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Reproducibility

Reproducibility: obtaining bit-wise identical results from different
runs of the program on the same input data, regardless of different
available resources.
Reproducibility is needed for debugging and for understanding the
reliability of the program.

Cause of nonreproducibility: not by roundoff error but by the
non-determinism of accumulative roundoff error.

Due to the non-associativity of floating point addition,
accumulative roundoff errors depend on the order of evaluation,
and therefore depend on available computing resources.

fl(fl(a + b) + c) 6= fl(a + fl(b + c))
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Solutions

Source of floating-point non-reproducibility: rounding errors lead
to dependence of computed result on order of computations.
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Solutions: fix evaluation order

Source of floating-point non-reproducibility: rounding errors lead
to dependence of computed result on order of computations.

To obtain reproducibility: Fix the order of computations:

I sequential mode: intolerably costly at ExaScale

I fixed reduction tree: substantial communication overhead

Introduction

thread 0 thread 1 thread 2 thread 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Solutions: Eliminate rounding errors

Source of floating-point non-reproducibility: rounding errors lead
to dependence of computed result on order of computations.

To obtain reproducibility: Eliminate/Reduce rounding errors

I fixed-point arithmetic: limited range of values

I exact arithmetic (rounded at the end): expensive in
communication and arithmetic on long words

I higher precision: reproducible with high probability (not
certain).
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A proposed solution for global sum

Objectives:

I bit-wise identical results from run-to-run regardless of
hardware heterogeneity, # processors, reduction tree shape,
. . .

I independent of data ordering,

I only 1 reduction per sum,

I no severe loss of accuracy.

Idea: pre-rounding input values.
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Pre-rounding technique

EMAX EMIN
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...

Boundary

No rounding error at each addition. Computation’s error depends
on the Boundary, which depends on max |xi |
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Pre-rounding technique

EMAX EMIN

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

...

W-bit

proc 1

proc 2

proc 3

No rounding error at each addition. Computation’s error depends
on the Boundary, which depends on max |xi |
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Indexed Floating-Point format

Index i

bin ia bi i

Index 0

bin 0

W-bitemin emax

Indexed type  Yi
YiP

primary
YiC
carry

input   x
d(x,i)

slice

I The exponent range is divided into bins of contiguous bits.

I Each input is split into several bins.

I Values in each bin are summed correctly.

I Only a number of greatest bins are kept.
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Indexed Floating-Point: Accuracy

Tunable with:

I K: number of bins,

I W: number of bits in each bin.

Absolute error bound:

absolute error ≤ N · BoundaryK < N · 2−(K−1)·W ·max |xi |.

In practice, for double precision, K = 3, W = 40:

absolute error < N · 2−80 ·max |xi | = 2−27 · N · ε ·max |xi |

Standard sum’s error bound ≤ (N − 1) · ε ·
∑
|xi |
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Experimental results: Accuracy

Summation of n = 106 floating-point numbers. Computed results
of both reproducible summation and standard summation are
compared with result computed using quad-double precision.

Condition number: κ =
∑n

1 |x [i ]|/ |
∑n

1 x [i ]|.

Generator x [i ] reproducible standard κ

drand48() 0 3.0× 10−15 1

drand48()− 0.5 1.5× 10−16 1.3× 10−13 1.8× 103

sin(2.0 ∗ π ∗ i/n) 1.5× 10−15 1.0 1.9× 1019

Table : Relative error of summation algorithms
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Experimental results: strong-scaling

On Edison, Cray XC30 machine at NERSC (5576 x 12-core Intel
”Ivy Bridge” processors)
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Experimental results: weak-scaling

On Edison, Cray XC30 machine at NERSC (5576 x 12-core Intel
”Ivy Bridge” processors)
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Praticality of Reproducibility

ReproBLAS / Exact arithemtic:

I provides rigorous reproducibility for random evaluation order

I requires only 1 reduction operation: performs well for the case
of parallel summation.

Obstacle: they still run much slower (8x for ReproBLAS) than
performance-optimized nonreproducible counterparts for local
computation. The slowdown is more prominent for higher order
operations such as matrix multiplication.

Question:

I Do we need to obtain high accuracy? Not always.

I Do we need to accommodate totally random evaluation order?
Not neccesarily, for example matrix computation.
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On-going work

Idea: relax the requirement to accomodate random order of
evaluation.

I Input data are split into blocks of fixed size. Data in each
block are fixed.

I Local computation of each block can be done using
performance-optimized operations.

I Only use reproducible techniques to reduce final result.

Caveats

I Computed results can be at most as accurate as the
corresponding standard floating-point operations.
ReproBLAS can be tuned to obtain certain accuracy.

I Floating-point operations are not well optimized for small size
(libxsmm).
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Example: performance optimized summation

0e+00

1e+09

2e+09

3e+09

4e+09

5e+09

6e+09

7e+09

 1000  10000  100000  1x106  1x107

FL
O

Ps

vector size

cblas_dasum
IndexedFP NB=256
IndexedFP NB=128
IndexedFP NB=64
IndexedFP NB=1

Machine: Sandy Bridge, Intel(R) Core(TM) i7-2600 @ 3.4GHz.
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Example: non-optimized summation

0e+00

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

 1000  10000  100000  1x106  1x107

FL
O

Ps

vector size

naive sum
IndexedFP NB=128
IndexedFP NB=64
IndexedFP NB=32
IndexedFP NB=1

Machine: Sandy Bridge, Intel(R) Core(TM) i7-2600 @ 3.4GHz.
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On-going work

Applicable to:

I gemv

I gemm

Questions

I What would be the best block-size

I What would be the impact if the input are not well aligned.
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