

Research and Development Needs for Advanced Compression of Large Volumes of Carbon Dioxide

J. Jeffrey Moore, Ph.D. Mathew Blieske Hector Delgado Andrew Lerche Southwest Research Institute San Antonio, TX Charles Alsup National Energy Technology Laboratory Morgantown WV

Jorge Pacheco, Ph.D. Dresser-Rand

Mathew Bough David Byard BP

Workshop on Future Large CO2 Compression Systems

Sponsored by DOE Office of Clean Energy Systems, EPRI, and NIST

March 30-31, 2009

Who Is SOUTHWEST RESEARCH INSTITUTE?

11 Divisions

Engine Emissions
Fuels & Lubricants
Automation
Aerospace Electronics
Space Science
Nuclear Waste
Applied Physics
Training, Simulation
Chemistry
Electronics
Mechanical & Materials Engineering

•1200 Acres •2 million Ft² •3300 Employees •1300 Engineers •170 Buildings

CO₂ R&D Needs

- Reduce the power penalty associated with CCS
- Compression must be integrated and optimized with various capture schemes
 - Amine solvents
 - Chemical looping
 - Membranes
- Reliability of the equipment important
- Beneficial to leverage existing compression technology
- Equation of state near critical point and with mixtures

Motivation of Current Project

- CO₂ capture has a significant compression penalty
- Final pressure around 1,500 to 2,200 psia for pipeline transport or re-injection.
- Based on a 400 MW plant, the typical flow rate is ~600,000 to 700,000 lbm/hr.
- Project goal: Double-digit reduction of compression power for CO₂ capture
- Many thermodynamic processes studied.
- Several challenges with the application discussed.
- Research applicable to PC, Oxy-Fuel,IGCC & NGCC

General Comments

- The type of compressor is highly dependent on the starting pressure
 - Approximately 20 to 500 psia for CO₂ scrubbing of the fuel stream (for IGCC).
 - Approximately 15 psia from PC and Oxy-Fuel.
- High pressure ratio results in significant heat of compression.
- Various compressor types have been considered.
- Isothermal compression one concept considered to reduce the power of compression.
- Liquefaction of CO₂ has also been studied.

IGCC Process with Carbon Capture

DOE PC Reference Case

Only CO₂ stream considered

DOE/NETL report 401/110907

Mass Flow Rate = 700,000 lbm / hr = 144.89 MMSCFD

Pressure (psia)	Volume Flow (acfm)
14.7	100,595.2
150	9,858.3
300	4,929.2
450	3,286.1
600	2,464.6
1,000	1,478.8
1,500	985.8

High volume flow reduction adds to challenge in compressor selection

 Uncompressed CO₂ streams in a typical IGCC plant with a physical absorption separation method using Selexol solvent.

CO ₂ Gas Streams	LP	MP	HP 1	HP 2
Pressure (psia)	21.9	160.0	250.0	299.0
Temperature (°F)	51.0	68.0	90.0	75.0
Density (lbm/ft ³)	0.177	1.3	1.87	2.088
Flow Rate (acfm)	33,257	2,158	3,374	1,073

Higher pressure separation streams help reduce volume reduction. This allows a more uniform frame size in compressor selection.

Challenges: Wide flow range required

 CO₂ mass flow proportional to power plant Output (e.g. 50-100%)

Challenges: High Mole Weight

Challenges: High Reliability

- Integrally geared can achieve near isothermal compression
- Can contain up to 12 bearings, 10 gas seals plus gearbox
- Typically driven by electric motor
- Impellers spin at different rates
 - Maintain optimum flow coef.

Single-Shaft Multi-stage Centrifugal Compressor

- Multi-stage centrifugal proven reliable and used in many critical service applications currently (oil refining, LNG production, etc.)
- Fewer bearings and seals
 - (4 brgs & seals for 2 body train)
- Can be direct driven by steam turbine Southwest Research Institute

Path Dependent Process Comparison

isentropic compressor...Which is better???

Isentropic vs. Isothermal Compression

Isentrop	oic Com	pressi	on Ca	Iculation	s for 20-2	200 psia							
										N	ldot (lb/hr)=	200000	
							rho1	rho2	Polytro	pic	W/mdot		
P1	P2	1	Г1	T2	h1	h2	(lbm/ft3)	(lbm/ft3)	Efficien	су	(Btu/lbm)	BHP	
20	0 2	20	70	415	216.05	290.92	0.156	1.0446	(0.99	74.870	5879.6	
										N	ldot (lb/hr)=	200000	
220	0 22	200	415	875	290.92	404.12	1.0446	6.6665	•	1.00	113.200	8889.6	
										Т	otal BHP =	14769.2	
lis	otherm	al Com	nress	ion Calci	lations at	100 deaF	and 60% e	fficiency			٦		
			101000	ion calot	latione at	ioo aogi		Mdot (lb	/hr)= 2	00000		▲	
		Joaro							//				
						Ideal		Actua	al				
					In	W/mdo	t Assume	d W/md	ot				
	P1	P2	То	P2/P	1 (P2/P1) (Btu/lbm) Efficienc	y (Btu/lb	m) B	HP		• •	
	20	100	0 1	00 5.0	00 1.6	1 37.6	2 0.60	0 62	.705	4924.2	lsen ⁻	tropic	Compression
S	ide Stre	eam + N	lediun	n Pressu	re			Mdot (lb	/hr)= 2	00000	(100)	% effic	C(ency) = 14,769 BHP
											-		
						Ideal		Actua	al				
	D4	DO	Та			VV/mdo	Assume	a vv/ma	Ot (D)	пп			
	P1 100	PZ 26(P2/P	1 (PZ/P1					0 00 0704 0			
	100	200	5 1	00 2.0	0.9	0 21.2	0.00	Mdot (lb	(hr) = 2	2704.0	Isoth	herma	Compression
_	170	260	0 1	00 15	53 04	2 93	2 0.60	0 15	541	1220 4			
										1220.1	(60%		ency) = 12,441 BHP
н	igh Pre	ssure						Mdot (lb	/hr)= 2	00000			
											1 /		
						Ideal		Actua	al				
					In	W/mdo	t Assume	d W/md	ot				
	P1	P2	То	P2/P	1 (P2/P1) (Btu/lbm) Efficience	y (Btu/lb	m) B	HP			
	260	600	0	70 2.3	31 0.8	4 16.4	1 0.60	0 27	.344 2	2147.3		he 60%	6 efficient isothermal
	600	109	7	70 1.8	33 0.6	0 6.5	0 0.60	0 10	.841	851.4			
	100-			70 0				Mdot (lb	/hr)= 2	00000		comp	ressor is preferred.
	1097	2200	J	70 2.0	0.7	0 3.9	2 0.60	0 6	0.536	513.3			
								Total PL		2444 4		а. 1	
								Total Br		2441.4		Southwest	Kesearch Institute

Variation in Predicted Gas Density for CO2 Mixture

Deviation in Models for CO₂ Mixtures

Large differences exist in gas properties predicted by standard equation of state models (API, RKS, HANS) and pure CO₂ correlation models from 1000-2000 psia.

Gas Properties Testing

- Gas properties testing for acid gas at SwRI
- Molecular weight and speed of sound

Back to Current Project

Project Overview

- Phase I (Completed)
 - Perform thermodynamic study to identify optimal compression schemes
- Phase II (Complete in 2010)
 - Pilot testing of two concepts:
 - Isothermal compression
 - Liquid CO₂ pumping
 - Total Project Amount

\$1.5 million

D-R Selection Using Conventional Centrifugal Compressors (Baseline)

- Requires two parallel trains
- Intercooling between each section

9	OPERATING CONDITIONS							
10								
11	(ALL DATA ON PER UNIT BASIS)			Base				
12		D18R7B D16R9B						
13		SEC #1	SS In	SEC #2	SEC #1	SEC #2		
14	• GAS HANDLED (ALSO SEE PAGE)	LP	MP		Ble	end		
17	• WEIGHT FLOW, (Lb/Hr) (WET)	176,649	168,445	260,872	517,475	517,475		
18	INLET CONDITION							
19	PRESSURE (PSIA)	21.90	170.0	96.58	248.0	1,087		
20	• TEMPERATURE (°F)	51.00	68.00	90.21	100.00	100.0		
22	MOLECULAR WEIGHT	43.88	43.13	43.63	41.61	41.61		
25	■ INLET VOLUME, (ACFM)(WET)	16,634		5,908	4,694	745.0		
26	DISCHARGE CONDITI							
27	PRESSURE (PSIA)	106.6		258.0	1,097	2,215		
28	■ TEMPERATURE (°F)	299.3		258.1	369.8	231.4		
29	Cp/Cv(Kavg)	1.271		1.272	1.274	1.230		
30	COMPRESSIBILITY (ZAvg)	0.9910		0.9685	0.9334	0.6919		
36								
37	GHP REQUIRED (HP)	3,684		3,656	12,126	5,180		
40	SPEED (RPM)			5,166				

Total Power = 49,292 HP (37 MW, 5.2% of 700 MW Output)

Southwest Research Institute

Summary of Thermodynamic Analysis

Proposed Solution for Optimal Efficiency

Optimal solution combines inter-stage cooling and a liquefaction approach.

Summary of Thermodynamic Analysis

Option	Compression Technology	Power Requirements	% Diff from Option A	Cooling Technology
A	Conventional Dresser-Rand Centrifugal 10-stage Compression	23,251 BHP	0.00%	Air-cool streams between separate stages
В	Conventional Dresser-Rand Centrifugal 10-stage Compression with additional cooling	21,522 BHP	-7.44%	Air-cool streams between separate stages using ASU cool N2 stream
C.1	Isothermal compression at 70 degF and 80% efficiency	14,840 BHP	-36.17%	Tc = 70 degF inlet temp throughout
C.4	Semi-isothermal compression at 70 degF, Pressure Ratio ~ 1.55	17,025 BHP (Required Cooling Power TBD)	-26.78%	Tc = 70degF in between each stage.
C.7	Semi-isothermal compression at 100 degF, Pressure Ratio ~ 1.55	17,979 BHP (Required Cooling Power TBD)	-22.67%	Tc = 100degF in between each stage.

Summary of Thermodynamic Analysis

Option	Compression Technology	Power Requirements	% Diff from Option A	Cooling Technology
D.3	High ratio compression at 90% efficiency - no inter-stage cooling	34,192 BHP	47.06%	Air cool at 2215 psia only
D.4	High ratio compression at 90% efficiency - intercooling on final compression stage	24,730 BHP	6.36%	Air cool at 220 and 2215 psia
E.1	Centrifugal compression to 250 psia, Liquid cryo-pump from 250- 2215 psia	16,198 BHP (Includes 7,814 BHP for Refrigeration) ¹	-30.33%	Air cool up to 250 psia, Refrigeration to reduce CO2 to -25degF to liquify
E.2	Centrifugal compression to 250 psia with semi-isothermal cooling at 100 degF, Liquid cryo-pump from 250- 2215 psia	15,145 BHP (Includes 7,814 BHP for Refrigeration) ¹	-34.86%	Air cool up to 250 psia between centrifugal stages, Refrigeration to reduce CO2 to -25degF to liquify

Note: Heat recovery not accounted for.

Compression Power for PC Plant

Isothermal Compression

Liquefaction/Pumping Compression

Project Goals

- Develop internally cooled compressor stage that:
 - Provides performance of an integrally geared compressor
 - Has the reliability of a in-line centrifugal compressor
 - Reduces the overall footprint of the package
 - Has less pressure drop than a external intercooler
- Perform qualification testing of a refrigerated liquid CO2 pump

Phase 2 Project Plan

- Experimentally validate thermodynamic predictions.
- Two test programs envisaged:
 - Liquid CO₂ pumping loop
 - Closed-loop CO₂ compressor test with internal cooling
- Power savings will be quantified in both tests.

Liquid CO2 Pumping Loop Testing

- Testing will measure pump efficiency
- Validate pump design
- Measure NPSH requirements looking for signs of cavitation
- Investigate gas entrainment effects
- Cryostar will supply the pump (250 KW, 100 gpm)

Liquid CO2 Loop

- Vessel layout showing elevated reservoir and knock-out drum
- Pump will be mounted at ground level.
- Orifice run will be located between pump and control valve (in supercritical regime)
- Knock-out drum structural support completed

Internally Cooled Compressor Testing

- Goal: To measure effectiveness of internally cooled diaphragm
- Existing Multi-Stage Test Rig will be utilized using CO₂
- New impeller and internals will be manufactured and tested
- Diaphragms will contain optimized flow path and cooling jacket design
- Stage performance will be measured (P1, T1, P2, P2, Q)
- Both ambient and chilled cooling water will be employed
- Heat transfer enhancement devices employed

Southwest Research Institute

Program Benefits

- Provide enabling technology to compress CO₂ from a PC, Oxy-Fuel, or IGCC power plant, cost-effectively minimizing the financial impact of CO₂ sequestration.
- This program identified up to 35% power savings over a conventional CO₂ compression solution.
- Technology applicable to all power plant types plants
- The thermodynamic process is more important than compressor efficiency.
- The internally-cooled compressor concept should result in significant capital savings over an integrally geared compressor
- Liquefaction and pumping equipment will add some additional capital expense, but some is offset by lower cost pump compared to high-pressure compressor.
 - A 35% power reduction will save a utility \$4.2 million per year, based on 4¢ / kwh, which will provide a fast return on investment.
- Testing will be complete 1st Qtr 2010

Areas Needing Further Research

- Further work to reduce the power penalty associated with CCS and utilize waste heat
- Compression must be integrated and optimized with various capture schemes
- Perform optimum driver study
 - i.e. gas turbine, motor, steam turbine
- Develop more reliable compression designs
- Perform more gas properties measurements of CO₂ mixtures
- Refine equation of state near critical point and with mixtures
- Perform optimization of pipeline booster stations
 - Station spacing, liquid vs. gas, driver selection
- Improve reliability of recip EOR recycle compressors
 - i.e. valve reliability
 - Variable speed of sound pulsation models (real gas effects)
- Perform further corrosion studies on the effects of moisture on pipeline corrosion

Questions???

www.swri.org

Dr. J. Jeffrey Moore Southwest Research Institute (210) 522-5812 Jeff.Moore@swri.org