

Method of Preparing Macromolecular Contrast Agents and Uses Thereof

Martin Brechbiel, Ph.D. and Kido Nwe, Ph.D.

Radioimmune & Inorganic Chemistry Section Radiation Oncology Branch Center for Cancer Research National Cancer Institute National Institutes of Health

Technology

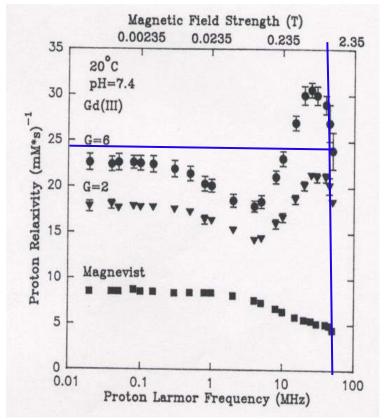
- Problem \rightarrow Macromolecular MR contrast agents are:
 - difficult to characterize;
 - results are complex mixtures;
 - unstable Gd(III) complexes;
 - less than expected molar relaxivity.
- Stage of research \rightarrow pre-clinical in vivo
- Patent Status Filed 2009
- Recent Publication:
 - Nwe, K., et al., <u>Bioconjugate Chem.</u> 2009, **20**, 1412-1418.

Related Patent:

 Gansow, O. A., Brechbiel, M. B., Magerstadt, M. A.: Complexes of Functionalized Tetraazacyclododecane Chelates with Bismuth, Lead, Yttrium, Actinium, or Lanthanide Metal Ions. U.S. Patent 5,428,154

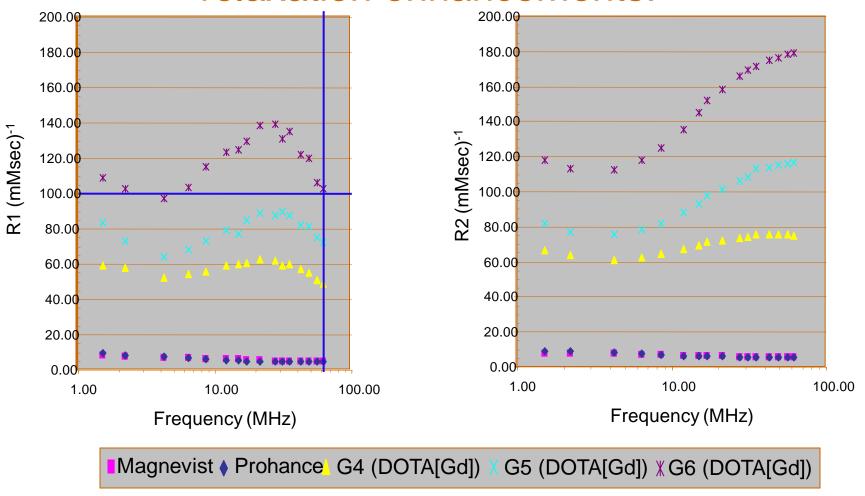
Technology Applications

- Areas in which the technology can be applied
 - All macromolecular Gd(III) MR contrast agents
 - All macromolecular Gd(III) MR contrast agents that are combined with other imaging modalities.
 - Impacts LMW Gd(III) MR contrast agents
- Why is it important? Why is it different?
 - Simplifies characterization concerns \rightarrow Reproducible chemistry
 - Eliminates toxicity concerns \rightarrow kinetically inert complex
 - Enhances molar relaxivity \rightarrow decreases required injected dose
- Validation
 - In vivo animal imaging
 - Proper formation of Gd(III) complexes

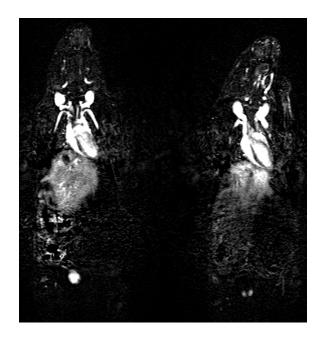

Commercial Applications

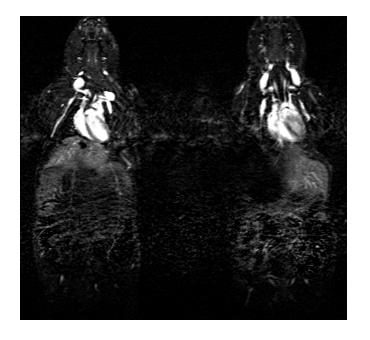
- MRI contrast agents with greatly improved homogeneity and stability
- Greater molar relaxivity, allows using much less of the agent than previously required to acquire comparable or better images

Dendrimer-based gadolinium chelates exhibit large proton relaxation enhancements


Weiner, Brechbiel, Brothers, Magin, Gansow, Tomalia, Lauterbur, Mag. Res. Med. 1994, 31, 1-8.

U.S. Department of Health and Human Services National Institutes of Health


Dendrimer –based using pre-formed *C*-DOTA chelated Gd⁺³ exhibit <u>Larger</u> proton relaxation enhancements!



In vivo imaging – pre-Gd⁺³ incorporation DTPA vs. *C*-DOTA

G4-(1B4M-DTPA-Gd)₃₀

G4-(C-DOTA-Gd)₂₈

Collaboration Opportunities

Licensing and/or CRADA opportunities

- Future research \rightarrow actively targeted agents
- What would you want out of a collaboration?
 - Novel targets & targeting vectors w/ corresponding animal models
 - Access to imaging instrumentation
- Available for licensing? \rightarrow YES!

Contact Information

For further information contact:

Licensing: Eric W. Odom, Ph.D. NIH Office of Technology Transfer (OTT) Tel.: 301-435-5009 odome@mail.nih.gov

 Collaboration: Thomas P. Clouse, Ph.D. NCI Technology Transfer Center 301.594.1903 clouset@mail.nih.gov