagatsuka, K. Nam, S. Naymova, A. A. Nemtsov, M. S. Nikurashina, N. I. Nishimoto, W. Niwase, Y. Noda, K. Novak, J. P. Nowakowska, J. Ogorodnikov, S. K. Olsen, A. L. Ormandy, W. R. Patterson, R. E. Paulsen, I. A. Pavlenko, T. G. Perrakis, N. Petrov, V. A. Pfennig, A. Pick, J. Plackov, D. Plyngeu, V. Ya. Polozhentseva, E. N. Polyakov, A. A. Pond, T. W. M. Potapova, T. M. Prutton, C. F. Pugachevich, P. P. Quiquerez, J. Rabinovich, I. I. Radloff, S. E. Radosz, M. Ravindran, S. Rajendran, M. Renganarayanan, S. Reuter, U. Ricna, K. Rico, D. P. Ross, S. Rossi, M. Ruiz F Sabylin, I. I. Sadovnikova, L. V. Sarkisov, A. G. Sata, N. Sato, K. Sayar, A. A. Sazonov, V. P.

996E, 999, 1096E, 1098, 1131E, 1132, 1135, 1136 1096E, 1097, 1105E, 1105, 1115E, 1115 1086E, 1088 1160 1029E, 1040, 1054E, 1056 1186 1073E 1060E, 1062, 1073E, 1075 996E, 997, 1029E, 1037, 1131E, 1134, 1187E, 1188, 1212, 1223 1029E, 1039 1046E, 1049, 1054E, 1058 1146E, 1147, 1192E, 1194 1212 994 1029E, 1038 993, 994 1073E, 1076, 1078E, 1079, 1081, 1082 1173 996E, 1001, 1004, 1005E, 1006, 1008, 1009E, 1011, 1015E, 1017, 1021E, 1023E, 1024E, 1025 1029E, 1040, 1054E, 1056, 1110E, 1111, 1131E, 1135, 1140E, 1142 1054E, 1058 996E, 997 993, 994 1060E, 1064 1084, 1086E, 1087 994, 1212 1131E, 1131 996E, 1054E, 1060E 1029E, 1041, 1054E, 1057 1029E, 1046E, 1047, 1048, 1054E, 1055 1105E, 1107, 1115E, 1118, 1120E, 1122, 1124E, 1125 996E, 1029E, 1131E, 1187E 1054E, 1056 1046E, 1049 1149E, 1150 1005E, 1046E, 1051, 1101E, 1103, 1140E, 1144, 1167E, 1168, 1176E, 1177, 1189E, 1190, 1203E, 1204 1131E, 1136 1029E, 1060E 1173 996 1214E, 1212 1027 1115E, 1117 1060E, 1062, 1073E, 1075 1115E, 1117 996E, 1005E, 1007, 1014, 1018E, 1019, 1029E, 1046E, 1050, 1066, 1081E, 1083, 1096E, 1101E, 1102, 1113, 1115E, 1119, 1131E, 1140E, 1143, 1149E, 1153, 1158, 1165E, 1167E, 1169, 1171, 1174E, 1176E, 1178, 1180, 1181, 1187E, 1189E, 1190, 1198, 1199, 1201E, 1203E, 1205, 1209, 1210 1200 1096E, 1101E, 1115E, 1149E, 1176E 1131E. 1137 1131E, 1137 1046E, 1049 1060E. 1064 1060E, 1063 1029E, 1041, 1054E, 1057 1029E, 1042 1093 1222 1115E, 1118, 1120E, 1122 1094 1146E, 1147, 1192E, 1194, 1226 996E, 997, 1029E, 1035 993, 994 1161 1226 1068E, 1069

Schweppe, J. L.

IUPAC-NIST SOLUBILITY DATA SERIES

Serafimov, L. A. 1105E, 1107, 1115E, 1118, 1120E, 1122, 1124E, 1125, 1217, 1219 Sewry, J. D. 996E, 1014, 1029E, 1066, 1113, 1131E, 1153, 1165E, 1171, 1174E, 1180, 1187E, 1198, 1201E, 1209 Shanahan, C. E. A. 1195E, 1196 Shaw, D. G. 996E, 1005E, 1009E, 1012E, 1015E, 1018E, 1021E, 1024E, 1029E, 1043E, 1046E, 1054E, 1060E, 1068E, 1073E, 1078E, 1081E, 1086E, 1090E, 1096E, 1101E, 1105E, 1110E, 1115E, 1120E, 1124E, 1127E, 1131E, 1140E, 1146E, 1149E, 1154E, 1165E, 1167E, 1174E, 1176E, 1187E, 1189E, 1192E, 1195E, 1201E, 1203E, 1206E, 1214E, 1224E Shuttleworth, B. 1015E, 1017, 1068E, 1071, 1115E, 1118, 1154E, 1156, 1181, 1198, 1209, 1216, 1217 Sidgwick, N. V. 1029E Silva, M. K. 1186 Simonsen, D. R. 1174E, 1175 Sinegubova, S. I. 1131E, 1135, 1140E, 1142 1005E, 1007, 1012E, 1013, 1018E, 1019, 1025, 1046E, 1050, 1060E, 1065, 1081E, 1083, Siswana, P. M. 1090E, 1091, 1096E, 1101E, 1102, 1110E, 1112, 1119, 1122, 1140E, 1143, 1149E, 1152, 1156, 1157, 1158, 1163, 1167E, 1169, 1170, 1171, 1172, 1174E, 1176E, 1178, 1179, 1181, 1185, 1189E, 1190, 1195E, 1197, 1199, 1203E, 1205, 1206E, 1208, 1210, 1211 Skorokhodova, I. I. 1221 Skrzecz, A. 1005E, 1009E, 1015E, 1021E, 1024E Sokolov, N. M. 1060E, 1063, 1149E, 1151 Spencer, H. C. 1005E Spurrell, W. J. 1029E Srinivasan D 1131E 1137 Stankova, L. 1149E, 1150 996E, 997, 1029E, 1037, 1187E, 1188, 1212, 1223 Staveley, L. A. K. Stern, I. 1005E, 1046E, 1051, 1101E, 1103, 1140E, 1144, 1167E, 1168, 1176E, 1177, 1189E, 1190, 1203E, 1204 Strandskov, C. V. 1187E, 1187 1105E, 1108, 1192E, 1193 Sugi, H. Suhrmann, R. 1009E, 1010 Susarev, M. P. 1218 1046E, 1047 Takahashi, K. Tarasenkov D N 1029E, 1046E, 1047, 1048, 1054E, 1055, 1060E Taylor, S. F. 1029E Telichko, T. N. 1217, 1219 Teperek, J. 1021E. 1022 Tikhomirov, V. I. 1214E, 1214 Timofeev, V. S. 1005E, 1107, 1115E, 1118, 1120E, 1124E, 1125, 1217, 1219 Titova, V. N. 1105E, 1107, 1124E, 1125 Transue, L. F. 1003, 1043E, 1044, 1138 Triday, J. O. 996E Turovskii, V. B. 1146E, 1147, 1192E, 1194 Tyvina, T. N. 1173 Udovenko, V. V. 996E, 999, 1096E, 1098, 1131E, 1132, 1135, 1136 Uosaki, Y. 1046E, 1049, 1054E, 1058 van der Watt, P. 1018E, 1019, 1081E, 1083, 1119, 1158, 1171, 1181, 1199, 1210 1029E, 1036 Varteressian, K. A. Vasileva, I. I. 1173 Vatskova, V. G. 1060E, 1063, 1149E, 1151 Verhoeye, L. A. J. 1140E, 1141 Vesely, F. 1149E, 1150 Vold, R. 1029E, 1034, 1046E, 1046 Volkova, L. N. 1212 Vorobeva, A. I. 1054E, 1056, 1068E, 1070, 1088, 1092, 1105E, 1106, 1115E, 1116, 1120E, 1121, 1124E, 1124, 1127E, 1146E, 1146, 1154E, 1155, 1162, 1164 Walsh, T. J. 1027 Walter, R. 1009E, 1010 Washburn, E. R. 1003E, 1005E, 1012E, 1013, 1029E, 1034, 1043E, 1044, 1046E, 1046, 1060E, 1061, 1101E, 1101, 1131E, 1131, 1138, 1140E, 1140, 1149E, 1149, 1165E, 1166, 1174, 1175, 1187E, 1187 Washino, K. 1220 Wehrmann, F. 1029E, 1031 Wiebe, R. 1043E, 1044, 1046E, 1048, 1052, 1066, 1084, 1086E, 1086, 1087 Willhite, G. P. 1186 Wojdylo, S. Z. 1159 Wootton, S. 1015E, 1017, 1068E, 1071, 1115E, 1118, 1154E, 1156, 1181, 1198, 1209, 1216, 1217 Wright, R. 1029E, 1033 Yagues, V. G. 1060E, 1063 Yamakawa, T. 1046E, 1047