engineering laboratory

Water Heating Technologies and Ratings

Bill Healy Energy and Environment Division Engineering Laboratory National Institute of Standards and Technology U.S. Department of Commerce

Outline

- Water Heating Energy Use
- Water Heater Technologies
- U.S. Market
- U.S. Test Method Overview
- U.S. Minimum Efficiency Standards
- Equipment and Facilities
- Summary

Water Heating Energy **Consumption in United States**

- 3.8 x 10¹⁸ J (3.6 quads) of primary energy use
- 9% of energy consumption in all buildings •
- 14 % of energy consumption in residential buildings •

Primary Energy Use in Buildings

Primary Energy Use in Residential Buildings

Water Heating Energy Efficiency

Three ways to increase efficiency of Water Heating systems:

- 1) Use less hot water
 - 1) Regulations on flow rates of faucets and showerheads
 - 2) Voluntary programs such as WaterSense
- 2) Make hot water efficiently
- 3) Distribute hot water efficiently
 - 1) Place end uses close to water heaters
 - 2) Use appropriate sized pipes
 - 3) Insulate hot water pipes

Water Heating Energy Efficiency

Three ways to increase efficiency of Water Heating Systems:

- 1) Use less hot water
 - 1) Regulations on flow rates of faucets and showerheads

2) Voluntary programs such as WaterSense

2) Make hot water efficiently

- 3) Distribute hot water efficiently
 - 1) Place end uses close to water heaters
 - 2) Use appropriate sized pipes
 - 3) Insulate hot water pipes

Water Heater Categorization

- Focus here is on non-solar options
- <u>Residential</u> versus <u>Commercial</u>
 - Residential: serves a single household
 - Commercial: serves other buildings such as offices, restaurants, hotels, hospitals, multi-family dwellings, schools, etc.
- Fuel Type: <u>Electric</u>, <u>Natural Gas</u>, <u>Propane</u>, <u>Oil</u>

Storage versus Instantaneous (i.e., Tankless, On-Demand)

Whole Building versus Point-of-Use

U.S. Classifications for Water Heaters: Storage vs. Instantaneous

- As specified by the Department of Energy (DOE)
- A function of storage volume and heating input rate
 - Instantaneous < [1 gallon per 4000 Btu/h of input (1 L / 310 W)]
 - Storage ≥ [1 gallon per 4000 Btu/h of input (1 L / 310 W)]

U.S. Classifications for Water Heaters: Residential vs. Commercial

- As specified by DOE for applying test procedure (note: different breakpoints for applying minimum efficiency standards)
- A Commercial Water Heater meets <u>any</u> of the following criteria:
 - Electric: does not use single phase power
 - Designed to provide outlet hot water at T > 180 °F (82 °C)

	Storage Volume Greater Than	Input Rate Greater Than
Storage: Gas	120 gallons (454 L)	105 kBtu/h (30.8 kW)
Storage: Electric	120 gallons (454 L)	12 kW
Storage: Oil	120 gallons (454 L)	140 kBtu/h (41 kW)
Instantaneous: Gas	2 gallons (7.6 L)	200 kBtu/h (58.6 kW)
Instantaneous: Electric	2 gallons (7.6 L)	200 kBtu/h (58.6 kW)
Instantaneous: Oil	2 gallons (7.6 L)	210 kBtu/h (61.5 kW)

All other water heaters are considered "Residential" or "Consumer."

Electric Water Heating Technologies

Electric Resistance Storage

- Maximum Efficiency of 1
- Typical input ~ 4000 W
- Typical residential size
 ~ 50 gal. (190 L)

Electric Resistance Instantaneous

- Maximum Efficiency of 1
- Requires Large Inputs:
 12 kW to 60 kW
- Eliminates standby loss

Heat Pump Water Heater

- Coefficients of
 Performance of 3+
- Provides space cooling
- More expensive

engineering laboratory

Gas Water Heating Technologies

Gas Storage

- Standard Burner Efficiency ~ 80 %
- Condensing Burner Efficiency ~ 95 %
- Relatively high standby heat losses
- Typical input ~ 40 000 Btu/h (12 kW)
- Typical residential size ~ 40 gal (151 L)

Gas Instantaneous

- Standard Burner Efficiency ~ 80 %
- Condensing Burner Efficiency ~ 95 %
- Minimizes standby heat losses
- Typical input ~ 150 000 Btu/h (44 kW)

- Typically require electric connection

U.S. Residential Water Heater Market

Main Water Heater Type	Number of Households (Percent)
Storage	110.6 Million (98 %)
Instantaneous	2.6 Million (2 %)
Fuel Source of Main Water Heater	Number of Households (Percent)
Natural Gas	58.3 Million (51.4 %)
Electricity	46.8 Million (41.3 %)
Propane	4.2 Million (3.7 %)
Fuel Oil	3.6 Million (3.2 %)
Other	0.4 Million (0.4 %)

Source: DOE Residential Energy Consumption Survey 2009

- Approximately 8 Million water heaters sold in 2009
- Historically, 18 % of sales are for new construction, 82 % as replacements
- Water Heaters replaced on average every 13 years

Source: DOE Energy Star Water Heater Market Profile, September 2010

U.S. Test Procedure - Residential

- Specified by the Department of Energy (a similar test method is maintained by ASHRAE [Standard 118.2], but it is not officially used in the U.S.)
- Significant revision in 2014
- Prescribed Test Conditions:
 - Ambient Temperature: 65 °F to 70 °F (18 °C to 21 °C)
 - Inlet Water Temperature: 56 °F to 60 °F (13.3 °C to 15.6 °C)
 - Water Delivery Temperature: 125 °F (52 °C)
 - For Heat Pump Water Heaters: Relative Humidity at 50 % ± 2 %
 - Two tests
 - 1) Delivery Capacity
 - 2) Energy Efficiency

Delivery Capacity Tests

Storage Water Heaters: <u>First Hour Rating</u>

An estimate of how much hot water the unit can provide in one hour

Example of delivered water temperature during a test

Flow Activated (e.g., instantaneous): Maximum Gallons Per Minute

- Full input rate
- Measure the amount of hot water delivered over a 10 minute period
- Adjust for deviations from prescribed inlet and outlet temperatures

Energy Efficiency Test

- 24-hour Simulated Use Test
- Depending upon delivery capacity, impose one of four draw patterns: Very Small, Low, Medium, High Use
- Draw Patterns attempt to mimic typical amount of water used per day and the timing of usage over the course of a day.
- Measure all energy input to unit over 24 hours and all thermal energy delivered

Uniform Energy Factor (UEF) =

Energy Delivered Normalized Energy Consumption

over 24 hour period

Example of T at 6 locations within tank during test

engineering laboratory

U.S. Test Procedure - Commercial

- Test Conditions:
 - Delivery temperature = 140 °F (60 °C)
 - Ambient temperature = 70 °F (21 °C)
 - Inlet Water Temperature = 70 °F (21 °C)

• Thermal Efficiency Test (Fossil Fuel Only)

- Steady State
- Flow water through water heater for 30 minutes
- Measure hot water delivered, energy consumption
- TE = (Energy Delivered) / (Energy Consumed)
- **Standby Loss Test** (Storage Water Heaters Only)
 - Unit sits at temperature for 24 to 48 hours
 - Measure temperature of water in tank and energy consumption
 - SL = Energy consumed per hour to maintain water temperature

Current U.S. Minimum Efficiency Standards – Residential

 Updated in April 2015 (still based on old test procedure, with Energy Factor as regulating metric)

- − Instantaneous Gas: Energy Factor \ge 0.82
- Instantaneous Electric: Energy Factor ≥ 0.93
- Storage:

Current U.S. Minimum Efficiency Standards – Commercial

• Electric Storage:

- Standby Loss ≤ (0.30 + 27/V) %/h
- Gas Storage and Instantaneous:
 - − Thermal Efficiency \ge 0.80
 - Standby Loss ≤ [(Input Rate)/800 + 110*V] Btu/h

** only for instantaneous above 10 gallons

Laboratory Requirements

- Temperature controlled room
- For Heat Pump Water Heaters (HPWH): Temperature and humidity control in room
- Supply of inlet water at a controlled temperature
- Instrumentation
 - 10 temperature sensors
 - Electric power meter
 - Gas meter
 - Scale or water flow meter
 - Relative Humidity sensor (for HPWH)
 - Data acquisition system

engineering laboratory

Summary

- U.S. market currently dominated by conventional gas and electric storage water heaters
- Test methods and standards distinguished by application (residential vs. commercial) and partly by technology but are meant to be technology neutral
- Residential test method determines efficiency over a simulated 24 hour use cycle
- Commercial test method estimates both the burner efficiency and the insulation level of the water heater

