Computational Reproducibility in Production Physics Applications

Los Alamos

Numerical Reproducibility at Exascale Workshop Supercomputing 2015 November 20, 2015 Robert W. Robey Los Alamos National Laboratory

LA-UR-15-28798

UNCLASSIFIED

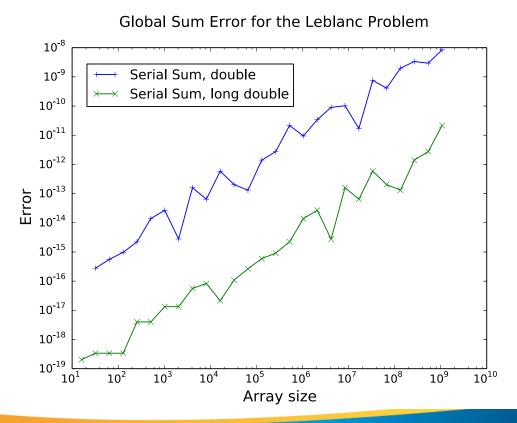
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

The Problem

- Finite precision arithmetic is not associative
- Parallel global sums are non-reproducible on different numbers of processors
 - Hides programming errors
 - Can't demonstrate that implementation conserves mass, etc. which means it is not verified and may not have the robustness properties guaranteed by the Lax-Wendroff theorem

Importance at Exascale

- Predictive simulation requires improved quality of simulations
- New hardware with vectors and threads exacerbates the problem
- As size of calculations increase, the global sum error increases proportionally


Test Problem

- Leblanc's problem also known as shock tube from hell
 - 1.0e9 dynamic range in data
 - Compute sum and compare with correct sum calculated analytically

Problem grows with size

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

The Insight

- Reproducible global sums thought to require summation in a fixed order, but
- It can also be addressed by enhancing precision because regular addition is associative
- => Can use both enhanced precision and order to reduce precision loss

Possible Solution Components

- Enhanced precision techniques
 - Kahan sum accumulates error on one term
 - Knuth sum accumulates error on both terms
 - Quadtype
- Pair-wise summation
- Precision truncation
- MPI enhanced precision sum (covered in previous talks/papers)

The Results

http://www.github.com/losalamos/GlobalSums

Method	Error	Run-time (msecs)
Double	-1.99e-09	0.116
Double w/truncation	0.0	0.120
Long Double	-1.31e-13	0.118
Long Double w/truncation	0.0	0.116
Kahan Sum	0.0	0.406
Knuth Sum	0.0	0.704
Pair-wise Sum	0.0	0.402
Quad Double	5.55e-17	3.010
Full Quad Double	-4.81e-27	2.454
OpenMP double	2.465e-10	0.048
OpenMP Kahan	1.39e-16	0.063
	UNCLASSIFIED	A

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

• LOS AI

NATIONAL LABORATORY

Slide 9

Surprising Application

 Automatic fault recovery in a shallowwater code tracks the mass conservation and automatically restarts if it changes by more than a small amount. The quality of the global mass sum needs to be high to avoid false positives.

Open Source Playground

http://www.github.com/losalamos/GlobalSums

Apache 2 license – only restriction is to cite the use

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA