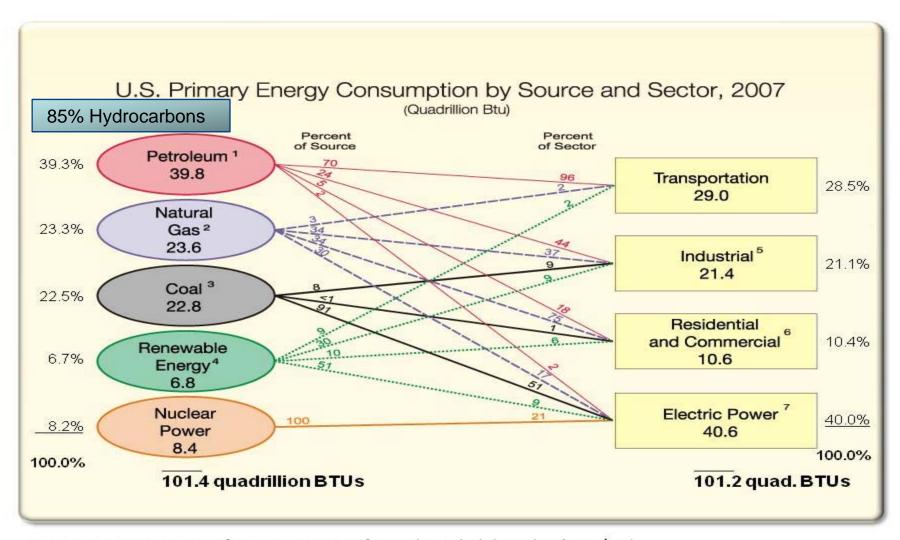
Future Market Drivers for CO2 Compression Equipment

Workshop on Future CO2 Compression Systems

Key Driver


Carbon Capture and Storage (CCS)

Focus on Lowering CO₂ Emissions

- We Should Use and Develop!
 - Clean and Renewable Energy Sources
 - Wind
 - Solar
 - Nuclear
 - New Technologies (Tide / Wave ...)
 - Energy Efficiencies
 - Transportation Improved Miles Per Gallon
 - Construction Methodology Lower Energy Usage
 - HVAC / Lighting / Automation / Other Efficiencies
- But-Hydrocarbons are important to our economy TODAY and will be for some time in the Future!

Where Our Energy Comes From!

Source: US Department of Energy, Energy Information Administration (DOE/EIA) http://www.eia.doe.gov/basics/energybasics101.html From Perot Charls

Lowering CO₂ Emissions

 If we want to significantly lower CO₂ emissions in the short term, CCS is a key component to the equation!

CCS Options

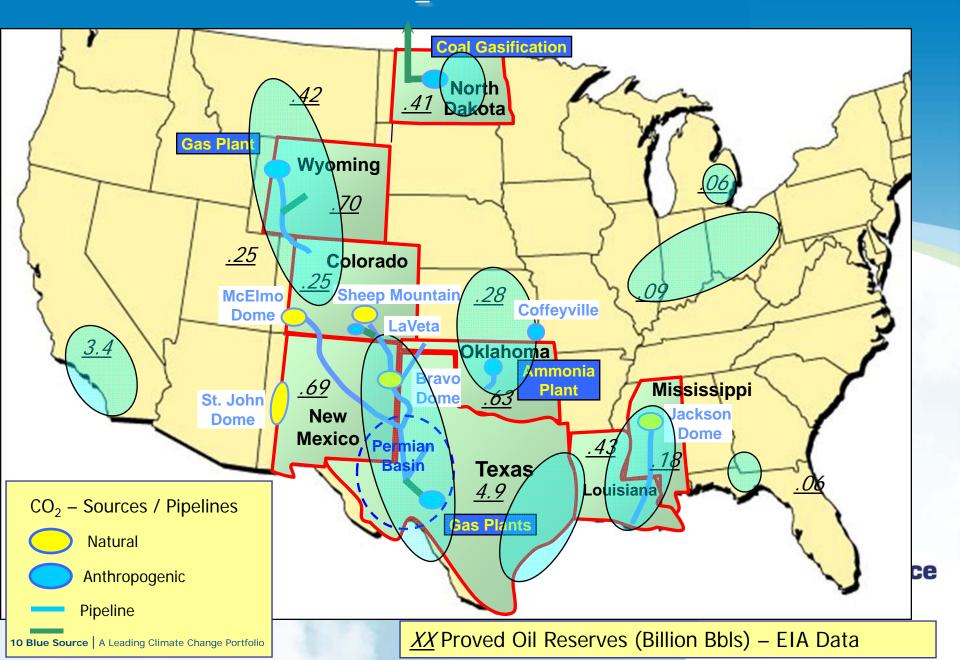
- Near Term Solution EOR is <u>Now!!</u>
 - The U. S. needs the Oil!
 - Need to resolve issues relating to Liability & Pore Space
- Long Term Solution CCS
 - Depleted Hydrocarbon Reservoirs
 - Saline Aquifers (Issues: Liability & Pore Space Ownership)

Why Promote CO₂a in EOR?

- Infrastructure development
 - Existing 3,500 miles of CO₂ pipelines was built for EOR
 - Sunk assets will lower delivery cost and risk for CCS (depleted O&G reservoirs and aquifers)
- Environmental additionality
- Acceleration of CCS due to liability management, technology acceptance and economics as related to EOR

What To Do?

- Provide Incentives for CCS Today
 - Federal / State / Industry
- EOR with CO_{2 (anthropogenic)} Leads
 - Lowers CO₂ emissions
 - Stores CO₂ in known geologic traps
 - Pays for pipeline infrastructure for future geological sequestration in non-hydrocarbon reservoirs
 - EOR with CO₂ does not create incremental Bbls
 - Maximizes the use of America's resources
 - Lowers Oil Imports
- Deep Saline Aquifers Follow
 - As Issues are resolved


What Do We Need to Happen?

- Reasonable Rules and Regulations
 - CO₂ (anthropogenic) used for EOR should count as CCS
 - Proper characterization of CO₂
 - It is a commodity for EOR!
 - Pollutant No (EPA ?)
 - Hazardous Waste No (EPA ?)
 - States should take the long term liability for storage – After proper injection and P&A
 - Clarification of pore space ownership
 - Storage Only
 - During EOR (mineral extraction) and After EOR (storage)
- Be proactive in sighting new facilities which can economically capture the CO₂, such as gasification projects

Carbon Infrastructure: Today and Tomorrow

Overview of CO₂ Infrastructure in USA

Anthropogenic Sources of CO2

- High Purity
 - Gas Processing
 - Fertilizer
 - Ethanol
 - Hydrogen
 - Gasification

Low Purity

Electrical Generation

Coal – 12% to 15%

Gas – 3% to 5%

□ Cement — 12% - 15%

High Purity Sources

- Generally 95%+ CO2 No Separation Cost
- Generally Low Pressure High Cost to Compress
- Location to Sink Aquifer or EOR
 - For EOR, need 25 to 50 MMcf/d + to lay pipeline 50 miles; as volume goes up so does distance for economic transport
 - For Saline Aquifer, long distances may be uneconomic

What does that mean

- Cost to Compress and Transport about 50 MMcf/d for 50 miles will cost \$1.30 to \$1.75/ Mcf or \$32.50 to \$33.70 /metric ton
 - Note: (These cost can vary significantly depending upon such things as power cost at certain locations, terrain to construct pipelines and many other factors.)

Low Purity Sources

- Generally less than 15% CO2
 - Significant Separation Cost
 - Current Technology Amine (Too Energy Intensive)
 - New Technology's Chilled Ammonia? / Other Most likely 3-5+ Years Out
- Generally Low Pressure High Cost to Compress
- Location to Sink Critical for Aquifer or EOR

Low Purity Sources

- For EOR, need 25 50 MMcf/d to lay 50 miles pipeline; as volume goes up so does distance
- For Saline Aquifer, longer distance is extra cost
- What does that mean
 - Cost to Capture, Compress and Transport about 50 MMcf/d for 50 miles will cost \$2.85 to \$4.00/ Mcf or \$55.00 to \$77.00/metric ton

Note: (These cost can vary significantly depending upon such things as local power cost, terrain to construct pipelines and many other factors.)

Capture & Compression Costs for CO2a

Recent Studies for CO2a Capture and Compression

IGCC SCPC NGCC PC-OxyFuel

New Retro

DOE/NETL* \$39 \$68 \$83

Canada BERR* \$48 \$67

DOE (Trimeric)* \$67

* 2007 Study

Challenges

- Hydrocarbon Reservoirs
 - EOR requires High Purity CO₂ 95% +
 - Need Significant Quantity > 25 MMcf/d / 1,300 metric tons/day
 - Needs to be relatively close to source 1 to 2 miles for each 1 MMSCF/D
 - DOE Target of \$20/tonne for CO2a Capture
 - Cost Target for Capture & Compression (C&C)
 CO2a ~\$25-\$30/tonne (\$1.30-\$1.55/MSCF)

Challenges

- Issues Emerging from Pending State Laws
 - –CO2-EOR May Not Be Storage
 - –Pore Space is Being Clarified "but" May Inhibit Oil & gas Operations in Storage Facilities
 - -States Are Not Yet Willing to Accept Liability for Long Term Storage

Conclusions

- For Non EOR Sequestration to Commence,
 US Industry Needs Visibility On
 - Value of Emission Reduction Credit
 - Regulations Federal and State
 - Early Action Might be Penalized
 - Economic Benefit or Cost?
 - Pore Space Ownership
 - Liability Issue
 - Cost for C&C of CO2a Needs to be Decreased

Conclusions

EOR Can and Is Happening Today

- U. S. Infrastructure Backbone Can Be Built on the Back of Oil
- High Purity Anthropogenic CO2 Sources Can Lead the Way
- Infrastructure Starts Out Regionally

Questions!!

