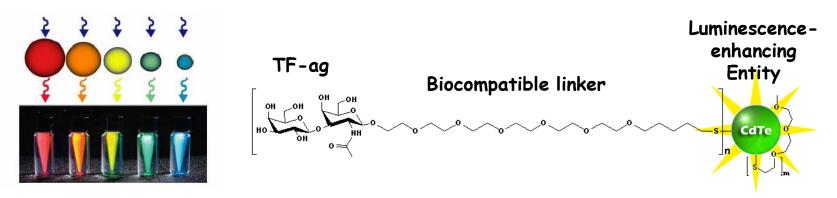


Bioimaging Applications of Modern Nanoparticle Constructions

Joseph J Barchi, Jr., Ph.D.


Laboratory of Medicinal Chemistry National Cancer Institute National Institutes of Health

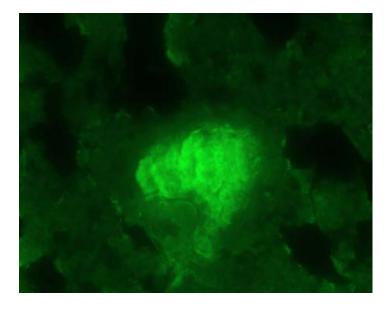
Beyond Standard Organic Dyes

- Accurate imaging of diseased cells (e.g., primary and metastatic tumors) is of primary importance in disease management.
- Carbohydrate-encapsulated quantum dots (Qdots) for use in medical imaging.
 - Organic Dyes easily photobleach; qdots are bright, persist, resist photobleaching
 - Certain carbohydrates, especially those included on tumor glycoproteins are known to have affinity for certain cell types
 - Relevant to Medical Imaging, Detecting Relevant Carbohydrate and Macromolecule Interactions.

Slide #2

Technology/Commercial Applications

Application Areas

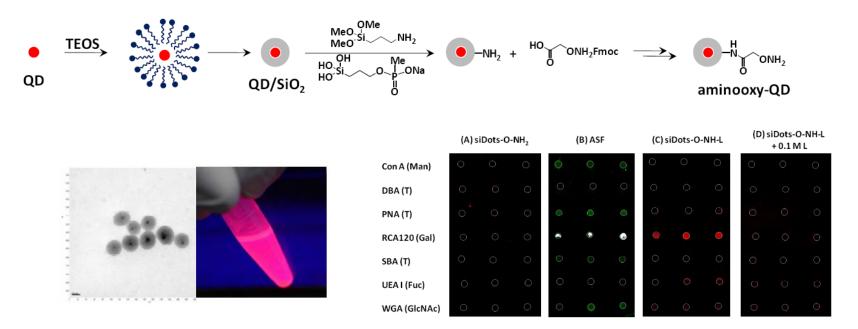

- Replacement for standard organic dyes for cellular imaging; qdots with proper chemistry can enter cells, dynamic imaging
- Detection probe for microarrays

Value

Our technology yields stable Qdots
with a much reduced molecular weight
compared with commercial products

Ease of Synthesis

 Size control, multiplexing (different colors with different chemistries, label separate entities)



Validation

- Small set of labeling experiments
- Reproducible synthesis and ease of use
- Patent Application US App. #10/578,405 filed 05/05/2006

Collaboration Opportunities

- Collaboration opportunities
 - Develop synthetic methods to use less toxic materials; test stability in vivo; employ wide range of tumor relevant carbohydrates
 - Additional personnel for help with biological/in vivo work
- Interested in Collaboration with Researchers (particularly for *in vivo* work)

Contact Information

For further information contact:

Licensing:

Michael Shmilovich NIH Office of Technology Transfer (301) 435-5019 shmilovichm@od.nih.gov

Collaboration:

Michael Currens, Ph.D. NCI Technology Transfer Center (301) 846-1831 currens@mail.nih.gov