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NIST Recommended Practice Guide:  
Computing Uncertainty for Charpy Impact Machine Test Results                                                                                                                                          

                                               

J. D. Splett,1 C. N. McCowan,2 H. K. Iyer,1 and C.-M. Wang1

National Institute of Standards and Technology
325 Broadway

Boulder, CO 80305

This recommended practice guide demonstrates how to determine the uncertainty 
associated with mean absorbed energy of specimens tested on a Charpy impact machine.  
We assume that the Charpy machine has successfully met the requirements for both 
direct and indirect verifi cation as described in the ASTM E 23, Standard Test Methods 
for Notched Bar Impact Testing of Metallic Materials.  We follow the recommendations 
and procedures in the “Guide to the Expression of Uncertainty in Measurement” for 
computing uncertainty.  We assume the reader is somewhat familiar with the Charpy 
machine verifi cation program administered by the National Institute of Standards and 
Technology.  

Keywords:  absorbed energy; Charpy V-notch; impact test; pendulum impact test; 
uncertainty; verifi cation testing

1.  Introduction

The absorbed energy of a test material, measured using a Charpy impact machine, is 
often reported as the mean absorbed energy of a set of specimens.  However, the sample 
mean does not account for known sources of bias, including machine bias, which can 
be substantial.  We address the estimation of a test result for the case in which the test 
result is corrected for known biases and the case in which it is not.  It is left to the user’s 
discretion whether or not to correct a test result.  

Computing the reported test result is straightforward; however, computing the uncertainty 
associated with the test result requires more consideration.  The purpose of this document 
is to clarify the concept of uncertainty and to provide Charpy laboratories with a 
procedure for computing the uncertainty of a test result.  

1  Statistical Engineering Division, Information Technology Laboratory
2  Materials Reliability Division, Materials Science and Engineering Laboratory

Introduction     
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Computing UnCertainty for Charpy Impact Machine Test Results

Before valid Charpy measurements can be made in the laboratory, the machine needs 
to pass both direct and indirect verifi cation tests as specifi ed in ASTM E 23 [1].  Even 
if a Charpy machine has passed the indirect verifi cation test, it is likely that results for 
the verifi cation specimens differ from the certifi ed value.  This difference can be used to 
quantify machine bias.  Thus, the indirect verifi cation results and the certifi ed reference 
value (along with their uncertainties) play key roles in the calculation of uncertainty of a 
test result.
  
We express uncertainty according to the accepted criteria described in the “Guide to the 
Expression of Uncertainty in Measurement,” or GUM [2], taking into consideration both 
random and systematic sources of error.  The procedure we recommend for computing 
uncertainty is very general and can accommodate any number of random or systematic 
error sources including the following:

Anvils and supports   Material inhomogeneity
Center of percussion   Operator
Center of strike    Potential energy  
Friction loss    Repeatability
Height of pendulum fall   Scale accuracy
Impact velocity    Test temperature 

 The uncertainty contributions from individual error sources can be estimated if 
they are identifi ed as signifi cant, but generally these errors are assumed to be minimized 
by adjustments made to the machine during direct verifi cation and by following the 
standard test procedure.  As will become apparent, the calculation of uncertainty is 
greatly (and often) simplifi ed by assuming that direct verifi cation contributions are 
zero, and only contributions from indirect verifi cation are considered.  This is a widely 
accepted approach to the calculation of uncertainty for Charpy impact tests, and is used in 
standards such as ISO 148-1 [3].  We present more detail here, because understanding the 
individual contributions to uncertainty, and how to quantify them, leads to better control 
of the test.   We encourage the users to consider these, and other relevant details.      

We present an example in Section 2 that provides instructions for calculating the 
uncertainty of a test result.  Section 3 provides details regarding the Type B evaluation 
of errors, Section 4 addresses the computation of machine bias, Section 5 discusses 
direct verifi cation sources of error, Section 6 addresses temperature measurement errors, 
Section 7 provides some information about expanded uncertainty, and Section 8 gives 
some example uncertainty calculations.  Complete details regarding the justifi cation of 
the uncertainty procedures are given in Appendix A.

2.  Uncertainty of a Test Result

In this section, we provide details for computing the uncertainty of a test result within the 
context of an example.  A Charpy laboratory will typically compute the sample mean and 
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sample standard deviation of n  specimens of the test material using the following two 
equations:    

                 1

n
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 .                                                      (2)

The degrees of freedom (df) associated with the sample standard deviation, s , are
1n  .  It is important to note that s  includes all sources of random error, including 

machine variability, material variability, and the typical variations expected when 
following the standard test procedure.  The individual components of the random 
error cannot be estimated separately in the case of destructive impact testing (multiple 
measurements on the same specimen are needed to do this).  In addition, random errors 
(unlike systematic errors) do not remain constant during the measurement of n specimens, 
so these errors do not result in a bias.

The data given in Table 1 are used to illustrate the calculations needed to assess the 
uncertainty associated with the result for our example.  Table 1 lists test results and 
summary statistics for 5n   observations of a particular test material measured at 80 °C.  

Suppose we are also given the values in Table 2.  (We provide details for computing the 
quantities in Table 2 in subsequent sections.)  Our best estimate of the machine bias is 
b̂ , which is defi ned as the difference between the verifi cation result for the test machine 
and the certifi ed value of the verifi cation specimens.  Systematic errors due to all other 

factors that are not already included in the machine bias are denoted by systematicê .  The 

values ˆ( )u b  and systematicˆ( )u e  are the uncertainties associated with systematic
ˆ ˆ and b e , while dfb 

and dfe, represent degrees of freedom for systematic
ˆ ˆ( ) and ( )u b u e .  

Table 1.  Measurement results for a test material.
Observed data, J Summary statistics

58.0 5n 

62.0 57.6y   J
54.0 3.6s   J
54.0 df = 4
60.0

      Uncertainty of a Test Result     
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Computing UnCertainty for Charpy Impact Machine Test Results

Table 2.  Example quantities required to compute uncertainty of a test result.

Machine bias Systematic error
                                 

Estimate ˆ 4.2b    J systematicˆ 3.0e   J
                                

Uncertainty ˆ( ) 2.8u b   J systematicˆ( ) 0.6u e   J

Degrees of freedom dfb = 84 dfe = 2

To compute the uncertainty of the test result, we fi rst compute a mean of the test material 
that is corrected for machine bias and all other systematic effects:

                                                  corrected systematic
ˆ ˆy y b e    .                                                   

(3)

Substituting the values from Tables 1 and 2 into Eq. (3) gives

corrected 57.6 J ( 4.2 J) (3.0 J) 58.8 Jy      .

Next, we calculate the uncertainty of the corrected mean, correctedy .  Assuming all of the 
terms in correctedy  are independent, the combined standard uncertainty of correctedy  is

                                    
2

2 2
corrected systematic

ˆ ˆ( ) ( ) ( )su y u b u e
n

   .                       (4)

Substituting the appropriate values from Tables 1 and 2 into Eq. (4) gives

2
2 2

corrected
(3.6 J)( ) (2.8 J) (0.6 J) 3.3 J

5
u y     .

Typically, the standard uncertainty is multiplied by a coverage factor that expands the 
uncertainty to form an “uncertainty” interval about the measurement result. The interval 
is expected to encompass a large fraction of possible values of the result. Thus, the 
expanded uncertainty is defi ned as the combined standard uncertainty multiplied by a 
coverage factor.  The coverage factor is often set equal to two for simplicity, but this 
approximation can be problematic, so it is recommended that the degrees of freedom be 
used to obtain the appropriate coverage factor.  

An uncertainty interval with 100(1 ) % coverage probability (  is 0.05 for 95 % 
coverage) is given by 
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      Uncertainty of a Test Result     

   
eff2corrected corrected1 ,df ( )y t u ya   ,              (5)

where 
eff21 ,dft a  is found in a t-table (see Appendix C).  The degrees of freedom associated 

with corrected( )u y ,                                                                                                        
                                                                                                     

   

4
corrected

eff 2 42 4
systematic

b e

( )
df

ˆ ˆ( )1 ( )
df df df

u y
u es u b

n


 

  
 

 (6)
  

are determined from the Welch-Satterthwaite approximation as described in the GUM. [2]  

Substituting appropriate values from Tables 1 and 2 into Eq. (6) gives

4

eff 22 4 4

(3.3)df 47.9
1 (3.6) (2.8) (0.6)
4 5 84 2

 
 

  
 

,

which rounds down to 47.  Using a t-table we get a coverage factor of 0.975,47t  = 2.012.  
Thus, a 95 % interval for our example is

0.975,4758.8 J 3.3 J
58.8 J 2.012 3.3 J

58.8 J 6.6 J .

t 

 


The expanded uncertainty U  is 6.6 J, indicating that 95 % of possible measurement 
results lie within the uncertainty interval (52.2 J, 65.4 J).  If we compute the interval 
based on the uncorrected value, we can express our uncertainty interval as 

systematic
ˆ ˆ( ) ( )

(57.6 J 6.6 J) ( 4.2 J 3.0 J)
(51.0 J, 64.2 J) 1.2 J

y U b e  

   


and just report the uncorrected interval (51.0 J, 64.2 J) along with the correction (1.2 J).  
The decision to report a corrected test result is left to the user.  However, if the corrected 
test result is reported, we recommend that the report clearly state how the correction 
was computed and include pertinent information such as the magnitude and sign of the 
correction, the test standard used, and the source of the indirect verifi cation specimens 
tested.   
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Computing UnCertainty for Charpy Impact Machine Test Results

The remainder of this document is dedicated to providing additional details regarding the 
computation of individual components needed to compute the uncertainty of a Charpy 
test result.

3.  Type B Uncertainty Evaluation

Typically, direct estimates of systematic errors based on actual measurements are 
diffi cult to obtain and even harder to quantify because the required data are not generally 
available.  In such cases, uncertainties due to systematic errors are estimated based on 
past experience, engineering knowledge, information from published literature, and so 
on. An uncertainty evaluation that does not involve actual measurements is called a Type 
B uncertainty evaluation. Type A uncertainty evaluations are based on data obtained 
under repeatability conditions.  Type B uncertainty evaluations can be associated with 
either random or systematic errors, but are most commonly used with systematic errors.

Type B uncertainty evaluations utilize assumptions regarding distributions of errors.  
For example, instrument manufacturer’s specifi cations can be thought of as limits 
to a rectangular distribution. From this, the standard uncertainty associated with 
measurements by that instrument can be deduced.  These types of uncertainties can be 
highly subjective, but are sometimes useful.  

The following example (also shown in Section B.7) illustrates how to use a 
manufacturer’s specifi cation for a Type B uncertainty evaluation.  Suppose r  is 
the random error in the Charpy machine scale mechanism and ± r  represents the 
manufacturer’s specifi ed error bounds of the measurement instrument.  Assuming that 
the error can be anywhere within the ± r  bounds, a rectangular distribution is used to 
describe the distribution of possible biases, and in this case bounds are already expressed 
in the proper units (joules).  The standard uncertainty of r  is

( )
3
ru r 

 .

A rectangular distribution is often used in the absence of specifi c information about 
the error distribution; however, other distributions can be used if more is known about 
the errors.  (See Reference [2] for details regarding Type B uncertainty evaluations.)  
It is also necessary to provide an estimate of degrees of freedom for each uncertainty 
component.  We will assume rdf   , which implies that we know ( )u r exactly.  The 
GUM provides a method for assigning a df value to Type B estimates of uncertainty, 
which will be demonstrated shortly.

In the previous scale-error example, the distribution of possible errors was defi ned by the 
interval ( , )r r , which is centered on zero.  Sometimes the distribution of a systematic 
error is centered on a value other than zero, resulting in a nonzero systematic error 
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Uncertainty Evaluation      

estimate.  For example, an operator might be consistently reading the scale too high, 
so that the distribution of errors is described by a rectangular distribution defi ned by 
( , )a b , where a  and b  are both greater than zero ( 0 a b  ).  In this case, the estimated 

systematic error is ( ) 2a b  and the associated standard uncertainty is ( ) 2 3b a .

There are also systematic errors associated with the test procedures that can be 
approximated using a Type B uncertainty evaluation.  Suppose an operator notices 
that the lengths of fractured specimen halves are uneven and determines that the 
specimens were all impacted off-center (striker impact is not aligned with the notch).  
In addition, the operator knows that the 1 mm to 2 mm offsets observed for the broken 
specimens result in an increase in the absorbed energy between 2 J and 4 J based on 
extensive experience with this particular material.  To estimate the systematic error 
and its uncertainty, we assume that the 2 J and 4 J limits to error represent bounds of a 
rectangular distribution so that

systematic
2 J 4 Jˆ 3 J

2
e 

    and   systematic
4 J 2 Jˆ( ) 0.6 J

2 3
u e 

  .

To determine the degrees of freedom associated with systematicˆ( )u e , we employ a useful 
relationship from the GUM (Eq. (G.3)).  In general,

21df
2

u
u

    
,

where the quantity in square brackets represents the relative uncertainty, or the uncertainty 

of the uncertainty.  In our example, we judge the uncertainty of systematicˆ( )u e  to be 50 % or 
0.50, so that

  2
e

1df 0.50 2
2

  .

In general, the degrees of freedom provide information regarding the quality of the 
uncertainty estimate.  For Type A uncertainty evaluations, the degrees of freedom 
provide an objective measure of quality, while degrees of freedom associated with Type 
B uncertainty evaluations provide a subjective measure of quality.

We can also combine several sources of systematic error to determine systematicê  and its 
uncertainty.  For example, suppose we would like to combine three independent sources 
of systematic error:  friction loss, potential energy, and impact velocity, so that

systematic
ˆ ˆˆ ˆe D E v   .
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Then the combined standard uncertainty of systematicê  is

2 2 2
systematic

ˆ ˆˆ ˆ( ) ( ) ( ) ( )u e u D u E u v   ,

with effective degrees of freedom from the Welch-Satterthwaite approximation,

4
systematic

e 4 4 4

D E v

ˆ( )
df ˆ ˆ ˆ( ) ( ) ( )

df df df

u e

u D u E u v


 
.

This type of procedure can be applied to any number of independent systematic errors.

4.  Machine Bias

To estimate the machine bias, we assume that the machine bias for the material under test 
is the same as the machine bias based on the indirect verifi cation.  This is an important 
assumption that allows us to estimate machine bias for all test materials.  We use the 
results of an indirect verifi cation test and the associated reference value for our best 
estimate of machine bias,

                systematic
ˆ ˆb V R        ,                       (7)

             
where       

                                                          1

Vn

i
i

V

V
V

n



            (8)

is the sample mean absorbed energy from the indirect verifi cation test based on 5Vn   
test results,             represents errors due to all systematic effects associated with 
indirect verifi cation test, and R  represents the certifi ed reference value for the batch of 
verifi cation specimens.  

To illustrate the computation of machine bias and its uncertainty, we will return to the 
example from Section 2.  Table 3 lists quantities provided by the National Institute of 
Standards and Technology (NIST) with the high-energy verifi cation test specimens that 
were used for the most recent high-energy indirect verifi cation of the Charpy machine of 
interest.

We use the high-energy indirect verifi cation test results because the nominal value of the 

systematic
ˆ
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Machine Bias      

absorbed energy of the test material is closest to the high-energy verifi cation material.  
The uncertainty associated with the certifi ed verifi cation specimens ( ( )u R ) is provided by 
NIST with the results of the indirect verifi cation test (or by request).  Table 4 displays the 
indirect verifi cation data that were observed when the verifi cation set was broken on the 
machine of interest.

Table 3.  Information provided by NIST for high energy verifi cation specimens. 

Reference value, R 109.9 J

Reference value standard uncertainty, ( )u R 2.6 J

Degrees of freedom, dfR 102

Table 4.  High energy indirect verifi cation test results.

Verifi cation set data, J Summary statistics

108.0 5Vn 
104.0 106.2V   J
109.0 2.3VS   J
106.0 dfV = 4
104.0

Table 5.  Systematic error associated with the indirect verifi cation. 

Estimate, systematic
ˆ

0.5 J

Standard uncertainty, ˆ( )u 0.2 J

Degrees of freedom, df 10

The “V” subscript is used to distinguish the indirect verifi cation results from the test 
material results.  The sample standard deviation associated with the indirect verifi cation 
specimens ( VS ) is calculated as s  was calculated previously in Section 2,

         
2

1
( )

1

Vn

i
i

V
V

V V
S

n








 .                                                 (9)

As was the case for s , VS  also includes all sources of random error related to both 
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machine variability and material variability, and the individual contribution of errors 
cannot be determined.  

Suppose we are given , systematic
ˆ  its associated uncertainty, and degrees of freedom, as 

shown in Table 5.  We will not elaborate on the origin of the systematic error in Table 

5; however, the same general procedures used to estimate systematicê , discussed in detail in 

Section 3, can also be used to estimate systemati
ˆ  .

Although systematic
ˆ  = 0.5 J in this illustrative example, typically  

is assumed to be zero because errors that are well understood and could be corrected for 
are minimized during direct verifi cation of the machine.  So, neglecting contributions to 

the bias from systematic
ˆ , the estimated machine bias is calculated as the difference between 

the mean of the specimen tested in the indirect verifi cation test and the certifi ed value of 

the specimens tested.  For our example, in which systematic
ˆ  is not assumed to be zero, the 

machine bias is  

ˆ 106.2 J 0.5 J 109.9 J 4.2 Jb      .

Assuming independent input quantities, the standard uncertainty of the machine bias is
                                      

                                                                     
       .                                 (10)

Substituting the appropriate values from Tables 3 through 5 into Eq. (10) provides the 
following estimate of the standard uncertainty of the machine bias:

2
2 2(2.3 J)ˆ( ) (0.2 J) (2.6 J) 2.8 J

5
u b     .

The degrees of freedom associated with the uncertainty estimate, 
    

                 ,                     (11) 

 
are determined from the Welch-Satterthwaite approximation.  In our example, the 
degrees of freedom are          

2
2 2

systematic
ˆ ˆ( ) ( ) ( )V

V

S
u b u u R

n

4

b 2 42 4
systematic

V R

ˆ( )df
ˆ( )1 ( )

df df df
V

V

u b
uS u R

n
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      Direct Verifi cation    

   

4

b 22 4 4

(2.8)df 84.4
1 (2.3) (0.2) (2.6)
4 5 10 102

 
 

  
 

,

which rounds down to 84.

In the examples presented here, the “bias compared to what?” issues are clear.  Machines 
verifying to ASTM E 23 requirements are all compared with a single target for impact 
energy, defi ned by ASTM E 23.  However, when considering the performance of an 
ASTM E 23 machine to machines not tested under ASTM E 23 requirements, the 
comparison is less direct because bias can exist between the various verifi cation systems 
used around the world (multiple certifi ed values for absorbed energy).  We encourage the 
users to understand this issue, and how it might affect them.  Users should also know that 
the various national measurement institutes distributing impact verifi cation specimens are 
working to minimize biases among them, and make the quantifi cation of bias for impact 
testing more transparent to users around the world.   

5.  Direct Verifi cation
 
Direct-verifi cation uncertainty sources are related to physical properties of the Charpy 
machine including:  anvil and supports, center of strike, potential energy, impact velocity, 
center of percussion, friction loss, and scale accuracy.  With the possible exception of 
friction loss, all direct verifi cation sources of uncertainty are Type B evaluations.  We 
provide information regarding calculation of the individual sources of direct verifi cation 
uncertainty in Appendix B.  While it is relatively easy to compute each individual source 
of uncertainty, it is diffi cult to quantify the uncertainty components in terms of the effect 
on Charpy measurements in joules. 

The recognized sources of uncertainty for our problem are minimized during the direct 
verifi cation of an impact machine and by following the standard test procedure.  So, it 
is general practice to estimate the uncertainty of impact tests from the results of indirect 
verifi cations and the variations associated with repeat measurements on the material 
being tested.  However, it is also of interest, and part of the exercise in calculating 
uncertainty, to better understand your machine and process so that it might be better 
controlled and quantifi ed.  It is left up to individual laboratories to identify and include 
the appropriate uncertainty sources.  

Although it is common for laboratories to ignore the uncertainty due to direct-verifi cation 
bias, it is important to acknowledge the potential for error due to these sources.  Thus, it 
is informative for laboratories to document their reasons for either including or excluding 
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direct verifi cation sources of error.  If possible, the uncertainty associated with direct 
verifi cation should be re-examined each time the machine is verifi ed directly.

6.  Temperature 

Although systematic error due to temperature probably exists to some extent for all 
Charpy measurements, it is diffi cult to quantify the sign (direction) and magnitude 
of the error.  Thus, we typically assume the estimated error is zero, but there is some 
uncertainty associated with the estimate.  This section outlines a procedure that can be 
used to estimate the uncertainty due to systematic temperature errors.
 
The uncertainty due to temperature does not depend on machine properties; however, 
it is highly dependent on the material being tested.  For example, steels undergo a 
transition in fracture behavior from brittle to ductile with increasing temperatures.  
Supplemental data can be collected for a particular steel of interest, and used to estimate 
the uncertainty associated with temperature.   If later measurements are taken in stable 
regions defi ned by the lower shelf or upper shelf (Figure 1), then the uncertainty 
associated with temperature is probably negligible.  However, the uncertainty due to 
temperature can be signifi cant if measurements are being taken in the transition region of 
the curve.

Figure 1.  A temperature transition curve.
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Temperature     

Figure 2.  Mapping of temperature error into energy error in the temperature transition region.

Assuming we have data for a particular material that have been collected across a range 
of temperatures, we can fi t a straight line to the data within the temperature transition 
region (ignoring the shelf data).  The information from the regression fi t can be used 
to quantify the effect of the temperature error on impact energy (Figure 2) for future 
samples of the same material.

For example, suppose we are interested in collecting some new data at 43 °C, but 
our temperature can be measured only to within ±2 °C.  The true temperature could 
be anywhere in the range of 41 °C to 45 °C.  Using the regression equation, we can 
compute the value of impact energy for both 41 °C and 45 °C, thus providing a range of 
potential impact energy values E .  Assuming the true impact energy has a rectangular 
distribution within E , we can use the range of impact energy to compute the 
uncertainty as follows:

| |( )
2 3

Eu t 
  .

The degrees of freedom are tdf 2n  , where n  is the number of observations used in 
the regression fi t. 

Optionally, multiple measurements could be made at each temperature (which is how 
the original curve is obtained) and defi ne the uncertainty as the maximum uncertainty 
observed in the region.  This procedure can also be applied in cases where upper or lower 
shelf regions have more gradual slopes.
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7.  Expanded Uncertainty

Sometimes we need to calculate an expanded uncertainty, U , which is just the combined 
standard uncertainty multiplied by a constant, or coverage factor, so that

corrected( )U k u y  .

The coverage factor k  is determined by looking up the appropriate value in a t-table 
(Appendix C) based on the degrees of freedom associated with corrected( )u y .  The expanded 
uncertainty associated with a 95 % interval is

eff95 95 corrected 0.975;df corrected( ) ( )U k u y t u y    .       (12)

The expanded uncertainty is interpreted as an uncertainty interval encompassing a large 
fraction of possible measurement results.  

The degrees of freedom can be diffi cult to determine if there are many sources of 
uncertainty within corrected( )u y .  Fortunately, we can compute the effective degrees of 
freedom from the Welch-Satterthwaite approximation [2]

     

4
corrected

eff 2 42 4
systematic

b e

( )
df

ˆ ˆ( )1 ( )
df df df

u y
u es u b

n


 

  
 

,                    (13)

where df 1n   and edf  are from the Type B uncertainty evaluation (see Section 3).  We 
will also need to calculate bdf  from

   
4

b 2 42 4
systematic

V R

ˆ( )df
ˆ( )1 ( )

df df df
V

V

u b
uS u R

n
                                                               ,                     (14)

where Vdf 1Vn  , Rdf  is provided by NIST with the indirect verifi cation specimens, and

ädf  is from Type B uncertainty evaluation (see Section 3).

In general, an uncertainty interval for correctedy  is

corrected 1y U a  
or     
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  Expanded Uncertainty    

   eff2corrected corrected1 ,df ( )y t u ya  .        (15)

Typically a  is 0.05, which corresponds to a 95 % interval.  If a Charpy lab does not 
report results corrected for machine bias and systematic errors, they may want to indicate 
the magnitude of the estimated biases for informational purposes,

systematic 1 1 systematic
ˆ ˆˆ ˆ( )  or  (y ) ( )y b e U U b ea a       .       (16)

Thus, the interval would be shifted by systematic
ˆ ˆb e  if the laboratory wished to report 

the corrected mean absorbed energy; however, the expanded uncertainty would not be 
affected by the machine bias and systematic error corrections.

In practice, 2k   is often used to compute the expanded uncertainty to approximate a 95 
% interval, and the effective degrees of freedom are never calculated.  However, if the 
effective degrees of freedom are small, then the level of confi dence is thought to be less 
than 95 %.

8.  Examples

All examples utilize the data displayed in Tables 1, 3, and 4.  

8.1 Both systematicê   and systematic
ˆ    and Their Uncertainties Are Negligible 

In the general case, 

                                                  corrected systematic
ˆ ˆy y b e    ,

but if the systematic error associated with the material variation systematicê  is assumed to be 
negligible, then

corrected
ˆy y b  .

 If the systematic error for the test machine variation  
systematic

ˆ   is assumed to be 
negligible, 

systematic
ˆ ˆ 106.2 J 109.9 Jb V R V R

and
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corrected
ˆ 57.6 J ( 3.7 J) 61.3  Jy y b      .

The combined standard uncertainty of  b̂  is
  

                                    

2
2 2

systematic

2
2

2
2

ˆ ˆ( ) ( ) ( )

( )

(2.3 J) (2.6 J)
5

2.8 J ,

V

V

V

V

S
u b u u R

n

S
u R

n

with effective degrees of freedom

4 4

b 2 22 2 44

V R

ˆ( ) (2.8)df 84.5
1 (2.3) (2.6)1 ( )
4 5 102df df

V

V

u b

S u R
n

  
   

   
  

,

which rounds down to 84.  Thus, the uncertainty of the corrected mean value is

                               

2
2 2

corrected systematic

2
2

2
2

ˆ ˆ( ) ( ) ( )

ˆ( )

(3.6 J) (2.8 J)
5

3.2 J ,

su y u b u e
n

s u b
n

  

 

 



with effective degrees of freedom

                 
4 4

corrected
eff 2 22 4 2 4

b

( ) (3.2)df 43.5
ˆ1 ( ) 1 (3.6) (2.8)

df df 4 5 84

u y

s u b
n

  
   

    
   

  ,
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which rounds down to 43.  A 95 % interval for correctedy  is

eff2corrected corrected1 ,df

0.975,43

( )

61.3 J 3.2 J
61.3 J 2.017 3.2 J

61.3 J 6.5 J .

y t u y

t
a 

 

 


The expanded uncertainty, associated with a 95 % level of confi dence is 6.5 J. 
The 95 % uncertainty interval is (54.8 J, 67.8 J).

If the value reported is not corrected for machine bias, we can express our
interval as 

ˆ(y )
(57.6 J 6.5 J) ( 3.7 J)

(51.1 J, 64.1 J) 3.7 J .

U b 
  

  

The Charpy laboratory may or may not wish to disclose the estimated machine 
bias, however the information is available if needed.  Notice that the interval for the 
uncorrected parameter is shifted just by the amount of the correction and the expanded 
uncertainty is the same regardless of whether or not the reported value is corrected.

8.2  systematicê   Has One Component

Suppose systematicê  contains the error due to temperature so that systematic
ˆê t .  The 

temperature error is systematic because it is likely to be in the same direction (always 
warmer or always cooler than the target temperature) for a single set of measurements.  
However, we do not typically estimate the temperature error, so we will we assume the 

value of systematicê  is zero.  The uncertainty associated with systematicê  is

systematic
ˆˆ( ) ( )u e u t .

The procedure outlined in Section 5 will be used to determine the uncertainty due to 

temperature ˆ( )u t .  Figure 3 displays temperature data for the material of interest along 
with the regression line fi t to the data in the transition region (ignoring the data on the 
“shelves”).

Suppose our test specimens from Table 1 were broken using a temperature of 80 °C, 
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which is within the temperature transition region.  A regression line was fi t to the 21 data 
points in the transition region, resulting in the following equation:

E(J) 0.03973(J) 0.74084(J/ C) T( C)       .

Figure 3.  Temperature data for the test material. The straight line in the plot represents a 
regression fi t to the data in the transition region only.  We ignore data on the “shelves” at -10 °C 
and 141 °C.

If our temperature can be measured to within ±1 °C, then the true temperature is between 
79 °C and 81 °C, and the energy range is defi ned by the following:  

E(J) -0.03973(J)  0.74084(J/ C) 79( C) 58.5  J
E(J)  -0.03973(J)  0.74084(J/ C) 81( C) 60.0 J

60.0 J 58.5 J 1.5 J .E

     
     

   

Next, the energy range is converted to a standard uncertainty based on a rectangular 
distribution,

1.5 Jˆ( ) 0.4
2 3

u t    J ,

with degrees of freedom tdf 2 21 2 19n     .  Thus the uncertainty of systematicê  is

systematicˆ( ) 0.4 Ju e  ,

with 19 degrees of freedom.
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The mean absorbed energy corrected for machine bias and other systematic effects is

corrected systematic
ˆ ˆ 57.6 J ( 3.7 J) 0 J 61.3 Jy y b e        ,

where b̂ , its uncertainty, and degrees of freedom have not changed from example 7.1.  
The combined standard uncertainty is

2 2
2 2 2 2

corrected systematic
(3.6 J)ˆ ˆ( ) ( ) ( ) (2.8 J) (0.4 J) 3.3 J

5
su y u b u e
n

       ,

with degrees of freedom

        
4 4

corrected
eff 2 242 4 2 4 4

systematic

b e

( ) (3.3)df 49.2
ˆ ˆ( )1 ( ) 1 (3.6) (2.8) (0.4)

df df df 4 5 84 19

u y
u es u b

n

  
   

      
   

,

which rounds down to 49.  A 95 % uncertainty interval for correctedy  is

                                                

eff2corrected corrected1 ,df

0.975,49

( )

61.3 J 3.3 J
61.3 J 2.010 3.3 J

61.3 J 6.6 J .

y t u y

t
a 

 

 


The expanded uncertainty is 6.6 J, and the uncertainty interval encompassing 95 % of 
possible measurement results is (54.7 J, 67.9 J).  If the value reported is not corrected for 
bias, we can express our interval as 

systematic
ˆ ˆ(y ) ( )

(57.6 J 6.6 J) ( 3.7 J 0 J)
(51.0 J, 64.2 J) 3.7 J .

U b e  

   


9.  Closing Remarks

We have developed a procedure for estimating the uncertainty associated with a reported 
mean absorbed energy from a Charpy test.  The procedure is fl exible enough to account 
for several systematic error sources, if necessary, and allows the user the choice of 
correcting the reported mean or not.  The uncertainty procedure in this document applies 
to measurements completed in a Charpy laboratory.

Occasionally, there is some confusion about the NIST reference value, the reference 
value uncertainty, and Charpy verifi cation limits with respect to results obtained in a 
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Charpy laboratory.  The reference value is the measured mean absorbed energy of a batch 
of reference specimens.  The reference value uncertainty describes the variability of the 
reference value and includes material, system, and machine variability.  The reference 
value uncertainty does not describe the variability of a single verifi cation specimen or 
the variability in the verifi cation specimens (specimen variation cannot be estimated 
separately from machine variation).  In the Charpy laboratory, the reference value and its 
uncertainty are used only to estimate the bias of a Charpy machine and the uncertainty of 
the bias; they provide no information regarding Charpy measurements for other materials.  
It is also important to remember that the reference value uncertainty is associated with a 
specifi c measurement result, while the verifi cation limits describe the acceptable variation 
among means for a test method.  These two items are not necessarily related.  
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Appendix A.  Uncertainty Details

The following information is provided for completeness and to document the justifi cation 
for the recommended uncertainty procedures.

A.1  Test Material

We defi ne a single measurement for a test material measured in a Charpy laboratory as

systematicrandomotheri,ityrepeatabil,ityinhomogene, eeeeby iiYYi

for 1,2, ,i n  measurements.  Terms on the right side of the equation having the “i” 
subscript denote random errors that change from measurement to measurement.

      represents the true mean breaking energy of the test material if the material could 
have been tested on the three NIST reference machines.

Yb  represents the true machine bias for the test material.  This term includes all machine 
differences that are constant for the duration of the set of n  measurements.

,inhomogeneityie  represents the material inhomogeneity.

, repeatabilityie  represents the machine repeatability.

,other randomie  represents all other sources of error due to random effects.

systematice  represents errors due to all other systematic effects that are not already included 
in the machine bias (for example, operator error).  Systematic errors remain constant for 
the duration of the set of n  measurements.

The mean of n  measurements of the test material is  

inhomogeneity repeatability other random systematicY Yy b e e e e     ,
    
and the true variance of y is

  , inhomogeneity , repeatability i, other random systematici Y Y i iy b e e e e    
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2 2 2
inhomogeneity repeatability other randomvar( )Y

n n n     ,

which is estimated by 
2S

n
, with df 1n   degrees of freedom.  The three random 

errors cannot be estimated separately.  The corrected value is  

corrected systematic
ˆ ˆYy y b e   .

The indirect verifi cation results will be used to estimate Ŷb  and its uncertainty, and 

we will assume that systematicê  is zero.  There is uncertainty associated with each of the 
estimated systematic errors.  The combined standard uncertainty of corrected value is 

2
2 2

corrected systematic
ˆ ˆ( ) ( ) ( )Y

su y u b u e
n

   .

The effective degrees of freedom based on the Welch-Satterthwaite approximation are                                                        

                                
4

corrected
eff 2 442

systematic

b e

( )
df

ˆ ˆ( )( )1
df df df

Y

u y
u eu bs

n


 

  
 

        .               

The expanded uncertainty associated with  correctedy  is 

eff2 corrected1 ,df ( )U t u ya  .

The corrected value reported by the Charpy laboratory has the form correctedy U .  If a 
Charpy laboratory does not report results corrected for machine bias, they may want to 
indicate the magnitude of the estimated bias for informational purposes as

systematic systematic
ˆ ˆˆ ˆ( )  or  (y ) ( )Y Yy b e U U b e      .

A.2  Indirect Verifi cation Test

The Charpy laboratory’s indirect verifi cation test will be used to estimate machine bias 
in conjunction with the associated NIST reference value.  A single measurement in the 
indirect verifi cation test is defi ned as
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            , inhomogeneity , repeatability i, other random systematici Z V i iV b    ,

where 1,2, , Vi n   measurements  ( Vn  is usually fi ve).  The “i” subscript denotes errors 
that change from measurement to measurement.

 Y represents the true mean breaking energy of the reference material if the material 
could have been tested on the NIST reference machines.

Vb  represents the machine bias for the reference material.  This term includes all 
machine differences that are constant for the duration of the set of Vn  measurements.

,inhomogeneityie  represents the reference material inhomogeneity.

, repeatabilityie   represents the machine repeatability.

 ,other randomie   represents all other sources of error due to random effects.

 systematice represents errors due to all other systematic effects that are not already included 
in the machine bias.  Systematic errors remain constant for the duration of the set of Vn  
measurements.

The mean of Vn  measurements is

                    inhomogeneity repeatability other random systematicZ VV b  , 
and the variance of V ,

2 2 2
inhomogeneity repeatability other randomvar( )

V V V

V
n n n    ,

is estimated by 
2
V

V

S
n

, with Vdf 1Vn   degrees of freedom.  The three random 

errors cannot be estimated separately.

A.3  NIST Reference Value

The NIST reference value will be used to estimate machine bias in conjunction with the 
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customer’s associated verifi cation test.

According to ASTM E 23-06, the reference value of Charpy indirect verifi cation 
specimens is established using three master machines maintained by NIST.

In the NIST Charpy verifi cation program, the reference value and its associated 
uncertainty are based on two sets of measurements.  The fi rst set of measurements 
involves breaking 75 verifi cation specimens (25 on each master machine) from a 
“pilot” lot to determine if the material meets the rigid specifi cations of the verifi cation 
program.  If the material is acceptable, the remaining verifi cation specimens in the 
lot are machined and a second set of measurements are performed from the full 
“production” (25 on each master machine).  Assuming the production lot has not 
changed signifi cantly from the original pilot lot, the material is sold to the public in 
sets of fi ve specimens as a Standard Reference Material.  The reference value R  is 
established using the 75 verifi cation lot and 75 production lot specimens.

We make the following assumptions when determining the reference value and its 
uncertainty.  

The reference value is defi ned to be the “truth,” so there is no bias associated with 1. 
the reference value.
There is no difference between pilot lot specimens and production lot specimens.  2. 
(Differences are evaluated using a t-test for means and an F-test for variances.)  In 
the event that the verifi cation lot and production lot have signifi cantly different 
means and/or variances, the reference value will be based solely on the production 
lot data.

A.3.1  Reference Machine

We defi ne a single measurement taken on a NIST reference machine as 

1 1 , inhomogeneity , repeatability , other random systematick k k kZ   ,

where 11, 2, ,k n   measurements ( 1n  is usually 50).  The “k” subscripts on the right 
hand side of the equation denote errors that change from measurement to measurement.

1 represents the true mean breaking energy of the reference material as measured by 
the NIST reference machine.

,inhomogeneityk represents the reference material inhomogeneity.

, repeatabilityk  represents the machine repeatability.
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 ,other randomk   represents all other sources of errors due to random effects.

systematic   represents the errors due to all systematic effects.  Systematic errors 
remain constant for the duration of the set of 1n  measurements.  Although we

 assume systematic is zero, it does have some uncertainty.

The mean of 1n measurements taken on a NIST reference machine is

           1 1 inhomogeneity repeatability other random systematicZ ,     

and the variance associated with the mean, 

                                                                                                
2 2 2
inhomogeneity repeatability other random

1
1 1 1

var( )Z
n n n

,

is estimated by 
2

1

1

S
n

, with 1 1df 1n   degrees of freedom.  The three random errors

cannot be estimated separately.

The corrected value for the NIST reference machine is

                                           1, corrected 1 systematicˆZ Z .                                                                            

The combined standard uncertainty of the corrected value is

                                       
2

21
1, corrected systematic

1

ˆ( ) ( )
Su Z u
n

,

which has effective degrees of freedom 

   
1

4
1, corrected

Z 2 42
systematic1

1 1

( )
df

ˆ( )1
df df

u Z

uS
n

   ,

based on the Welch-Satterthwaite approximation.

The procedure for computing 1, correctedZ , 1, corrected( )u Z , and 
1Zdf  for one reference machine 

also applies to the remaining two NIST reference machines so that we obtain 



26

Computing UnCertainty for Charpy Impact Machine Test Results

2, correctedZ , 2, corrected( )u Z , and 
2Zdf  for the second reference machine, and 3, correctedZ , 

3, corrected( )u Z , and 
3Zdf for the third reference machine.  The results from all three reference 

machines are needed to compute the NIST reference value, as we discuss below.

A.3.2  NIST Reference Value

The NIST reference value based on data observed for the three reference machines is 
defi ned as

        
1 2 3

3Z

        
,

where  1 2 3, , and denote the respective true mean breaking energies for each of the 
three reference machines.  The NIST reference value defi nes the true breaking energy of 
the material.

We estimate the NIST reference value using

1,corrected 2, corrected 3, corrected

3
Z Z Z

R
 

 ,

which has combined standard uncertainty

2 2 2
1, corrected 2, corrected 3,corrected

1( ) ( ) ( ) ( )
9

u R u Z u Z u Z     ,

and effective degrees of freedom

                                

            

1 2 3

4

R 4 4 4 4 4 41 1 1
1,corrected 2, corrected 3,corrected3 3 3

Z Z Z

( )df
( ) ( ) ( ) ( ) ( ) ( )

df df df

u R
u Z u Z u Z ,

based on the Welch-Satterthwaite approximation.  The reference value expanded 
uncertainty is

      
R21 , df ( )RU t u R         .

A.4  Estimating Machine Bias  

Assume the machine bias is the same for the new material ( Yb ) and the reference material 
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( Vb ), so that Y Vb b b  .  The best estimate of the machine bias b is

         systematic
ˆ ˆb V R    ,

which has combined standard uncertainty

        

2
2 2

systematic
ˆ ˆ( ) ( ) ( )V

V

S
u b u u R

n        
.

The effective degrees of freedom based on the Welch-Satterthwaite approximation are

4

b 2 42 4
systematic

V R

ˆ( )df
ˆ( )1 ( )

df df df
V

V

u b
uS u R

n
.

Appendix B.  Direct Verifi cation Components of Uncertainty

B.1  Anvils and Supports, A

A paper by Yamaguchi, Takagi, and Nakano [4] provides some information regarding the 
uncertainty associated with anvil confi gurations.  Assuming that other Charpy machines 
behave similarly to the machine tested in the paper, we can use the uncertainties listed 
in the paper (Table 9) as ballpark estimates.  Table B.1 lists the uncertainty estimates for 
low, high, and super-high energies.

Table B.1.  Estimated uncertainties due to the anvil and support bias.

Standard uncertainty Low energy High energy Super-high energy

( )u A 0.05 J 0.29 J 0.77 J

Since degrees of freedom are not provided in the paper, we will also assume that Adf   , 
which implies that we know ( )u A exactly.  

B.2  Height of Pendulum Fall, h

The height of the pendulum fall is

(1 cos )h S ,
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where S  is the measured length of the pendulum, and   is the measured fall angle.  
Letting S  and denote the manufacturer’s stated error bounds, respectively, and 
assuming a rectangular distribution bounded by S  and , the uncertainties for S  
and are

( )
3
Su S 

   and ( )
3

u
 
.

Then the uncertainty of h  is

22
2 2 2

2 2 2 2

( ) ( ) ( ) 2 ( , ) ,

( ) ( ) 2 ( , ) ,S S

h h h hu h u S u u S
S S

c u S c u c c u S

where
 

 1 cosS
hc
S and  (sin ).hc S

If ( ,S ) are independent, then only the fi rst two terms are needed to determine the 
uncertainty.  We can assume that Sdf    and  df  , which implies that we know ( )u S  
and ( )u  exactly.  (See the ISO-GUM, G.4.3 [2] for details.)  The effective degrees of 
freedom associated with ( )u h  are

4

h 4 44 4

S

( )df
( )( )

df df
S

u h
c uc u S ,

based on the Welch-Satterthwaite approximation.

B.3  Potential Energy, E

The potential energy is

E h F  ,
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where F  is the measured supporting force exerted by the pendulum in horizontal 
position, and h  is the height of the pendulum fall defi ned in Section B.2.  Letting F
denote the manufacturer’s stated error bound of the measurement instrument, and 
assuming a rectangular distribution bounded by F , the uncertainty of F is

( )
3
Fu F 

 .

Then the uncertainty of E  is

2 2
2 2 2

2 2 2 2

( ) ( ) ( ) 2 ( , )

( ) ( ) 2 ( , ),h F h F

E E E Eu E u h u F u h F
h F h F

c u h c u F c c u h F

                          
  

where

h
Ec F
h


 


 and  F
Ec h
F





.

The uncertainty associated with h  is defi ned in Section B.2.  If ( ,h F ) are independent, 
then only the fi rst two terms are needed for the uncertainty.  We can assume Fdf   , 
which implies that we know ( )u F exactly.  The effective degrees of freedom associated 
with ( )u E  are

4

E 4 4 4 4

h F

( )df
( ) ( )

df df
h F

u E
c u h c u F




,

based on the Welch-Satterthwaite approximation.

B.4  Impact Velocity, v

The impact velocity is v

2 g h  ,

where g  is the local acceleration of gravity, and h  is the height of the pendulum fall 
defi ned in Section B.2.  Letting g  denote the manufacturer’s stated error bound of 
the measurement instrument (0.001 m/s2 according to ASTM E 23), and assuming a 
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rectangular distribution bounded by g , the uncertainty for g  is

( )
3
gu g 

 .

The uncertainty of  v  is

2 2
2 2 2

2 2 2 2

( ) ( ) ( )

( ) ( ),g h

v vu v u g u h
g h

c u g c u h

          
 

where

2
2g

v hc
g g h


 
 

  and  2 .
2h

v gc
h g h


 
 

The uncertainty associated with h  is defi ned in Section B.2.  We can assume gdf    
which implies that we know ( )u g exactly.  The effective degrees of freedom associated 
with ( )u v  are

4

v 4 4 4 4

g h

( )df
( ) ( )

df df
g h

u v
c u g c u h




,

based on the Welch-Satterthwaite approximation.

B.5  Center of Percussion, L

The center of percussion is

    

2

24
g pL

 
,

where g  is the local acceleration of gravity defi ned in Section B.4, and p  is the mean 
period of the swing of the pendulum from three measurements for 100 swings.  (There 
may be some systematic error associated with p  that should taken into account.)  The 

standard deviation of three p measurements is ps , so the uncertainty of the mean period 
is
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( )
3
ps

u p 
,

with pdf 3 1 2    degrees of freedom.  

The uncertainty of L  is

2 2
2 2 2

2 2 2 2

( ) ( ) ( ) ,

( ) ( ) ,g p

L Lu L u g u p
g p

c u g c u p

    
        
 

where 

2

24g
L pc
g and  2 .

2p
L g pc
p

The uncertainty associated with g  is defi ned in Section B.4.  From the Welch-
Satterthwaite approximation, the effective degrees of freedom associated with ( )u L  are

                                            
4

L 4 4 4 4

g p

( )df
( ) ( )

df df
g p

u L
c u g c u p





            

.
   

B.6  Friction Loss, D

The friction loss is

0 1D E E  ,

where 0E  is the potential energy due to the combined indicator and pendulum, and 1E  is 
the potential energy due to the pendulum.  The uncertainty of D  is

2 2 2
0 1 0 1( ) ( ) ( ) 2 ( , )u D u E u E u E E   .

Assuming perfect correlation between 0E  and 1E , a conservative estimate of the 
covariance 0 1( , )u E E  is 

2 2
0 1 0 1( , ) ( ) ( )u E E u E u E  .
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The effective degrees of freedom associated with ( )u D  are

0 1

4

D 4 4
0 1

E E

( )df
( ) ( )

df df

u D
u E u E




,

based on the Welch-Satterthwaite approximation.

B.7  Scale Accuracy, r

Let r  represent the bias in the scale mechanism and ± r  be the specifi ed error bounds of 
the measurement instrument.  Assuming a rectangular distribution, the uncertainty of r  is

( )
3
ru r 

 .

We will assume rdf   , which implies that we know ( )u r exactly.
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The following t-table values were taken from NIST/SEMATECH e-Handbook of 
Statistical Methods [5].

Table C.1  Upper critical values of Student’s t distribution with degrees of freedom, df.

df 0.900 0.950 0.975 0.990 0.995 0.999
1 3.078 6.314 12.706 31.821 63.657 318.313
2 1.886 2.920 4.303 6.965 9.925 22.327
3 1.638 2.353 3.182 4.541 5.841 10.215
4 1.533 2.132 2.776 3.747 4.604 7.173
5 1.476 2.015 2.571 3.365 4.032 5.893
6 1.440 1.943 2.447 3.143 3.707 5.208
7 1.415 1.895 2.365 2.998 3.499 4.782
8 1.397 1.860 2.306 2.896 3.355 4.499
9 1.383 1.833 2.262 2.821 3.250 4.296
10 1.372 1.812 2.228 2.764 3.169 4.143
11 1.363 1.796 2.201 2.718 3.106 4.024
12 1.356 1.782 2.179 2.681 3.055 3.929
13 1.350 1.771 2.160 2.650 3.012 3.852
14 1.345 1.761 2.145 2.624 2.977 3.787
15 1.341 1.753 2.131 2.602 2.947 3.733
16 1.337 1.746 2.120 2.583 2.921 3.686
17 1.333 1.740 2.110 2.567 2.898 3.646
18 1.330 1.734 2.101 2.552 2.878 3.610
19 1.328 1.729 2.093 2.539 2.861 3.579
20 1.325 1.725 2.086 2.528 2.845 3.552
21 1.323 1.721 2.080 2.518 2.831 3.527
22 1.321 1.717 2.074 2.508 2.819 3.505
23 1.319 1.714 2.069 2.500 2.807 3.485
24 1.318 1.711 2.064 2.492 2.797 3.467
25 1.316 1.708 2.060 2.485 2.787 3.450
26 1.315 1.706 2.056 2.479 2.779 3.435
27 1.314 1.703 2.052 2.473 2.771 3.421
28 1.313 1.701 2.048 2.467 2.763 3.408
29 1.311 1.699 2.045 2.462 2.756 3.396
30 1.310 1.697 2.042 2.457 2.750 3.385
40 1.303 1.684 2.021 2.423 2.704 3.307
50 1.299 1.676 2.009 2.403 2.678 3.261
60 1.296 1.671 2.000 2.390 2.660 3.232
70 1.294 1.667 1.994 2.381 2.648 3.211
80 1.292 1.664 1.990 2.374 2.639 3.195
90 1.291 1.662 1.987 2.368 2.632 3.183
100 1.290 1.660 1.984 2.364 2.626 3.174
∞ 1.282 1.645 1.960 2.326 2.576 3.090
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Computing UnCertainty for Charpy Impact Machine Test Results

Appendix D.  Glossary of Terms 
 

n  Number of test material samples measured 
y  Mean absorbed energy of test material samples 
s  Standard deviation of test material samples 
df Degrees of freedom for test material standard deviation 

Vn  Number of indirect verification samples measured 

V  Mean absorbed energy of verification samples 

VS  Standard deviation of verification samples 
dfV Degrees of freedom for verification material standard deviation 
R  NIST reference value 

)(Ru  Standard uncertainty of NIST reference value 
dfR Degrees of freedom for reference value standard uncertainty 

systematicê  Systematic error estimate associated with test material 

)ˆ( systematiceu  Standard uncertainty of test material systematic error 
dfe Degrees of freedom for standard uncertainty of test material systematic error 

systematiĉ  Systematic error estimate associated with verification material 

)ˆ( systematicu  Standard uncertainty of verification material systematic error 

dfδ Degrees of freedom for standard uncertainty of verification material systematic 
error 

correctedy  Corrected test result 
)( correctedyu  Combined standard uncertainty of corrected test result 

dfeff Degrees of freedom for combined standard uncertainty of corrected test result 
U  Expanded uncertainty of corrected test result 

 






