Mimicking cellular micro-environments with synthetic designer materials

Joerg Lahann

Chemical Engineering Department University of Michigan

Our improved understanding of molecular biology, microfabrication, and materials chemistry has stimulated crossfertilization of two fields that had limited overlap even a few decades ago: biotechnology and materials engineering. In my presentation, I will discuss current advances in the design of multifunctional biomaterials and biointerfaces including three distinct examples under research in the Lahann group: (i) Chemically and biologically active coatings with one or multiple advanced functions can be synthesized by chemical vapor deposition (CVD) polymerization [1,2] as well as CVD co-polymerization [3]. (ii) Multicompartmental particles that exhibit a wide range of sizes, shapes and compartments can be prepared using electrohydrodynamic co-jetting [4,5]. (iii) Patterned microfibers can be synthesized via electrospinning that have to potential to provide spatially controlled guidance of cells in three dimensions [6].

J. Lahann et al., *Science* 2003, *299*, 371-374; [2]; [1] H. Nandivada et al., *Angew. Chem.* 2006, 45, 20, 3360-3363 [2] H.Y. Chen et al., *PNAS*, 2007, *104*, 1173-11178;
Y. Elkasabi et al., *Advanced Materials* 2006, 18, 1521-1526. [4]K.-H. Roh et al., *Nature Materials* 2005, *4*, 759-763. [5] S. Bhaskar et al. *Angew. Chem.* 2009 (in press).
S. Bhaskar & J. Lahann *JACS* 2009 (in press).