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The present review, containing 178 references, is dedicated to one of the largest and
most important branches of the rarefied gas dynamics, namely internal flows. A critical
analysis of the corresponding numerical data and analytical results available in the litera-
ture was made. The most reliable data were selected and tabulated. The review will be
useful as a reference for mathematicians, physicists and aerodynamicists interested in
rarefied gas flows. In this paper the complete ranges of the main parameters, determining
rarefied gas flows through a capillary, are covered. The capillary length varies from zero,
when the capillary degenerates into a thin orifice, to infinity when the end effects can be
neglected. The Knudsen number, characterizing the gas rarefaction, varies from zero
when the gas is considered as a continuous medium to infinity when the intermolecular
collisions can be discounted. The pressure and temperature drops on the capillary ends
vary from the small values when the linear theory is valid to the large values when the
nonlinear equations must be applied. The influence of the gas—surface interaction is
considered. © 1998 American Institute of Physics and American Chemical Society.
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1. Introduction

1.1. Scope of the Review

Rarefied gas dynamics (RGD) is an active and fast devel-
oping scientific field. A biennial symposium attracts a large
number of scientists and engineers working in this field. Re-
cently, some monographs'!?73 describing latest achieve-
ments in the RGD were published. The starting point of the
rarefied gas theory is the kinetic Boltzmann equation. An-
other very important aspect of the theory is the gas—surface
interaction, which serves as a boundary condition for the
kinetic equation. The monographs mentioned above describe
the main properties of the kinetic equation, the properties of
its boundary condition, and the principal methods of solution
of the Boltzmann equation. So, they provide general infor-
mation about the rarefied gas theory.

The present review is dedicated to one of the largest and
most important branches of the RGD, namely the internal
rarefied gas flows. The knowledge of this branch is appli-
cable in many technologies such as: vacuum equipment,
chemical apparatus, spaceship construction etc. Moreover,
this branch plays a significant role in the development of the
RGD as a whole. Because of the simplicity of numerical
calculations, some types of internal rarefied gas flows serve
as a test problem for new numerical methods. These flows
are very sensitive to the nature of the gas—surface interac-
tion. That is why they are used for indirect measurements of
the gas—surface interaction parameters. To realize this task.
an experimenter needs exact values of the mass flow rates
through a capillary as a function of the gas rarefaction and of
the gas—surface interaction parameters.

Today. much theoretical data on the internal gas flows are
available in the literature. These data have not been widely
applied by experimenters and engineers even though it is
possible. There are three main reasons for this.

(1) The material on the rarefied gas flows is dispersed in
many papers. Each describes only one aspect of the
problem. while the flows depend on many parameters
including the gas rarefaction, the geometrical size of the
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capillary, the nature of the gas—surface interaction, and
the nature of the intermolecular interaction.

(2) The theoretical results in this field are usually presented
in terms of the microparameters-such as the molecular
mean free path and frequency of the intermolecular col-
lisions. A special terminology was formed in the corre-
sponding papers, which cannot be understood without
the profound knowledge of the kinetic theory of gases.
At the same time, it is not so trivial to relate these mi-
croparameters with the macroparameters measured in
practice such as the pressure, the temperature, and the
viscosity. Some papers contradict others regarding this
question.

(3) The theoretical works are performed under suppositions
idcalizing thc problem: thc capillary has an infinitc
length, the gas is single, and the gaseous molecules are
monatomic. In practice one deals with a capillary of fi-
nite length and with a gaseous mixture of polyatomic
gases. Without special knowledge one does not know if
the theoretical results obtained under ideal assumptions
can be applied in some practical situations.

The present article provides numerical data and analytical

formulas on the mass flow rate and on the heat flux through
a capillary. It should be noted that the rarefied gas flows are
complicated by the so-called cross effects, viz. the mass flow
caused by temperature gradient and the heat flux caused by
pressure gradient. These cross effects are described in this
article.
* The entire range of the main parameters determining the
gas flow is considered. The capillary length varies from in-
finity when the end effects can be neglected to zero when the
capillary degenerates into a thin slit or orifice. The pressure
and temperature drops on the capillary ends are also assumed
to be arbitrary. The drops vary from small values when the
linear theory is valid to large values when the nonlinear
equations must be applied. The principal parameter, which
affects the gas flows, is the gas rarefaction. In the article, the
entire range of this parameter is covered, from the regime
when the intermolecular collisions can be discounted to the
hydrodynamic regime.

Besides the flow rates and the heat fluxes, one more prac-
tically important phenomenon is described, namely, the ef-
fect of the thermomolecular pressure difference. This effect
can serve for indirect pressure measurements and for mea-
surements of the gas—surface interaction parameters.

The contents of this article are as follows: In the present
section. the general statement of the problem is described.
The main assumptions outlining the sphere of the applicabil-
ity of the data presented in the review are given.

In Sec. 2 the main theoretical conceptions of the RGD are
described. The relations between the microparameters (mo-
lecular mean free path. molecular mass, molecular diameter)
with the macroparameters (pressure. temperature, number
density. viscosity. thermal conductivity) are given. The engi-
neers. who need to calculate the mass flow rates in some
equipments, and the experimenters, who need to choose the

Longitudinal section of capillary

y

T; . » L . T Tn

AN

Cross section of capillary

P @ =

tube channel

FiG. 1. Sketch of the gas flow through a capillary of arbitrary length.

best conditions for indirect measurements of the gas—surface
interaction parameters or to confirm some theoretical conclu-
sions, can easily relate the data presented here with practi-
cally measured quantities. Numerical methods applied to cal-
culate the rarefied gas flows are described briefly in this
section. For the reader who wants to study one or another
method in depth, the corresponding references are given.

In Sec. 3 the gas flow through long capillaries is consid-
ered. In this limit the end effects can be neglected. Moreover,
the solution to the problem can be split into two stages. First,
we calculate the flow rates through a given cross section of
the capillary under the small gradients of the pressure and
temperature. In the second stage we use an approach elabo-
rated recently to calculate the flow rates as a function of the
pressures and the temperatures on the capillary ends without

-any restrictions on their drops.

In Sec. 4 the other limit case is considered, viz. the capil-
lary with a zero length. This means that the containers are
separated by a thin partition having a slit or an orifice.

In Sec. 5 the intermediate valucs of the capillary length arc
regarded.

From the last two sections one concludes that information
on these types of rarefied gas flows is very poor and there is
a need for more research in this scientific field.

1.2. General Statement of the Problem

Consider two reservoirs containing the same gas and
joined by a capillary of a length [ as is shown in Fig. 1. Let
P and T, be the pressure and the temperature, respectively,
of the gas in the left container; Py, and Ty are the pressure
and the temperature, respectively, in the right container.
There is a temperature distribution T, (x) on the capillary
wall. This distribution can exist independently of the tem-
peratures T} and Ty;. However we will not consider this spe-
cific situation and assume that

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998
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To(x)=T+(Ty— Ty 7,.(x), (1.1)

where 7,.(x) is some given function satisfying the conditions
T.(—1/2)=0, 7,(12)=1.

Therefore, if T;=Ty; then T, (x)= T;=const.
It is obvious that the pressure and temperature drops

AP=(Py—Py), AT=(Ty—T)) (1.2)

cause the fluxes of the mass and heat through the capillary.
The flow rate and the heat flux are defined as

W AM £ AE 3
AT T A (1:3)
respectively. Here, AM and AE are quantities of mass and
heat, respectively, flowing through a cross section of the cap-
illary per a time interval At,

In rarefied gases the flow rate and the heat flux depend on
the drops of both pressure and temperature, i.c.,

M=M(AP,AT), E=E(AP,AT). (1.4)

This means that the mass flow can be caused not only by the
pressure drop but also by the temperature drop, and the heat
flux is caused not only by the temperature drop but also by
the pressure drop.

This fact leads to an interesting phenomenon, the so-called
thermomolecular pressure difference (TPD). If we assume
that the system (the capillary+the reservoirs) is closed, the
pressures P, Py are equal each to other but the temperatures
T;, Ty are maintained different, then a gas begins to flow
from the cold container to the hot one. This will cause a
pressure difference between the reservoirs, and the mass flow
in the opposite direction appears. When the whole mass flow
rate through the capillary is zero the stationary state will be
established. The established pressure ratio P{/Py; in this state
can be related to the maintained temperature ratio as

_”_l:(ﬂ)y

(1.5)
Py \Tyy

where 7y is the exponent of the TPD, which can be related to
the mass flow rate.

1.3. Main Assumptions
We restrict ourselves by the following assumptions:

(i) The volume of the reservoirs are significantly larger
than the volume of the capillary, so that the gas in the
containers is in equilibrium far away from the capil-
lary entrances. This assumption allows us to discount
the form and size of the reservoirs.

(it} The flow regime is stable. not turbulent. The criterion
of the stability of the gas flow is the Reynolds num-
ber. The data on the critical Reynolds number can be
found in many books on hydrodynamics. see e.g.,
Landau and Lifshitz.”* Chapter IIL

(itit  The molecular mean free path is significantly larger

J. Phvs. Chem. Ref. Data. Vol. 27. No. 3. 1998

Longitudinal section of orifice/slit

P; : Pu

T e T Ty

Cross section of orifice/slit

orifice slit

FIG. 2. Sketch of the gas flow through an orifice and slit.

than the molecular diameter. This assumption allows
us to consider only binary intermolecular collisions
and to apply the Boltzmann equation. The molecular
diameter is of the order 10 !° m, while the mean free
path under normal conditions (the pressure is 1 atm
and the temperature is 0 °C) is about 107® m. This
assumption is violated if the pressure exceeds 10 atm.

(iv) The gas molecules are monatomic. This assumption
allows us to neglect the internal degrees of freedom
and to simplify the kinetic equation. In practice, usu-
ally one deals with polyatomic gases and hence, the
natural question arises: are the results obtained for
monatomic gases applicable to polyatomic ones? If
the reply is negative, this article would be totally
meaningless. The question on the applicability must
be considered in every special case: some results are
applicable, while others are not. At the end of every
section, recommendations on the applicability of re-
sults to polyatomic gases are. given.

(v}  The gas is a single pure species. This assumption also
allows us to simplify the kinetic equation. Since in
practice gaseous mixtures are met more frequently
than a single gas, the same question arises: are the
results obtained for a single gas applicable to a gas-
eous mixture. This question will be discussed at the
end of Sec. 2.13.

1.4. Types of Capiliaries

We will consider two types of capillaries: the capillary
with the round cross section will be called “‘tube,”” and the
capillary with the rectangular cross section will be called
*‘channel,” {see Fig. 1). The word *‘capillary” will be used
to indicate both ‘‘tube’’ and ‘‘channel.”’ We denote the cap-
illary length by /, the tube radius and the channel height by
a. The channel width is denoted by b.
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In the particular case /=0, i.e., the containers are divided
only by an infinitesimally thin partition as is shown in Fig. 2,
the capillary will be called the ‘‘orifice’” instead of the
~tube’’ and the ‘‘slit’’ instead of the “‘channel.”

1.5. Mass Flow Rate and Heat Flux
1.5.1. Channel

The mass flow rate and the heat flux through a channel of
finite width b are calculated as
bi2

Mch,b:
—b/2

hi2 al?
()= f - f g.(r)dydz,

—al2

al2
f lzp(r)ux(r)dydz, (1.6)

(1.7)

respectively. Here, r=(x,y,z) is the position vector, p(r) is
the local mass density of the gas, u (r) is the x component of
the hydrodynamic (bulk) velocity of the gas, and g,(r) is x
component of the heat flow vector in the gas. The coordi-
nates x,y,z are depicted in Fig. 1. Note that the mass flow
rate does not depend on the x coordinate because of the mass
impenetrability of the capillary walls. Since there are no heat
impenetrable walls, the heat flux through a cross section of
the capillary generally depends on the x coordinate.

In theoretical calculations, it is usually assumed that the
width b is essentially larger than the height a and the flow
field has the translational invariance in the z direction. In this
case the flow rate and the heat flux are defined per unity of
the width, i.e., as limits

e i :1 'chb\ al2
#= lim | a1 o= pryudesdy. (18)

b—x -a

. il a2
ECh(X)=1im(\gE°h‘b)= f gdxy)dy.  (19)

p—x} —all
Further, we will use these definitions of the mass flow rate
{1.8) and of the heat flux (1.9) through a channel.

1.5.2. Tube

The flow rate and the heat flux through a tube are calcu-
lated as

M®=2 WJ plx.r Judxor yr dr . (1.10)
(

)

o
E®x)=2 TrJ g lx.or_dr dr

D

(1.11)

where r =\ v?=:". The coordinates are depicted in Fig. I.

1.6. Main Variables

In this article the mass flow rate M and the heat flux £ are
treated as functions of the following variables:

(i)  The drops of the pressure AP and temperature AT.
We also will use the ratios of the pressure Py/Py and
of the temperature Ty/Ty;.

(ii)  The rarefaction parameter of the gas, which is in-
versely proportional to the Knudsen number. Their
definitions are given in Sec. 2.1.

(1ii)  The dimensionless capillary length L=1/a.

(iv) The parameters of the gas—surface interaction. All
data presented here were obtained under the supposi-
tion of the diffuse-specular scattering of the gas mol-
ecules on the surface. This scattering law has a unique
parameter, which is introduced in Sec. 2.3.

2. Basic Conceptions of Rarefied Gas
Dynamics

2.1. Knudsen Number and Rarefaction Parameter

The principal parameter of the RGD is the Knudsen num-
ber, Kn, which characterizes the gas rarefaction. The Knud-
sen number is defined as the ratio

Kn=—, 2.1)

A
a
where A\ is the molecular mean free path, i.e., the average
distance traveled by a molecule between collisions, and a is
the characteristic scale of the gas flow. For the problem in
question a is the radius of the tube or the height of the
channel.

Regarding the value of the Knudsen number, we may dis-
tinguish three regimes of the gas flow. If the Knudsen num-
ber is very small (Kn<€1), the mean free path is so small
that the gas can be considered as a continuous medium and
the hydrodynamic equations can be applied to the gas flow.
That is why the regime is called hydrodynamic.

If the Knudsen number is very large (Kn>1), the mean
free path is so large that the collisions of molecules with the
capillary walls occur much more frequently than the colli-
sions between molecules. Under this condition we may dis-
count the intermolecular collisions and consider that every
molecule moves independently of each other. This is the so-
called free-molecular regime.

When the Knudsen number has some intermediate value
we cannot consider the gas as a continuous medium. At the
same time we cannot discount the intermolecular collisions.
This regime is called transition.

This division of the regimes of flow is very important
because the methods used for calculation of the gas flows
essentially depend on the regime.

Usually another quantity characterizing the gas rarefaction
is used instead of the Knudsen number. viz. the rarefaction
parameter. defined as

(2.2)
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Large values of & correspond to the hydrodynamic regime
and small values of & appropriate to the free molecular re-
gime.

To calculate the Knudsen Kn number or the rarefaction
parameter & one needs to know the microparameter, such as
the mean free path A, which cannot be measured. If one tries
to calculate \ directly, one finds that it depends on the mo-
lecular velocity and the molecular size. So, to obtain the
mean free path one needs knowledge of other nonmeasurable
quantities. Another manner to obtain the mean free path is to
use its relations with the transport coefficients provided by

.the kinetic theory of gases. It has become customary to cal-
culate N\ via the viscosity coefficient u as

- NETS "2kBT)“2
T 2P \ m ’

(2.3)

where P is the pressure, T is the temperature, m is the mo-
lecular mass, and kg=1.380658% 10" J/K is the Boltz-
mann constant. This definition has the advantage that it con-
tains the easily measurable quantities (P,T) and the
quantities (u,m) which can be found in Refs. 19 and 69 or
in handbooks on Physics and Chemistry. Morcover the defi-
nition (2.3) allows us an easier comparison between results
referring to different molecular models. In Sec. 2.4.2 the ori-
gin of the relation (2.3) will be described.

The mean free path A can be also calculated via the ther-
mal conductivity. This method gives slightly different values
of \. To avoid further confusion the mean free path at some
given pressure P and at some given temperature 7 will be
defined by the relation (2.3) only.

2.2. Boltzmann Equation

The state of a monatomic gas is described by the one-
particle velocity distribution function f(¢,r,v), where ¢ is the
time, r is a vector of spatial coordinates, and v is a velocity
of molecules. The distribution function is defined so as the
quantity f(¢,r,v)drdv is thc number of particles in the phase
volume drdv near the point (r,v) at the time ¢.

All macrocharacteristics of the gas flow can be calculated
via the distribution function:

number density

n(z.r)=f f(r.r.v)dv. (2.4)
hydrodynamic (bulk) velocity
-
ulrri=— J v f(t.r.v)dv, (2.5)
n
pressure
m |
Pirry= — J V= flr.r.vidy. (2.6)
stress tensor
P_,,(r.r):mJ ViV firvidy, (2.7
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temperature
T(t,0) = — v? d
(t,r)= Tnky f(t,r,v)dv, (2.8)
heat flow vector
m 2
q(t,r)= 7 f VeV f(t,r,v)dy, (2.9

where V is the peculiar velocity

V=v—u (2.10)

With help of (2.4), (2.6) and (2.8) the state equation is
derived

P(ry=n(r)kgT(r). (2.11)

Note that Eq. (2.11) is valid for any nonequilibrium state of
the gas, while Pascal’s law is valid only in equilibrium. In a
nonequilibrium state the pressure defined by (2.6) is the av-
erage value over all directions. Further we will pass from the
variables (n,7T) to (P,T) and vice versa implying the rela-
tion (2.11).

The distribution function obeys the Boltzmann equation
(BE),5-2730395771 which in the absence of external forces
reads as

i of

=tV —=0(ff,),

Y o (2.12)

where Q(ff,.) is the collision integral

QUF )= [ Wiy W Fi S0 o v,
(2.13)
Here, the affixes to f correspond to those of their arguments
vi  fl=frv'),  fo=frnyy). The quantity
w(v,v,;v',v.) is the probability density that two molecules
having the velocities v’ and v, will have the velocities v and
v, . respectively. after a binary collision between them.

The function w satisfies the two general relations:’® the
reciprocity property

WV, Vv ) =wl—v = v i—v.—v,), (2.14)
and the unitary property

j w(v,v, v v ddvdy, = j w(v' v, iv,v,)dvdy, .
(2.15)

Applying these relations the following inequality is easily
proved, see Cercignani*® (Chap.II Sec. 7), Ferziger and
Kaper™ (Sec. 4.2). Lifshitz and Pitaevskii’® (Sec. 4)

f Q(ff)n fdv=<s0. (2.16)

Moreover. the collision integral obeys the rules
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FiG. 3. The velocities of incident (v') and reflected (v) molecules.

2
f Y(WO(F,)dv=0, ¥v)=1,mv, %
2.17)

that follows from the conservation of the particles, momen-
tum and energy in every collision.

2.3. Gas—Surface Interaction

On the boundary surface we need to relate the distribution
function of incident particles f~ and the distribution function
of molecules leaving the wall f*. The relation can be written
in a general form as, see Cercignani*® (Chap. III), Cercignani
et al.*® (Chap. 8)

H(v,)
frrv)= W J H(—v))|v,|R(r,v' —v)

Xf(r,v")dv', (2.18)

where H(x) is the Heaviside step function defined as
Hix)= 1 for x>0, 219
®)=0 for x<o, @19

v,=V-nis a normal velocity component, # is the unit vector
normal to the surface (see Fig. 3). R(r,v' —v) is a scattering
kernel satisfying the normalization condition

J. H(v,)R(r,v' —v)dv=1. (2.20)

Another obvious property of the kernel is that it cannot as-
sume a negative value

R(r,v' —v)=0.

If the surface is staying in local equilibrium at a tempera-
ture T,,, the kernel satisfies the reciprocity property, see
Cercignani26 (Chap I, Sec. 3)

I

, , | muv
H(=uv)|v,lexp| —

TN

,
muv-
2kgT,

:H(v,,)lu,,\exp[ - )R(r.—v—*—v’). (2.21)

The most known model of the gas—surface interaction is
the diffuse scattering having the following kernel

5
muv-

R(v —v)=

where T, is the surface temperature. Physically this means
that a particle coming to the surface ‘‘forgets’” all informa-
tion on its state before the interaction with the surface. Then,
it leaves the surface with the Maxwellian distribution func-
tion. That is why the diffuse scattering is also called the
perfect accommodation.

Calculations of rarefied gas flows based on the diffuse
scattering sometimes give an understated flow rate instead of
experimental results. To eliminate this discrepancy
Maxwell'” generalized the model (2.22) and considered that
only a part of molecules is reflected diffusely but the refiec-
tion of the rest part (1 —a) is specular. Maxwell’s kernel
reads as

RV —-v)=(l—-a)é(v'—v+2nv,)
m*v, my?
e 57?(E§?§576xp(_'523f§}'
(2.23)
This model is widely used but it contradicts some experi-
mental results on the TPD effect (see Sec. 5.2.5). That is why

some other models were proposed. One of them is the Cer-
cignani and Lampis®' model, which reads as

m*v,

27Ta'nat(2 - ar)(kBTw)2

R(v —v)=
m{v2+(1—a,)v?] 1
2kgT,a, a,(2—ea,)

Xm[vr_(l_ar)vtl]z \I_Qnmvnv;
2kgT,, 0

X exp{ -

ankBTW

(0<aq,<2;0<a,<1),

(2.24)

where v, is the tangential component of the molecular veloc-
ity, Jo denotes the modified Besse! function of the first kind
and zero order defined as

2w
Jo(x)=(27r)_‘f exp(x cos ¢)dp,  (2.25)
0

«, has the physical sense of the accommodation coefficient
for the part of the kinetic energy corresponding to the motion
normal to the wall, and «, is the accommodation coefficient
of the tangential momentum.

The definition of the accommodation coefficients will be
given in Sec. 2.9.

2.4. Analytical Solutions of the Boltzmann
Equation

Generally speaking if one solves the BE (2.12) with the
boundary conditions (2.18), one knows the distribution func-
tion f(r.r,v). Then, one can calculate all moments (2.4)-
{2.9) and finally one finds the flow rate M and the heat flux
E. However the complexity of the BE does not allow us to
perform this task in general. Recently, using powerful com-
puters it became possible to solve numerically the BE only in
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some simple cases. That is why a number of approximate

methods of solution of the BE were elaborated. Here, we will
consider the main ones.

2.4.1. Moment Method

The moments of the distribution function are defined as

ag=1,2,3, Bg=1...N (2.26)
. /’5(;{]4 By aN(t,r)zf Vo, .- Vo f(Lrv)dv,
ag=1,2,3 B=1..N. (227

The M moments of the order & may be related with of . #
moments of the order NV and jower, and vice versa.

The macrocharacteristics of the gas may be expressed in
terms of these moments

n(e,0)=M®,  pufery=M", Pi;(t,r)=m”///’,<j2) R

m
9=5 (AR 25+ 23)). (2.28)
The main idea of the method offered by Grad® is to repre-
sent the distributien function in the form of series

= M (003 (5 ()
f(t,r,v)~f‘m(a( HP b ay ' Hy '+

5

1
+—a® g™ +) (2.29)

a
NYooyp ey o ay

where £} is the local Maxwellian defined as
1

y o
fmc(n.Tsll)‘”(”r){ZkaT(f’r)J

m{v—u(r,r)]?

- ~——-————-——} . (2.30)

X
PN T T kT (1)

H;ﬁ“., a(V1,V2.V3) are Hermite polynomials in the three

independent variables determined by the relation
Hlah;) eV Vo V)

kBT\'WZ { mv? }

N
Pl Ry

= (=~

av ! m V2 ]

expl ———=
P 2kgT

X e 2.
wa\ Y @31

Using the orthogonality of the Hermite polynomials. we find

N
«

ag’

1 .
— g Ny \
Lr)= fj(z\r,v}H;l[ 2 dv. (232

The coefticients ¢’ may be expressed in terms of the mo-
ments
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amzm(,/é,} s
ij P ij

A3
(3)~m</4ijk m
Y= Niar

If we multiply both sides of the BE (2.12) by H™Y ang
integrate over the whole velocity space v, we obtain

a 0=, aEl)zo,

(2.33)

) g
f H(N)(_£+v,§);)dv=fH‘N)Q(ff*)dv. (2.34)

Then, substituting (2.29) into the collision integral Q(ff,)
in (2.34) we obtain the system of diffcrential cquations for an
infinite set of the coefficients @, The left hand side of Eq,
(2.34) is expressed as a linear combination of the derivatives
of @'V with respect to the time and the spatial coordinates.
This part of the equation contains the moments of order up to
(N+1). The right hand side of Eq. (2.34) is expressed as a
linear combination of double products of a'™. This part of
th(?v )equation contaips an infinite number of the coefficients
a™.

It is clear that to solve this system of equations we must
retain only a finite number of the moments. If we retain N
equations, the last one will contain the moment of the
N+1 order. To close the system this moment must be related
to the moments of the order lower than N+ 1. The relation is
based on a physical rationale.

The boundary conditions can be derived by the same
method. We multiply both sides of (2.18) by the functions
Hff‘")‘ ..y and integrate with respect to v, substituting the
approximating functions (2.29) for f(v) and f(v'). As a re-
sults of these derivations we obtain a relation between the
moments on the boundary.

One can see that this method assumes the distribution
function to be continuous in the velocity variables, but it is
approximately true only at the small Knudsen numbers.
Thus, the method gives good results only near the hydrody-
namic regime.

Details of the method are given in the literature.'%25277!

2.4.2. Chapman-Enskog Method

The distribution function can be expanded into the power
series with respect to the small parameter such as the Knud-
sen number

F=fO4Kn fU+Kn? U400 (239)

The Chapman-Enskog method assumes that the distribution
function depends on the time and the coordinates only via
the five moments being the parameters of the local Maxwell-
tan: the number density n(¢.r), the three components of the
bulk velocity wir.r), and the temperature 7(r,r). Substitut-
ing {2.35) into the BE (2.12) and taking into account the
assumption mentioned above, we find that £'% is the local
Maxwellian fﬁ. defined by (2.30). The next approximation
£ is expressed via the previous one £,
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On the basis of the first approximation f'' we obtain
Newton’s law

P=P&;—2 .S, (2.36)
and Fourier’s law
q=—«VT, (2.37)
where §;; is the rate of shear tensor
Sij=£ iu—l%-% —iiiV~u, (2.38)
2 \0x;  dx 3

k is the thermal conductivity. The explicit expressions of the
transport coefficients u and « can be obtained if the intermo-
lecular interaction law is given. For the hard sphere mol-
ecules the coefficients have the form

5 \’ﬂ'ka 75kg 7TmkgT

l 6 ﬂd‘ o K= 64 wd?

(2.39)
where d is the molecular diameter. Taking into account that
the molecular mean free path A is given by
1
Vinmd®

see Bird!® (Sec. 1.4), Ferziger and Kaper’’ (Sec. 2.4), expres-
sions (2.39) turn into

(2.40)

S \ 1 \
n= 32(U>mn —-2(U>mn ,

757’/(]3 15 B

"
“~ 53 —=—(v)nA~ (v)nX, (2.41)
where (v) is the mean thermal velocity
[ 8kpT\ "
)=|— ) (2.42)

\

Namely the expression (2.41) for u has been used in (2.3) to

relate the mean free path with the macroparameters. From

(2.41) it is easily obtained the relation between the viscosity

w and the thermal conductivity &

15kg 543

T am * (2:43)

With the help of Newton’s law (2.36) the equation of the
momentum balance gives us the Navier—Stokes equation

du,- !
-uZ

o 7 44
Par ™ v, MA (244)

The Chapman-Enskog method is based on the expansion
(2.35) with respect to the small Knudsen numbers. So. like
the moment method. the Chapman-Enskog method also is
applicable only for the small Knudsen numbers. Usually. it is
used to obtain the explicit expressions of the transport coef-
ficients in the hydrodynamic equations.

Details of the method are given in the

1262739577
ture. W ]

litera-

2.5. Model Kinetic Equations

The Grad and Chapman—-Enskog methods are applied near
the hydrodynamic regime. To describe gas flows at an arbi-
trary rarefaction, it is necessary to develop another approach
to the solution of the BE. The main idea of the method suit-
able at any Knudsen number is to simplify the collision in-
tegral retaining its fundamental properties such as (2.16) and
(2.17). Then, one may apply some exact method of solution
to these approximate equations. The simplified equations are
called the model kinetic equations.

2.5.1. BGK Equation

An early model equation was proposed by Bhatnagar,
Gross and Krook® (BGK) and independently by Welander.'®®
They presented the collision integral as

Osek(ff) = v fi(n, Tw) = f(2,5,v)],  (2.45)

where f{‘{,’c is the local Maxwellian (2.30). The local values of
the number density n(¢,r), bulk velocity u(¢,r) and tempera-
ture T(t,r) are calculated via the distribution function
f(t,r,v) in accordance with the definitions (2.4), (2.5) and
(2.8), respectively. The quantity v is the collision frequency,
which is assumed to be independent of the molecular veloc-
ity. One can verify that the model collision integral obeys
both fundamental properties (2.16) and (2.17).

The collision frequency v can be chosen by various meth-
ods. One of them is to choose v so that by solving the model
equation by the Chapman-Enskog method the expression of
the viscosity u would be the same as given in the full colli-
sion integral. Regarding this we obtain

P(t,r)
w(T)

Note that v is a local quantity, because the pressure is a
function of r and r and the viscosity w also depends on ¢ and
r via the temperature 7.

Another way to choose v is as follows:

SkB Pz, r) 2 P(t,r)
m k(t,r) 3 wu(T)’

where relation (2.43) has been used. Solving the BGK equa-
tion with this v, one obtains the correct expression of the
heat conductivity .

A third way to choose v is to put the frequency as the ratio
of the mean thermal velocity (2.42) to the mean free path,
ie.,

v(t,r)= (2.46)

v(t,r)= (2.47)

_(U 4 Plr)
TN T

"
N (2.48)
where Egs. (2.3) and (2.42) have been used. This follows
from the fact that the mean time between two successive
collisions is equal to I/v and on the other hand it is equal to
XN/ (v). It would seem that this choice of frequency is physi-
cally justified. But mathematically it gives the correct ex-
pression neither for the viscosity u nor for the thermal con-
ductivity «.
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A shortcoming of this model equation is that the correct
expressions for the viscosity and heat conductivity cannot be
proved simultaneously. As a result, the Prandtl number that
the BGK model gives is unity instead of the correct value of
2/3. To avoid this shortcoming some modifications were of-
fered.

One modification of this model was introduced by
Krook.”? He assumed that the frequency v depends on the
molecular velocity v, because a computation of the collision
frequency for physical models (rigid spheres, finite range
potentials) shows that v varies with the molecular velocity.
All basic properties are retained, but to satisfy (2.17) the
moments appearing in the local Maxwellian of the modified
model are not the local density, velocity and temperature of
the gas, but some other local parameters.

2.5.2. S-Model

The S model proposed by Shakhov'* is also a modifica-
tion of the BGK model giving the correct Prandtl number.
The collision integral of this model is written down as
mv: 5 ]]

P v
15n(kgD)? Y\ 2kgT ~ 2/ |

P
Os(ff)=" (f?:c

~f (t,r,v)} .
This model has another shortcoming: the inequality (2.16)
can be proved only for the linearized S model. In the non-
linear form one can neither prove nor disprove the inequal-
ity. But the conservation laws (2.17) are valid for the S
model in any form.

(2.49)

2.5.3. Ellipsoidal Model
Another model®” with the correct Prandtl number has

the collision integral in the following form

n
Qulffy)= V{ —y(det A2

Xexp
i 1

- 2 A,vj(v,ﬂ—u,»)(vj—u}-)] —f],
J=

where

i 2kgT 2(1-Pr)P, W“'
A=A, =" 5.i— 2

! i = m Pr Y i
where Pr is the Prandtl number. If we let Pr=1. we recover
the BGK model. It is also impossible to prove the inequality
(2.16) tor this model.

2.5.4. Applicability of the Model Equations

Conclusions on the applicability of the model equations
can be made from a comparison of numerical data based on
them with those obtained tfrom the exact BE. In Sec. 3 this
comparison is caretully performed on rthe hasis of the sim-

4 Phve Chem Ref Data \Ual 27 NMa ? 1008

plest internal gas flow, viz. the flow between two paralle]
plates. From this comparison the following anticipated rec-
ommendations can be given: (i) any isothermal gas flow can
be successfully calculated with the help of the BGK model:
(ii} the S model is an ideal equation to describe the linear
nonisothermal gas flows; (iii) the ellipsoidal model is not
recommended for practical calculations.

2.6. Linearized Boltzmann Equation

2.6.1. Linearization Near the Absolute Maxwellian

If the state of the gas is weakly nonequilibrium, we may
linearize the BE by the standard manner. The distribution
function can be presented as

ftr)=f11+h(rv)], (2.51)
where fg'[ is the absolute Maxwellian with the equilibrium
number density ng and the equilibrium temperature 7,

M 32 ( m02 \
= - 2
7o ”0(2wkgrol TR

Substituting (2.51) into (2.12) the linearized BE is easily
derived

lh|<1,

m

oh R
—+Dh~Lh=0. (2.53)
ot
The operators D and L are defined as
. oh
Dh=v.-—, (2.54)
ar
Lh= j Fo(v)w(vyv, v/, v,)
X(h'+h,—h—hy)dv,dv,dv'. (255
Let us introduce the operator of the time reversal
Te(ry)=¢(r,—v) (2.56)

and two scalar products

(cp,w)=JfS“¢(r,V)l!f(r,V)dv, ((@-eﬁ)):L(WI/)dr-
(2.57)

where () is the region of the gas flow. Using (2.14) and
(2.15) the following relations can be proved

(TLo.w)y=(TLy o),

(TLo,))y=(TLy,p)).

The moments of the distribution function can be expressed
via the perturbation function k and the scalar product {2.57)
as

(2.38)

(2.59)

n=ny+(l.h), T=Ty+
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1 m_ 5
u= ;l—g(v,h), q=?(v v,h)—-z—kBTO(v,h)-
(2.61)

2.6.2. Linearization Near the Local Maxwellian

In some cases it is more convenient to linearize near the
local Maxwellian, i.e., to represent the distribution function
as

fee V)= (n,T,0) 1+ h(t,r,v)], (2.62)

where ffgc is defined by (2.30). Here, the moments n(f,r)
and T(t,r) may depend on the coordinates. If we substitute
(2.62) into the BE (2.12) we obtain

mv? 3\ 1 9T]
2T 2 ?arJ'
(2.63)

One can see that in the case n(t,r)=ny and T(z,r)=T, the
last equation takes the form (2.53).

2.7. Linearized Model Equations

In the case of the weak nonequilibrium the local Maxwell-
ian (2.30) can be related to the absolute Maxwellian (2.52) as

my? 3
2kgTy 2/

M _ M m_
fiocln, T w)=fg|1+o+ kBTov utr7

(2.64)
where
n—ng T—-T,
= R = 2.
e o T T, (2.65)
Equation (2.64) is valid if
1 l \/ " < | <]
<< 1.4 < <1,
IQI " kBTO u * ITI
Substituting (2.51) and (2.64) into (2.45) we obtain
M m . ‘{ my” 3)
Cooxlff)=vfo hQ kBTov.u T‘\ 2kgTy 2 :
(2.66)
Then. the linearized collision operator takes the form
. L oom mo- 3 . ]
Lyox/t= Vu;Q* kBTOV-u+ 7| TkaT ~ 3 _hJ,
(2.67)

Note that here the frequency v has its value in the equilib-
rium state. because the consideration of its variation gives us
the terms of the second order of the smallness. which are
negligible.

The analogous procedure with the S model (2.49) gives us
the following collision operator

e Pg Lm N ( my? 3]
S ko e ksTo '  "\2kgT, 2,
2m ( mv® S\ A
+ : —=]-
15ng(kaTo)> ¥\ 2457, 2) :

(2.68)
where Po=nokgTy and po= u(Ty).

2.8. Linearized Boundary Conditions

The linearized boundary conditions are easily obtained
substituting (2.51) into (2.18) combining with (2.20) and
(2.21)

_T,~T, ( mu?

5\
T, \2kBT0_5>'

/
(2.69)
The upper indexes “‘+’’ and “‘—’ in (2.69) mean the per-
turbation function of the reflected and incident molecules,
respectively. The scattering operator A is defined as

An-— H(v,) J'H o
" u,alexpl —mu?/(2kgTy)] (muiv,|

ht=Ah~+h}—Ah,, h,

r2

% muv
P\ T 2keT,

)h(v’)R(v’—»v)dv’. (2.70)

Let us introduce one more scalar product

(w,t!f)B:f H,)v,f5 o(r,v)g(r,v)dv, redf,
2.71)

where 9 is the surface bounding the gas flow.
Using the normalization (2.20) and the reciprocity of the
scattering kernel (2.21) one obtains the following relation?®

(Te™ Ay )p=(Ty Ao )s. (2.72)

2.9. Accommodation Coefficients

In some cases it is not nccessary to know the scattering
kernel, it is enough to know only its integral characteristics
such as the accommodation coefficients a(¢). For a surface
having a temperature T, the accommodation coefficient is
defined as

J‘H(_U”)(P(V)'U,l'fdv_IH(U”)(P(V)IU,,Ide
TH(=v,)e(W)[u,|fdv=FH(v,)e(¥)|v,|fo'dv’
(2.73)

ale)=

where f84 is defined by (2.52), and ¢(v) is some function of
the molecular velocity. One can see that the accommodation
coefficient a(¢) defined by (2.73) depends on the distribu-
tion function of the impinging molecules. Restricting this
distribution function we obtain a more meaningful definition.
If we represent f as

f=Ra+Ty), (2.74)

4. Phvs. Chem. Ref. Data. Vol. 27, No. 3. 1998



670 F. SHARIPOV AND V. SELEZNEV

then Eq. (2.73) can be written as

(<P+’T¢’-)B= - (Ao~ Ty )g

a(e.)=1-— N -
(Te™, 47 )p (Te™.yh)p
Ay~ T~
:1_(AL.QD_)B, (2.75)
(Tw_v¢+)B

where Eq. (2.72) has been used.

It is easily verified that in Maxwell’s kernel (2.23) « is the
accommodation coefficient of any quantity ¢ for any pertur-
bation function .

In the Cercignani—Lampis kernel (2.24) a, is the accom-
modation coefficient of tangential momentum, i.e., a,
=a(mv,,¢) for any . The coefficient a, is the accommo-
dation coefficient for the part of the kinetic energy corre-
sponding to the motion normal to the wall, ie., a,
= ar(mvf1 , ) for any . If one tries to compute other accom-
modation coefficients using the Cercignani—Lampis model,
one concludes that they depend on the distribution function
o

Let us take a set of of physically meaningful quantities ¢,
and let 9= @;, ¢=¢,;. We obtain a matrix of the accommo-
dation coefficients

1_(A¢7~T¢])B

(2.76)

a,'jz

With the help of (2.72) one can prove that the matrix «;; is
symmetric. The set ¢, =v,, ¢,=v,, ¢3=v,, and @,=v>
leads us to the four accommodation coefficients:'” «,,
ay=as;y, ay, and a 4= ay, which are generally used.

The accommodation coefficient of the tangential momen-
tum a,, is most important in the problem of the internal
rarefied gas flow. The accommodation coefficients are usu-
ally measured indirectly, e.g., via the mass flow rate through
a capillary. Data on thc cocfficicnts can be found in the
literature, 7122123136054 Erom these data one can see that for
light gases, such as helium and neon, the accommodation
coefficients may differ significantly from unity, while for
heavy gases. e.g., krypton, xenon, the coefficients are close
to unity. The gas—surface interaction for a contaminated sur-
face is closer to the diffuse scattering than the interaction
with a surface specially treated. A chemical cleaning of the
surface increases the deviation of the accommodation coef-
ficients from the unity. So, if one deals with a sufficiently
heavy gas and with an ordinarily contaminated surface. one
may assume the perfect accommodation of gas on the sur-
face.

2.10. Onsager’s Reciprocity Relations

If we restrict ourselves by the linear region of physical
laws. all irreversible phenomena can be described in the
quite general form

J. Phys. Chem. Ref. Data. Vol. 27. No. 3. 1998

Ji=2 AX,, .77

where X, are independent thermodynamic forces, J,, are con-
jugated thermodynamic fluxes and Ay, are kinetic coeffi-
cients. If the set of the fluxes is chosen so as the entropy
production in the system is expressed as the sum

o= J.X,, 2.78)

the Onsager theorem!!® establishes the following relations
between the kinetic coefficients

Akn:Ank . (279)

Casimir’' generalized these relations regarding forces with
a different time parity. However, all thermodynamic forces
considered here have the same time parity, which is why we
retain the reciprocity relations just in the form (2.79).

Onsager''® proved the relations (2.79) for insulated sys-
tems. De Groot and Mazur’® derived them for systems in
local equilibrium. However, we arc going to consider open
systems admitting a heat exchange with the surroundings and
not being in local equilibrium, which is destroyed at a large
rarefaction of the gas. For our purpose the best approach is
based on the BE, which was elaborated by Loyalka,87 by
Bosch et al.,'*® by Bishaev and Rykov,"3~' by Freedlender’®
and by Sharipov.!*2-13%143 The explicit expressions for the
thermodynamic fluxes and the kinetic coefficients in the case
of rarefied gas flow through a capillary are given below.

Since the Onsager reciprocity relations are valid for a
weak nonequilibrium state, we assume the relative drops of
the pressure and temperature to be small

Ty—T,
T,

<. (2.80)

k]

Py—P
Py

Further it is reasonable to assume these drops to be thermo-
dynamic forces

Py—P Ih—T,
p=—p Kr=i. (2.81)

Moreover, we consider the stationary gas flow.
In Refs. 136138 it was shown that to satisfy (2.78) the

thermodynamic fluxes must have the following form

Jp= ~n1f u dx, (2.82)
b

I |
=TT - 2.
== | [0 A RCEY

4

where T is any cross section of the capillary, 3! is the
cross section bounding the right container and the capillary,
X< is the lateral surface of the capillary, ¢,=(q-n) is the
normal of the heat flow vector, where the unit vector n is
directed into the capillary, and 7,. is the temperature distri-

bution (1.1).
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Because of the smallness of the pressure and temperature
drops the solution of the linearized BE (2.53) or (2.63) can
be decomposed as

h(r,v)=hp(r,v)Xpt+hy(r,v)Xy. (2.84)
Substituting (2.84) into (2.61) one can see that the moments
of the distribution function are decomposed to
u=upXpturXr, q=g¢pXptqrXy. (2.85)
Substituting (2.85) into (2.82) and (2.83) and comparing with
(2.77) we obtain the explicit expressions of the kinetic coef-
ficients :

App=—n[fz uxpdE, (286)
Apr= —nIL u,rd2, (2.87)
1
ATP: - E;TI' lequPdE* J‘z;anTWdE »
(2.88)
1
ATT: - EB—T—I jzuqx'[dz_ fZi,anTWdE).
(2.39)

The physical sense of the coefficients is as follows: App
describes the Poiseuille flow, i.e., the mass flow rate caused
by the pressure drop, Apr describes the thermal creep, i.e.,
the mass flow rate caused by the temperature drop, A p cor-
responds to the mechanocaloric heat flux, i.e., the heat flux
caused by the pressure drop, and Ay is the ordinary heat
flux caused by the temperature drop.

Starting from equalities (2.59) and (2.72) Sharipov'?¢~!3
proved the Onsager relation (2.79), i.e., Apy= Aqp, which is
valid for any gas rarefaction, for any gas—surface interaction
law, and for any temperature distribution r,. along the cap-
illary.

De Groot and Mazur’' derived the analogous expressions
assuming that the walls are hecat impenetrable. This mecans
that ¢,=0 at re 2. . If we assume the same, the kinetic
coefficients (2.88) and (2.89) are reduced to”

1 1
= - —_— = — — z
Arp KoT, L_‘qrpdﬁ, Arr KaT, L{]nd ,

(2.90)
coinciding with the expressions by de Groot and Mazur.”'
In the case of infinite capillary the kinetic coefficients Aqp
and Ay also take the form (2.90), because a local equilib-
rium is established in a capillary element and the normal heat
flow vector ¢, disappears.

y
I )— i

FiG. 4. lustration to the derivation of Clausing’s equation.

2.11. Methods of Computation in the Free-Molecular
Regime

2.11.1. Clausing’s Equation

If the Knudsen number is very large so that every mol-
ecule moves without any collisions with others, the collision
integral is equal to zero. To obtain the distribution function
in this regime we need only to integrate the left hand side of
the BE (2.12) taking into account the boundary condition
(2.18). As a result we obtain the integral equation, which has
the form (2.18) where f~(r,v') is replaced by the Maxwell-
ian

P, m |2 mo?
M————* — — —
fi kBTI(ZWkBTl) exp( 2kBTI)’ @91
or
no 2
fM=i (_l_\ exp( — mv (2_92)
U kgTy | 27kgTy) . 2kgTy)’

if a molecule with the velocity v’ comes to point r from the
left or right container, respectively. f~(r,v') is replaced by
(' ,v') if the molecules comes from point r’ being on the
capillary surface (see Fig. 4). Resolving the derived integral
equation we obtain the distribution function and hence the
flow rate and the heat flux.

In the case of the diffuse-specular scattering (2.23) the
integral equation is simplified and takes the following form

in
A x Ing(xdx' +./(x), (2.93)
n

ny(x)=
where n,(x) is number of molecules impinging with the cap-
illary wall per time unit and per area unit in the point with
the longitudinal coordinate x. The functions .Z(x,x’) and
./(x) are determined by the capillary form and its dimen-
sionless length L. Resolving this integral equation we can
find the flow rate and the heat flux.

The derivation of Clausing’s equation (2.93) can be found
in Cercignani®® (Chap.V, Sec.8.) and Kogan’' (Sec. 6.3).
Methods of solution of integral equations are described in
Sec. 2.12.4.
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2.11.2. Test Particle Monte Carlo Method

The test particle Monte Carlo method'*!! implies a simu-
lation of the motion of a large number of particles. Since
there is no interaction between the molecules we may simu-
late the motion of every particle separately. First, we gener-
ate a particle on the entrance cross section of the capillary
with the Maxwellian distribution of the velocity and the uni-
form distribution over the cross section. Then, we find the
trajectory of the particle and calculate the point of the colli-
sion of this particle with the capillary wall. It may happen
that the particle will pass the capillary without any collision
with the wall. In this case we generate a new particle on the
capillary entrance. If the particle falls on the wall, we simu-
late its scattering according to the gas—surface interaction
law and obtain the post-interaction velocity of the particle.
Then, we find a new point of the interaction with the wall.
The procedure is repeated until the particle goes out the cap-
illary. Then, we generate a new particle on the entrance cross
section.

The particle can go out through the same capillary en-
trance where it has been generated (i.e., the particle has not
passed through the capillary) and through the opposite en-
trance (i.e., the particle has passed through the capillary).
Testing a lot of the particles we may calculate the transmis-
sion probability as

N

4 (2.94)

W=1—V',

where N, is the number molecules passed through the cap-
illary and N is the number of the generated. particles. The
transmission probability is easily related to the mass flow
rate, see Sec. 5.2.1.

Bird'® has reported a program to calculate the transmission
probability W through a tube for the diffuse scattering (2.22)
on the wall.

2.12. Methods of Computation in the Transition
Regime

2.12.1. Discrete Velocity Method

We choose a set of values of the velocity v; and interpo-
late the distribution function in terms of its values corre-
sponding to the velocities v;. The collision integral is ex-
pressed via the values fi(r.ry=f(r.r.v;). Thus, the integro-
ditferenual BE 1s replaced by a system of difterennal
equations for the tunctions f;(¢.r). The differential equations
can be solved numerically by a finite difference method.
Then. the distribution function moments arc calculated using
some quadrature. The method can be optimized'™ if we take
into account a solution in the hydrodynamic regime. This
method gives good results in the entire range of the Knudsen
number.

Details of the method are given by Kogan ' {Sec. 3.13)
and elsewhere, -1
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2.12.2. Variational Method

To use the variational method we need a variational prin-
ciple, which can be formulated in the following form. Let us
consider a linear equation written in the quite general form

Fh=Y, (2.95)
where % is a some linear operator and .%* is a source func-
tion. If the linear operator . is self-adjoint with respect to a
certain scalar product (, ), i.e., for any functions ¢ and ¢ we
have

(Ze.)=(Lhp), (2.96)
then the functional
J(Ry=(h, SB) = 2(. k) (2.97)
is easily shown to satisfy
8J=0 (2.98) .

if and only if A=h+ Sk, where h is the solution of Eq.
(2.95) and 6% is infinitesimal.

We may represent the function / in some analytical form
containing some undetermined constants c¢;. Usually, the
analytical form (so-called trial functions) is choscn from
some physical reasonings or from the solutions in the hydro-
dynamic regime. Then, the trial function is inserted into the
functional J(%) and J becomes a function of the constant ¢, :
setting equal to zero the partial derivatives of this function
with respect to ¢;, we obtain a system which determines the
best values of the ¢; according to the variational principle.

The advantage of this method is that it requires essentially
less computational effort than a direct numerical method.
e.g., the discrete velocity method, but it gives only an ap-
proximate solution. The precision depends on the choice of
the trial function. The great shortcoming of the method is
that one cannot estimate the error of the variational solution.
That is why the variation solution should be compared with a
direct numerical solution for few Knudsen numbers.

Details of the method are given by Cercignani.*®

2.12.3. Integro-Moment Method

Let the gas flow be a steady weak nonequilibrium that 1s
possible under the small pressure and temperature drops. If
the collision integral is replaced by the BGK model or by the
S model we can reduce the kinetic equation to the system of

el

EEDUS TP ST L P LTV it o Lo
.\lllLElb\l C\.luallk}ll) IlLlVlllE L TUHUWIIE 1UL11H
N
M ()= 2| e M)A+ /(). ISISN,
1=
(2.99)
where M,(r) is the moments of the distribution function, {}
is the region of the gas flow: .77, (r,r") and ./ (r) are some
functions to be defined in every specific problem. In Sec. 3.3

the expressions of these functions are given for the gas flow
through an infinite capillary.
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The system (2.99) includes those moments that the model
collision integral contains. If we apply the BGK equation,
the set of the moments is: n(r), u(r) and 7(r). In one-
dimensional flows the density and temperature fields are
known and the system (2.99) is reduced to the one equation
containing only longitudinal component of the bulk velocity.
If one applies the S model, the set of the moments is added
by the heat flow vector q(r).

A derivation of the integral equations (2.99) can be found
in the literature. *344371-15

2.12.4. Solution of Integral Equations

The method of solution to the integral equations (2.93)

and (2.99) will be demonstrated below for the one-
dimensional equation written as

b
M(y)=J’ F(y.y My )dy +.7(y), (2.100)

where . #(y,y') and ./ (y) are some given functions.
Variational method: The equation (2.100) is a particular
case of Eq. (2.95) with the operator

b
&?M=M(y)—j Hy.y IM(y")dy'. (2.101)

If we apply a model collision operator satisfying the condi-
tion (2.59) and the boundary condition satisfying (2.72), the
operator & is always self-adjoint with respect to the scalar
product

b
(cp*«//)=j o(¥)(y)dy. (2.102)
a
The variational method assumes the moment M(v) to be
presented as

(2.103)

where ¢;(v) is a set of basic functions to be chosen from
some physical reasonings, and ¢; are constants to be calcu-
lated. Applying the variational principle described in Sec.
2.12.2. the system of algebraic equations is obtained for
these constants:

o

i=1

{2.104)

Thus. if one numerically calculates the matrix ( :A/(F( .¢;) and
the vector (./.¢;) one knows the constants ¢, and hence the
moments M(v).

The Bubnov-Galerkin variational method described by
Mikhiin''Y and widely applied to the capillary gas flows.
gives the same equation system for the coefficients ¢, .

Direct numerical method: The integral equation (2.100)
can be solved directly. The interval [«.h] is divided on seg-
ments [v,.vi.,]. where 1<k<K. yv,=a and v;_ =h.
Then. the integral equation is replaced by the following sys-
tem of the algebraic equations

¥

K k+1 . , ,
M()’n+|/2):k§_:l M(yrs1n) FYn+12-y')dy

Yk

+'y(yn+1/2)v (2105)

where 1 <n<K, y;4 is some point between y, and v, .
Solving this system we find the moment M in the points
Yi+12-

If the order of the algebraic system is large the iterative
method of its solution is applied. Mathematically this means
a numerical construction of the Neumann-Liouville series.

2.12.5. Method of Elementary Solutions

The main idea of the method of elementary solutions is to
separate the variables, to construct a complete set of sepa-
rated variable solutions (‘‘elementary solutions®’), then 1w
represent the general solution of the kinetic equation as a
superposition of the elementary solutions, and finally to use
the boundary conditions to determine the coefficients of the
superposition. For simple one-dimensional gas flows this
method allows us to reduce the model kinetic equation to an
integral equation for the perturbation function. Then one has
to apply some numerical procedure to solve this integral
equation.

Details of the method are given by Cercignani®®
(Chap.VI).

2.12.6. Direct Simulation Monte Carlo Method

The region of the gas flow is divided into a network of
cells. The dimensions of the cells must be such that the
change in flow properties across each cell is small. The time
is advanced in discrete steps of magnitude At, such that At
is small compared with the mean time between two succes-
sive collisions.

The molecular motion and intermolecular collision are un-
coupled over the small time interval Az by the repetition of
the following procedure:

(1) The molecules are moved through the distance deter-
mined by their velocities and Ar. If the trajectory
passes the boundary a simulation of the gas—surface
interaction is performed according to a given law.
New molecules are generated at boundaries across
which there is an inward flux.

(i) A representative number of collisions appropriate to
A7 and the number of molecules in the cell is com-
puted. The pre-collision velocities of the molecules
involved in the collision are replaced by the post-
collision values in accordance with a given law of the
intermolecular interaction.

After a sufficient number of the repetitions we may calcu-
late any moment of the distribution function. Details of the
method are given by Bird.'""
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2.13. Gaseous Mixtures

To describe a gaseous mixture having N components we
need to consider N distribution functions fi(¢,r,v),
1<i=<N, and the system of the Boltzmann equations

ofi

i~
E+v-—l%=j21 Qi(ff), 1<isN, (2.106)

where Q;; is the integral describing the collisions between
species { and j. The methods of solution to this equation
system are based on the same ideas as those to solve the
single equation (2.12). The problem is that the computational
efforts drastically increase if we pass from a single gas to a
gaseous mixture. Moreover, in a mixture new phenomena
appear, such as the mass and heat fluxes caused by a con-
centration gradient, the diffusion caused by gradients of the
pressure, temperature and concentration. These phenomena
complicate treatment of the gaseous mixture. That is why
there are very few papers>®#156.175
flows. Therefore, it is very attractive to use the single gas
results for a gaseous mixture.

It is obvious that the phenomena mentioned in the previ-
ous paragraph cannot be described in the frame of the single
gas. Concerning the other phenomena, viz, the mass and heat
flux caused by the pressure and temperature gradients, it is
possible to offer two approaches to describe a gaseous mix-
ture based on the data obtained for a single gas.

(i)  The first approach is that we substitute a gaseous mix-
ture by a single gas having the mean molecular mass.
This means if n; is the number density and m; is the
molecular mass of species i, we consider that the
“‘single’’ gas has the number density n=72n; and the
molecular mass m=Z;n;m;/n. This approach can be
justified only in the hydrodynamic regime.

(if)  The second approach is that we consider the flow of
every component independently of each other. Apply-
ing the single gas theory to every component of the
mixture we calculate the mass and heat flux as a sum
of the fluxes in these components. This approach is
justified only in the free-molecular regime. In the
transition regiine both approaches give approximate
results which can be used for an estimate.

3. Gas Flow Through Long Capillaries
3.1. Remarks

In this section we consider long capillaries so that
L=1{/a>1. What does it mean physically? The pressure and
the temperature relax significantly quicker over a cross sce-
tion than in the capillary as a whole. Thus, we may assume
that the pressure and the temperature do not depend upon the
diametric coordinates. ie .

P=P(x). P(=12)=P,. P/I2)=Py. (3.1)

T=T(x). T(—=UD)=T,. TU)=Ty. (32)
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on the gaseous mixture -

The coordinates (x,y,z) are given in Fig. 1. Near the capil-
lary ends this assumption may be violated, but for the long
capillaries the influence of the end effect can be neglected.

Since the thermal conductivity of the capillary walls is
significantly larger than the thermal conductivity of gases,
the temperature distribution 7(x) is determined by the ther-
mal properties of the capillary and must be given without a
solution to the kinetic equation. The pressure distribution
P(x) is not known a priori, but must be found as a solution
of the kinetic equation.

For further derivations we will use the following dimen-
sionless coordinates

y=yla, z=zla. 3.3)
Let us consider a cross section X =f* of the capillary being

far away from the capillary ends. The pressure and the tem-

perature near this cross section (|x—x,|~1) can be pre-
sented as

x=xla,

PF)=PE)+—=| (F-%,)
x=x,
1 &P - -
3 e x'—x,), (3.4)
X=X*
~ aT ~
T(x)=T(x*)+a—i: (x—xy)
x=x,
14 - -
Eaﬁ o (x "X*) ) (35)

where |x' —x,|<|x—x,|. The estimation of the derivations
shows that

1dT Ty—T, (’1\
= ,L)'

P a5 Pl L' T4 Tul
(3.6)
1d&P Py—Py (L) L& = (4]
Pde: PuL° LY Tgg2 Tal L
(3.7)

where

P+ Py T+Ty

Po=—5— Tu=—5— (3.8)

- Since L>1, the first derivatives are small. The second de-

rivatives have the second order of the smallness and can be
omitted in (3.4) and (3.5). Finally we have

P(x)=P[1+&(X—X,)],

T(xX)=T[1+&(x—x,)], (3.9)
where P*:P(f*)‘ T*=T(;*), and
,_Lar _1 47 (3.10)
TPea | T Tedeing '

Thus, we may conclude that: (i) near a given section x, on
a distance of the order of the capillary diameter @, the pres-
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sure P, and the temperature T linearly depend on x; (ii) the
gradients of the pressure £p and of the temperature &7 are
small, ie., |&p|<€1 and [&4]<1.

Equations (3.9) have been obtained without any assump-
tion on the pressure and temperature drops. Even with large
drops, the representation (3.9) remains valid. Such represen-
tation of the pressure and temperature distributions allows us
to split the solution of the problem into two stages. In the
first stage we will find the flow rate through the section
¥=x, as a function of P, and T, assuming the gradients &p
and &7 to be small and constant. In the second stage consid-
ering a variation of &p and &y along the capillary on a dis-
tance of the order of the capillary length we will calculate the
mass flow rate and the heat flux through the capillary as a
function of the pressures Py, Py; and the temperatures 7, Ty
on the capillary ends.

3.2. Input Equations

Let us introduce the dimensionless molecular velocity,
bulk velocities and heat flow vector as

. _ B
c=B,v, u=pg.u, q=;;’5q, (3.11)
*

respectively. Here

m |12
) (3.12)

B*:(szT*

Since in the first stage we assume the pressure and the tem-
perature gradients to be small and constant, we may linearize
the kinetic equation with respect to the gradients &p and £5.
Let us perform the linearization near the local Maxwellian
fio(n,T,0) defined by (2.30), where n(X)=P(x)/kgT(%).
The pressure P(x) and the temperature T(x) are determined
by (3.9). So, introducing the perturbation function % as
(2.62), where h does not depend on the x coordinate, we
reduce Eq. (2.63) as follows:

h—Lh=—c, tp—c (= H&r,  (3.13)

(=B

D=aB, D. L[=ap,lL. (3.14)
where D is defined by (2.54) and L is defined by (2.55). The
derivative with respect to the time has been omitted, because

we consider a steady flow. Since 4 does not depend on the x

coordinate. the reduced differential operator D has the form

2 ah 2 ah ah
Dh=c¢,—, Dh=c¢,—z+c.—

Ay Ty iz

(3.15)

for the channel and tube. respectively.
If one applies the BGK model (2.45). the reduced collision

operator L takes the form

ZBGKYII = l’BGK(sz,l?‘*h ). VBGK:aﬂ*V' (3.16)

where vggy is the dimensionless collision frequency for this
model. If one applies the S model (2.68), the reduced colli-

sion operator L has the following form:

ish - ;S

2e, it God] P h
Cy Uy 15 q,rcx( ¢ 5 —

Fomap, — (3.17)

vs=afl, ——, .
SR W)

where vg is the dimensionless collision frequency for the S

model. Here we have regarded that the bulk velocity and the

heat flow vector have the longitudinal component only ex-

pressed via the perturbation function as

- 1

u,FWJ' exp(—c?)c, hde, (3.18)
{ 5\

exp(—cz)cx(cz—EJhdc‘ (3.19)

dx 7

As has been indicated in Sec. 2.5.1. the BGK model ad-
mits several ways to choose the collision frequency v. There-
fore, the expression of the dimensionless collision frequency _
vk depends on the choice of v. The most preferable choice
is Eq. (2.46), because it provides the correct description of
the mass flow rate caused by the pressure gradient in the
hydrodynamic regime. So, using (2.46) with (2.11), (2.41),
(2.42) and (3.12) we have

=9, (3.20)

—
-~ v
VBGK ™= 5

a
)\*
where N, is the mean free path at the pressure P, and the
temperature 7, . Here, the definition of § (2.2) has been
used.

So, the choice of the collision frequency (2.46) leads to
the equality between Vggk and the rarefaction parameter &.
The other expressions of », i.e., (2.47) and (2.48), lead to
other relations between vggy and 6, which we will use only
in specific cases. So, presenting the results based on the
BGK model we will imply the relation (3.20) if the other
relations are not mentioned.

For the S model there is the unique relation between the
dimensionless frequency vg and the rarefaction parameter &.
One can easily verify that they are equal to each other

Vszé. (321)

Since Equation (3.13) is linear, its solution 4 can be de-
composed as

h=hpfp+ hrér. (3.22)

From (3.18) and (3.19) one can see that the bulk velocity i,
and heat flow vector ¢ are decomposed to

[7\’ = E\'P§P+ [;.\TgT . &v: C;YP§P+ Ei.x’T&T - (323)

J. Phvs. Chem. Ref. Data. Voi. 27. No. 3. 1998
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Substituting (3.22) into (3.13) and considering that the gra-
dients £p and &1 are independent, we obtain two independent
equations

o~

—Cy, EhT— hT:—cx(Cz_ %)

(3.24)

The first of them describes the gas flow caused only by the
pressure gradient and the second one describes the flow
caused only by the temperature gradient.

Let us introduce the reduced flow rate and the reduced
heat flux as:

for channel

. Mch J—IQ o
GP=—v=2 i,dy,
* aP.B, ~12 Y

2B, E* JI/Z _
ch * . il
= =2 dy, 3.25
o P, Y (3.25)
for tube
tb
G“’=~—§W =4fli rodr
¥ matP B, Jo
23 Etb 1
w_Pxt ~ =~ o~
*_-n'azP* 4J’0 q,r dr, (3.26)

where 7, =\y2+Z2 If we introduce the following nota-

tions:
for channel

Gihpz - ZJ‘

172 172

Uer d.;v
(3.27)

) it pdy, G;“T=2j_

12 172
Qihp: 2 J— |/‘vq'tp dy. Q:‘hTz —2 J llquT d.
(3.28)

for tube

1 1
G:’p: —4J’0 upr. dr., G$T=4f0 wr dr,
(3.29)

0%=4 | Gor 7. o=-a Gar. dr..
(3.30)
with the help of (3.23). (3.25) and (3.26) we obtain®
Q. =0.pbp— Qurér.

(3.31)

Thus. G.p. Gu1. Qup. Q1 are the dimensionless coeffi-
cients of proportionality between the flow rate/the heat flux

G, == G pép+ G 1.

“If the superscripts ch and b are omitted the corresponding expression is
valid for both channel and tube.

TPl Alias Paf Mca Ul A AL A 4AAA

in the capillary section x =)?* and the local gradients of the
pressure £p and temperature &y. They are introduced so as to
be always positive.

The introduced coefficients are related with the thermody-
namic fluxes (2.82) and (2.83) as:

for channel

an, n, ch

— _ __* ~ch - a
Jp 2B, G, Jr 28, 2x (3.32)
for tube
Jom fn-azn*th Je mczn,thb (3.33
T g, Tx TR e O

In the expressions of Jy the second term must be omitted
because in a long capillary there is no gas—surface heat ex-
change. The kinetic coefficients take the form

Ap=AG,p, Apr=—AG,1, Ap=—AQ,p,
An=AQ*T, (3.34)
where
2
an ma‘n
A=K qb % 3.35

for channel and tube, respectively. Based on these relations,
we may use the same terminology that was introduced for
the kinetic coefficients A,, in Sec. 2.10, ie., G,p is the
Poiseuille flow, G 1 is the thermal creep, O ,p is the mecha-
nocaloric heat flux, and Q7 is the ordinary heat flux.

From Onsager ’s relation (2.79) and the relations (3.34)
we have

G,r=04p- (3.36)

This relation is very useful. Since Gt and Q. are calcu-
lated from the two independent equations (3.24), the relation
{3.36) serves as an additional criterion of the numerical pre-
cision. On the other hand, if one is going to calculate only
the flow rate, i.e., only the coefficients G,p and G 1, one
does not need to solve the second equation (3.24); computing
U . p from the first equation (3.24) one immediately gets G, 1
from (3.36).

Below, the flow rates G ,.p, G .1 and the heat fluxes Q p.
Q.1 will be presented here as a function of the rarcfaction
parameter &. Note that § without a subscript is referred to the
local pressure P, and the local temperature T,,. With the
help of (2.2} and (2.3) the rarefaction parameter § is related
to P, and T, as

V;T— a y 12

aP* " m )
2 N, w(T,) \2kgT,

(3.37)

Here, it should be noted that to relate the parameter & with
the pressure P, and temperature 7, we have to indicate the
type of gas. because the relation (3.37) contains two specific
characteristics of gas: the molecular mass m and the viscos-
ity w. But representing the dimensionless flow rates G p,
G.1- Qup. Q. as a function of the rarefaction parameter 4,
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it is not necessary to specify the gas. These coefficients have

For the diffuse-specular scattering (2.23) the expressions
been introduced so as their relations with the parameter §do  of .%;; and ../, can be found in the literature. 41.91.166
pot contain any specific characteristic of gas.

3.3. Application of the Integro-Moment Method 3.3.2. Tube Flow

In general form the integro-moments method is described
in Sec. 2.12.3. Since this method is most applicable to the

one-dimensional rarefied gas flows, below the integral equa-
tions for this case will be written down.

From the BGK model we have two analogous integral
equations for the tube flow

(P = [ FulF PO +710(Fo)
L
3.3.1. Channel Flow

m=PT, (3.43)
From the BGK model we have two independent equations where T, =(7,7) is the two-dimensional reduced position
for the channel flow

vector and 3, is the tube cross section. The heat flow vector
is calculated as

12

"’;Xm(;)= _llz'%ll(y’y—" )l;xm(;, )d;’ +'y!m(§)’

TenE)= [ Ton(FL FDT GO + 720 (E),
m=P,T. (3.38) %

The heat flow vector is calculated via the bulk velocity m=P,T. (3.44)
- oo From the S model we have two independent systems of
Gem(y)= _1/2-%21()’,)")%"1()")(1)" + (), simultaneous equations

m—P.T (3.39) (; (‘r;)> _ f (%u@ X)) Hul ED)
From the S model we have two independent systems of si- Tim(r_) LA Fy(rpry) Hoplry )
multaneous equations: ~ o~ ~
’ X Uan(E1) dr] + Y in(r.) m=P,T
(Jm@) ) _ f"z ( (33" Jz‘u(y,y')) T D) v
67xm(;) 12 %21(;; ) '%._2()7’;,) (345)
- (T [ (T The derivation of such types of equations can be found in
Uen( ¥ )N =, [ 1m(Y) Yp q
x| {, dy’ +( ylm({ , m=PT. the literature 3345154131
Tam(¥"), aml¥)) In the case of the diffuse scattering (2.22) the kernels . %
(3.40) and the free terms &7}, take the following form
The derivation of such types of equations can be found in S '
the literature.>%28:47:135.166 4%11:77‘_7,71(% Hyy= [ _ l(lz_fo),
In the case of the diffuse (2.22) scauering the kernels % T L r.
and the free terms ./;,, have the following form: 28 ( 5
K== Ko, .%._:-‘——,_—-—:* I,—21,+ =1 ),
3 5 | s | \ 127752 2 15T, 7| 4 2" 5o
An=—=I_,. 4%2x:?‘11-7;1~1‘e (3.46)
\NT v < / 1 ~
S1p= T 5% f Andr] r/zp—_ 35 f Hydr]
. 2 s e 26 ('1 ; 91 i 26 b
S E T Ay, fﬁ:”'—"; —[+—=1_
Poys sy ‘J o 15
(341) ./[T'—‘./zp, '/ZT:— ZE }/77 r,
1 [‘1/2 _ 1 rl/l ~ 1Y 1 PO HSE : 7 i
AT S aler .],{'Hd'\-" Sap=— jfﬁ"ndy'! Licre, ine argument { oif e special  funcuomns {1
2(5,J‘l/2 26_}-]/2 (5’I‘i—!‘:|).
15 o The expressions of .7Z;; and ./, for the diffuse-specular
S F= S ape S ap=— XY J .]{'::d}_-’, scattering (2 73) can be found in the literature 43,125,154
-2
Here, /, are the special transcendental functions defined as
3.3.3. Special Functions /,,
I Lo
/,,=/,,m:f ¢ exp| —¢ = —|dc. (3.42)
0) &

Here, some useful properties of the special functions 7,
defined by (3.42) will be given [see Abramovitz' (p.1001)].

In {3.41) the argument 1 is (&|y—v']). The functions of the different order # are related as
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(3.47)

21,(ty=(n— 1), _5(t)+tl,_5(1). (3.48)

The power series representation has the form

20,(1)= 2, (ag In t+by)t%, (3.49)
k=0
—2a;_,

ST k—1D)(k=2)"

b= —Zbk_z—(3k2~6k+2)ak
kT k(k—1)(k—=2)

(10=£11=0, a2=—b0, b0= 1,

b,=0.6341754927.

The asymptotic representation of /,(t) at z—o is as follows:

—_ z - nl2, ni2 _ - El_k_ — (i “
L(1) \[33 v™* exp( v)g,0 5 v3g)
(3.50)

1
= T — 2 —_—
ap l, a, 12(3n +3n 1),
12(k+2)ay 4= —(12k>+36k—3n% —3n+25)a;

1
+ E(n—2k)(2k+3—n)(2k+3+2n)ak.

3.3.4. Trial Functions for the Variational Solution

The above given integral equations can be solved by the
direct numerical method or by the variational method de-
scribed in Sec. 2.12.4. To apply the variational method the
following trial functions are usually used:

~ ~n -~ ~

2
u.\'miclm+clln_" . u.trn_clrn+62n1r

i

m=P,T
(3.51)

for channel and tube, respectively. The trial function for the
heat flow vector is a constant

m=PT. (3.52)

Gxm™= Cam -

Then, according to the method described in Sec. 2.12.4, one
obtains from (3.40) or (3.45) (S model) the following alge-
braic equation systems for the constant ¢,,,, ¢, and C3,,:

3
> =S m=P.T, (3.53)
= :
where = 7;; is a symmetric matrix. The elements of this ma-
trix and the free terms .7, have the form
for channel

1
=1 —J A7 dydy

-1
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1 112

.'glzz_— A%“;'Zd;'di,
12 -1
12 ~ o~
A= B 10~%12dy’dy’
1 . SIS 23T T
V‘rfzz—ga— _1/2-/‘511)’ y “dy’dy,
172 - ~ -
gy = — ~l/2l%;2y 2dy,dy’

1”2
ty=1- _m%zzd)"d)’,

172 1/2

Bim= P m@y,  Fom= L imy 24,
1”2 -1

. 172
.ﬁ_‘;m:

‘7'2111 d.v’
-12

for tube

1 o~
’75“21_'_ j .]Kndrj_er_,
T Js,

4 1 1 ~12 {50 i
u’élZ:E_; EL'%‘”rJ‘ dl'ldl'J_ N

R

1 L
A= L Fidridr,
L
1 1
. S TI272 4= g
.,frézz—é‘"; sz'%‘Ilrl ridr,dr, .
1 st
A= s Apride.dr,
1 3 ~, o~
e[ i,

1 ~ 1 — o~
e Sm=— | P
/j)lm T J‘E ldr,L’ ﬁZm T JEL/lrLer

| ~
./33,,,:;[_' J.E‘./’erL .

The coefficients . %; and .77, can be calculated numeri-
cally for any value of the rarefaction parameter 6. Then,
resolving the systems (3.53) one knows the bulk velocity
(3.51) and the heat flow vector (3.52) and consequently all
coefficients defined by (3.27)—(3.30).

3.4. Transition Regime

3.4.1. Plane Poiseuille Flow

Diffuse scattering: Among all types of flows considered in
this article the plane Poiseuille flow Gc*hP under the supposi-
tion of the diffuse scattering (2.22) is the most deeply inves-
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TasLE 1. Reduced flow rate G} vs & diffuse scattering, different methods

G,

5 a b c d e f g h
0.01 3.0499 3.0489 22114 3.0519
0.1 2.0328 2.0314 1.9829 1.8818 2.0861 2.0327 2.0397 1.9318
0.2 1.8083 1.8079 1.8167 1.6994 1.8465 e e 1.7407
0.5 1.6017 1.6017 1.6050 1.5491 1.6166 1.6018 1.6147 1.5607
1.0 1.5379 1.5389 1.5381 1.5116 1.5343 1.5386 1.5541 1.5086
2.0 1.5912 1.5942 1.5950 1.5491 1.5709 1.5948 e 1.5681
4.0 1.8450 1.8440 1.8459 1.7958 1.8075 1.8459 e B
5.0 1.9895 1.9883 1.9908 1.9634 1.9485 1.9907 2.0080 1.9637
7.0 2.2904 2.2914 2.2945 2.2782 2.2482 2.2949 e e

10.0 2.7558 2.7638 2.7681 2.7536 2.7790 2.7686 2.7863 2.7350

*Cercignani and Daneri (Ref. 28), Eq. (3.38) (BGK), direct numerical method.

®Cercignani and Pagani (Ref. 34), Eq. (3.38) (BGK), variational method.

“Huang et al. (Ref. 66), Eq. (3.13) with (3.16) (BGK), discrete velocity method.

dLoyalka and Lang (Ref. 99), BE for Maxwell’s molecules, variational method.

*Loyalka and Lang (Ref. 99), Model eq. with variable collision frequency, variational method.
"Loyalka et al. (Ref. 102), Eq. (3.13) with (3.16) (BGK), method of elementary solutions.
8Chernyak et al. (Ref. 42), Eq. (3.40) (S model), direct numerical method.

"Hickey and Loyalka (Ref. 63), Eq. (3.13) with (2.54) (BE), discrete velocity method.

tigated theoretically. The list of papers describing this kind
of rarefied gas flow is very long. Some estimations of the
flow rate G, can be found in the literature.”'3%1%!7® These
works provide only a qualitative behavior of the coefficient
G‘:‘p. Some results obtained on the basis of the BE by the
moment method are presented in the literature 5778119120153
An analysis of the plane Poiseuille flow based on the method
of elementary solutions is given in the literature 2**®

Numerical results obtained from the BGK model
by various methods can be found in the litera-
ture, |12028.3447,66.68.7987.91.99.102147.148  Njyrmarieal  results
based on the S model are presented by Chernyak et al®?
Results based on numerical calculation of the BE are avail-
able in the literature.®*7:!1¢

Thus, due to the simplicity of this type of flow the coeffi-
cient G;hp was obtained using various kinctic cquations and
applying almost all methods elaborated in the RGD. Below,
an analysis of the above mentioned numerical results is
given.

Cercignani and Daneri™ solved the integral equation
(3.38) (BGK) by the direct numerical method. Their results
are presented in the second column of Table 1. Then, Cer-

28

TABLE 2. Reduced flow rate Gf:‘P vs & by Ohwada er al. (Ref. 116): diffuse
scattering. BE

s G s G
0.0393 2.2958 0.785 1.5148
0.0524 2.1816 0.982 1.5066
0.0785 2.0318 1.21] 1.5124
0.0982 1.9556 1.96 1.5602
0.131 1.8642 2.62 1.6304
0.196 1.7498 202 1.7998
0.262 1.6796 524 1.9876
0.393 1.5982 7.85 2.386
0.524 [.53542

cignani and Pagani** (third column) solved the same integral
equation by the variational method, which gives a good
agreement with the exact numerical solution.”® Huang
et al.% solved Eq. (3.13) with (3.16) (BGK) by the discrete
velocity method. The results are presented in the fourth col-
umn of Table 1. One can see that there is good agreement
with the previous results in the transition and hydrodynamic
regimes. The disagreement at small & is explained by the
numerical grid used by Huang et al.®® which was not suffi-
ciently dense.

Loyalka and Lang® solved the BE for Maxwellian mol-
ecules (fifth column) and the model equation with the vari-
able collision frequency v appropriate to the rigid spheres
(sixth column) by the variational method. It can be seen that
the BE for Maxwellian molecules gives rather understated

ch
G

1.0

0.1 1 10

FiG. 5. Reduced flow rate Gihp vs & at diffuse scattering: solid line—BGK
by Cercignani and Pagani (Ref. 34). crosses—BE by Ohwada ez al. (Ref.
116). circles—BE by Hickey and Loyalka (Ref. 63).
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TABLE 3. Reduced flow rate Gfk“,, vs &, complete data by Cercignani &

Pagani (Ref. 34): diffuse scatiering, BGK

5 G% 5 GS
0.01 3.0489 15 1.5530
0.02 2.7107 1.6 1.5598
0.03 25234 1.7 1.5674
0.04 2.3964 1.8 1.5757
0.05 2.3016 1.9 1.5847
U.06 2.2217 2.0 1.5942
0.07 2.1655 25 1.6480
0.08 2.1140 3.0 1.7092
0.09 2.0698 35 1.7751
0.1 2.0314 4.0 1.8440
0.2 1.8079 45 1.9153
0.3 1.7092 5.0 1.9883
0.4 1.6408 55 2.0627
0.5 1.6017 6.0 2.1381
0.6 1.5761 6.5 22144
0.7 1.5591 7.0 22914
0.8 1.5482 7.5 2.3690
0.9 1.5416 3.0 2.4472
1.0 1.5389 8.5 2.5258
11 1.5379 9.0 2.6048
1.2 1.5394 95 2.6041
13 1.5427 10.0 2.7638
14 1.5473 10.5 2.8438

results, while the variable collision frequency model gives
fairly good results.

Loyalka er al.'™ solved the BGK model by the method of
elementary solutions, which gives good agreement with the
integro-moment method in the whole range of the rarefaction
parameter 6. The results are given in the seventh column of
Table 1.

Chernyak et al*? solved the integral equation (3.40) (S
model) by both variational and direct numerical methods.
They also obtained a perfect agreement between the two
methods. In the eighth column of Table 1 their results based
on the direct numerical method are presented. One can see
that there is a fine agreement between the solutions based on
the BGK equation and that based on the S model.

Hickey and Loyalka63 (ninth column) solved numerically
the BE for rigid spheres. One can see that the disagreement
between the model equations (BGK and S model) and the
exact BE is within 2%.

F. SHARIPOV AND V. SELEZNEV

Ohwada er al.''® also solved the BE. But they introduced
the rarefaction parameter as §=2a/( \/;)\*). This definition
of 6 follows from the BGK model with the frequency (2.48),
Therefore, the values of & given by Ohwada et al.''® must be
recalculated. Their results are presented separately in Table 2
with the parameter & recalculated in our notations. A com-
parison of these results with those obtained by Hickey and
Loyalka® is performed in Fig. 5. One can see that the two
numerical solutions of the BE obtained independently are in
a good agreement between themselves. The numerical data
by Cercignani and Pagani®* based on the BGK model are
also shown in Fig. 5.

The numerical results based on the BGK model, i.e., Refs.
17, 20, 47, 79, 87, 91, 97, 147, 148, are in a good agreement
with the data described above. The results of the paper®™ are
erroneous as is pointed out by Loyalka.®

Thus, from this analysis we may conclude that the most
simple way to calculate the coefficient G;hp is to apply the
variational method based on the trial functions (3.51) to the
BGK equation. This method gives reliable results with mod-
est calculation efforts. The complete data on the coefficient
Gihp obtained by Cercignani and Pagani** using this method
are presented in Table 3.

Diffuse-specular scattering: The first results for the
diffuse-specular scattering (2.23) were obtained by Chernyak
et al.*’ based on Eq. (3.38) (BGK) solved by the variational
method. Then, Loyalka®! solved the same equation by the
direct numerical method. In the paper by Loyalka ef al.'?
the numerical solution of the BGK equation by the method
of elementary solutions is given. To perform a comparison
between these results all of them are presented in Table 4.
One can see that the variational results by Chernyak er al.*’
differ from the exact results by Loyalka.’"!% At the same
time, the results of the works®"'%? obtained by the two quite
different methods are in good agreement between them. So,
we conclude that the results by Loyalka®' are reliable. His
complete data are given in Table 5.

Loyalka and Hickey®” solved the BE by the discrete ve-
locity method. Their results are given in Table 5. Unfortu-
nately, it is impossible to compare the solution based on the
BGK model®! with the BE solution,”’ because they were ob-
tained for different values of the gas—surface interaction pa-
rameter .

TABLE 4. Reduced flow rate G, vs 8 and a: different methods

Gib
a=0.88 a=0.80
8 a b a b c
0.05 2.6456 2.7383 2.7383 2.9206 3.0897 3.0897
0.1 2.3261 2.4060 2.4060 2.5605 2.7077 2.7077
1.0 1.7348 1.7921 1.7920 1.8914 2.0019 2.0018
10.0 29529 3.0241 3.0177 3.0836 3.2305 3.2241

“Chernyak et al. (Ref. 47). Eq. (3.28) (BGK}, variational method.
PLovalka (Ref. 911, Eq. (3.38) (BGK), direct numerical method.
“Lovalka er al. (Ref. 102). Eq. (3.13) with (3.16) (BGK), method of elementary solutions.
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TaBLE 5. Reduced flow rate G:‘P vs & and a. complete data

Loyalka (Ref. 91)*

Loyalka and Hickey (Ref. 97)°

8 =096 =092 =088 «=084 =080 a=0.75 a=0.50

0001 45646 48773 52149 55808  5.9788

001 32417 32417 36697 39095 41695

0.02 28770 30548 32463 34530  3.6771

0.03 26755 3.0381 3.0131 3.2021 3.4070

0.04 25390 26915 28556  3.0328  3.2249

0.05 24373 25823 27383 29069  3.0897

0.07 22916 24259 25706 27270 2.8967

0.09 2.1893 23163 24532 26011 27618 s o
0.1 21482 22723 24060 25507 27077 2.7860 43628
025 2 4065 37607
03 17945 1.8937  2.0011 21176 2.2448 o o
0.5 1.6863 17776 1.8766 19844 21023 22128 3.4748
0.7 1.6398 1.7272 1.8220 19254  2.0388 o e
0.75 2.1449 3.3604
0.8 1.6202 17052 1.7976 1.8986  2.0092 o .~
0.9 2.1269 33392
1.0 1.6163 17005 17921 1.8921 2.0019 2.1204 3.3270
1.1 2.1171 3.3102
12 2.1164 3.3149
1.25 16174 1.7001 17902 1.8887 1.9969 e o
1.3 21178 3.3136
1.4 21209 33144
L5 1.6289 17107 17999 1.8974  2.0046 2.1254 3.3171
2.0 1.6694 17503 1.8386 19352 2.0414 2.1625 3.3491
2.5 1.7233 1.8039 1.8918 1.9881 2.0939
3.0 17847 18653 19531 20493 21551 22748 34618
35 18510 19316 2019 21158 22217
40 19205 20013 20894 21858 22918 e .
5.0 2.0661 21472 22356 23324 24388 2.5555 3.749
6.0 22173 22988 23876 24848 25916 ce o
7.0 23722 24541 25433 26408 2.7480 2.8625 4.0633
9.0 26807 27722 28620 29601 3.0679 e -
10.0 28512 29340  3.0241 31225 32305 3.3407 45490

681

“Equation (3.38), (BGK), direct numerical method.

PEquation (3.13) with (2.54) (BE). discrete velocity method.

3.4.2. Cylindrical Poiseuille Flow

Diffuse scattering: Some analytical results on the coeffi-
cient U‘;jp tfor the diffuse scattering (2.22) can be found in

TartE 6. Reduced flow rate G, vs & diffuse scattering. different methods

1) a b ¢ d e
0.01 1.4768 1.4301 1.4763 1.4800 1.4681
0.1 14043 1.4039 1.4039 1.4101 1.3984
1.0 | 4594 1.4576 1.4382 1.4758 1.4499

10.0 35821 23573 35632 33749 3.5608

*Cercignani and Sernagiotto (Ref. 35). Eq. (2431 (BGK). direct numerical
method.

"Cercignant and Pagani {Ref. 33). Eq. 13.43) (BGK). variational method.

‘Lo and Losalka (Ref. 791, Eq. (3.43) (BGK). optimized numerical method.

“Sharipov (Ref. {41 Eq. (3131 with 13,171 1S model). discrete velocity
nethod.

‘Lovalka and Hamoodi (Ref. 931, (3,131 with (2.54) (BE). discrete velocity
method.

Refs. 56, 151, 157, 176, which are restricted by the small
range of the rarefaction parameter. These results will not be
considered here. Let us analyze the results obtained for the
entire range of &.

To calculate G‘:p Cercignani and Sernagiotto™ solved the
integral equation (3.43) (BGK) by direct numerical methods.
Their results are presented in the second column of Table 6.
Then, Cercignani and Pagani™ (third column) resolved the
same integral equation by the variational method, which
gives good agreement with the exact solution. Lo and
Loyalka’ (fourth column) also solved this integral equation
by the optimized numerical method with great precision.
These results can be considered as a most exact numerical
solution of the BGK model. Sharipov'*' (fifth column)
solved the S model. i.e.. Eq. (3.13) with (3.17), by the dis-
crete velocity method. Loyalka and Hamoodi” (sixth col-
umn} numerically solved the BE for a rigid sphere gas.

From Table 6 one can see that there is good agreement
between the results based on the BGK model and those ob-
tained from the S model. The disagreement between the
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TaBLE 7. Reduced flow rate G‘;’P vs 8, complete data: diffuse scattering

Gir %

8 a b c é a b c
0.0 1.5045 1.5045 1.5 1.5512
0.0001 1.5026 e R 1.6 1.5753 1.5956 en
0.001 1.4845 1.8 1.6171 1.6373
0.002 1.4962 e 20 1.6608 1.6799 1.6573
0.004 1.4902 3.0 1.8850 1.9014 1.8795
0.006 1.4852 4.0 2.1188 2.1315
0.008 1.4808 ree . 5.0 2.3578 2.3666 2.3472
0.01 1.4768 1.4800 1.4704 6.0 2.5999 2.6049 ‘e
0.02 1.4608 1.4636 .- 7.0 2.8440 2.8455 2.8282
0.04 1.4391 1.4418 8.0 3.0894 3.0878 oo
0.08 1.4131 1.4168 9.0 3.3355 3.3314
0.1 1.4043 1.4101 1.4039 10.0 3.5821 3.5749 3.5623
0.2 1.3820 1.3911 1.3812 20.0 6.0411 6.0492
0.3 1.3767 1.3876 1.3756 30.0 8.5333 8.5392
04 1.3796 1.3920 1.3782 40.0 11.0295 11.036
0.5 ‘e e 1.3857 50.0 13.5269 13.459
0.6 1.3982 1.4130 1.3963 60.0 16.0254 e
0.8 1.4261 1.4425 1.4238 70.0 18.5244
1.0 1.4594 1.4758 1.4567 80.0 21.0234
1.2 1.4959 1.5158 e 90.0 23.5219
1.4 1.5348 1.5550 100.0 26.0214

*Cercignani and Sernagiotto (Ref. 35) and Lo and Loyalka (Ref. 79), BGK.

®Sharipov (Ref. 141), S model.
‘Loyalka and Hamoodi (Ref. 95), BE.

model equation solutions and that obtained from the BE is
within 2%, which can be considered reasonable.

The numerical data on the coefficient Gi’P can be also
found in Refs. 46, 81, 84, 91, 104, 123, 125, 160. All these
results are in good agreement with the exact solution by Lo
and Loyalka.79

The complete data on the coefficient G‘:p based on the
BGK equation, S model and BE arc presented in Table 7.

Diffuse-specular scattering: Numerical data on the coeffi-
cient Gi’p based on the BGK model with the diffuse-specular
scattering (2.23) are available in Refs. 81, 91, 123 [direct
numerical solution of Eq. (3.43)] and in Refs. 124, 125
[variational solution of Eq. (3.43)]. The numerical solution
obtained from the S model by the discrete velocity method is
given by Sharipov."*! A comparison between these results is

performed in Table 8. The results by Porodnov et al'® are
not presented because they are very close to the results of the
paper.'2*

From Table 8 one can see that: (i) the results by Loyzdka91
are erroneous, since they do not coincide with all the rest of
the data, even with the data obtained later by himself with
collaborators;®' (ii) there is good agreement between the dif-
ferent methods of solution and between the different model
equations. At §=10 the disagreement between the varia-
tional and exact methods is about 2%. But for large & the
variational method gives a sufficiently high precision. More-
over, the solution of the S model'! obtained with great pre-
cision gave good agreement with the variational solution.
Thus, we may conclude that the variational solution of the
BGK model by Porodnov er al.'**!** and the discrete veloc-

TabLe 8. Reduced flow rate Gl:P vs § and a: different methods

GPp
a=08 a=0.6
6 a b c d e b c d e
0.01 2.1662 2.187 2.187 2.1827 2.1853 3374 3.374 3.3381 3.3374
0.1 1.9211 1.993 1.992 1.9988 2.0043 2.944 2.950 29542 2.9597
1.0 1.6531 1.920 1.937 1.9363 1.9514 2.706 2.689 2.7215 27277
10.0 3.5823 4.025 4.092 4.1021 4.0343 4.785 4378 4.9487 4.7703

‘Loyalka (Ref. 91). Eq. (3.43) {BGK). direct numerical method.
"Porodnov and Tukhvelov (Ref. 124). Eq. (3.43) (BGK. variationat method.

“Porodnov and Tukhvetov (Ref. 123). Eq. (3.43) (BGK}, direct numerical method.

Lo et al. (Ref. 811. Eq. (3.43) (BGK). direct numerical method.

*Sharipov (Ref. 1411, Eq. {3.13) with {3.17) (S model). discrete velocitv method.

J. Phys. Chem. Ref. Data, Vol. 27. No. 3. 1998
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TABLE 9. Reduced flow rate G‘:p vs dand @ by Porodnov et al. (Refs. 124 and 125): BGK

B
é a=0.98 a=0.94 a=0.90 a=0.84 a=0.80 a=0.6

0.01 1.534 1.657 1.791 2.026 2.187 3.374
0.02 1.516 1.635 1.764 1.983 2.144 3.255
0.04 1.492 1.605 1.728 1.933 2.085 3.137
0.06 1.475 1.585 1.703 1.899 2.045 3.044
0.08 1.462 1.569 1.685 1.873 2.014 B
0.1 1.452 1.556 1.668 1.853 1.992 2.944
0.2 1.426 1.523 1.627 1.806 1.931 B
0.4 1.420 1.510 1.615 1.768 1.888 2.720
0.6 1.437 1.523 1.621 1.772 1.888 2.691
0.8 1.464 1.547 1.638 1.791 1.904 e
1.0 1.496 1.578 1.668 1.818 1.930 2.706
2.0 1.693 1.773 1.861 2.007 2.116 2.879
3.0 1.914 1.994 2.081 2227 2.336 3.096
4.0 2.145 2.225 2.312 2.458 2.567 3.327
5.0 2.381 2.461 2.548 2.694 2.803 3.565
6.0 2.620 2.700 2.787 2.934 3.003 e
7.0 2.862 2.942 3.029 3.167 3.285 e
8.0 3.105 3.185 3.272 3.420 3.529 4.293
9.0 3.349 3.430 3517 3.664 3.778 e

10.0 3.595 3.675 3.761 3.910 4.019 4.785

ity solution of the S model by Sharipov'*! are most reliable.
In Table 9 the complete data on the coefficient G:’P based

on the variational solution of the BGK mode

1124,125

are pre-

sented. The complete data on this coefficient based on the
S-model'#! are given in Table 10.

3.4.3. Plane Thermal Creep Flow

Diffuse scattering: To calculate the thermal creep GfkhT
Loyalka®” solved the integral equation (3.43) (BGK), which
implies the diffuse scattering (2.22), by the variational

TaBLE 10. Reduced flow rate G’:P vs & and a by Sharipov (Ref. 141):

S model
e Gl

8 a=0.8 a=0.6 5 a=0.8 a=0.6
0.0005 22484 3.4875 0.9 1.9373 2.7183
0.001 2.2437 3.4751 1.0 1.9514 2.7277
0.005 2.2131 3.4001 1.2 1.9859 2.7559
0.01 2.1853 3.3374 1.4 2.0214 2.7361
0.02 2.1442 3.2488 1.6 2.0593 2.8201
0.03 2.1141 3.1853 1.8 2.0991 2.8568
0.04 2.0901 3.1355 2.0 2.1402 2.8956
0.05 20703 3.0945 3.0 2.3585 3.1074
0.06 2.0534 3.0599 4.0 2.5881 3.3342
0.07 2.0388 3.0299 5.0 2.8233 3.5677
0.08 2.0259 3.0037 6.0 3.0620 3.8050
0.09 20145 2.9805 7.0 3.3030 4.0446
0.1 2.0043 29597 8.0 3.5455 4.2858
0.2 1.9444 2.8346 9.0 3.7892 4.5281
0.3 1.9169 27710 10.0 4.0343 4.7703
0.4 1.9056 27367 20.0 6.5086 7.2387
0.5 1.9033 27184 30.0 8.9965 9.7108
0.6 1.9069 2.7101 40.0 11.491 12.185
0.7 1.9144 2.7085 50.0 13.972 14.656
0.8 1.9248 27117

method. Then, he solved the same equation by the direct
numerical method.*” In the work'%? the data obtained from
the BGK model by the method of elementary solutions are
presented. In Table 11 a comparison between these three
solutions is performed. One can see that there is good agree-
ment between them.

Chernyak er al.*? solved the integral equation (3.40) (S
model) by the direct numerical method (fifth column) and by
the variational one (sixth column). These results also coin-
cide perfectly each with other.

The seventh column contains the results by Loyalka and
Hickey®’ based on the BE solved by the discrete velocity
method. The results by Ohwada er al.''® based on the BE are
presented separately in Table 12, where o is recalculated
according to our definition.

A comparison between the results obtained from the dif-
ferent equations is performed also in Fig. 6. From this figure
we may conclude that: (i) the numerical solutions of the BE
equation obtained by Loyalka and Hickey”’ (circles) and by
Ohwada et al.!' (crosses) for the different values of 8are in
a good agreement; (ii) the solution of the S model (square) is
closer to the BE solution than the BGK solution (solid line).

From Table 11 and Fig. 6 one can see that unlike the
coefficient Gihp, for the thermal creep Gf:T there is no agree-
ment between the results obtained from the different model
equations. The S model gives the disagreement (about 8%)
with the BE solution, which can be regarded as reasonable.
The disagreement of the BGK model solution with the BE
solution reaches 30%. This large disagreement is a conse-
quence of the fact that the BGK model does not give the
correct value of the Prandtl number. The dimensionless col-

lision frequency vpgk related with the rarefaction parameter
S by (3.20) provides the correct values of the Poiseuille flow

.1 Phye Chem Ref Data Vol 27 No. 3. 1998
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TaBLE 11. Reduced flow rate G;"T vs & diffuse scattering, different methods

G
é a b d e f
0.001 1.8394 1.8289
0.01 1.2334 1.2348 e 1.2470 1.2469 ‘e
0.1 0.6948 0.6944 0.6949 0.7328 0.7283 0.7966
1.0 0.2950 0.2948 0.2948 0.3656 0.3653 0.3890
10.0 0.0663 0.06553 0.0660 0.09834 0.09707 0.0898

*Loyalka (Ref. 89), Eq. (3.43) (BGK), direct numerical method.

t’Loyalka (Ref. 89), Eq. (3.43) (BGK), variational method.

‘Loyalka er al. (Ref. 102}, Eq. (3.13) with (3.16) (BGK), method of elementary solutions.
dChemyak et al. (Ref. 42), (3.40) (S model), direct numerical method.

“Chernyak et al. (Ref. 42), (3.40) (S model), variational method.

fLoyalka and Hickey (Ref. 97), (3.13) with (2.54) (BE) direct numerical method.

G .p. But it cannot provide the correct value of the thermal
creep.

The numerical data based on the BGK model can be cor-
rected using the expression of the frequency v in the form
(2.47). Then, the relation between the dimensionless colli-
sion frequency vggx defined by (3.16) with the rarefaction
parameter & will be as follows

VeGk= 34 (3.54)

instead of (3.20). So, to use the collision frequency v in the
form (2.47) we have to recalculate the rarefaction parameter
é.

The dashed line in Fig. 6 corresponds to the dependence of
G:’T on the recalculated 8. One can see that the BGK model

with the collision frequency vpgy related with & by (3.54)
gives good agreement with the BE solution for the coeffi-
cient G‘i’T. But one must bear in mind that the BGK model
with (3.54) gives an incorrect value of the coefficient G p in
the transition and hydrodynamic regimes.

The numerical data on the coefficient G 1 are available
also in the literature.809193 A1l these results are in good
agreement with the data given above. The results of the
work® are erroneous as is pointed out by Loyalka.** Unfor-
tunately, the data based on the S model, which would be very
useful here, are presented very poorly by Chernyak et al.*

The complete data based on the BGK model® are given in
Table 13. The coefficient GfkhT is presented as a function of

TABLE 12. Reduced flow rate G“*"T vs §by Ohwada et al. (Ref. 116): diffuse
scattering, BE

s G 3 G
0.0393 0.9968 0.783 04240
0.0524 09338 0.982 0.3916
0.0785 0.8484 131 0.3460
0.0982 0.8030 1.96 0.2838
0.131 0.7460 2.62 0.2418
0.196 0.6690 3.93 0.1870
0.262 0.6164 5.4 0.1522
0.293 0.5448 7.85 0.1106
0.524 04954

J. Phys. Chem. Ref. Data, Vol. 27, }'~ » <~n°

the dimensionless collision frequency vggx. The rarefaction
paramcter recalculated by (3.54) is also given. The complete
data based on the BE? are given in Table 14.

Diffuse-specular scattering: The numerical data on the
plane thermal creep GihT for the diffuse-specular scattering
(2.23) are available in the literature.309197:102.103 The results
obtained by Loyalka ez al.”” on the basis of the BE are pre-
sented in Table 14. The results obtained by Loyalka®® based
on the BGK model with the dimensionless collision fre-
quency defined by (3.54), are given in Table 15. The data of
the papers’®19218  coincide with those obtained by
Loyalka.91

3.4.4. Cylindrical Thermal Creep Flow

Diffuse scattering: Numerical data on the cylindrical ther-
mal creep Gt:]- based on the BGK model assuming diffuse
scattering (2.22) were obtained by Loyalka,® who solved the
integral equation (3.43) by the direct numerical method. His
results are presented in the second column of Table 16.
Chernyak er al.* (third column) solved the same equation by
the variational method. Valougeorgis and Thomas'® (fourth

ch
G 10

0.8

0.6

0.4

0.2

0.1 1 10

Fic. 6. Reduced flow rate Gy vs & at diffuse scattering: solid line—BGK
by Lovalka iRef. 89). dashed line—BGK wiih recalculated 8. squares—S
model by Chernvak er al. (Ref. 42). circles—BE by Lovalka and Hickey
(Ref. 974, crosses—BE by Ohwada er al. (Ref, 116).
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TaBLE 13. Reduced flow rate Gf:‘T vs & by Loyalka (Ref. 89): diffuse scat-
tering, BGK

VBGK g G;hT VBoK $ GihT

0.001 0.00067 1.8394 1.5 1.0 0.2413
0.005 0.00333 1.4134 2.0 1.333 0.2064
0.01 0.00667 1.2334 25 1.667 0.1811
0.02 0.0133 1.0606 3.0 2.0 0.1620
0.04 0.0267 0.8958 3.5 2.33 0.1464
0.05 0.0333 0.8450 4.0 2.67 0.1340
0.06 0.04 0.8043 5.0 3.33 0.1145
0.08 0.0533 0.7418 6.0 4.0 0.1000
0.1 0.0667 0.6948 7.0 4.67 0.0888
0.2 0.133 0.5578 8.0 5.33 0.0798
0.4 0.267 0.4351 9.0 6.0 0.0725
0.5 0.333 0.3986 10.0 6.67 0.0663
0.6 0.4 0.3699 20.0 13.3 0.0361
0.8 0.533 0.3268 30.0 20.0 0.0249
1.0 0.667 0.2950 40.0 26.7 0.0191

column) solved the BGK equation by the method of elemen-
tary solutions. One can see that there is good agreement be-
tween all these results. Note that the data of the papers*6%+160
are presented in Table 16 implying the relation (3.20).

Sharipov'*! solved Eq. (3.13) with (3.17) (S model) by the
discrete velocity method. His results are presented in the fifth
column of Table 16. There is no agreement between the
BGK model solution and that based on the S model. This
disagreement was discussed in Sec. 3.4.3, where it was
pointed out that the S model supplies more reliable results.
Therefore, the complete data based on the BGK model are
not presented here. lhe complete data based on the S
model'*! are presented in Table 17.

The results based on the BGK model and being in good
agrecment with the data by Loyalka® can be found also in
the literature,31-91-104.125.123

TABLE 14. Reduced flow rate Gf:‘T vs 6 and « by Loyalka and Hickey (Ref.
97): BE

Gl
s a=1 =075 a=05
0t 0.7966 1.0864 1.5632
0.25 0.6243 0.8118 10999
0. 0.5036 0.6225 0.7903
0.75 04359 0.5193 0.6304
0.9 0.4060 0.4752 05646
10 0.3890 0.4505 0.5285
LI 0.3737 0.4285 0.4970
1.2 0.3598 0.4089 0.4694
13 0.3472 0.3012 04448
4 0.3355 0.3752 0.4228
[N (.3248 0.3606 04030
20 0.2810 0.3027 0.3274
3.0 0.2226 0.2307 0.2393
5.0 0.1574 0.1570 0.1566
7.0 01212 0.1190 01163
10.0 0.0898 0.0871 0.0842

Diffuse-specular scattering: The results of the cylindrical
thermal creep flow for the diffuse-specular scattering (2.23)
based on the integral equation (3.43) (BGK) are available in
the literature®'1+1%3 (direct -numerical solution) and in the
work!? (variational method). The data based on the S model
were obtained by Sharipov.'*! Since the S model gives more
reliable results, the results based on the BGK model are not
presented here. We only note that: (i) There is a good agree-
ment between the results of the Refs. 81, 125, 123; (ii) the
results of the work in Ref. 91 are erroneous.

The complete data by Sharipov!*! on the cylindrical ther-
mal creep Gi’T obtained from the S model for the different
gas—surface interaction parameters « are given in Table 17.

3.4.5. Mechanocaloric Heat Flux

Due to the Onsager relation (3.36) the reduced mechano-
caloric heat flux Q_p is equal to the thermal creep G, 1. So,
there is no point in considering the coefficient Q. p here. We
only note that there is a difference in the profiles u, and

g.p- Information on the profiles can be found in the
literature 42,80,81,97,103,104.123

3.4.6. Plane Heat Flux

Diffuse scattering: Results on the heat flux through a
channel QihT for the diffuse scattering (2.22) are available in
the following papers: Loyalka® solved the integral equation
(3.38) (BGK) by the variational method; Chemnyak et al.*?
solved the integral equation (3.40) (S model) by both direct
numerical and variational method; Lo and Loyalka80 solved
Eq. (3.38) (BGK) by the direct numerical method; and Loy-
alka and Hickey®’ solved the BE by the discrete velocity
method. A comparison between these results is performed in
Table 18. One can see that there is a disagreement between
variational (second column) and direct numerical (third col-
umn) solutions of the BGK model. Most probably in the
paper®’ the coefficient Q‘:IT was calculated incorrectly. The
exact (forth column) and variational (fifth column) solutions
of the S model are in good agreement.

A comparison of the different solutions is also performed
in Fig. 7. One can see that the solution of the S model
(squares) is closer to the BE solution (crosses) than the BGK
model solution (solid line). As well as for the thermal creep
G .1, this disagreement is a consequence of the BGK model
having the incorrect Prandtl number. The BGK model gives
more reasonable values of Q;hT, if the collision frequency
vgck is related with the rarefaction parameter & by (3.54).
The recalculated data are presented by the dashed line in Fig.
7.

Since the BGK equation gives unreliable results on the
coefficient Q;"T and the results based on the S model™ are
presented very poorly, we restrict ourselves by the presenta-
tion of the complete data based on the BE’” only. The data
are given in Table 19.

Diffuse-specular scatrering: The thermal flux for the
diffuse-specular scattering (2.23) is calculated by Lo and

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998
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TABLE 15. Reduced flow rate Gy vs 8
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and a by Loyalka (Ref, 91): BGK

G
Pack ) @=0.96 =092 a=0.88 =084 «=0.80
0.001 0.0007 1.9752 2.1058 2.2465 2.3987 2.5638
0.01 0.0067 1.3074 1.3839 1.4659 1.5539 1.6488
0.02 0.0133 1.1196 1.1813 1.2473 13180 1.3940
0.03 0.02 1.0141 1.0677 1.1249 1.1861 1.2517
0.04 0.0267 0.9416 0.9897 1.0409 1.0956 1.1543
0.05 0.0333 0.8867 0.9307 0.9775 1.0275 1.0809
0.07 0.0467 0.8066 0.8447 0.8851 0.9281 0.9740
0.09 0.06 0.7489 0.7828 0.8196 0.8567 0.8973
0.1 0.0667 0.7253 0.7574 0.7914 0.8275 0.8660
0.3 0.2 0.5000 0.5165 0.5338 0.5520 0.5712
0.5 0.3333 0.4089 0.4197 0.4310 0.4428 0.4552
0.7 0.4667 0.3538 0.3615 0.3695 0.3778 0.3864
0.9 0.6 0.3152 0.3209 0.3268 0.3329 0.3392
1.0 0.6667 0.2997 0.3046 0.3098 0.3150 0.3205
1.25 0.8333 0.2681 0.2717 0.2753 0.2790 0.2829
1.5 1.0 0.2437 0.2462 0.2488 0.2515 0.2543
2.0 1.3333 0.2075 0.2088 0.2102 0.2115 0.2129
25 1.6667 0.1816 0.1822 0.1828 0.1834 0.1841
3.0 2.0 0.1619 0.1621 0.1622 0.1624 0.1625
35 2.3333 0.1463 0.1461 0.1460 0.1459 0.1457
4.0 2.6667 0.1335 0.1332 0.1329 0.1325 0.1322
50 3.3333 0.1138 0.1133 0.1127 0.1122 0.1117
6.0 4.0 0.0992 0.0986 0.0980 0.0974 0.0967
7.0 4.6667 0.0879 0.0873 0.0867 0.0860 0.0854
9.0 6.0 0.0716 0.0710 0.0704 0.0698 0.0691
10.0 6.6667 0.0655 0.0649 0.0643 0.0637 0.0631

Loyalka® on the basis of the BGK equation and by Loyalka
and Hickey97 on the basis of the BE. The results of the last
paper, which are more reliable, are presented in Table 19.

3.4.7. Cylindrical Heat Fiux
The cylinder thermal flux was calculated only by Lo
et al.®! on the basis of the integral equation (3.43) (BGK) by

the direct numerical method. The results are presented in
Table 20. where the relation (3.54) has been used.

TABLE 16. Reduced flow rate G vs & diffuse scattering, different methods

Glr

) a b [ d

0.0001 .7515 0.7515 0.7515 e
0.001 0.7467 0.7467 0.7466 0.7486
0.01 0.7179 0.7178 0.7177 0.7243
0.1 0.5976 (.5975 0.5968 0.6210
1.0 0.2220 0.2214 0.3217 0.3959
10.0 0.0687 0.0683 0.0686 0.1014

“Lovalka (Ref. 841, Eq. (3.431 (BGK), direct numerical solution.
"Chernyak er al. (Ref. 361, Eq. (3.43) (BGK), variational method.
“Valougeorgis and Thomas (Ref. 1601. Eq. (2.12) with (3.16} (BGKi.
method of elementary solutions.

“Sharipov (Ref. 1411 Eq. 13.131 with (3.17) (S modeli. discrete velocity
methad.
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3.5. Free-Molecular Regime

In the free-molecular regime (§=0) the flow rate and the
heat flux can be calculated analytically. At §=0 all kernels
in the integral equations (3.38)~(3.40) and (3.43)~(3.45) are
equal to zero and the moments u,, g, are equal to the free
terms. But for the channel flow the free terms contain the
function I4(8|y—y’|). From the representation (3.49) one
can see that at §—0 this function and hence the free terms
tend to infinity. As a result the bulk velocity and the heat
flow vector in the channel also tend to infinity in the free-
molecular regime. This unphysical behavior is explained by
the degenerate geometry: the channel is infinite in two direc-
tions. If we restrict the channel at least in one direction
(length or width) the bulk velocity and the heat flow vector
immediately will be finite quantities.

So, the expressions of the moments and the flow rates
through the channel given below describe only their
asymptouc behavior at §— 0. From (3.38), (3.39), (3.43) and
(3.44) with the free terms for the diffuse-specular scattering
(2.23) we have

. hs-a E(r) (2-a)
Up= == S O e g
INT a T o
(3.55)
lT.\T: - % J.\‘F' . 5\1’: EXT > JXT: %L;_(p ° (34
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TaBLE 17. Reduced flow rate Gi’-‘- vs & and a by Sharipov (Ref. 141): S model

Gyr G::T

8 a=10 a=08 a=0.6 8 a=1.0 a=0.8 a=0.6
0.0005 0.7502 1.1215 1.7365 09 0.4092 0.4567 0.5140
0.001 0.7486 1.1166 1.7237 1.0 0.3959 04372 0.4865
0.005 0.7366 1.0838 1.6452 1.2 0.3721 0.4035 0.4402
0.01 0.7243 1.0530 1.5775 14 0.3514 0.3754 0.4020
0.02 0.7042 1.0070 1.4807 1.6 0.3330 0.3513 0.3718
0.03 0.6884 0.9719 1.4093 1.8 0.3165 0.3303 0.3456
0.04 0.6752 0.9432 1.3512 20 0.3016 0.3118 0.3230
0.05 0.6637 0.9186 1.3036 3.0 0.2439 0.2443 0.2445
0.06 0.6536 0.8970 1.2617 4.0 0.2042 0.2009 0.1971
0.07 0.6444 0.8778 1.2247 5.0 0.1752 0.1704 0.1651
0.08 0.6359 0.8603 1.1916 6.0 0.1531 0.1479 0.1420
0.09 0.6281 0.8444 1.1616 7.0 0.1359 0.1305 0.1245
0.1 0.6210 0.8297 1.1341 8.0 0.1220 0.1167 0.1108
0.2 0.5675 0.7244 0.9435 9.0 0.1106 0.1055 0.09979
0.3 0.5303 0.6558 0.8255 10.0 0.1014 0.09620 0.09079
0.4 0.5015 0.6050 0.7415 20.0 0.05426 0.05104 0.04746
0.5 0.4779 0.5648 0.6769 30.0 0.03685 0.03452 0.03187
0.6 0.4576 0.5315 0.6250 40.0 0.02785 0.02600 0.02388
0.7 0.4397 0.5031 0.5820 50.0 0.02212 0.02080 0.01874
0.8 0.4237 0.4784 0.5455

where E(x) is the complete elliptic integral of the second
kind defined as

E(x)= fom(l “xsin? ¢)2dé. (357)

The flow rates and the heat fluxes (3.27)—(3.30) take the
form

N e T N ’
(3.58)

Gu1=3Gyp. Qup=Gur. 0,1=3G,p.
(3.59)

The same result can be obtained via the integral equation
systems (3.40) and (3.45).

TaBLE 18. Reduced heat flux Qth vs & diffuse scattering, different methods

o
) a b N d e
0.01 S4225 6.6742 6.7342 6.7343
0.1 33008 3.8460 40553 4.0500 3.8669
1.0 1.3180 141382 1.7543 1.7535 1.7846
10.0 0.1742 0.2234 0.3407 0.3402 0.3467

‘Loyvalka (Ret."87). Eq. i3.38) (BGK). direct numerical method.

"Lo and Loyalka (Ref. 80:. Eq. 13.38) :BGK). variational method.
“Chernvak er «l. (Ref. 2210 Eq. (3431 (S model ). direct numerical method.
Chernyak er af. (Ref. 421, Eq. (3.43) (S model). variational method.
‘Lovalka and Hickev (Ref. 973, Eq. (3.13) with 12.53%) BE. discrete velocity
method.

3.6. Near Free-Molecular Regime

One of the methods to obtain the analytical expressions of
the flow rate and heat flux for the small values of the rar-
efaction parameter & is as follows. We use the expansion
(3.49) retaining a finite number of the terms. With the help of
this expansion we can obtain analytical expressions of the
coefficients .-%;; and .%,, of the algebraic system (3.53).
Then, this algebraic system can be resolved analytically.
Having the analytical expressions of the coefficients c,,, .
Com . C3,, ONE easily obtains the bulk velocity (3.51) and the
heat flow vector (3.52). Then, the flow rates and the heat
fluxes are calculated by (3.27)-(3.30).

For the tube flow this task was done by Chernyak ef a
Under the supposition of the diffuse scattering (2.22) they
obtained the flow rates and the heat fluxes up to the terms of
order 6%

[43

G'p=1.5045+ 5 In 5—0.38426—0.80246, (3.60)

Gir=0%=0.7523+ 8 In 6+0.11585— 1.20365,
(3.61)

Q%01=3.3851+2.55 In 5—0.46045—2.60786".
(3.62)

Since these expressions have a small number of the terms,
they give good precision in the very small range of 5 But
applying the method described here, one can obtain the
asymptotic formulas of the flow rates and the heat fluxes up
to any order of &.

Note. the algebraic system (3.53) and hence the expres-
sions (3.60)-(3.62) arc bascd on the § modcl.

I Phva Chem Raf Data Vnl 27 Na 2 1Q0R



688 F. SHARIPOV AND V. SELEZNEV

ch
T

0.1 1 10

F1G. 7. Reduced heat flux Q‘:’T vs & at diffuse scattering: solid line—BGK
by Lo and Loyalka (Ref. 80), dashed line—BGK with recalculated &,
squares—S model by Chernyak er al. (Ref. 42), crosses—BE by Loyalka
and Hickey (Ref. 97).

3.7. Hydrodynamic Regime

In the hydrodynamic regime (5—oc) the mass flow rate
can be found from the Navier—Stokes equation (2.44). Its
solution with the stickiness boundary condition (i.e., the bulk
velocity is equal to zero on the wall) for an infinite capillary
is well known, see e.g., Refs. 12, 73, 149. The dimensional
velocity profile has the form

1 dpP[{a\?

chy N 1 2

uy (y) mm{(z) y},
dpP

u(r)=——-—(a’~rl)

e {3.63)

for the channcl and tube, respectively. Here 7| — \/y7+47.
From (3.63) with the help of (2.41), (3.11) and (3.23) we
obtain the expression for the dimensioniless velocities:

TaBLE 19. Reduced heat flux Q;“T vs dand a by Loyalka and Hickey (Ref.
97): BE

0%

6 a=1.0 a=075 a=0.5
0.1 3.8669 5.3371 7.7430
0.25 3.0187 3.9702 5.4179
0.5 23918 2.9969 3.8420
0.75 2.0333 2.4635 3.0290
0.9 1.8750 2.2355 2.6959
1.0 1.7846 2.1077 2.5136
1] 1.7036 £.9948 2.3552
1.2 1 6308 18942 22141
1.3 1.5639 1.8038 2.0930
1.4 1.5030 1.7220 1.9832
1.5 1.4470 1.6476 1.8845
20 1.2217 1.3568 1.5102
3.0 0.9331 1.0044 1.0821
5.0 0.6319 0.6602 0.6903
7.0 0.4761 0.4909 0.5064

10.0 0.2167 (0.3540 0.3616

] Phyae Cham Raf Nafa Val 97 Aa 2 <ano

TaBLE 20. Reduced heat flux Q‘:T vs Sand @ by Lo et al. (Ref. 81): BGK

%1
Vg ) a=1.0 a=0.8 a=0,6
0.01 0.0067 3.2700 4.7987 7.2535
0.02 0.0133 3.1883 4.6135 6.8518
0.04 0.0267 3.0569 43294 6.2629
0.06 0.04 2.9485 4.1056 5.8195
0.1 0.0667 2.7703 3.7555 5.1579
0.4 0.2667 2.0146 2.4648 3.0152
0.6 0.4 1.7290 2.0428 2.4059
1.0 0.6667 1.3560 1.5356 1.7285
2.0 1.333 0.8849 0.9554 1.0227
3.0 2.0 0.6563 0.6939 0.7271
4.0 2.667 0.5210 0.5445 0.5640
50 3333 0.4318 0.4478 0.4605
8.0 5.333 0.2867 0.2918 0.2969
10.0 6.667 0.2335 0.2367 0.2400

\

R 3 R S S
u:f)(y)=—5(4——'y2), u;bp(rl)=—4—(l—ri%

ur=0. (3.64)
For the reduced flow rates (3.27) and (3.29) we have
ch 6 tb
Gp=g. GR=7. Ga=0. (369

The heat flux can be easily found from Fourier’s law
(2.37), which for the capillary flow takes the form

dr
g,=— Ka. (3.66)
With the help of (2.41), (3.11) and (3.23) we have
- - 15
9:0=0, g, 1=~ 5%, (3.67)

for both channel and tube. For the reduced heat fluxes (3.28)
and (3.30) we obtain

3.75

3.8. Slip Regime of the Gas Flow

3.8.1. Definition of the Siip Coefficients

In the previous section we have obtained the flow rates
assuming the stickiness boundary condition. However, the
bulk velocity is not equal to zero on the wall because there is
a slip of the gas. The tangential velocity u, of the gas near
the wall is proportional to its normal gradient and to the
longitudinal temperature gradient, i.e.,

du, aT

U,=Ap—+Ar+—,
TP, U Tax,

tn

(3.69)

where x, is the coordinate tangential to the surface, x,, is the
normal coordinate, and Ap and At are coefficients to be ob-
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tained with the help of the kinetic equation. Here, it is more
convenient to introduce the dimensionless slip coefficients as
follows:
\EA 1 (’n‘mT) ”ZA (370
TN TN\ 2 | T '
Taking into account the slip boundary condition (3.69) we
have the following velocity profiles:
1 dP[{a

2

h= l 4 adp|+Aper (3.71)

T T opar (\2) T At T AT
® 1 dp , dT
ux=—ma(a —ri+aAp) +ATa. (3.72)

From (3.71) and (3.72) with the help of (3.11), (3.23) and
(3.70) we obtain

14;",,_—4(—5(1 72) 2P, J;"T=;—(T5. (3.74)

Then, the reduced flow rates take the form
= z+oe, Gh= %T, (3.75)
GO= 4§+ op, Gop= %, (3.76)

3.8.2. Viscous Slip Coefficient

To obtain the viscous slip coefficient op one has to con-
sider a stationary rarefied gas flow in the semi-infinite space
x,=0 over an infinite plate having a constant temperature T
and fixed at x,=0. The behavior of the gas is described by
the linearized kinetic equation. At the surface (x,=0) the
perturbation function /4 satisfies the boundary condition
(2.18). At infinity (x,—) it is assumed that the perturba-
tion function coincides with the Chapman-Enskog solution
with the tangential bulk velocity having a small normal gra-
dient.

The detailed technique of solution of this problem and
numerical data on the coefficient op can be found in the
li[erature.0.23.29.34‘70.86.88.90.90,95‘100.1]5.155.107.170‘177 Here. we
consider the main rigorous results.

Diffuse scattering: Albertoni et al.® applying the method
of elementary solutions to the BGK model and assuming the
diffuse scattering (2.22), obtained

op=1016. (3.77)

This can be considered as the most exact results based on the
BGK model.

Loyalka and Ferziger™™ and Cercignani er al.”® calculated
the coefficient op using other kinetic models. They found
that the slip coefficient varies in the range

100

0.9624< 0p< 1.0185, (3.78)

TaBLE 21. Viscous slip coefficient op vs a

Tp
a a b c
0.1 17.1031 17.0058 17.2332
0.2 8.2249 8.1524 8.2721
0.3 5.2551 5.1928 52770
04 3.7626 3.7069 3.7734
0.5 2.8612 2.8107 2.8664
0.6 2.2554 2.2093 2.2576
0.7 1.8187 1.7766 1.8194
0.8 1.4877 1.4494 1.4877
0.9 1.2272 1.1925 1.2270
1.0 1.0162 0.9849 1.0160

*Loyalka et al. (Ref. 101), BGK.
YWakabayashi et al. (Ref. 163), BE.
“Equation (3.80).

i.e., it is only slightly model dependent.

The direct numerical solution of the BR for rigid spheres
obtained by Loyalka and Hickey®® and by Ohwada et al.!'®
give the following values®

0p=09845 and 0p=0.9849, (3.79)

respectively. One can see that agreement between these re-
sults is perfect. So, the value op=0.985 can be considered as
the most reliable one for perfect accommodation.

Diffuse-specular scattering: Applying the variational
method to the BE of Maxwellian molecules and assuming
the diffuse scattering (2.23) Loyalka®® obtained the following
expression for the slip coefficient:

2—a
opla)= T[op(l)—O.IZII(l —a)]. (3.80)

The same results were obtained by him in the paper86 using
an approximate method. The same expression (3.80) was
also obtained by Suetin and Chernyak'> from the S model
equation. Zhdanov and Zaznoba'’® obtained this expression
from the BE by the moment method.

Exact numerical calculations of the slip coefficient op
based on the BGK equation over the whole range of a were
carried out by Loyalka er al.'® Wakabayashi er al.'® per-
formed a numerical calculation of the BE by the discrete
velocity method. In Table 21 these results and op( @) calcu-
lated by (3.80) with op(1)=1.016 are presented. It can be
seen that there is good agreement between Eq. (3.80) and the
numerical data based on the BGK model.!%! The values of op
obtained from the BE'®® differ very slightly from the BGK
solution. Thus, Eq. (3.80) can be successfully used in prac-
tical calculations.

"The value given by Ohwada et al. (Ref. 115) must be multiplied by /4.

J. Phys. Chem. Ref. Data, Vol. 27. No. 3, 1998
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3.8.3. Thermal Slip Coefficient

To obtain the thermal slip coefficient o' one has to con-
sider a stationary rarefied gas flow in the semi-infinite space
x,=0 over an infinite plate fixed at x,=0 and having a
linear temperature distribution

Tw(xr)=T0(1 +§war)7 (381)

where §,,7 is a given constant. This temperature distribution
is established in the gas over the whole space occupied by
him.

At the surface (x,=0) the perturbation function 4 satisfies
the boundary condition (2.18). At infinity (x,—) the func-
tion & tends to the Chapman—-Enskog solution, correspond-
ing to the heat transfer in the gas by a constant temperature
gradient.

Two points should be noted here.

() First, sometimes in the literature the temperature jump
coefficient is called ‘‘the temperature slip coefficient’
(see, e.g., Refs. 70, 83). This could cause confusion,
because one may think that ‘‘the temperature slip co-
efficient’” is the same as e thermat slip coeflicient.
Here, we will not consider the temperature jump co-
efficient. We only point out that to obtain it one has to
consider a temperature gradient, which is normal to
the surface.

(if)  Second, since the BGK model has the Prandtl number
equal to unity rather than 2/3, to compute ¢ we must
be careful in the choice of the collision frequency v in
(2.45). The appropriate choice is that which leads to
the correct heat conduction coefficient, i.e., the ex-
pression (2.47). Thus, all results based on the BGK
model presented below will imply this choice of the
frequency v; even an original work uses the expres-
sion (2.46).

The detailed calculation of o and numerical data can be
found in the literature S*858892-94,101.115,117.150,155,169.172,173
Let us analyze the main rigorous results.

Diffuse scattering: An accurate numerical calculations
based on the BGK model with the diffuse scattering (2.22)
were performed by Sone,”® Williams,'® Loyalka™'’! and
Onishi.""” All of them obtained the same result, namely

o1=130.766=1.149. (3.82)

method applied to both the BGK
and the S model'> gave the following value:

o7=9/8=1.125. (3.83)

The same value has been obtained in the work® from the BE
for Maxwellian molecules. But the model equation with a
collision frequency appropriate to rigid sphere molecules®
gives the value

The variational
2
mode[85:8892

o71=0.9876. (3.84)

Lhe direct numerical solution of the BE for rigid spheres
obtained by Loyalkag3 and by Ohwada et al'®® gave the fol-
lowing values in our notations

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998

TABLE 22. Thermal slip coefficient o1 vs a

Oy
a a b c d e
0.0 0.7500 0.7500 0.7755 0.7500 0.7500
0.1 0.7925 0.7925 e 0.7899 0.7875
0.2 0.8344 0.8344 0.8286 0.8299 0.8250
0.3 0.8758 0.8757 e 0.8698 0.8625
04 0.9165 09164 0.8789 0.9097 0.9000
0.5 0.9567 0.9565 .- 0.9497 0.9375
0.6 0.9963 0.9961 0.9266 0.9896 0.9750
0.7 1.0354 1.0352 .- 1.0295 1.0125
0.8 1.0739 1.0737 0.9720 1.0694 1.0500
0.9 11119 1.1118 1.1094 1.0875
1.0 1.1495 1.1493 1.0152 1.1493 1.1250

°Loyalka et al. (Ref. 101), Integral equation based on BGK, direct numeri-
cal solution.

°Onishi (Ref. 117), Integral equation based on BGK, variational method.
“Wakabayashi et al. (Ref. 163), BE, discrete velocity method.

dEquation (3.86).

°Equation (3.87).

3
o= 0.6725=1009, and UT=-72:0.646=1.015,
(3.85)

respectively. One can sce that there is a fine agreement be-
tween these two results. So, the value o= 1.01 can be con-
sidered as the most reliable one for the diffuse scattering.

Diffuse-specular scattering: Based on the BGK equation
with the diffuse-specular scattering (2.23) Loyalka and
Cipolla“ applying the method of elementary solutions ob-
tained the expression

or=0.75+0.3993a. (3.86)

The variational method applied to the BGK and S
models®3°*155 gjves the following expression:

or=0.75+0.375a. (3.87)

The same expression was obtained by Zhdanov and
Zaznoba'’™® from the BE by the moment method.

Loyalka et al.'® solved the BGK model by the integro-
moment method. The integral equation was solved by the
exact numerical method. Onishi''” also obtained the integral
equation based on the BGK model. Then, the equation was
solved by the variational method. Wakabayashi et al.'®
solved the BE by the discrete velocity method.

In Table 22 numerical results of the works'®"!'"16 are
presented and compared with the expressions (3.86) and
(3.87). It can be seen that the expression (3.86) describes
finely the numerical results based on the BGK model. "o
The disagreement between the BE solution and that based on
the BGK model varies from 3% for =0 to 12% for a
=1.

3.9. Near Hydrodynamic Regime

In the two previous sections we obtained the expansions of
the flow rates and heat fluxes for the large rarefaction param-
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eter 6. The approach based on the Navier—Stokes equation
with the slip boundary condition allows us to obtain the
terms of the order O(6) and O(1) for G ,p and the terms of
the order O(1/8) for G 1. But using the approach described
in Sec. 3.6 we may find more terms in the expansion. The
unique difference from the approach for the small & is that:
the expansion (3.50) of the special functions [, is used. With
the help of this expansion we obtain the analytical expres-
sions of the coefficients .%;; and .4, of the system (3.53).
Then, we do the same as in Sec. 3.6 up to the analytical
expressions for the flow rates and for the heat fluxes.

The method of elementary solutions based on the BGK
model also allows us to obtain the analytical expressions of
the flow rates and the heat fluxes. The following asymptotic
formula (65— =) of the plane Poiseuille flow Gihp for the
diffuse scattering (2.22) was obtained by Williams'®®

G 0 1.0653 2.1354
Glpm g+ 10162+ ——— —5

(3.88)

Loyalka and Hickey®® using the BE obtained the coeffi-
cients G ;hp, G ihT, kahp and QihT for the diffuse scattering:

w 0 0.7089  1.0872
Gop= g T0.9790+ ————5—,  (3.89)
o . 09924 13284
G*T= Q*P: 5 — T, (390)
o 37839 35508
= (3.91)

They also provide the asymptotic formulas of these coeffi-
cients for the diffuse-specular scattering at «=0.5 and 0.1.
Comparing (3.88) and (3.89) one can see that the coefficients
of the asymptotic formulas essentially depend on the kinetic
model equation.

The asymptotic formula (8—x) of the cylindrical Poi-
seuille flow Gt:p for the diffuse scattering (2.22) was ob-
tained by Lang and Loyalka™ applying the BGK equation

b O 0.5490 0.607
G*P:"4‘+1.0162+ —5—*‘7 (3.92)

Chernyak er at."* applying the S model obtained the fol-
lowing expressions of the coefficients G:’p, Gi’r, Q‘EP and
Qi’T for the diffuse scattering:

s 06712 08657
Glp= S 410073+ ————=—.  (393)
1125 14687 06704 23424
Gt o gn o 112514087 06704 234
e
(3.94)
L 375 38085 18518 2.3593
e Y R S S

3.10. Arbitrary Drops of the Pressure and
Temperature

3.10.1. Main Relations

In this section, we realize the second stage of the problem
formulated in Sec. 3.1, viz. we obtain the mass flow rate as a
function of the pressures Py and Py and the temperatures 7T
and T, . For this purpose it is better to introduce two rarefac-
tion parameters:

5I=V_;i= aby [ m )”2

2 N #(Ti)kaTl/

5uzﬁi: aPy ( n }m (3.96)
2 Mg (T \2kgTy/

where A\; and A\ are the mean free paths in the left and right
containers, respectively. Here, Eq. (2.3) has been used. These
rarefaction parameters can be related each with other if the
intermolecular interaction law is given. Assuming the mol-
ecules to be hard spheres, from (2.40) we obtain Ax1/n
«T/P. Then, it is easily obtained

5=t It (397
2N ‘
Under the supposition of the small drops,
APIP<], ATIT <1, (3.98)

the variation of the rarefaction parameter § along the capil-
lary is negligible small and we may assume

51: (9[]: 0. (399)

In this case the mass flow rates and the heat fluxes are
easily calculated via the coefficients G, and O, using their
representations (3.31).

Under the condition (3.98) the TPD exponent y can be
calculated assuming G, =0 in (3.31), where the gradients
are calculated as

(Py=Py) (Ty—Ty)
b5 b1 (3.100)
Then, the coefficient y is easily obtained
G*T
Y= = (3.101)
G.p

If the differences AP/P; and AT/T; are large, the values
of 6; and &y may be different so significantly that the regime
of the gas flow can vary from the hydrodynamic to free-
molecular one along the capillary. In this case the rarefaction
parameter & varies along the capillary from the value &) to
the value 8. A priori we do not know the function 8(x ).
Below a differential equation for this function will be ob-
tained. Since numerical data are available only for the tube
flow we will not consider the channel flow here.

Let us introduce the new reduced flow rate as

th_ L 2kBT|‘ l/—,M[b' (3102)

- |

.
ma~Pi' m
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TABLE 24. Reduced flow rate G vs & and e at Ty;/T;=3.8 by Sharipov (Ref. 141)

Gir Gir

8 a=1 a=038 a=0.6 & a=1 a=0.8 a=0.6
0.01 0.9489 1.392 2.107 0.8 0.6054 0.7244 0.8813
0.02 0.9299 1.347 2.008 0.9 0.5877 0.6963 0.8381
0.03 0.9139 1.310 1.932 1.0 0.5716 0.6712 0.8001
0.04 0.9001 1.280 1.869 2.0 0.4582 0.5070 0.5662
0.05 0.8878 1.253 1.816 3.0 0.3884 04158 0.4476
0.06 0.8768 1.229 1.769 4.0 0.3389 0.3549 0.3728
0.07 0.8667 1.208 1.727 5.0 0.3013 0.3104 0.3204
0.08 0.8573 1.188 1.689 6.0 0.2714 0.2763 0.2814
0.09 0.8487 1.170 1.654 7.0 0.2471 0.2492 0.2511
0.1 0.8405 [.153 1.622 8.0 0.2268 0.2270 0.2268
0.2 0.7788 1.031 1.395 9.0 0.2096 0.2084 0.2067
0.3 0.7351 0.9180 1.249 10.0 0.1948 0.1926 0.1899
0.4 0.7006 0.8854 1.142 20.0 0.1139 0.1096 0.1048
0.5 0.6717 0.8348 1.058 30.0 0.08022 0.07637 0.07217
0.6 0.6468 0.7923 0.9885 40.0 0.06181 0.05852 0.05495
0.7 0.6249 0.7560 0.9307 50.0 0.05017 0.04735 0.04423

Note that unlike G%, this flow rate G*° does not vary along

" the capillary, but it is constant. If we express M™ from (3.26)
and substitute it into (3.102), we obtain

L? o e - PQ) - T
G‘b='—7wa(5(x)), PE)= = T =
(3.103)

In Sec. 3.1. it was shown that under the condition L>1 the
pressure and temperature gradients are small at any ratios
P,/Py and T\/Ty. So, Gi’ can be split into two parts as
(3.31). Taking into account (3.3), (3.10) and the definitions
of »”and .7 (3.103) we have

L7 [ o 5y L 97 g 51 &7

tb— I
G '71/2 *T g Va d; *P )'/) dx
(3.104)

With the help of (2.39) and (3.37) we may relate 8(x) with
7 and ./ as

—. (3.105)
(x)
This implies the use of the hard sphere model for the mol-
ecules. Using this relation the differential equation is easily
obtained for the function &(X)
l1d7 & G
Gipl 8)
(3.106)

with the boundary condition as: 6(—L/2)= ;. In this equa-
tion G™ is a parameter and we have to fit G"™ 50 as & would
be equal to &y at v=L/2.

To solve the differential equation (3.106) we need to know

the temperature distribution .71X) along the capillary. Since
the thermal conductivity of the capitlary wall is significantly
larger than the conductivity of the gas, the temperature dis-

tribution is determined by the thermal property of the capil-
lary and must be calculated independently of the gas flow
problem. Below some particular temperature distributions
will be considered.

3.10.2. Isothermal Flow

First, let us consider the isothermal flow, i.e., =Ty and
Z(x)=1. In this case Eq. (3.106) is reduced to

tb _ P
G p(8)dé=— Z-G dx, (3.107)
which is easily integrated
G®=~ L [™6o 540 3.108
3 s, +p(0)do. (3.108)

Sharipov and Seleznev'*® performed this integration using
the data of Table 17. Their results are presented in Table 23
where the following coefficient is introduced

Gl 8.6 =— PG (3.109)
ST Py =Py ‘
which satisfies the condition
lim GP(8,8)=Gop(8). (3.110)

Gi—&
Analyzing the data of Table 23 we conclude that the for-
mula ’

M) (3.111)

G?P((Slvgll):Gl:P( 2

can be successfully used to calculate the mass flow rate G‘Abp
at any pressure difference if and only if 7= Ty.
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694

F. SHARIPOV AND V. SELEZNEV

TaBLE 25. TPD exponent y vs &; and a at Ty /T;=3.8 by Sharipov (Ref. 141)

Y Y

& a=1 a=0.8 a=0.6 8 a=1 a=0.8 a=0.6
0.01 0.4921 0.4862 0.4789 08 0.3381 0.2967 0.2525
0.02 0.4857 0.4764 0.4653 0.9 0.3276 0.2860 0.2416
0.03 0.4802 0.4684 0.4544 1.0 0.3179 0.2761 0.2317
0.04 0.4754 0.4615 0.4452 2.0 0.2454 0.2067 0.1664
0.05 0.4710 0.4554 0.4371 3.0 0.1986 0.1650 0.1301
0.06 0.4670 0.4498 0.4298 4.0 0.1652 0.1362 0.1063
0.07 0.4633 04447 04232 5.0 0.1401 0.1151 0.08927
0.08 0.4598 0.4399 04171 6.0 0.1205 0.09892 0.07649
0.09 0.4564 0.4355 04114 7.0 0.1050 0.08612 0.06653
0.1 0.4532 04312 0.4061 8.0 0.09225 0.07573 0.05852
0.2 0.4273 0.3981 0.3653 9.0 0.08173 0.06716 0.05194
0.3 0.4071 0.3734 0.3362 10.0 0.07295 0.06003 0.04649
04 0.3899 0.3533 0.3133 20.0 0.03039 0.02551 0.02023
0.5 0.3749 0.3364 0.2945 30.0 0.01653 0.01411 0.01145
0.6 0.3615 0.3216 0.2786 40.0 0.01035 0.008950 0.007383
0.7 0.3493 0.3085 0.2648 50.0 0.007066 0.006176 0.005162

3.10.3. Isobaric Flow

Let us consider the isobaric flow, i.e., when P;=Py;. The
gas flow is caused only by the temperature drop. In this case
the differential equation (3.106) cannot be reduced.
Sharipov'*! solved the differential equation (3.106) using the
data of Tables 7, 10 and 17. The temperature ratio was taken
as Ty/T=293/77.2=3.8. These values usually are met in
practice and correspond to the room temperature and to the
temperature of liquid nitrogen, respectively.

The calculations were carried out with two temperature
distribution .7(x). It was found that the mass flow G¥ es-
sentially depends on this distribution. This means that Eq.

(3.106) must be solved anew for every given function .7(X).
If the thermal conductivity does not vary along the capillary,
the temperature distribution is linear, i.e.,

(3.112)

o =

ﬂ~)—1+(ﬁ—1)
SAX)= \Tl

The numerical data for this distribution are presented in
Table 24 where the coefficient G'At’T is introduced:

o TIG\b ‘
GAsz, (3.113)
which sarisfies the condition
lim G(&,6)= G yr(&). (3.114)
a4
Here, it is impossible to offer some simple formula like

(3.111).
It should be note that one cannot calculate the mass flow
rate G* as the linear combination of G'{p and G'{y

- Tl
I

-
Py

Py~ P, T
G®=-GY +GYr (3.115)

This is valid only at the small pressure and temperature
drops.
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3.10.4. Thermomolecular Pressure Difference

To calculate the TPD exponent y we assume that the mass
flow rate through the tube vanishes, i.e., G®=0. Then from
(3.104) for every cross section we have

7

" 1 d&° " 1
G*"(‘S)?E:G*T(‘S)?d;' (3.116)
With the help of (3.105) the last equation is reduced to

47 _7Gs(01717) 3.117)
7 76 A) G
To obtain the TPD exponent y we have to solve this differ-
ential equation considering #* as a function of .7~ with the
boundary condition: #—1 at % —1. When the function
A7) is known, the pressure ratio, which is established in
the stationary state, is calculated as Py/P\=ATy/Ty).
Then the exponent vy is found from (1.5) as
ln(P "/ P [)

YT WTy/Ty)
It should be noted that the function .7A.7) is not determined
by the temperature distribution .7{x) along the tube. There-
fore, the exponent y depends only on the temperature ratio
and on the rarefaction parameter &y.

Equation (3.117) was solved by Sharipov'*! using the data
of Tables 7, 10 and 17 for the temperature ratio Ty /T
=3.8. The numerical results are given in Table 25. Here it is
also impossible to offer some simple formula like (3.111).
The exponent y must be calculated anew for every given
ratio Ty/7;.

(3.118)

3.11. Applicability to Polyatomic Gases

Numerical results on the capillary flow of polyatomic

: . 40,41.80,103.104 :
gases can be found in the literature. Comparing
these results with the data presented here we conclude that
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only the Poiseuille flow, i.e., the coefficient G p is very
slightly affected by the internal structure of molecules. All
other coefficients G .1, Q,p and Q1 for polyatomic gases
essentially differ from those for monatomic gas. So, the nu-
merical data presented in Tables 1-10, 21, and 23 can be
successfully applied to any gas including a polyatomic one.
The data given in Tables 11-20, 22, 24, and 25 can be ap-
plied to monatomic gases only.

4. Gas Flow Through Slits and Orifices
4.1. Remarks

In the present section we consider the gas flow through a
capillary with the length equal to zero, /=0. This means that
the containers are separated by an infinitesimally thin parti-
tion having a slit or an orifice. The sketch of the flow and the
coordinates are given in Fig. 2. This type of rarefied gas
flows is very difficult for numerical calculations. According
to the general statement of the problem the containers are
very large, therefore a numerical grid must cover a suffi-
ciently large region in the containers. An estimate shows that
to reach a reasonable precision of the calculations, the region
size must be many times (about 40) larger than the mean free
path, while the increment of the numerical grid must be
smaller than the mean free path. Thus, unlike the one-
dimensional flow considered in the previous section, the nu-
merical scheme for the slit/orifice flows always has a large
number of grid points. That is why there are very few rigor-
ous results on the gas flow through slits and orifices.
~ Unfortunately, the majority of papers*®’>7713LI6LIEZ oy

this topic present the experimental and theoretical results
only in figures. This form of the result presentation gives
only a qualitative behavior of the flow rates, which is usually
known.

A number of papers offered asymptotic
formulas for the mass flow rate near the free-molecular re-
gime (6<1). But there is no agreement between them.
Moreover, these formulas work for very small values of the
rarefaction parameter. Therefore, they also give only quali-
tative behavior of the flow rate and are useless in practice.

Here we consider only papers providing the tabulated nu-
merical data on the slit/orifice gas flow in the large range of
the Knudsen number. The mass flow rate will be given as a
function of the two rarefaction parameters &, and &y defined
by (3.96). The heat flux will not be considered here. The
reader interested in the heat flux through a slit can find the
corresponding data in Ref. 142.

75,82,111,129,152,171

4.2. Free-Molecular Regime

In the free-molecular regime (§=¢&;=0) the mass flow
rate can be easily calculated because the distribution function
is Maxwellian (2.30) with the different number densities and
temperatures in the two velocity semi-spaces: v, <0 and
v, >0.

4.2.1. Outfiow to Vacuum

If the pressure ratio is very large, i.e., P}/ P;;— %, we may
consider that there is only the gas flow from the left con-
tainer to the right one. The bulk velocity in the orifice/slit
section can be calculated directly by (2.5). Regarding that in
the orifice/slit section n=ny/2 and for v, <0 the distribution
function is zero, we have

1
= M
e (ny/2) fvx>0f (n1,TL.0)v,dv

_2( m )yzf mv? 5
o\ 2mkeTy)  Juso P\ T 2iegry) U

B /ZkBT[_ 1
h am 2<v>1’

where (v); is the mean thermal molecular velocity (2.42) in
the left container. The mass flow rate takes the form
for slit

4.1)

L 1 m o\
Mfm=—2—m a ux=z'n1 m a{v)=aP; m ,

4.2)
for orifice
12
wor T _ mm
fm—?mwa2ux—4—nl m 'n'az(v)l=a2P1( ZkBT[)
4.3)

4.2.2, Arbitrary Drop of the Pressure

If the pressure in the right container is not so small as to
neglect it, we may consider that there are two contrary flows
of gas which do not interact each with other. So, the total
mass flow rate can be calculated as the difference of the two
contrary ones:

for slit
12
, m Py Py
Man=a( ) (—— == (4.4)
i 27kp N
for orifice
. am\ [ P P
e i R RO e
2ks) \\T, Ty
In the case of small pressure and temperature drops
AP . AT .
—<l, — .
p <l T <], (4.6)
we have
i = —ap ( m ) W(AP I AT‘) 7
m=aPlomenl i) WD
Mo = ZP{ m™m )”2 AP 1AT) 4
R by B e R on B
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TABLE 26. Reduced flow rate ¥ vs &; and &

i
a b c
& a=0 a=0.5 a=1 a=0.5 a=] a=1
0.01 1.009 1.009 1.009
0.02 1.017 1.017 1.017
0.04 1.029 1.030 1.030 1.036 1.036
0.08 1.052 1.054 1.055 1.061 1.062
0.1 1.061 1.064 1.066 1.072 1.074 e
0.25 1.126 1.134 1.138 1.1370
0.4 1.183 1.196 1.203 1.212 1.219
0.5 1.220 1.237 1.244 s e 1.2474
0.8 1.328 1.351 1.361 1.371 1.383
1.0 1.398 1.426 1.438 1.449 1.462 1.4396
2.0 1.753 1.786 1.801 1.811 1.831 1.8002
4.0 2.445 2484 2.500 2.504 2.533 24814
8.0 3.819 3.858 3.872 3.7827
10.0 4.506 4.546 4.556 4.556 4.590 2z
15.0 6.218 6.218 6.255
20.0 7.934 7.950 7.955 7.957 7.988
30.0 11.31 1131 11.30
40.0 14.65 14.66 14.66

*Sharipov (Ref. 140}, BGK, discrete velocity method.

SSharipov (Ref. 142), S model, discrete velocity method.

‘Hasegawa and Sone (Ref. 61), BGK, integro-moment method.

4.3. Transition Regime
4.3.1. Reduced Flow Rates

Numerical data on the slit/orifice flow in the transition
regime will be presented in terms of the reduced flow rate
defined as

2

Msl ( 27TkBTl) 12 . Mor ( 2kBTl) 172
= —— . '/"Or:

aP;\ m | azP[ mm

4.9
for slit and orifice, respectively. In the case of the small
pressure and temperature difference (4.6) the reduced flow
rate ¢ can be decomposed as*

AP AT
;;:_';PT_‘_'( (4.10)
1

“TaT,

From (4.7)-(4.9) one can see that in the free molecular re-
gime (&=48,;=0) the introduced coefficients .£p and 41 are
equal to unity. It should be noted that these coelficients have
been introduced so as their relation with the rarefaction pa-
rameters &; and &y does not contain any specific character-
istic of gas. So. representing theoretical data on ¥p and £ it
is not necessary to specify the gas.

4.3.2. Isothermal Flow Through a Slit

Numerical calculations of the isothermal (T =T7,;) gas
flow through a slit caused by the small pressure drop
(AP/P\<1). ie.. the coefficient .% j. was carried out by

“If the superscripts sl and or are omitted the corresponding expression 1s
valid for both slit and orifice.
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Hasegawa and Sone.5! They applied the integro-moment
method to the linearized BGK model (2.67) and assumed the
diffuse scattering (2.22) on the surface. Sharipov!**!*? cal-
culated the same coefficient & ;‘ applying the optimized dis-
crete velocity method to the linearized BGK model (2.67)
and to the linearized S model (2.68) assuming the diffuse-
specular (2.23) gas—surface interaction.

The data from the papers®!1“*142 are presented in Table 26
where the coefficient & ;1 is given as a function of the pa-
rameter &;. The values of the other parameter &y are not
indicated, because under the conditions AP/Py<l and
T=T; we have &;=45. One can see that at =1 (diffuse .
scattering) there is good agreement between the results ob-
tained from the different equations and by the different meth-
ods. A comparison of the flow rate for a=1 with that for
«—0 shows that the difference of ."//’f,l does not exceed 3%.
Regarding that in practice the coefficient « is close to unity
and rarely reaches the value 0.5, we may consider that the
coefficient ff;l does not depend on o

The following formulas interpolating the numerical data
on % ;‘ were offered by Sharipov:'*

% 9=1-(0.24391g 5,—0.3833)5,
—(0.0338lg §,-0.055)87, &,<8,

(4.11)
Lo 4.449-25.17lg 8,
L=
16 5
138.7—238.31g &,
—_—— . 528, (4.12)

&
The formulas cover the entire range of the rarefaction
parameter J; and can be used for any a.
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4.3.3. Isothermal Flow Through an Orifice

There is no theoretical data on the coefficient ¥ ¢ in the
transition regime. Below its empirical formulas are given.

Small pressure drop: Borisov et al.'® carried out a set of
experiments with various gases (He, Ne, Ar, Kr, Xe, H; and
N,) measuring the flow rate caused by the small pressure
drop (AP/Py<1 and Ty=T)). As is known the light gases
such as He and Ne have the gas—surface interaction param-
eter a less than unity even for a contaminated surface, while
the heavy gases such as Kr and Xe are perfectly accommo-
dated on the surface. However, the difference between the
flow rates of these gases was within 0.3%. This is one more
confirmation that the mass flow rate through a slit/orifice
caused by the pressure drop does not depend on the gas—
surface interaction law.

By the least-square method Borisov er al.'® obtained the
following empirical formula:

FU=1+0342 5y, (4.13)

which is valid for <50. In the range 6;>50 the results
based on the Stokes equation (see Sec. 4.4.1) can be used.
Large pressure drop: Fujimoto and Usami>® measured the
mass flow rate through a short tube at the large pressure drop
(P> Py). Under this condition we assume that y=0. The
gas used by them was air. The length-to-radius ratio varied in
the range from 0.05 to 25.4. If we extrapolate the empirical
formula offered by them to the zero length, we obtain

. 0.4733+0.6005/\/8
1+4.559/8,+3.094/6%

(4.14)

=
This formula is valid in the range §;<1l.

4.3.4. Nonisothermal Flow Through a Slit

The gas flow caused by the small temperature drop
(AT/T\<<1 and P;=Py), i.e., the coefficient /”Tl was cal-
culated by Sharipov'*? using the S model (2.68), which was
solved by the discrete velocity method. The results are pre-
sented in Table 27 where the coefficient £7 is given as a
function of ;. Since at the small temperature difference we
have &= &y, the valucs of the second parameter §); are not
indicated. One can see that unlike ¥ 5, the coefficient . §
depends on the gas—surface interaction parameter a.

4.3.5. Thermomolecular Pressure Difference

If a small temperature difference between the containers is
maintained, a small pressure difference will be established.
In this case the TPD exponent 7y can be expressed in terms of
the coefficients .4 and .. Assuming the total mass flow .2
in Eq. (4.10) is equal to zero and regarding the smallness of
the pressure and temperature drops we obtain

-
Sy
Y=35,

- p

(4.15)

Thus. with the help of Tables 26 and 27 one can easily cal-
culate the exponent .

TABLE 27. Reduced flow rate % 3 vs &; and a by Sharipov (Ref. 142)

E2
5 =05 a=1
0.04 0.9940 0.9968
0.08 0.9819 0.9883
0.1 0.9756 0.9841
0.2 0.9458 0.9642
0.4 0.8976 0.9309
0.8 0.8238 0.8756
1.0 0.8011 0.8586
20 0.6991 0.7728
40 0.5727 0.6535
10.0 0.3914 0.4621
20.0 0.2814 0.3384

Since in the free-molecular regime both coefficients %p
and %7 are equal to unity, the exponent y=1/2 at
6= 6y=0. This is the well known result of the kinetic theory
of gases.

4.4. Hydrodynamic Regime

4.4.1. Small Pressure Drop

A rigorous analytical solution in the hydrodynamic regime
(61 and &;>1) is available only for the isothermal
gas flow (T|=T)) caused by the small pressure drop
(AP/P<1). Under these suppositions the inertial terms in
the Navier—Stokes equation (2.44) can be omitted. More-
over, the gas can be considered as incompressible. Finally,
we obtain the so-called Stokes equations

mAu=VpP, V.u=0. (4.16)

This equation system was solved by Roscoe'?® for the flow
through an elliptic aperture. Then. the solution was repeated
by Hasimoto.”’

Slit flow: For the slit flow the solution of the system (4.16)
reads

/APa}éwl—nﬂ’

ll_\‘:_\ 8#« | §2_772 s (417)
ien(x)sient (’APa" gN(E =11 =)
.= —S1gnl.x}sign{ v 5 3
! ° S B -
(4.18)
Ap _ EVE-1
P:PI+T 1+Slgn(.r)F77—2 R (4.19)

where the curvilinear coordinates (£,7) are related with the
Cartesian (x.v) as

The mass flow rates M*' is easily obtained

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998
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M, e IG’Z O)dy= mnma’AP
S—x = NyM —al?_MX( .y )ay = 32,“; .

4.21)
With the help of (3.96), (4.9) and (4.10) the dimensionless
flow rate &3 is obtained as

3/2

w
Fil= <5 %1=0348 4. (4.22)

Orifice flow: For the stationary axisymmetric gas flow the
solution of the system (4.16) reads

. =_(AP a) \}(1—-772)3

rum| B (4.23)
. (AP a\ 51— P)VE -1
u,= mgn(x)(zlur) P , (4.24)
_ | S 1 \)fz—l e
P=P+AP 5+s1gn(x); Ez__—77—2—+arctan\/§ -1]/.
(4.25)

Here, the curvilinear coordinates (& 7) are related with the
coordinates (x,r) as

v + A v + A 0 I<¢
oy =a”, —=a spsIs¢
52 —1 Ef 772_ 1 772 7
(4.26)
The mass flow rate M™ is easily obtained
. a nyma’AP
MY, _=nm| wule,r)rdr=— —H—. (4.27)
! 0 3u

With the help of (3.96), (4.9) and (4.10) the dimensionless

flow rate <7 is obtained as

2
TU=——5=0376 5.

3r

4.4.2. Large Pressure Drop

{4.28)

The mass flow through an orificc causcd by a large pres-
sure drop (P> Py;) in the hydrodynamic regime (6> 1 and
8,>1) was estimated by Liepmann.”> Considering the ori-

fice as a nozzle. to which one can apply the Euler equation. -

Liepmann obtained

) (Z+ 1121y

L= AN m;(

e (4.29)

TaBLE 28. Dependence of A and .2 " on ¢ by Liepmann (Ref. 75)

Gas ¢ A 5
Ar 1.66 0812 1.476
N, 140 0.824 1414
o, 130 0.830 1.388

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998

where { is the ratio of the specific heats and A is a coefficient
to be obtained from an experiment. In Table 28 the depen-
dence of A and ¥ on { is presented.

4.5. Applicability to Polyatomic Gases

The conclusions on the applicability of the data presented
in this section can be based on the experimental data by
Borisov et al.'® They measured the mass flow rate through
an orifice under the small pressure drop for both monatomic
and polyatomic gases. As it was pointed out in Sec. 4.3.3 the
difference of the flow rate for different gases was within
0.3%. There are no analogous data on the slit flow, but the
conclusion will very likely be the same. So, the resuits given
in the present section on the coefficient %p, i.e., the data
presented in Table 26 and Egs. (4.11)~(4.13), (4.22), (4.28)
can be successfully applied to any gas including a poly-
atomic one.

Since the thermal creep through a long capillary is very
affected by the internal structure of molecules, it would be
logical to conclude that the coefficient &7 for a polyatomic
gas differs significantly from that for a monatomic one. So,
the data presented in Table 27 can be applied to monatomic
gases only.

In the case of the large pressure drop the free molecular
mass flow (4.4) and (4.5) does not depend on the internal
structure of molecules, while the hydrodynamic flow rate
(4.29) depends on the ratio of the specific heats and hence,
on the molecular structure. The variation of & for different
gases is within 6% (see Table 28).

It is obvious that with the decreasing rarefaction parameter
o) the influence of the internal molecular structure will de-
crease. It will vanish at ;=0 for any pressure drop. I'rom
Sec. 4.3.3 one can see that this influence vanishes at the
small pressure drop for any rarefaction parameter. So, we
may conclude that the influence of the internal molecular
structure on the isothermal mass flow rate is largest in the
hydrodynamic regime (J8;>1) at the large pressure drop
(P> Pyy). From Table 28 one can see that for gases with the
specific heat ratio being in the range 1.3<<{<C1.66 the influ-
ence of the internal structure on the mass flow rate does not
exceed 6%.

5. Gas Flow Through Capillaries
of Finite Length

5.1. Remarks

In this section, we consider the gas flow through a capil-
lary with a finite length-to-diameter ratio. The sketch of
the gas flow and the coordinates are given in Fig. 1. Like
the slit/orifice flow here the main difficulty is the calculation
of the flow field in the containers near the capillary
entrances. To overcome this difficuity, usually it is
assumed* 32174 whar the molecules come to the cap-
illary with the Maxwellian distribution function, i.e., there 1s
no variation of the distribution function in the containers.
This supposition can be justified only in the free-molecular
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regime. However, in the transition and hydrodynamic re-
gimes the distribution function of the molecules entering into
the capillary from the containers significantly differs from
the Maxwellian. That is why the abové ‘mentioned supposi-
tion gives a great error in the calculation.

Here we consider only papers providing numerical data on
the mass flow rate without this supposition. The definitions
of the rarefaction parameters &y and &y (3.96) will be used in
this section. Since the heat flux through finite capillaries is
investigated very poorly, it will not be considered here. The
reader interested in the heat flux can find the corresponding
data in Refs. 144, 146.

5.2. Free-Molecular Regime

5.2.1. Transmission Probability

Let us consider the collisionless regime (8= dy=0). In
this case the mass flow rate can be calculated in terms of the
transmission probability. Let W;_ be a probability that a
particle entering into capillary from the left container will go
out to the right one. The quantity W_,y is called the trans-
mission probability. Let Wy_,; be a transmission probability
from the right container to the left one. Then, the mass flow
rate can be calculated as

for channel

gch _pch agsl  pch aogsl
M= WM i~ WimiM e 11, 5.1
for tube
gt _yplb  pgor _ pptb ogor
Mg =Wl fm.I Wi fm.ID (5.2)

where Mg, and Mfm‘u are mass flows into the capillary from
the left and right container, respectively. Calculating them
with the help of (4.2) and (4.3) we have

V12 )
. m Py Py
= ( Wiy = Wil =), (53)
m ! 277'/(8} \/TI \/T_H,
- ‘ 17 \
. 5 m™m P] P[I
MP =a?| — ( Wb =-w —) (5.4)
" ‘ 2k T
In the case of isotropic capillary when
Wi_y=Wi_ =W, (5.5)
we have
12 \
. m P P
M= o] Wl Lo L] s
Yk ! I NTy!
. 2' TTHT 172 'lh‘ P] P” i )
MI'm:a 2"8} W = T (57)

Thus. if one knows the transmission probability W. one
easily calculates the mass flow rate in the free molecular
regime.

TABLE 29. Transmission probability W vs L: diffuse scattering

Wch

L a b c

0.1 0.9525 0.9525

0.2 0.9096 0.9096

04 0.8362 0.8362 e

0.5 0.8047 0.8048 0.8047

1.0 0.6844 0.6848 0.6844

2.0 0.5421 0.5417 0.5421

4.0 0.3992 0.3999 o

5.0 0.3565 0.3582 0.3565
10.0 0.2408 0.2457 e

*Equation (5.8).
®Clausing (Ref. 49).
‘Yamamoto and Asai (Ref. 174).

5.2.2. Diffuse Scattering

In the case of the perfect accommodation of the gas on the
surface, i.e., the diffuse scattering (2.22), the transmission
probabilities satisfy Eq. (5.5) and can be calculated by two
methods: using Clausing’s equation (2.93) or by the test par-
ticle Monte Carlo (MC) method described in Sec. 2.11.2.

Clausing® was the first to derive the integral equation
(2.93) and solve it. De Marcus and Hopper’>*® performed a
more accurate solution of the integral equation by the varia-
tional method. Berman® offered the following analytical ex-
pressions for W based on the variational solution

for channel

1
Wch:_2_[1 +(1 +L2)l/2_L]

%{L—ln[L+(L2+ 'y

_L3+3L2+4_(L2+4)(1+L2)]/2, (58)

TasLe 30. Transmission probability W' vs L: diffuse scattering

wv[b

L a b [ d

0.1 0.9524 0.9524 0.9535

0.2 0.9092 0.9092 0.9109

0.4 0.8341 0.8341 0.8332

0.5 0.8013 0.8013 0.8007

1.0 0.6720 0.6720 e 0.6716

20 0.5142 0.5136 05142 0.5135

4.0 0.3566 0.3589 - 0.3548

5.0 0.3105 0.3146 0.3090
10.0 0.1910 0.1973 0.1919
20.0 0.1094 0.1135 0.1093 0.1098
40.0 0.05949 0.0613 0.05946 0.05977
80.0 0.03127 0.0319 0.03125 003119

“Equation (5.9).

"Clausing (Ref. 49).
“Neudachin er al. (Ref. 112).
“MC method.

1 Phye Cham Raf Nata Un! 27 M~ 2 1000 -
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TaBLE 31. Transmission probability W® vs L and a by de Marcus (Ref. 53):
variational method

W(b
L a=0.4 a=0.6 a=0.8
2 0.74693 0.65890 0.58247
100 e 0.054743 0.036744
for tube

L* L
Wh=1+ = (L +4)1"

[(8_L2)(L2+4)1/2+L3_ 16]2
T2L(L*+4)"?—288 In[L/2+(L*/4+1)"]"
(5.9

A direct numerical solution of the Clausing equation
(2.93) for the channel was obtained by Yamamoto and
Asai.'™ In Table 29 the values of the transmission probabil-
ity W calculated with the help of Eq. (5.8) (second col-
umn), the results by Clausing® (third column) and data by
Yamamoto and Asai'’* (fourth column) are presented. One
can see that at the larger values of L the results by Clausing
are slightly overstated. There is an excellent agreement (to
four significant figures) between the direct numerical
sofution!” and Rq. (5.8).

Neudachin et al.'? obtained the variational solution of the
integral equation (2.93) for the tube. In the book by Bird'®
the simple program to calculate the transmission probability
W™ by the test particle MC method is given. Using this pro-
gram one can easily calculate the transmission probability
W® for any L. In Table 30 the values of W™ calculated with
the help of Eq. (5.9) (second column), the results of
Clausing® (third column), the data by Neudachin er al.!'?
(fourth column) and the results obtained with the help of the
program by Bird'® (fifth column) are presented. Here, we
may also conclude that Eq. (5.9) is in excellent agreement

TABLE 32. Transmission probability W® vs L and a: MC method

we
L a=04 a=0.6 a=0.8
0.1 0.9808 0.9707 0.9626
0.2 0.9625 0.9440 0.9263
04 0.9274 0.8971 0.8641
0.3 09136 0.8732 0.8357
1.0 ().8483 0.7847 0.7280
2.0 0.7476 0.6568 0.3818
4.0 0.6131 0.5093 0.4248
5.0 0.5728 0.4634 0.3796
10.0 0.4240 0.3212 0.2476
200 11.2880 0.2040 (.1483
40.0 0.1803 0.1191 0.08373
50.0 0.1520 0.09970 0.06877
100.0 - 008722 0.05457 0.03668

J. Phys, Chem. Ref. Data, Vol. 27, No. 3, 1998

with the results of the work''? and with the data obtained by
the MC method. The results by Clausing are overstated for
large L. ‘

5.2.3. Diffuse-Specular Scattering

The Clausing equation (2.93) for the diffuse-specular gas-
surface interaction (2.23) was solved by De Marcus™ only
for the tube. The results are presented in Table 31.

To apply the MC method to the diffuse-specular scattering
a small modification of the program by Bird'® is necessary.
In Table 32 the results obtained with the help of the modified
program are presented. One can see that the results based on
the variational method> and the MC results are in good
agreement.

No data on W are available in the literature for the
diffuse-specular reflection. But it can be easily obtained by
the test particle MC method described by Bird.!

5.2.4. Surface Roughness

The influence of the wall roughness on the transmission
probability was investigated by Davis et al. *® and by Porod-
nov et al.'?! The roughness can be characterized by two
quantities: the ratio of the roughness height to the capillary
diameter #/u; and the angle of the roughness inclination.
Generally it is necessary to define the distribution function of
both quantities. It is difficult to give some quantitative de-
pendence of the transmission probability on the roughness.
From the results of Refs. 50, 121 we can say only that: (i) the
influence approaches its maximum value if the capillary di-
ameter is comparable with its own length provided that the
roughness has a ‘‘saw’’ form with an inclination of about
45°. In this case the decrease of the transmission probability
exceed 10% even for #/a=0.05. It should be noted that a
nonsymmetric ‘‘saw’’ can make the capillary nonisotropic,
i.e., the condition (5.5) can be violated.

5.2.5. Thermomolecular Pressure Difference

To relate the TPD exponent y with the transmission prob-
ability we assume that the total mass flow through a tube is
zero. Then, from (5.3) or (5.4) we have

W ol oy, (5.10)
B | A el N—1"=- .
: VT, ‘fﬁ

If one rewrites this equation in the form (1.5) one obtains
the following expression for the exponent y:

In{W_y/Wp_p)

5.1
In(T;/Ty) S

|

Y= 5

It can he seen that under the condition (5.5) the exponent

y=1/2 for both channel and tube. Thus, the diffuse-specular

gas—surface interaction always gives y=1/2 in the free-
molecular regime.

Experimental data on the exponent 7 are available in the

literature.”>* The experiment with a smooth Pyrex tube®

gave y=0.4. This means that the transmission probability
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from the ‘‘hot’ container to the ‘‘cold”” one Wy_y is larger
than the transmission probability in the opposite direction
Wi_r- Since the diffuse-specular scattering leads to y=1/2
at any value of the parameter «, it cannot correctly describe
this experimental result. It would-be-more correct to use
another gas—surface interaction law, i.e., the Cercignani—-
Lampis kernel (2.24).

The experiments with a leached Pyrex tube, which pro-
vides the diffuse scattering, gave y=1/2 as the theory pre-
dicts.

5.3. Reduced Flow Rates

To present the mass flow rates through a tube we will use
the notation (3.102). Let us introduce an analogous notation
for the channel flow as

n
g L <2kBTI} e

=— 5
aP; m (5.12)

If the pressure and the temperature drops are small, ie.,
AP/P;<1 and AT/T(<1, both flow rates G and G™ can be
decomposed as

AP AT
GZ_GP_})T+GT_7T“' (513)
One must not confuse the coefficients G, p and G .t intro-
duced in Sec. 3.2. with those introduced here. The matter is
that G, p and G4 are used only for long capillaries but for
any pressure and temperature drops, while Gp and Gt are
used only for small pressure and temperature drops but for
any capillary length. The coefficients coincide if the capillary
is long and at the same time the pressure and temperature
drops are small. Note that the coefficients Gp and Gt have
been introduced so as their relation with the rarefaction pa-
rameters &y and &y does not contain any specific character-
istic of gas. So, representing theoretical data on these coef-
ficients it is not necessary to specify the gas.

5.4. Hydrodynamic Regime

The mass flow rate through a capillary of finite length first
was obtained in the hydrodynamic regime under the suppo-
sition of the small pressure drop AP/P<1. Under this con-
dition we may consider &= Ay . The capillary can be con-
sidered as a resistor to the gas flow: when the capillary is
longer, the mass flow rate is smaller at the same pressure
difference. So. the capillary resistance is proportional to the
capillary length. Since the capillary ends create an additional
resistance for the flow, the idea was to substitute the real
length by some effective length. Mathematically this means
6 L Gioo _5_, L

PraL+AL™

ch

LA VR >

The additional lengths AL would not depend on the real
capillary length L. This representation of Gp provides the
expressions (3.65) in the limit of the infinite length.

TaBLE 33. Reduced flow rate G‘,’,h vs L in the hydrodynamic regime

GMS,
L a b
1 0.0908 0.0901
5 0.1427 0.1425
10 0.1538 0.1536
30 0.1622 0.1621

*Akinshin et al. (Ref. 5).
®Equation (5.18).

The additional length AL® for the tube flow was calcu-
lated by Weissberg164 based on the solution of the Navier—
Stokes equation by the variational method. It was found that
the upper limit as: AL®<3.477/8. If one calculates AL®
from the hydrodynamic solution of the orifice flow (4.28)
taking into account the relation
Gy Vm 6
:€$=\Gﬂﬁg-fi=3%-zfﬁ, (5.15)

one obtains AL®=3/8, which is close to the upper limit.
Thus, we may assume that the formula

& L

w_ =
Gr= 4 (L+3%/8)

(5.16)
is valid for any tube length in the hydrodynamic regime.

The same formula can be obtained for the channel flow.
Taking into account the relation

G Jr
sch_ . P - i
p \j'rth_r)r()) AR AN (5.17)
and the hydrodynamic solution (4.22), we obtain

AL®"=8/(3 ). For the mass flow rate through a channel we
have

a_ O L
P66 [L+8/(37)]

which gives the correct value of the mass flow rate in both
limits L=0 and L—=..

(5.18)

TABLE 34. Reduced flow rate G§' vs L and & by Sharipov (Ref. 132):
diffuse scattering

Gy
5 . L= L=5 L=10 L=30
0.0 0.386 1.00 135 1.97
0.02 0.391 1.00 1.35 1.88
0.04 0.396 1.00 1.34 1.81
0.1 0.406 101 132 1.68
0.2 0.421 1.02 1.28 1.57
0.4 0.447 1.03 1.26 149
10 0.512 1.10 1.27 1.43
20 0.601 1.19 1.36 1.50
1.0 0.762 1.43 1.61 1.76
8.0 1.00 1.89 213 2.32
10.0 1.18 218 244 265

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998
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TaBLE 35. Additional length AL® vs &, : diffuse scattering

& 0.2 0.4 1.0 2.0 40 30 100 =
AL 352 267 202 163 1.43 1.44 133 0.84

Exact numerical calculations of the Stokes equation (4.16)
for the viscous flow through a finite channel was carried out
by Akinshin e al.’ The results of the calculations are pre-
sented in Table 33. The comparison of these numerical re-
sults with the formula (5.18) shows that there is perfect
agreement between them.

Thus, the formulas (5.16) and (5.18) can be successfully
used in the hydrodynamic regime for a capillary of arbitrary
length if the pressure drop is small AP/Py<1.

5.5. Transition Regime

5.5.1. iIsothermal Flow Through a Channel

Exact numerical results of the gas flow through a channel
caused by the small pressure drop (AP/P;<€1) were ob-
tained by Sharipov'**!"**1% applying the integro-moment
method to the BGK model and to the S model. The results
based on the BGK model are presented in Table 34. The
values of the coefficient G‘lih obtained from the S model co-
incide with those obtained from the BGK model.

An analysis of the data shows that in the transition regime
we also may utilize the idea of the effective length, i.e, the
flow rate through the finite channel Gy can be related with
the flow rate through the infinite channel Gf:p as

Gy(L, &)=

Gap(8D), (5.19)

L+AL®
where the additional length AL®® depends only on the rar-
cfaction parameter §;. Unfortunatcly, for an intcrmcdiatc &
we cannot apply Eq. (5.19) in the whole range of the length
L. The range of the application depends on the precision that
one needs. If the precision is 2% the application of Eq. (5.19)
is restricted by the following condition

8,L=20. (5.20)

In Table 35 the quantity AL as a function of &y is pre-
sented. These data and those given in Table 3 can be used to
calculate the flow rate Gf;h if the dimensionless length satis-
fies the condition {5.20).

5.5.2. Isothermal Flow Through a Tube

There are not any rigorous theoretical data for the gas flow
through a tube of finite length. Below, some empirical for-
mulas are given.

Small pressure drop: Lund and Berman
semiempirical formula for the coefficient G®, which coin-
cides with all limit solutions known by 1966: (i) L=0 and
8—=. (ii) L—x= and §—=, (iii) L is arbitrary and §;=0.
A lot of empirical coefficients were introduced which depend
on the type of the gas, type of capillary material and the
length-to-radius ratio {/a. Finally, the semiempirical formula

196 htained a

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998

was very complicated. An analysis of the formula shows
that: (i) the empirical coefficients £ and C (notations of
Lund and Berman) are close to unity; the coefficient o is
close to 1.6, and the coefficient A* is close to 1.1. Here, we
give the simplified formula assuming E=C=1, o=1.,
A*=1.1 for all types of the gas and for all types of the
capillary

GoG
P= Gyt e .
Gr=Gy GorG (5.21)
where
G- 1.50 0.05478,L(0.7938;— 1)/(1+0.042L)
1+ 1,144 1+17.76+4.6467+5.025;
2.538;+2.67/WP—L] ! 5o
(1+1.618)L ’ (522
_28L 1.35 53
0" 34 14+0.5576;’ (5:23)
e | P L 5.24
‘4 1+0.95468,] (5:24)

This formula can be serve for an estimate of the mass flow
rate through a tube of arbitrary length.

Large pressure drop: Fujimoto and Usami® performed
experiments on the gas flow through a short tube
(0.05=<L=25.2) at different pressure ratios P;/Py,. For the
large pressure drop P;/Py> 100 (it is practically outflow into
vacuum, 6y;=0) they offered the following empirical for-
mula for the coefficient G defined by (3.102)

oL [W,b+ 0.4733+0.907\1/(8,77) 2]’ 529
Vm 1+ 10.4/(8,7) + 16.1/(8,7)
where
7= | WP+0.125 expl - Ml
Var 2

+0.18 exp(— 14.7W“’)—0.08}, (5.26)
W™ is the transmission probability. It is implied that the gas—
surface interaction is diffuse and the data on W™ can be
calculated by (5.9). This formula is valid for §,<11 and
L<252.

5.5.3. Nonisothermal Flow Through a Channel

The nonisothermal gas flow through a capillary of finite
length is the least investigated problem considered in the
review. To our knowledge, only numerical resnlts on the gas
flow through a channel at the small pressure and temperature
drops obtained by Sharipov et al.'**1#146 gre available. The
linearized S model (2.68) was applied as an input equation,
which was solved by the integro-moment method. Two tem-
perature distributions (1.1) were considered:

(1) linear distribution
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TaBLE 36. Reduced flow rates G5 vs L and & by Sharipov and Seleznev
(Ref. 144): diffuse scattering

G
distr. (5.27) distr. (5.28)

8 L=1 L=5 L=1 L=5
0.02 0.192 0.491 0.191 0.491
0.04 0.190 0.480 0.190 0.480
0.1 0.186 0.452 0.186 0.453
0.2 0.180 0.416 0.180 0417
0.4 0.169 0.367 0.169 0.366
1.0 0.146 0.285 0.146 0.280
2.0 0.118 0.217 0.118 0.211

-1 X (5.27)
r,(X)==+ -, .
w(X) T
(ii) step distribution
_ |0 for —Lp<skx=<O0,
7.(x)= _ (5.28)
v 1 for oO<x<L/.

~ In Table 36 the reduced flow rates G5 are presented as the
function of & and L. One can see that the coefficient G5*
very slightly depends on the temperature distribution 7,,(X).

5.5.4. Thermomolecular Pressure Difference

Using the data on G%h (Table 36) and G‘f,h (Table 34) one
can easily calculate the TPD exponent vy for the small tem-
perature drop. To find vy one has to assume G=0 in (5.13).
Using the smallness of AP and AT one obtains

ch
T cht
GP

Y (5.29)

5.6. Applicability to Polyatomic Gases

Since in the free-molecular regime there is no influence of
the molecular structure to the mass flow all results on the
transmission probability, i.e.. the data given in Tables 29-33
can be applied to any gas including a polyatomic one.

There are no theoretical data on the polyatomic gas flows
through a capillary of finite length in the transition regime.
Regarding that the coefficient Gp is intermediate between the
coefficients G ,p and .£p, we may conclude that Gp is very
slightly dependent on the molecular structure. So the data
given in Tables 34, 35 and Egs. (5.16), (5.18), (5.19), (5.21)
can be applied to any gas including a polyatomic one.

_Since the thermal creep through a long capillary G, 1 es-
sentially depends on the molecular structure, it is logical to
conclude that the coefficient G for a polyatomic gas differs
significantly from that for a monatomic one. This means that
the data given in Table 36 are applied to monatomic gases
only. '

6. Concluding Remarks

Numerical and-analytical results on the rarefied gas flows
through capillaries of different length are analyzed in the
review. The numerical data and analytical formulas pre-
sented here can be used to calculate the mass flow rate and
the heat flux caused by both pressure and temperature drops
on the capillary ends.

In Sec. 1 geometrical parameters of capillaries and main
assumptions on the gas flow were described. Two types of
the capillary cross section were considered: the round cross
section (tube) and the cross section composed by two infinite
planes (channel). The first type of the capillary is very im-
portant in practical calculations. The second type is an ex-
ample of the degenerated geometry, which is not met in prac-
tice but it is very important for theoretical investigations and
serves to test new numerical methods and new kinetic mod-
els.

In Sec. 2 three regimes of the gas flows were regarded: (i)
the free-molecular regime, when every molecule moves
without collision with each other; (ii) the transition regime,
when the molecular mean free path has the same order as the
capillary diameter; (iii) the hydrodynamic regime, when the
mean free path is so small that the gas can be considered as
continuous medium. The main methods of calculation of rar-
efied gas flows in every regime were given.

In Sec. 3 long capillaries were considered. This means that
the capillary length is so large that the end effects can be
neglected. This supposition significantly simplifies numerical
calculations because the gas flow becomes one dimensional.
That is why there is a lot of calculation data on this type of
flow. The numerical results on the flow rate and the heat flux
in the transition regime were tabulated. Analytical formulas
were offered for the near free-molecular and near hydrody-
namic regimes.

It is obvious that the most reliable results should be ob-
tained applying the Boltzmann equation or using the direct
simulation Monte Carlo method. However, to reduce the
computational efforts two recommendations, based on the
data presented in Sce. 3, can be given:

(i) The BGK model can be successfully applied for nu-
merical calculations of isothermal rarefied gas flows. It is
valid for both monatomic and polyatomic gases:

(ii) Since the BGK model gives the incorrect Prandtl num-
ber, the S model is recommended for calculations of non-
isothermal flows of monatomic gases. In the case of noniso-
thermal flows of polyatomic gases some special model equa-
tions should be applied.

In Sec. 4 the rarefied gas flows through an infinitesimal slit
and orifice -were analyzed. Because of the complexity for
numerical calculations there is little information on this type
of two-dimensional gas flows. Analytical solutions of the gas
flow through a slit and orifice are available only in the free-
molecular and hydrodynamic regimes. The reliable numeri-
cal data on the mass flow rate in the transition regime are
available only for the slit flow caused by the small pressure
and temperature drops. There are some empirical formulas
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for the flow rate through an orifice in the transition regime.

But even from this poor information the following impor-
tant conclusion can be made: the mass flow rate caused by
the pressure drop is very weakly affected by the gas—surface
interaction law. So, further calculations of the mass flow rate
can be performed only for the diffuse scattering of molecules
on the surface without regard to the real gas—surface inter-
action law.

In Sec. 5 the rarefied gas flows through a capillary of finite
length were analyzed. In spite of the fact that this type of
flow has great importance in practice, it is investigated very
poorly. Numerical calculations in the entire range of the
Knudsen number were performed only for the isothermal gas
flow through a channel. For the flow through a tube an em-
pirical formula was offered.

Some numerical data on the free-molecular flow through a
finite capillary were given in Sec. 5. Using these data we
concluded that in this regime of gas flow the TPD exponent
y is equal to 1/2 for any capillary, if the diffuse-specular
scattering of molecules on the walls is assumed. That is, the
TPD exponent does not depend on the capillary form (tube
or channel), on the capillary length, and on the gas—surface
interaction parameter o. As was indicated this result does not
agree with the experimental data. From this fact we con-
cluded that the widely applied diffuse-specular law is not
appropriate to describe nonisothermal rarefied gas flows.

Based on the data given in the review we may outline the
main trends for further investigations of the internal rarefied
gas flows:

(i) Numerical calculations of the rarefied gas flows based
on some gas—surface interaction law different from the
diffuse-specular one would be very useful for further devel-
opment of the gas—surface interaction models. To our knowl-
edge there are only three works>!%1% analyzing the gas
flows for different gas—surface interactions. Since these re-
sults were obtained under different conditions, it is very dif-
ficult to compare them and to indicate the reliable ones. Fur-
ther, such calculations should be carried out jointly with
experimental measurements. Comparing theoretical results
and experimental data it will be possible to select the most
adequate gas—surface interaction models and to tabulate the
accommodation coefficients.

(i) Until now we know almost nothing of the gas flow
through a capillary with a rectangular cross section when the
width b (see Fig. 1) is arbitrary. We may indicate only the
paper by Loyalka et al'% on this topic. At the same time,
this type of gas flow is very important for both practice and
science. The fact is that one can easily control the chemical
and mechanical characteristics of the surface in the rectan-
gular channel. That is why the channel flow can serve as an
indirect measurement of the gas—surface interaction param-
eters as a function of the surface properties. It is obvious that
to apply the data on the channel flow presented in Sec. 3 the
real width of the channel must be sufficiently large to elimi-
nate the influence of the lateral walls on the gas flow. But
without numerical calculations of the gas flow through a
channel with a finite width b one cannot estimate the value
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of b, which would be sufficient to neglect by the effect of the
lateral walls.

(iii) There is a lack of numerical data on the rarefied gas
flow through slits and orifices. The direct simulation Monte
Carlo method, which is widely applied today, is an ideal tool
to investigate such a type of gas flow. Moreover, the gas flow
through an orifice and slit has the following feature: the mass
flow rate caused by the pressure drop is not affected by the
gas—interaction law. Since the flow rate depends only on the
intermolecular interaction law, this feature can be employed
to test new molecular models.
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