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Preface

The use of software in measurement systems has dramatically increased in the last few
years, making many devices easier to use, more reliable and more accurate. However,
the hidden complexity within the software is a potential source of undetected errors. Both
users and suppliers of such systems must be aware of the risks involved and take appropriate
precautions. Such risks may have safety implications for some uses of measurement systems.
Safety implications are handled in this Guide by reference to the generic safety standard
IEC 61508. Readers are warned that safety is a systems issue, which implies that this
Guide (which only handles software) can only provide part of a solution to the validation of
measurement software within safety systems.

In this Guide, we consider the implications of the use of software in measurement systems.
Such software could be embedded within the measurement system, be provided by the system
supplier but be separate from the measurement system, or could be developed separately
to work with one or many types of measurement system. The key issue is to preserve the
integrity of the measurement process.

Although users of measurement systems have a different perspective than the suppliers
of measurement systems, just one Guide is provided. The reason for this is that the user
needs to understand what the supplier can reasonably provide to demonstrate the integrity
of the measurements. Equally, the supplier needs to be aware of the legitimate concerns of
the users in order to provide assurance in a manner that can be accepted by the users. In
a competitive market, a consistent approach to quality assurance for measurement software
is required.

This Guide is provided in two parts. The first part covers the Management Aspects of
the area and defines a framework for an approach to quality assurance. This framework is
based upon a software risk assessment, which is then used to determine the most appropriate
validation techniques to be applied. For safety applications, the software risk assessment
approach has been designed to conform to IEC 61508.

The second part of the Guide provides the technical details of the validation techniques
recommended. This material is supported by many references, research papers and related
documents that can assist in the application of the techniques.

For convenience, the complete material of the Guide is also available in electronic format.
The complete Guide is available from the SSf M website
http://punlications.npl.co.uk/npl web/pdf/dem es14.pdf, and includes the technical
part and the appendices. The Management part, without the technical part or the appendices,
is also available from the SSf M website.

This Guide is based upon a previous guide that was published under the first Software
Support for Metrology programme (1999–2001). However, this new edition has a wider scope
to embrace the requirements of the IEC 61508 safety standard. It also takes into account
all the comments made on the previous edition. Note that the highest safety integrity level
of IEC 61508 (SIL4) is not covered in this Guide, although this is planned for a subsequent
edition.

This is version 2.2 of the Guide that has been revised following further comments and
has been reprinted as an NPL report.
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Chapter 1

Management Overview

Almost all of the current generation of measurement systems contain a significant amount of
software. Since it is hard to quantify the reliability or quality of such software, two questions
immediately arise:

• As a user of such a system, how can I be assured that the software is of a sufficient
standard to justify its use?

• As a supplier of such software, what validation techniques should I use, and how can
I assure my users of the quality of the resulting software?

This Guide addresses these two questions. The intended readership comprises those re-
sponsible for software in measurement systems and those using such software. Since progress
depends on both the user and supplier, this Guide merges both views, but distinguishes them
by reference to user and supplier when necessary.

Software written as a research project or to demonstrate the feasibility of a new form of
measurement is excluded from the scope of this Guide.

The Guide surveys current good practice in software engineering and relates this prac-
tice to applications involving measurement systems. Known pitfalls are illustrated with
suggested means of avoiding them.

Many measurement systems are used as subsystems of safety related systems. In order
to avoid any accident, such systems need to be seen to be appropriate for the specific
application — in this Guide this issue is handled by validation against the generic safety
standard [IEC 61508], see chapter 6.

The general approach is a five-stage process (see figure 1.1) as follows:

1. An analysis of the physical process upon which the measurement system is based, see
chapter 3.

2. A software risk assessment based upon a model of a measurement system with its
software, see chapter 4. In the context of a measurement system used in a safety
application, the software risk assessment takes into account the safety integrity re-
quirement of the total system as defined in IEC 61508, see chapter 6.

3. An assessment of reliability required of the software, based upon the software risk
assessment (called the Measurement Software Index (MSI)), see chapter 5.

4. Guidance on the software engineering methods to be employed, as determined by the
Measurement Software Index, see chapter 7.

Page 3 of 134
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5. Report produced on the validation.

In addition to the above, a clear understanding of the standards and legal requirements
is clearly needed, see chapter 2.

It must be emphasised that there is no simple universal method (silver bullet) for
producing correct software and therefore skill, sound technical judgement and care are
required. Moreover, if it is essential for the quality of the software to be demonstrated to a
third party, then convincing evidence is needed which should be planned by the supplier as
an integral part of the software development process.

To aid in the application of this Guide, detailed technical material and checklists are
provided in part II.

To avoid complexity in the wording of this Guide, it is phrased as if the software is already
in existence. It is clear that use could be made of the Guide during the development, but it
is left to the reader to formulate its use in that context. We are not implying retrospective
validation which cannot be recommended but rather a properly planned development process
in which the validation steps are as simple as possible due to their requirements being
envisaged earlier in the life-cycle.

No consideration has been given here of the possibility of standardising this material, or
obtaining some formal status for it. However, in the context of IEC 61508, it is planned that
a certification process will be provided for measurement subsystems based, in part, upon
this Guide.

The use of software either within or in conjunction with a measurement system can
provide additional functions in a very cost-effective manner. Moreover, some measurement
systems cannot function without software. Hence, it is not surprising that there is an
exponential growth of software in this area. Unfortunately these changes can give rise to
problems in ensuring that the software is of an appropriate quality.

The problem with software is largely one of unexpected complexity. Software embedded
with a measurement system could be inside just one ROM chip and yet consist of 1 Mbyte
of software. Software of such a size is well beyond that for which one can attain something
approaching 100% confidence. This implies that one has to accept that there is a possibility
of errors occurring in such software.

Even if a measurement system is not used for a safety application, the techniques devised
in the safety arena to obtain high assurance are of interest to see what can be achieved. For
general advice in the safety area, see HF-Guide.

An example area in which very high standards are required in software production is
that for airborne flight-critical software. The costs for producing such software can easily
be one man-day per machine instruction — obviously too demanding for almost all software
within (non-safety) measurement systems. Hence the main objective behind this Guide is
to strike a balance between development cost and the proven quality of the software, taking
into account the application.

The main approach taken here is one of software risk assessment as a means of determin-
ing the most appropriate level of rigour (and by implication, cost) that should be applied
in a specific context. This approach is modified slightly in the context of safety systems to
take into account the safety integrity objectives in IEC 61508.

A major problem to be faced with software is that the failure modes are quite different
from those of a simple instrument without software. An example of this is that of the
non-linear behaviour of software, in contrast to simple measuring devices — see Software
is non-linear in section A.1.
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5

Figure 1.1: Steps in Validation
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Summary

Managers of supplier organisations need to be aware of the vital parameters of their mea-
surement software — the complexity and novelty of the application together with the
Measurement Software Index. This Index will determine the rigour and hence the cost
of the validation procedures required.

Those users requiring high assurance software, perhaps due to the use in a safety context,
should read Part I so that the most appropriate means of obtaining the assurance can be
found.

The rest of Part I considers the various aspects of the software which have a direct
bearing upon the above issues, and hence the likely cost of the development.

Page 6 of 134
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Chapter 2

Standards and Legal
Requirements

There are a number of standards that specify requirements for software in measurement
systems, which are collected together here with an indication of the issues to be covered by
this Guide. The more relevant standards appear first. Standards are important since they
are an agreement between the user and supplier communities.

ISO/IEC 17025. This standard [ISO/IEC 17025] for testing and calibration laboratories,
replaces both ISO Guide 25 and EN 45001. The vital paragraph on computers is as
follows:

5.4.7.2 When computers or automated equipment are used for the acquisi-
tion, processing, recording, reporting, storage or retrieval of test or calibra-
tion data, the laboratory shall ensure that:
a) computer software developed by the user is documented in sufficient detail
and suitably validated as being adequate for use;
b) procedures are established and implemented for protecting the data; such
procedures shall include, but not be limited to, integrity and confidentiality of
data entry or collection, data storage, data transmission and data processing;
c) computers and automated equipment are maintained to ensure proper
functioning and are provided with the environmental and operating condi-
tions necessary to maintain the integrity of test and calibration data.
NOTE Commercial off the shelf software, (e.g., word processing, database
and statistical programs) in general use within its designed application range
may be considered sufficiently validated. However, laboratory software con-
figuration/modifications should be validated as in 5.4.7.2a.

One can see that the main emphasis is upon software developed by the user rather
than the software embedded within an instrument or that within standard packages.
Although the major software risk may well be with user-developed software, it should
not be assumed that other software is without any software risk. It would be reason-
able to make no checks on word processing software, but just inspect the resulting
documents. The same is not true of spreadsheets packages in which unstable (or less
than ideal) algorithms are known to exist but which cannot be so easily detected
[CISE 25/99]. Similarly, simple embedded software should not be a serious software
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risk [SmartInstrument]. However, complex software is bound to be a software risk
since one cannot expect all possible uses to have been checked by the supplier.

A technical report [ISO 13233] was produced on the interpretation of accreditation
requirements for software testing based upon ISO Guide 25, the predecessor to
ISO/IEC 17025; however this interpretation does not specifically deal with software in
measurement systems: unfortunately, there are no plans to revise this interpretation
document.

Legal Metrology. The WELMEC documents summarise the position for such applications
[WELMEC–2.3, WELMEC–7.1]. The measuring instruments in this class include
weighing machines, gas /water / electricity meters, breath analysers and exhaust gas
analysers. The requirements here derive from the EU Directive 90/384/EEC, which
has three relevant parts as follows:

1. Annex I, No 8.1: Design and construction of the instruments shall be such that
the instruments will preserve their metrological qualities when properly used and
installed, and when used in an environment for which they are intended....

2. Annex I, No 8.5: The instruments shall have no characteristics likely to facilitate
fraudulent use, whereas possibilities for unintentional misuse shall be minimal.
Components that may not be dismantled or adjusted by the user shall be secured
against such actions.

3. Annex II, No 1.7: The applicant shall keep the notified body that has issued the
EC type-approval certificate informed of any modification to the approved type....

Clearly, only a subset of these requirements is relevant to the software of measurement
systems in general. The WELMEC Guide derives three specific requirements for
software from the above Directives, as follows:

1. Section 3.1: The legally relevant software shall be protected against intentional
changes with common software tools.

2. Section 3.2: Interfaces between the legally relevant software and the software parts
not subject to legal control shall be protective.

3. Section 3.3: There must be a software identification, comprising the legally rele-
vant program parts and parameters, which is capable of being confirmed at verifi-
cation.

In the context of measurement systems not within the ambit of legal requirements,
there are two important principles to be noted from the above:

• The handling of the basic measurement data should be of demonstrably high
integrity.

• The software should be properly identified (this arises from configuration control
with ISO 9001 [ISO 9001], in any case, but there is no requirement that ISO 9001
is applied to such systems).

IEC 601–1–4. The standard covers the software in medical devices [IEC 601] and is used
both in Europe to support a Directive and by the FDA in the USA [FDA]. The
standard is based upon risk assessment with the software engineering based upon
ISO 9000–3. The flavour of the standard can be judged from a few key extracts, with
those parts relevant to this Guide being:
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1. Section 52.204.3.1.2: Hazards shall be identified for all reasonably foreseeable
circumstances including: normal use; incorrect use.

2. Section 52.204.3.1.6: Matters considered shall include, as appropriate: compat-
ibility of system components, including hardware and software; user interface,
including command language, warning and error messages; accuracy of transla-
tion of text used in the user interface and “instructions for use”; data protection
from human intentional or unintentional causes; risk/benefit criteria; third party
software.

3. Section 52.204.4.4: Risk control methods shall be directed at the cause of the
hazard (e.g. by reducing its likelihood) or by introducing protective measures which
operate when the cause of the hazard is present, or both, using the following
priority: inherent safe design; protective measures including alarms; adequate
user information on the residual risk.

4. Section 52.207.3: Where appropriate the specification shall include requirements
for: allocation of risk control measures to subsystems and components of the
system; redundancy; diversity; failure rates and modes of components; diagnostic
coverage; common cause failures; systematic failures; test interval and duration;
maintainability; protection from human intentional or unintentional causes.

5. Section 52.208.2: Where appropriate, requirements shall be specified for: software
development methods; electronic hardware; computer aided software engineering
(CASE) tools; sensors; human-system interface; energy sources; environmental
conditions; programming language; third party software.

It can be seen that this standard is mainly system-oriented and does not have very
much to state about the software issues. However, the key message is that the level of
criticality of the software must be assessed, and the best engineering solution may well
be to ensure the software is not very critical. This standard covers only instruments
that are on-line to the patient as opposed to those used to analyse specimens from
a patient (say). Not all medical applications could be regarded as “measurement
systems”, and therefore the relevance of this guide needs to be considered.

IEC 61508. This standard is a generic standard for all safety-critical applications
[IEC 61508], which allows for many methods of compliance. A catalogue is provided
in Part 3 [IEC 61508–3] of the standard, which handles the software issues. This
catalogue is used here as a means of selecting specific methods that may be appropriate
in some contexts. This Guide follows the same approach and specific recommendations
are given when a measurement system is to be used in a safety context. Guidelines
for use within the motor industry have been developed from this standard [MISRA].

The conclusion for this Guide is that this standard is only directly relevant when the
measurement system is used in safety applications, but could be applied in specific
contexts. The catalogue of techniques provides a reference point to a wide variety of
software engineering methods. For an analysis of this standard for accreditation and
certification, see UKAS-61508.

For a detailed research study of assessing instruments for safety application by means
of a worked example, see the SMART Reliability study [SmartInstrument]. This study
was based upon a predecessor of this Guide, namely NPL Good Practice Guide No. 5,
on Software in Scientific Instruments, but enhanced to reflect the safety requirements.
The issue of the qualification of SMART instruments in safety applications is noted as
a research topic in a Health and Safety Commission report [HSC].
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In this Guide, appendix B.4.3 considers the detailed requirements of this standard, as
applied to software (Part 3). Those who require adherence to this standard therefore
need to study that appendix.

DO-178B. This is the standard [DO-178B] for civil avionics safety-critical software. It is
not directly relevant. However, if an instrument were flight-critical, then any software
contained within it would need to comply with this standard. In practice, instruments
are replicated using diverse technologies and hence are not often flight-critical. This
standard is very comprehensive, and specifies an entire software development process,
including details on the exact amount of testing to be applied.

The conclusion for this Guide is that this standard is only relevant for very high-risk
contexts in which it is thought appropriate to apply the most demanding software
engineering techniques. These demanding techniques are relevant for safety systems
with the highest safety integrity requirements in IEC 61508, which corresponds to
Measurement Software Index 4 (see section 5.2, on page 28). This standard can be
taken as an ideal goal, not however achievable in practice, due to resource constraints.

The conclusion from this survey of the standards is that most of their requirements on
software are broadly similar and that aiming to meet all the requirements is a reasonable
way of proceeding.

In the context of safety systems, high safety integrity can be required which then imposes
very significant costs for the development and validation. These costs are very evident from
the Class A and B systems from DO-178B. Hence, if a measurement system is required to
meet the most demanding levels of DO-178B, then that cannot be expected of an instrument
designed to satisfy the other standards mentioned here. Thus this Guide aims to provide
advice on producing software which will satisfy any of these standards, including everything
but the most demanding level for safety systems. It is planned that this exclusion will be
removed in the next edition of this Guide, as the SSf M programme for 2004–2007 [SSfM–3]
will work on this issue.
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Chapter 3

From Physics to Measurement

A measuring device is based, of course, on physical properties. However, the underlying
physics can be very simple and well-established, or complex, or not well-established. The
software may need to model a complex physical process and therefore require a correspond-
ingly demanding validation process.

3.1 Specification of the physical processes

The issues that arise from the modelling of physical processes have been considered in the
Modelling Theme [SSfM-Model] of the SSf M programme [SSfM–2] but are summarised here.

In a perfect world, building a mathematical model and solving it would be a well-defined
process. It is the fact that the model is an approximation of the real world that causes
difficulties.

Two questions have to be addressed (essentially by the supplier, but the user needs to
consider this also to appreciate the software risk involved):

• Does the software specification provide a faithful implementation of the physics un-
derlying the operation of the measurement system?

• Does the software implement the specification correctly?

In particular, the first question can be quite difficult to answer and requires input from
an expert metrologist (physicist, chemist, biotechnologist, materials scientist or engineer;
rather than mathematician or software engineer).

3.2 Producing the model

Some of the issues to be considered:

1. The use of a mathematical model to provide the conceptual interface between the
metrology and the software. The model must include descriptions of

• the measured quantities,

• the errors in the measured quantities,

• the measurement result(s),
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• the relationship between measured quantities and measurement result(s).

2. There is a wide range of complexities of mathematical model. However, the model is
generally required to be sufficiently complex to reflect accurately the physical situation
but also sufficiently simple for the software computations based on the model to be
feasible.

3. An estimate of the measurement result is obtained by solving the model in some sense,
taking into account the defined error structure. Again, the complexity of this process
can vary widely.

4. Approximations and assumptions are often made when writing down the mathematical
model. Models are generally approximate (certainly for empirical models but also
for physical models), and model validation is a means to understand and quantify
any modelling error. Assumptions are also made about the errors in the measured
quantities (particularly with regard to the underlying probability distributions) that
then affect the solution process and the accuracy of the measurement result. Metrics
such as bias and efficiency1 are often used to measure and compare the performance
of different solution algorithms that reflect different sets of assumptions.

5. The procedure for establishing the internal data, such as calibration constants, might
be considerably more complicated that the procedure implemented by the measure-
ment system’s software.

6. The need to consider the affect of the control software (see figure 3.1). For example, the
control software might make the model more complicated by introducing additional
measurement error.

3.3 Validating the implementation of the model

Having established a software specification, the second question is generally more clear-cut.
It is the subject of the SSf M numerical software testing project [CISE 25/99], although
there are perhaps some particular issues that arise for software that is embedded within a
measurement system:

• The requirements on the software, for example, numerical accuracy requirements, are
typically dictated by the physical application.

• The software can be tested in isolation from control software and the basic instrument.

• In common with other SSf M projects, when model validation is required, we advocate
the use of Monte-Carlo simulation to validate the mathematical model.

We have several categories of measurement system technology in this area:

Validated physics2: This means that the physical model is widely understood and used.
Any discrepancy in practice between the model and the observations are within the

1These two measures relate to the skewness and spread (respectively) of the resulting measurement caused
by the error in the raw measurement data, for which an uncertainty estimate is produced; see the Guide on
Uncertainty [BPG-Uncertainties].

2“Physics” is specified here, but these categories could equally apply to chemistry, biotechnology,
materials science or engineering — whatever is the scientific or technical basis for the metrology.
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tolerance of the accuracy specified for the measurement system. Obviously, it should
be possible to quote a reference to the physical model in the reviewed literature. (Only
this category would be suitable for safety applications.)

Physics2 can be modelled: The physics can be modelled, but there is no widely agreed
literature supporting such a model as the basis of a measurement system. Hence, for
high assurance measurement, it is necessary to validate the model being used.

See the relevant part of the SSf M programme [SSfM–2] for research and information
in this area [SSfM-Model]: BPG-Model for discrete modelling and model validation,
and CMSC 29/03 for model validation in continuous modelling.

Underlying model uncertain (pragmatic approach): In some situations, there is no
precise physical model that can be expressed mathematically. A pragmatic approach
may be needed, such as calibration at a number of points together with interpolation
when in use. The implications of such a method needs to be understood. For instance,
it is necessary to ensure that any non-linear effects are properly taken into account.
(See section 3.7 for a problem in this area.)

Physics2 being researched: In this situation, even the model is still to be determined.
Measurement systems in this category are not included within the scope of the Guide.

The supplier should be able to inform the user which of the above categories applies to
a specific measurement system.

Given a measurement system as a black-box, then the physical process being used might
not be apparent. Obviously, in that case, the measurement system can only be tested as
a whole and therefore the question of the quality of the software does not arise directly.
This implies that any errors that may be present in the software could only be observed by
appropriate use of the measurement system.

3.4 A measurement system model

In order to provide a framework for the discussion of the software for a measurement system,
we present here a simple model. The components of the model in figure 3.1 are as follows:

Basic instrument. The basic instrument contains no software. It performs functions
according to the control logic and provides output. This instrument itself is outside
the scope of this Guide, but it is essential that the properties of the instrument are
understood in order to undertake an effective appraisal of the software. The basic
instrument contains sensors and appropriate analogue/digital converters.

Control software. This software processes output from the basic instrument for the pur-
pose of undertaking control actions.

Data processing software. This software performs a series of calculations on data from
the basic instrument, perhaps in conjunction with the control software, to produce
the main output from the measurement system. (In the case of complex measurement
systems, like Coordinate Measuring Machines, the data processing software provided
can include a programming language to facilitate complex and automatic control.)

Internal data. This data is held internally to the measurement system. A typical example
would be calibration data. Another example might be a clock that could be used to
“time-out” a calibration.
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Basic instrument
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Data processing software

Internal data Operator/user

Specimen in environment

Results

Key

Flow of basic
measurement
or test data

Figure 3.1: A model of a measurement system
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Operator/user. In some cases, there is an extended dialogue with the user, which implies
that the control function can be quite complex. This dialogue could be automated
via some additional software (which therefore could be included or excluded from this
model).

In this model, we are not concerned about the location of the software. For instance, the
control software could be embedded within the measurement system, but the data processing
software could be in a PC or workstation. It is even possible for the subsequent data
processing to involve several computers via a Laboratory Information Management System
(LIMS). In applying this Guide, you may have a choice in deciding where to draw the line at
the bottom of this diagram. For instance, one could decide to include or exclude a LIMS. If
the LIMS is considered, then reference LIMS on a medical application provides some useful
insights, and BPG-LIMS has advice of the selection and use of LIMS. The integrity of the
production of the test/measurement certification should not be forgotten.

The basic measurement/test data is a key element in this structure. The major require-
ment is to show that the processing and entire flow of this data has sufficient integrity. Note
that in the area of legal metrology, the basic measurement data is converted into money
(say, in a petrol pump) and this therefore has the same status as the basic measurement
data.

It is important to decide the scope of the measurement system. For instance, in DNA
analysis, samples are analysed for the Base-Pairs in the DNA. Subsequently, the Base-Pairs
found are compared with other samples or population statistics to prepare a statement for
the Courts. In this context, it seems that only the determination of the Base-Pairs could be
regarded as measurement system software.

3.5 Abstraction at several levels

A measurement system model can exist at several levels and the appropriate level of abstrac-
tion must be chosen to fit the objectives of validation. The different levels are illustrated
with reference to a Coordinate Measuring Machine (CMM), see figure 3.2.

The basic machine just produces (x, y, z) coordinates from some artefact. Hence the
processing software within the basic instrument is probably quite simple — just performing a
small calibration correction to the raw data. On the other hand, the control software could be
quite complex if the measurement probe is to be moved round a complex object. One would
like to be assured that this complex control software cannot result in false measurements.

Now consider another measurement system that measures artefacts to determine their
sphericity (departure from a sphere). This measurement system is actually a CMM with
some additional software running on a PC. We now have a measurement system with
complex data processing software that needs to be carefully checked if the measurement
of the departure from a sphere is to be authenticated.

We can envisage a further level where the sphericity data is processed by visualisation
software on the user’s PC. The complete system from CMM probe to images on the user’s
PC is a measurement system and it may be appropriate to validate the system including
the visualisation software.

All three examples satisfy the model of a measurement system used in this Guide.
However, it is clear that the implications are very different. Hence it is important that
the appropriate level of abstraction is chosen for the application in mind.
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Figure 3.2: Levels of measurement system abstraction
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3.6 Example 1: Druck’s pressure transducer

As part of the research programme funded by the Nuclear Industry, NPL undertook a
study on the safety integrity3 of SMART instruments [SmartInstrument]. This study was
specifically to investigate the software aspects of safety integrity, which required that the
software design and implementation was analysed. To this end, Druck Ltd assisted NPL in
providing full details of the software. NPL was effectively taking the role of the user (on
behalf of the nuclear industry with a safety application), while Druck was the supplier.

The results of this study can be summarised as follows:

1. The physical model used was simple.

2. Modelling the physics within the instrument was numerically sound.

3. The software, written in C, passed all the tests run by NPL.

4. There was no reason why such an instrument, using software, should not be used in a
safety application.

NPL had complete visibility of the software, and the results satisfied the specification of
the instrument.

Since this was a research exercise, there was no formal assessment of the instrument nor
certification to IEC 61508.

3.7 Example 2: A vacuum pressure measurement de-
vice

NPL has had experience in the past with a pressure measurement device in the vacuum range
that works by observing the slowing down of a rotating sphere. For low pressures, the rate
of deceleration of the sphere is proportional to the pressure. However, at higher pressures,
which is within the range of the device, the linear relationship breaks down. Software within
the device compensates for this. However, NPL observed that this compensation was not
correct in parts of the range, thus giving rise to a “kink” in the graph of the actual pressure
against the observed pressure.

Several lessons can be learned from this example:

1. Compensation for a non-linear response should be specified by the measurement system
supplier in case the user wishes to take note of any potential software risk that this
might entail.

2. The dangers are clearly greater if high accuracy is required.

3. If the “raw” data from the measurement system is available (in this case, the observed
deceleration), then the compensation can be done externally or checked separately.

4. Even if a spot check is made for a single high value, the compensation error might not
be detected.

3The study uses the term reliability instead of the more correct term of safety integrity.
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Chapter 4

Assessing the Software Risks

In this section, we undertake an analysis of a measurement system and its related software,
the purpose of which is to make an objective assessment of the likely software risks associated
with a software error. For a general discussion on risk, see RiskIssues. The primary
responsibility for the software risk assessment must rest with the user, but for the user
to undertake this in a meaningful manner, information from the supplier is often vital.

4.1 Software Risk factors

The first step in undertaking the software risk assessment is to characterise the measurement
system according to aspects that influence the software risk. Those aspects are listed below.

A software risk assessment must be based upon the visible information (one must assume
the worst when critical information is not available). Some complex devices may internally
record information that is difficult or impossible to access. Examples of such information
are the selection of operator options, or low-level data within a complex system. For user-
programmable systems, it should be possible to reconstruct the user program from a listing,
and repeat the execution from the data recorded from a prior execution.

The user needs to study the information provided by the supplier to confirm that the
software risk assessment is based upon a correct understanding of the measurement system.

4.1.1 Criticality of Usage

It is clear that the usage of some measurement systems is more critical than others. For
instance, a medical instrument could be critical to the well-being of a patient. On the other
hand, a device to measure noise intensity is probably less critical.

To make an objective assessment of the level of criticality of usage, we need a scale
which we give in increasing criticality as: critical, business-critical, safety-indirect
and safety-direct. (If the system has no degree of criticality, then no specific validation
requirements would be appropriate.)

Criticality of usage can be categorised as follows:

Critical. This category is used if correct operation of the measurement system software
is considered sufficiently important that appropriate software validation should be
undertaken, without being in any of the higher categories described below.
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Business Critical. This category applies to that measurement system software for which
failure could cause serious financial loss, either directly or indirectly.

Safety-indirect. This category applies to that measurement system software for which
failure indirectly puts human life at risk or directly puts human health at risk. Such
software is considered safety-critical in the context of IEC 61508.

Safety-direct. This category applies to that measurement system software for which failure
directly puts human life at risk, and hence is safety-critical.

One of the major problems in this area is that a supplier may well be unaware of the
criticality of the application. The user may well assume that the measurement system is
suitable for highly critical applications, while the supplier may well prefer to exclude such
usage. For an example of this problem see Buyer beware! in appendix A.4. Naturally, for
safety systems, critical components would require full information from the supplier1.

4.1.2 Legal requirements

Many measurement systems are used in contexts for which there are specific legal require-
ments, such as the WELMEC guides [WELMEC–2.3, WELMEC–7.1]. In such a context, a
measurement system malfunction could have serious consequences.

To make an assessment, the user needs to know if there are any specific legal requirements
for the measurement system and have a reference to these. (It may be necessary to check
what current legislation applies.) For a general-purpose measurement system, the supplier
may not have produced the measurement system to satisfy the legal requirements of a
particular usage.

4.1.3 Impact of complexity of control

The control function of the software can range from being almost non-existent to having
substantial complexity. Aspects of the control will be visible to the operator in those cases
in which operator options are available. Some control may be invisible, such as a built-in
test function to help detect any hardware malfunction.

Many aspects of control are to make the device simpler to use, and protect the operator
against misuse which might be feasible otherwise. This type of control is clearly highly
advantageous, but it may be unclear if any error in its operating software could produce a
false reading. Hence aspects of the complexity of the user-instrument interface are considered
here.

Complexity of control is classified as follows:

Very Simple. An example of a very simple control is when the measurement system detects
if there is a specimen in place, either by means of a separate detector, or from the
basic data measurement reading. The result of this detection is to produce a more
helpful display read-out.

Simple. An example here might be temperature control which is undertaken so that tem-
perature variation cannot affect the basic measurement data.

Modest. An example of modest complexity arises if the measurement system takes the
operator through a number of stages, ensuring that each stage is satisfactorily complete

1In general, if information is not available, assurance at a high level is not possible.
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before the next is started. This control can have an indirect effect upon the basic
test/measurement data, or a software error could have a significant effect upon that
data.

Complex2. An example of complex control is when the software contributes directly to the
functionality of the measurement system. For instance, if the measurement system
moves the specimen, and these movements are software controlled and have a direct
bearing upon the measurement/test results.

The supplier should be able to provide the user with the measure of the complexity of
control on the above scale.

In assessing the complexity of control as part of the software risk assessment of software
in a measurement system, it is necessary to only consider the impact of the control software
on the processing of the measurement data. Therefore, the software risk factor to be assessed
is not the complexity of the control software per se, but the impact of complexity of control.

4.1.4 Complexity of processing of data

In this context, we are concerned with the processing of the raw data from the basic
instrument (i.e., the instrument without the software). In the case of software embedded
within the measurement system itself, the raw data may not be externally visible. This
clearly presents a problem for any independent assessment; however, it should be the case
that the nature of the raw data is clear and that the form of processing is well-defined.
Calibration during manufacture would typically allow for “raw data” to be displayed in
appropriate units. (Subsequent to the calibration during manufacture, the raw data may
not be available to the user.)

Complexity of processing data is classified as follows:

Very Simple. In this case, the processing is a linear transformation of the raw data only,
with no adjustable calibration taking place.

Simple. Simple non-linear correction terms can be applied here, together with the appli-
cation of calibration data. A typical example is the application of a small quadratic
correction term to a nearly linear instrument which is undertaken to obtain a higher
accuracy of measurement.

Modest. Well-known published algorithms are applied to the raw data.

The assumption here is that the algorithms used are numerically stable (and there
is evidence for this). For an example of a problem that can arise in this area, see
Numerical instability in section A.2.

Complex. Anything else.

The supplier should be able to provide the user with the measure of the complexity of
data processing on the above scale.

2This term should not be confused with that in complex arithmetic — readers are invited to propose
another term should they find it confusing.
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4.2 Reliability of software

Measuring the reliability of software is not easy — unless it is very unreliable!
If an item of software has a long history and a lot of users, then there may well be

good independent evidence of high reliability. However, most large items of software are
continually enhanced making any measurement problematic.

Reliability growth models Littlewood and ReliabilityBounds can be used to estimate
reliability, but would depend upon gathering suitable data which is typically difficult or
impossible.

Consider a simple case in which software acts on a per-demand basis and the reliability
requirement is better than one failure per thousand demands. Here, one could justify that
figure by running two or three thousand statistically valid tests (see 12.12). If no failures
occurred, or just one or two which were satisfactorily handled, then such a claim might be
sustainable. However, if the requirement was better than 1 in 10,000 or 1 in 100,000, the
cost of undertaking such testing would become prohibitive. To reduce the costs, the testing
could be biased to the “difficult” test cases, but then the statistical reasoning will be flawed.

An alternative to such a statistical approach to reliability is a formal proof of correctness
of the software. In practice, this is hard to achieve and virtually impossible with most
measurement software which relies upon floating point arithmetic. Of course, such proofs
depend upon the correctness of the compiler and the underlying hardware.

4.3 Some examples

In the case of Druck’s pressure transducer (see section 3.6), from the supplier’s point of
view it is business-critical, but from the point of view of its application in the nuclear
power plant, it is safety-direct. In practice, this mismatch requires that any additional
validation needed from safety application would need to be funded by the users. (Indeed,
the validation could reveal defects in the design, thus requiring a substantial re-work of the
whole system.)

Instruments which are developed for the safety market should be suitable for formal
certification, see chapter 6.

There is no doubt that the majority of measurement systems at present perform very
simple or simple processing on the raw data. It would be reasonable to assume the
software risks of the software error were quite low, but the example of the vacuum pressure
measurement device (see section 3.7) shows that such software risks cannot be totally
ignored. Also one needs to beware the trend to increase the complexity of the data processing
with each new measurement system.

4.4 A warning from history

From 1985, for a period of 5 years, the FDA had been warning the pharmaceutical industry
that it was expecting it not only to validate their processes but also the computer systems
that were involved. Unfortunately the pharmaceutical industry did not take this warning
on board.

In 1991 the FDA conducted a foreign inspection of pharmaceutical companies in Europe
and, for the first time, included computer validation.

At a number of sites the FDA issued a 483 (major non-compliance) against the computer
control system of an Autoclave for not being validated. An autoclave is used to sterilise drugs
after container filling.
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The non-compliances were noted as:

• No formal plans stating the validation requirements (i.e., Validation Plan).

• Specifications were not available to define the intended software operation.

• No qualification protocols3 defining testing or acceptance criteria.

• Inadequate accuracy checks, input-output checks and alarm testing.

• Inadequate change and version control of software.

• No final review of the evidence demonstrating validation (i.e., Validation Report).

A validation plan was immediately drawn up for the Autoclave and put into action. It
covered specification generation, installation qualification (IQ — hardware testing), opera-
tional qualification (OQ — software testing), code walk-throughs and supplier audits.

The results were surprising.

1. In the IQ/OQ phases one alarm code was found to be missing, two limits were crossed
over and the real time clock was found to be of insufficient accuracy over a period of
time to support integration techniques.

2. The more critical areas of code were checked by walking through the program to ensure
that it had been correctly coded to function in the way it was designed and that it
had been written to the company defined standard.

The Code Walk-through addressed:

• Software Design.

• Adherence to coding standards.

• Software Logic

• Absence of redundant code.

• Critical Algorithms.

• Software control.

• Level of code comments/explanation.

The software was well written but the main algorithm for calculating F0 (F0 is defined
as the time during which sterilisation is actually performed at 121◦C i.e., time of
microbial destruction effectiveness) was found to ignore summation of a small area
under the curve giving a lower F0 calculation over the sterilisation period. The result
of this was to subject the product to a longer sterilisation period than required.

The computer manufacturer was informed of the findings and the company responded
quickly in rectifying the problems.

3. In setting up the supplier audits for the Autoclave it was discovered that the com-
puter system was built and tested by a computer manufacturer and then application
programmed and fitted by the autoclave manufacturer. A decision was taken to audit
both companies.

3The term “protocol” means a documented procedure with defined acceptance criteria.
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The computer manufacturer was situated in a building where the complete hardware
and software design process was carried out. The full life cycle was checked out, right
through to testing and final shipment packing to Autoclave manufacturer. No problems
were encountered and a high degree of confidence was recorded in the manufacture of
the computer system.

A visit was then paid to the Autoclave manufacturer and the audit trail started from
where the tested computer system was delivered into stores. The stores were at one
end of a very large workshop area where approximately 20 autoclaves of various sizes
were in different stages of manufacture. The computer system was followed to a
small computer workshop, next to the stores, where the correct sequence software
was installed for the Autoclave it was to control. From there it was followed to the
workshop floor where it was stored under the nearest workbench to the autoclave it was
designated for. Building an autoclave, which is essentially a large kettle, is mainly an
engineering and plumbing task hence there were many workbenches around for people
to use. It was noticed that some of the unpacked, unprotected computer systems were
beneath bench vices and in a number of cases metal filings had dropped onto the
computer case which had open air vents in it. A number of other major problems were
found, one being that there were no written tests or recorded test data. It depended
on the person building the autoclave and the test plan he kept in his head.

Once the problems were pointed out to the Autoclave manufacturer, the company
responded very quickly and it now has a completely different method of computer
integration and test which ensures the computer controlled autoclave is produced to
the highest quality.

4.5 Conclusions

The above example has been supplied to NPL by industry as an example of the problems
actually encountered. The originators wish to remain anonymous.

The conclusions are clear: a software risk assessment needs to be undertaken as early as
feasible and the consequences followed through the entire process of the use of the system.

In the example, the legal requirements were crucial. Even without that, the pharmaceu-
tical supplier needs to be assured that the Autoclave performs the intended function, since
a failure could have terrible consequences. In this case, the Autoclave supplier accepted
the requirement for an audit and undertook the necessary remedial action. The purchase of
off-the-shelf equipment may well present more problems in gaining visibility of the necessary
information.
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Chapter 5

Software Implications

At this point, the user will have most of information needed to make an assessment of
the reliability required of the software, taking into account all the software risk factors
including the target software risk to be taken. This assessment should be as objective as
possible, but is bound to have a modest degree of subjectivity. The result of the assessment
is the assignment of the Measurement Software Index for the software. The MSI is
used to determine which techniques are recommended for validation of the software in the
measurement system.

There are further software issues that either affect the software risk factors defined in
the previous chapter or may cause the MSI, which is derived from those factors, to be
modified. To attempt to resolve these additional issues, they are expressed in the form of
open questions. At this stage, we are looking at the measurement system as a black box
but assuming that some questions can be asked (and answered) which might not be directly
apparent from the measurement system. The underlying reasoning behind the questions is
to assess the affects of the software risk factors involved. If some key questions cannot be
answered, then clearly any assessment must be incomplete.

5.1 Software issues

Having gone through the previous section of this Guide, these additional questions should
be answered. The answers may change the software risk factors or these may change the
MSI derived from the software risk factors; the answers may also suggest changes to the
selection of validation techniques recommended for the MSI. For each question the effect on
the software risk factors, or on the MSI, is stated in sloping text.

1. What degree of confidence can be obtained in the measurement system merely by
performing “end-to-end” tests,1 i.e., using the measurement system with specimens of
known characteristics?

Such tests just regard the entire measurement system as a black-box and effectively
ignore that software is involved. To answer this leading question you need to take
into account the software risk factors noted in section 4.1. For instance, if complex
software is being used which uses unpublished algorithms, then high confidence cannot
be established.

1The term “end-to-end” is used for testing the measurement system as a whole — readers are invited to
propose another term should they find this confusing.

Page 25 of 134



NPL Report DEM-ES 014 Validation of Software in Measurement Systems

As a user, you may have no visibility of the software and hence this could be the only
form of testing that could be undertaken. This will clearly limit the assurance that
can be obtained, at least if the software alone could cause the measurement system to
malfunction.

As a supplier, you may need to provide some additional information on the measure-
ment system for those users who require high assurance.

(Note that this type of testing is distinct from conventional black-box testing of the
software since the software is only exercised in conjunction with the basic instrument.)

If a high degree of confidence can be obtained in the measurement system by per-
forming “end-to-end” tests, then the assessment of the complexity of processing and
(impact of) complexity of control can be reduced.

2. In the case in which the processing of the basic data is modest or complex, can the
raw data be extracted so that an independent check on the software can be applied?

Consider a case in which a Coordinate Measuring Machine (CMM) is being used to
determine the degree of departure of an artefact from a perfect sphere. The basic
CMM will provide the x, y, z coordinates of points on the surface of the artefact, and
additional software will determine the departure from the sphere. For high assurance,
it is essential that the additional software should be tested in isolation, preferably
using Numerical Reference Results (see section 12.18).

If the raw data can be extracted so that an independent check on the software can be
applied, then the assessment of the complexity of processing can be reduced.

3. Has essentially the same software for the data processing been applied to a similar
measurement system for which reliability data is available? (Note that there is a degree
of subjective judgement here which implies that the question should be considered by
someone who is suitably qualified.)

The supplier may regard such information as commercially sensitive and hence is not
provided to the user, or is only available under a non-disclosure agreement.

If the same software for the data processing has been applied to a measurement
system for which reliability data is available, then this reduces the overall software
risks associated with the software and the MSI can be reduced.

4. For this measurement system, is there a record available of all software errors located?
Under what terms, if any, can this information be made available?

The user could reasonably request this information and the supplier should be able
to supply it, perhaps under some non-disclosure agreement. Note that the existence
of such a log is a requirement of quality management systems, like ISO 9001.

If there is a record of software errors then this reduces the overall software risks
associated with the software and the MSI can be reduced.

5. To what extent can the complexity in the control software result in false measure-
ment/test data being produced?

The user is likely to have great difficult in answering this question while the supplier
may be confident of the measurement system, but finds it difficult to provide objective
evidence to support that confidence.

If the complexity in the control software result in false measurement/test data being
produced, then the software risk factor “impact of complexity of control” will be as

Page 26 of 134



SSf M Best Practice Guide No. 1 NPL Report DEM-ES 014

high as the complexity of control (as explained in section 4.1, item 4.1.3). Conversely,
if complex control software cannot result in false measurement/test data, then the
“impact of complexity of control” will be lower.

6. If the operator interface is complex, can this be assessed against the documentation?
How important is operator training in this?

In this case the user is in an ideal position to check the documentation independently.
The supplier would no doubt welcome constructive feedback.

If the operator interface is complex then this complexity should be included in assessing
the complexity of control; if the complex operator interface can affect the measure-
ment/test data then the “impact of complexity of control” will be high (i.e., modest
or complex).

5.2 Computing the Measurement Software Index

The MSI is derived from the three software risks factors, once they have been assessed
taking account of the questions above. The Index is a scale from 0 to 4, where increasing
MSI corresponds to software of either increasing software complexity or increasing criticality
of usage or both. As the MSI increases, so should the software risk of errors be reduced
due the application of more rigorous software engineering techniques, which is the topic of
chapter 7. We present a definition of the MSI by means of a table (table 5.1) where the
axes correspond to the software risk factors of “Usage”, “Processing” and “Control”. If the
software is also conform to IEC 61508 then see section 6.

Software complexity
Criticality Complexity Impact of Complexity of Control
of Usage of Processing Very

Simple Simple Modest Complex
Very Simple 0 0 1 2

Critical Simple 0 1 1 2
Modest 1 1 2 2
Complex 2 2 2 2
Very Simple 0 1 1 2

Business Simple 1 1 2 2
Critical Modest 1 2 2 2

Complex 2 2 2 3
Very Simple 1 1 2 2

Safety- Simple 1 2 2 3
indirect Modest 2 2 3 3

Complex 2 3 3 3
Very Simple 2 2 2 3

Safety- Simple 2 2 2 3
direct Modest 2 2 3 4

Complex 3 3 4 4

Table 5.1: Measurement Software Index, as a function of the software risk factors
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The significance of the definition can be illustrated as follows:

Measurement Software Index 0. Each software risk factor is almost as small as possible:
no significant problems are expected.

Measurement Software Index 1. Either at least one software risk factor is significant or
more than one software risk factor is not as small as possible. This Index can arise with
a system undertaking measurement in the safety context (e.g. potentially life-critical)
when conformity to IEC 61508 is required.

Measurement Software Index 2. When any one software risk factor is as large as pos-
sible then the MSI is at least 2. This Index can arise with a system undertaking
measurement in a life-critical safety context, if the other software risk factors are not
too great.

Measurement Software Index 3. When all software risk factors are almost as large
as possible then the MSI is at least 3. This Index will often arise with a system
undertaking measurements in the safety context when conformity to IEC 61508 is
required.

Measurement Software Index 4. This Index is reserved for safety systems that require
the highest possible assurance. This Index is not fully covered in this edition of the
Guide.

Once the user has determined the MSI, this figure should be agreed, if possible, with
the supplier. The Index may be modified by consideration of some of the open questions,
see section 5.1.

If the MSI is changed for other (business-related) reasons, then the agreed Index and
the reason for the change must be recorded. If the MSI is deemed to be inappropriate, it
may be necessary to revisit the software risk assessment and reconsider the values assigned
to each of the three software risk factors.
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Chapter 6

IEC 61508

In this chapter, we consider measurement systems which are part of a safety system which
needs to satisfy the requirements of IEC 61508. We take this standard since it can be applied
to any safety system and provides a framework which can be used for measurement systems.
Any measurement subsystem must be shown to be fit-for-purpose within a safety system.
It is unlikely that a measurement subsystem will be found to be acceptable unless it was
designed with safety in mind in the first place. To aid tracing the relationship between this
Guide and the IEC standard, references1 to part 3 of the standard [IEC 61508–3] appear as
marginal notes in this Guide.

6.1 Approach to IEC 61508 for software

IEC 61508 is a system standard, whereas in this Guide we only consider software. This
implies we can only consider aspects of the software required for the entire system to satisfy
IEC 61508. For a simple introduction to IEC 61508 see FunctionalSafety and IGE-SR-15,
which has been produced by professionals in the gas industry.

This Guide does not cover the certification of systems for which detailed information
about the development is not available. The use of proven-in-use systems is already covered
by IEC 61508 which may provide a means of demonstrating compliance with the standard.
Failing that, two reports are available specifically on this topic which should be consulted,
see SOUP–1 and SOUP–2.

IEC 61508 defines four Safety Integrity Levels (SIL) and four Software Safety Integrity
Levels.

It is necessary to determine the software safety integrity level of the measurement
software. This is achieved as follows:

1. Determine the safety functions being performed, or dependent upon, the measurement
software;

2. Determine the SIL of the safety functions;

3. If the software measurement system forms a part of the safety-related system then the
Software Safety Integrity Level will be the same as the SIL for the relevant safety-
function.

1These are referenced with an initial “3–” to distinguish them from internal references in this Guide.
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SIL High demand rate Low demand rate
(failures per hour) (failures per demand)

1 10−6 ≤ . . . < 10−5 10−2 ≤ . . . < 10−1

2 10−7 ≤ . . . < 10−6 10−3 ≤ . . . < 10−2

3 10−8 ≤ . . . < 10−7 10−4 ≤ . . . < 10−3

4 10−9 ≤ . . . < 10−8 10−5 ≤ . . . < 10−4

Table 6.1: Safety-integrity level targets

One purpose of this Guide is to contribute to the certification of measurement subsystems
under the CASS scheme (see appendix B.1). Formally, this is undertaken by ensuring
that the measurement subsystems satisfies the criteria for CASS subsystems specified in
CASS-subsystems.

For the software issues, there is a vital aspect which should be determined as early as
possible. The safety integrity requirement for the subsystem will partially determine the
corresponding Measurement Software Index. This in turn will determine the validation
requirements and hence the cost of obtaining certification or compliance to IEC 61508.

In the same way as with quality, blind conformance with a standard will not suffice.
IEC 61508, as with other standards, does not include all aspects of every device or item
of software within a safety system. Hence it is important that those responsible for safety
systems take a broad view of the issues involved and do not just tick off the items listed in
this Guide or within IEC 61508.

For safety systems, another standard contains useful insights that is particularly relevant
to measurement systems. This is the consensus European nuclear regulator view of software
issues [EUR 19265]. Even if nuclear applications of a measurement system are not envisaged,
the document is recommended reading.

The overall approach within the Guide in its application to safety systems is shown in
figure 6.1 (which is an extension of figure 1.1). The process is shown as six consecutive steps,
but this is a simplification since it may be necessary to repeat an earlier step if a later one
shows a design problem. Specific issues that need to be addressed in the early design stages3–7.7.2.2

are as follows:

Robust design. A conventional instrument design may not be robust enough to cater for
operator errors or adverse environmental conditions. In consequence, the device may3–7.1.2.3

be inappropriate or require major changes.

The right SIL. The safety integrity requirement is critical. It is likely to cost at least3–7.2.2.5

twice as much to produce an instrument for the next higher SIL.

However, choosing a SIL that is to low to reduce costs could lead to inadequate
validation for the intended usage.

The technological base. The technology used may not permit the validation of the in-
strument. For instance, an instrument’s software may use an operating system which
cannot be demonstrated to have the required safety integrity.

Is validation possible? The choice of methods chosen to validate the instrument may be
inadequate for the safety integrity required. This problem is particularly difficult for
measurement systems at the SIL3–4.
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Start

Overall design of safety system.

Determination of the Safety Integrity Levels of the safety
functions being performed by the safety-related system.

Determination of the sub-systems that are
implementing the safety functions.

The Software Safety Integrity Level in each sub-system
will be the same as that designated for the safety function.

Determination of the Measurement Software Index.

This is for the measurement software, taking into account
the specific risks arising from software complexity.

Choice of validation techniques.

This needs to be fed back to the development process
to minimise costs and maximise effectiveness.

The Certification Option.

Consideration of cost and effort implications
and contractual issues.

1

2

3

4

5

6

Figure 6.1: Stages in a Safety Validation
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The certification option. If the user would like an instrument certified for use within a
safety context, then the instrument supplier would need to know what is required and
to be able to calculate the implications in terms of effort, cost and timescale.

Lack of evidence. IEC 61508 requires extensive documentation (see appendix B.2) and it
is unlikely that all of this would be available unless carefully planned in advance.

6.2 Measurement Software Index
for safety systems

At first sight, it might appear that the SIL for the complete system would determine a safety
integrity level for the subsystem and therefore the SIL could be mapped onto a suitable MSI.
Using table 6.1, it may be felt that we can equate our MSIs with those of IEC 61508. This
is not quite correct since the SIL applies to complete systems. In any case, one can envisage
a mixed software system as follows:

Suppose a measurement safety subsystem performs continuous measurement
whose safety integrity requirements correspond to SIL2. However, the software
actually consists of two parts: a relatively simple and straightforward part of
the software which operates continuously providing the necessary measurement
data, and also a calibration part which involves complex interaction with the
user. Assuming that the hardware must be restarted before and after calibration3–7.4.2.8

(say), then with some additional checks, it can be assumed that the two software
components are sufficiently separated to be considered separately for validation.
We now have two possibilities according to whether the calibration is a safety
function:

No: Here, the accuracy required for the safety of the system can be provided
without calibration. We still need to ensure that either calibration is never
performed or that it cannot reduce the accuracy of the instrument outside
the safe limits;

Yes: The calibration function must be included in the software validation pro-
cess. This could be quite demanding.

Note that the supplier would perhaps want to supply a single instrument, while
from a validation perspective, another instrument with reduced accuracy and no
calibration would be optimal for the safety market.

The software risk-based approach adopted here (see chapter 4), is not the same as the
safety integrity approach used in IEC 61508. For this reason, the IEC method must be
used to determine the SIL of the software first in order to ensure compliance with the IEC
standard. Software of SIL 1 or SIL 2 would give criticality of usage of safety-indirect and
software of SIL 3 or SIL 4 would give a criticality of usage of safety-direct. The complexity
aspects of software risk can then be determined to derive the MSI as described in section 5.2.

The primary purpose of the MSI is to determine the most appropriate validation tech-
niques to be applied. However, in the context of the software part of the standard
[IEC 61508–3], there is a recommendation that certain techniques should be applied which
we follow here (in the technical part). Also, the certification process requires objective
evidence that certain validation techniques have been applied.
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Given the need to certify a specific system, it may be that the case for compliance rests
heavily upon the use of a software validation technique which is not handled in this Guide. It
may be that certification via the CASS scheme cannot be undertaken or otherwise it may be
possible to extend this Guide to cover the crucial technique. Many techniques in IEC 61508
are to be recommended for software development, but play a much reduced role in software
validation. In essence, the software developer may not be able to claim “certification credit”
for such techniques. This is not to down-rate such techniques, but merely to avoid having to
handle too many techniques which have a reduced bearing on the key issue: “is the system
safe?”. In other words, if you are using or depending upon validation techniques not covered
in the Guide, then clearly the Guide is not going to help you.
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Chapter 7

Software validation techniques

Given a Measurement Software Index, then the software risks can be mitigated by the
application of suitable software validation techniques. If the supplier can assure the user
that appropriate techniques have been applied, then the use of the measurement system in
the agreed role can be justified. (For safety applications, the agreement would usually be
based upon certification, see chapter 6).

7.1 Appropriate applicable techniques

The most appropriate techniques to apply depend upon the nature of the software, and are
considered in detail in part II.

As a user, the validation techniques used by the supplier may well be unknown. In that
case, the Guide can be reviewed by the supplier who can be asked to comment, given the
results of the software risk assessment provided by the user.

A number of specific software techniques are described in part II. However, there is no
overall framework for software validation techniques. Guidance for general software testing is
given in ISO 13233 which does provide a set of objectives such as repeatability, which could
be developed further for measurement software. This would be a useful advance, since cur-
rently methods like Numerical Reference Results (see section 12.18) are only recommended
in specific contexts like Coordinate Measuring Machines [ISO 10360–6].

7.2 Software and quality management

For any MSI, basic practices must be established which could be a direct consequence of the
application of ISO 9001 to software [ISO 9000–3] or from the application of other standards.
It can be claimed that ISO 9001 itself requires the application of appropriate (unspecified)
software engineering techniques, especially for the higher Indexes. However, ISO 9000–3
does not even mention many such techniques and hence we take the view that specific
techniques should be recommended here, rather than depend upon the general requirements
of ISO 9001. In the pharmaceutical sector, specific guidance has been produced which is
effectively a version of ISO 9000–3 oriented to that sector [GAMP].

In the UK, it is reasonable to expect suppliers to be registered to ISO 9001, which in
the case of software should imply the application of TickIT (although note that the TickIT
Scheme has now become a benchmark for any software certification scheme for ISO 9001,
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rather than a software specific extension to ISO 9001 registration; see UKAS-TickIT). If a
supplier is not registered, then one lacks an independent audit of their quality system.

In practice, an important requirement of any audit or assessment is the provision of
documentary evidence of the development and validation processes. A typical ISO 9001
audit is based upon sampling and hence may not reveal the absence of documentation for a
specific development.

ISO 9001 provides a basic standard for quality management, whereas in practice, com-
panies will continually improve their system if the aim is high quality. In any case, improve-
ments in the light of experience are essentially a requirement of ISO 9001. The standard
implies a defined life-cycle which is elaborated in ISO 12207. For those companies not
formally registered to ISO 9001, it is necessary that a similar quality management approach
is used and evidence for that can be produced.

To conclude, users should expect suppliers to be registered to ISO 9001, or to be able
to demonstrate compliance to a similar level of quality management.
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Chapter 8

Conclusions

The attempt to answer the two questions posed at the beginning of the Guide is limited by
the information available. One must accept that the user of a measurement system may
not be able to obtain information from the supplier to determine if appropriate software
engineering practices have been used.

If end-to-end testing cannot be regarded as providing sufficient assurance of the mea-
surement system, then a user must consult the supplier to obtain the assurance that is
desired.

It must be accepted that assurance levels higher than the majority of the users of
a measurement system require can probably only be achieved by purchase of additional
information from the supplier, perhaps even to the extent of developing a special-purpose
measurement system.

In the case of measurement subsystems to be used with safety systems, assurance would
be provided by adherence to IEC 61508. In this case, specific requirements for documenta-
tion are significant and, as the safety integrity requirements increase, so do the requirements
for more rigorous validation of the software. The natural way for off-the-shelf measurement
systems to be provided for the safety market is via a certification scheme since the expense
of the validation of the instrument need only be met once, provided that the use of the
instrument is compatible with the scope specified in the certification.

The approach taken in this Guide places great importance on the MSI. As this Index
increases, so do the inevitable costs of validation. In consequence, great care must be taken
to determine the appropriate Index — too high will increase the costs unnecessarily, and
too low will not provide the required assurance.
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Part II

Technical Application
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Chapter 9

Understanding the
Requirements

9.1 Technical requirements

The main non-technical aspects of the requirements are covered in the first part of this Guide.
The purpose of this part is to provide additional information of the software engineering
aspects so that high assurance can be provided by a supplier in a form which a user can
appreciate. Hence this part is directed more at the supplier than the user.

In the context of safety applications, we want to specify a system for certification of
measurement subsystems to IEC 61508. To ease the presentation to those not concerned
with safety, much of the detail is placed in a special appendix (see appendix B). We exclude
the more specialised area of Programmable Logic Controllers, since another guide is available
covering this [IEE-PLC].

The general approach in Part I is followed here but with more detail. If high assurance is
required, then the detail presented here is necessary. In essence, Part I only handles systems
with a MSI of 0 (i.e., just the application of standard quality management).

The steps to achieve successful validation are illustrated in figure 1.1. The following
points should be noted:

1. If as a user , your assessment of the software risk is higher than that envisaged by the
supplier, then it may be difficult, or even impossible to obtain the assurance required.

2. As a user, you may be able to reduce the software risks by choosing a simpler system
with only just sufficient functionality to cover the application.

3. The MSI is vital. Too low and the assurance is not obtained, too high and effort will
be wasted.

4. The choice of validation methods will determine the cost.

In the context of certification to IEC 61508, particular safety integrity targets are speci-
fied (see table 6.1). This implies that the measurement subsystem hardware must be assured
to satisfy these targets. This topic is outside the scope of this Guide, and readers are
recommended to consult FunctionalSafety and IGE-SR-15. Clearly, if the hardware does
not meet the required safety integrity level, the software safety integrity is irrelevant.
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9.2 Handling calibration data

In most contexts, the handling of calibration data is a major concern. For instance, nuclear
power station safety systems use the measurements from a large number of sensors, each
of which must be calibrated. Incorrect data could clearly have safety implications which3–6.2.2

therefore requires careful control. This Guide does not handle this issue specifically, and
therefore readers are recommended to consult EUR 19265.

9.3 Ensuring a robust system

In any system in which there is a specific assurance requirement, which includes safety
systems, it is important that every aspect of the measurement system should be analysed
to ensure the target assurance is actually attained.

Aspects that need to be considered include the following:

1. Potential misuse by the user. This is a specific aspect of usability which is important
for systems having a long life, see appendix A.6.

2. Device not installed correctly.

3. Device subject to extreme conditions. In software terms, this implies that the range
of input values should be checked, and all values within the acceptable range should
be processed adequately.

4. Memory not adequately protected from external interference. In some environments,
sum-checks should be applied to volatile memory, for instance.

5. Invalid measurement request — say, an attempt to measure a sample when no sample
is present.

Note that a lack of a robust design implies that the measurement request may fail and
this, in turn, has implications for the design of the system using the measurement. In some
cases, the software may be able to detect a malfunction of the basic measurement hardware,
while in others it may be necessary to consider a redesign of the hardware.
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Chapter 10

Issues in Software Risk
Assessment

Without a software risk assessment one cannot be confident that any effort spent in validation
will be worthwhile. Clearly, if one can be assured that the software within a measurement
system can have no negative impact on the resulting measurements, then all that is needed
is to record the reasons why this conclusion has been reached. On the other hand, if
the software is large and complex, and also performs an essential function in producing
the output from the measurement system, and that output has a safety implication, then
validation is essential.

The software risk assessment should identify the key aspects so that the validation process
can target these important aspects. Almost all complex software systems contain a high
proportion of less critical code which could be checked by simpler and cheaper methods than
the more critical parts. (However, the parts must have sufficient independence, otherwise a
gross programming error can easily overwrite critical data.)

Measurement is a numerical process. In consequence, one must be confident that the
software processing of the numeric data produces a meaningful result. Techniques are
available to ensure the numerical correctness of the computations within the measurement
system, which should therefore be applied when the assurance they provide is required. (See
Numerical Reference Results, section 12.18, and Numerical Stability, section 12.9.)

10.1 Software Risk factors

The fundamental problem for the supplier is that the criticality of the usage of a mea-
surement system may be unknown and, therefore, a specific Index must be chosen. If a
user of a measurement system wishes to use it in a more critical application than the
supplier has envisaged, then additional validation effort may be required, which can involve
much analysis work (especially with safety systems). It may prove impossible to obtain
the necessary assurance in some circumstances which may therefore require an alternative
measurement device. For safety systems, it may be that the most effective solution is a
change in the system architecture.

The issues which need to be considered are collected together here as questions. Not all
of these will be relevant for a specific measurement system.

1. For the user, what is the criticality of usage?
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critical /business-critical / safety-indirect / safety-direct

2. Is the supplier aware of the criticality of your application?

3. Are there specific legal requirements for the measurement system?

4. What are the consequences of a measurement system malfunction?

5. Is independent evidence needed of the software development process?

6. Does the measurement system require regulatory approval?

7. What is the complexity of control?
very simple / simple /modest / complex

8. Does the measurement system perform built-in testing? Is this sufficient for this
application?

9. Do the control functions protect the operator from making specific errors? Is this3–7.2.2.7

sufficient for this application?

10. Can an error in the control software cause an error in the basic test or measurement
data?

11. Is the raw data available from the measurement system?

12. Does the measurement system contain local data, such as that derived from the last
calibration?

13. Is the processing of the raw data strictly linear?

14. Is the processing of the raw data a simple non-linear correction?

15. Is the processing of the data restricted to published algorithms?

16. Have the algorithms in use been checked for numerical stability?

17. Would a numerical error, such as division by zero, be detected by the software, or
would erroneous results be produced?

This will typically depend upon the programming system used to produce the software,
and can vary from no detection of such errors to elaborate indications of the exact point
of failure. If no internal checks are applied, there is a greater risk of a programming
error resulting in erroneous results. See also section 11.2.

One should not necessarily regard performing a software risk assessment as a once-only
function. Given an initial assessment, some validation work may be undertaken. As part of
that validation, more information will be available which may imply that the software risk
assessment should be revised. (In the case of bespoke systems, feedback from actual use
would allow for a continuous process of improvement.)
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10.2 A simple example

A platinum resistance thermometer has a small amount of embedded software, mainly to
provide a convenient interface for the user. The basic algorithm is to apply a small non-linear
correction derived from the last calibration of the measurement system.

Assuming the application is not safety-direct, and that we have assurance that the
basic algorithm is as described above, then it would be reasonable to conclude that end-
to-end testing of the measurement system as a whole will provide the assurance needed.
In consequence, no specific software validation process is required. The assurance provided 3–7.7.2.6

by the supplier, working under an appropriate quality management environment, should be
sufficient.

For another, full example in which end-to-end testing provides high assurance, see
appendix C.2. (This is an electrical bridge in which the data processing software is very
similar to that of the simple example here.)

10.3 A complex example

Consider the example of the Autoclave in section 4.4. At first sight, the pharmaceutical
company had every right to trust the Autoclave manufacturer to satisfy the requirements.
However, FDA required visibility of the evidence which should support the correct operation
of the Autoclave.

In undertaking the retrospective validation, errors were found in the computation of the
(agreed) formula. Fortunately, the error was on the side of safety, but it seems clear that
the error could have been unsafe so that the Autoclave did not sterilise the artefacts.

In terms of this Guide, the computation was modest since it involved integration over
time. In this case, the errors in the clock compounded the problem.

The measurement of time and temperature to the accuracy required by this application
is not demanding. In consequence, the trust placed by the pharmaceutical company seems
reasonable. The observed errors in this case are therefore disturbing, especially since the
correct operation of an Autoclave is almost certainly a safety factor.

The conclusion must be that even in cases in which the supplier could reasonably be
expected to satisfy the requirements, the user should ask for documentary evidence of this.
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Chapter 11

Software Reliability
Requirements

The starting point here is that the software development process being used should have
a rigour to match the MSI. This is the approach taken in several safety critical software
standards [IEC 61508, DO-178B].

Theoretically, it is possible to undertake the testing of software to establish the actual
reliability of the software. However, there are strict limits to what can be achieved in this
area [Littlewood], and hence the approach taken here is the conventional one of examining the
software development and validation process, but only as far as the impact on the product is
concerned. In practical terms, software testing is expensive, and hence the most cost-effective
solution is likely to be to minimise the testing and use other methods to gain confidence in
the software.

11.1 Software and quality management

Following the outline in Part I (section 7.2), we assume that either ISO 9001 or a similar
quality management system is being applied by the supplier. The application of such a 3–7.1.2.2

quality management system to software should imply that a number of technical issues have
been addressed and documented and that the following requirements are met:

1. There should be documents demonstrating that a number of issues have been covered
such as: design, test planning, acceptance, etc. The acceptance testing should ensure
that the operator interaction issues have been handled and validated.

2. There should be a detailed functional specification. Such a specification should be
sufficient to undertake the coding. This level of information is typically confidential to
the software developer. (The developer and the supplier could be separate organisa-
tion, but since the responsibility, as far as the user is concerned, lies with the supplier,
in this Guide we usually refer to the supplier.)

3. There should be a fault reporting mechanism supported by appropriate means of 3–7.4.7.4
3–7.4.8.5
3–7.5.2.6
3–7.5.2.8
3–7.7.2.5

repairing bugs in the software.

4. The software should be under configuration control. This implies that either the
software should itself include the version number, or the version can be derived from
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other information, such as the serial number of the device. In the case of free-standing
software, it should be possible for users to determine the version number. In may also
be necessary to roll-back to a previous version.

We assume that these requirements are met, whatever MSI is to be addressed by the
software. We equate these requirements with a MSI of zero.

In EUR 19265, three aspects are considered for which evidence is required for nuclear
safety systems. These are listed below to contrast with the approach taken in this Guide in
which none of these are explicitly covered:

The development process. In this Guide, evidence is required of ISO 9001 or an equiva-
lent quality management system and the ability to apply effectively the recommended
validation techniques. For safety systems, the documented evidence of the design,
development and validation is vital.

Adequacy of the product. In this Guide, this is covered by specific recommended vali-
dation techniques.

Competency of the staff. This is not currently covered in this Guide, but needs to be
included in the certification process, almost certainly by applying the IEE/BCS scheme
[CompetencyStandards].

11.2 Requirements for the development environment

Any potential defect in the development environment could result in undetected errors in
the delivered software. In almost all the measurement systems being considered here, the3–7.4.4.3

key component of this environment is the programming language and associated tools.

11.2.1 Development environment issues

In this section, we list nine common problems which can easily undermine the development
process. We then recommend a documented means of overcoming these problems which
needs to reflect the overall MSI required.

The nine problem areas are as follows:

Source text control. This is a requirement of ISO 9001. Several tools are available to
track changes to key files. However, the major issue is that of ensuring that the results
of any validation applies to the system as delivered. If a validation method detects3–7.4.4.6

a fault, then correction of that fault implies that the validation must be repeated,
including potentially, many other validation techniques.

Source text control is very important for systems which are being continually updated.
Updates are often undertaken with fewer people than the original development, in
which case, some processes involved in building a new system might be omitted.

Tool control. Many tools have several options, and ensuring that the “correct” option
is always used is important. This a vital with compilers which often have means of3–7.4.4.2

varying the checking performed (both statically and at run-time).

Coding errors. Most coding errors will be detected by the compiler or by testing. Hence
consideration needs to be given to any coding errors which could remain undetected3–7.4.4.5

by the routine development process. Code review or walk-throughs should be used.
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Unset variable. This is probably the most common programming error. Requiring that
all variables are explicitly initialised on declaration is not usually a good solution,
since such a value may not be logically correct. Implicit initialisation is also not rec-
ommended, but this may be automatic in some programming language environments.

Range/index error. In most measurement software, the physics implies a specific range
of possible values. In addition, the programming language will require that an index
used to access an array element is within the bounds of the array.

Numeric error. Numeric underflow and overflow of floating point values is considered
separately (see sections 12.9 and 12.18). However, integer overflow can also arise and
often will not be detected.

Pointer error. If the programming language provides pointers which can be directly ma-
nipulated by the programmer, then pointer errors can easily arise and be hard to detect
and trace. Hence, in this context, it is vital to have techniques in place to avoid or
manage the issue.

Other language errors. Apart from the errors already noted, the programming language
will often list situations in which the program will not behave in a predictable manner.
These situations must be understood and procedures put in place to ensure that they
are dealt with.

Timing error. While the main processor will almost always operate in an asynchronous
matter, this is unlikely to be true of the external environment. It is therefore important
that any timing characteristics of the basic sensors (say) are taken into account. If the
programming language provides a means of running more than one task at a time, or
it is necessary to handle interrupts, then timing problems can easily arise.

All but the first two issues are associated with the execution of the software — although
detection before execution is highly desirable. The detection of these remaining conditions
could be as follows:

Run-time. In some contexts, it could be sufficient to detect the problem during the execu-
tion of the measurement system. If which case, building the systems with the inclusion 3–7.4.2.10

of run-time checks will be acceptable.

Component test. During development, run-time checks are enabled during component
testing. The faults found are corrected. Hence, unless the complete system executes a
component in ways not allowed for during component testing, the problem will have
been resolved.

System-test. The system-testing is undertaken with checks enabled. The problem here is
that ensuring that all the paths through the software are covered is much more difficult
than with component testing.

Regression test. A special suite of tests is used, which reflect experience with previous
releases of the system. Typically these are run as near to the final system as possible,
but with built-in checks so that a failure is detected.

Manual check. This can be very labour-intensive and it is hard to quantify the success
achieved.

Tool check. A static analysis tool is used to analyse the source code. There is a substantial
variation in the way tools work with respect to the amount of manual analysis that
needs to be done after the application of the tool.
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11.2.2 Illustrative example

We consider a high safety integrity, probably MSI4 system, being developed using the Spark
subset of Ada 95 [ISO 15942]. The Unix tool for source text control is used and all the main
tools are called by means of project-defined macros. This effectively handles the issues not
associated with the execution of the application.1

In this application, the detection of a fault at run-time is not considered appropriate
as the safety integrity of the total system could be compromised. In consequence, the
emphasis is upon the use of the Spark tool to show the absence of run-time errors (Ada
exceptions). Component testing is used primarily to show adherence to the specification of
the component, rather than detection of any remaining run-time faults.

Error Run- Component- System- Manual- Tool-
time test test check check

Coding N/A Yes No Yes Spark (90%)
Unset variable No No No No Spark (100%)
Range/Index No No No Yes Spark (97%)

Numeric No No No Yes Spark (97%)
Pointer No No No No Spark (100%)
Other No Yes Yes 90%

Timing No No No No Spark (100%)

Table 11.1: Error detection

In order to justify the safety integrity claims, we need to make crude estimates of the
detection of the faults listed above by the means used for the project. This results in
table 11.1.

It is clear that the “gap” in the error detection by the language environment is in
the “other language error” category which in this case is from floating point overflow and
underflow. This is handled by classical numerical analysis, see section 12.9.

11.3 Recommended techniques

In table 11.2, we list the recommended techniques, which are all defined in chapter 12.
Techniques for MSI4 are only suggestions in this edition of the Guide.3–7.1.2.6

Note Independent audit (section 12.1) is recommended at MSI0, so does not appear in the
table, but may be applied at all Indexes.

Regression testing is not included in this table since its use if not dependent on MSI but
rather on the frequency of new releases and the amount of functionality that remains
unchanged between releases.

The table does not mention those techniques which are described but not recommended
(at any Index) in this edition of the Guide.

When selecting techniques, it is important to obtain a balance between testing and
analysis methods. The table lists the analysis techniques first, and the testing techniques
last. A technique like “code review” is essentially an analysis of the implementation, while
“review of specification” is an analysis that does not logically require an implementation.

1This example is based upon, but not the same as PROOF, which is a complete system developed using
SPARK.
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Ref. Recommended technique Measurement Software Index
1 2 3 4

12.2 Review of informal specification Yes Yes
12.3 Software inspection of specification Yes Yes
12.4 Mathematical specification Yes Yes Yes Yes?
12.5 Formal specification Yes?
12.6 Static analysis Yes Yes Yes?
12.6 Boundary value analysis Yes Yes
12.7 Defensive programming Yes Yes
12.8 Code review Yes Yes
12.9 Numerical stability Yes Yes Yes?
12.10 Microprocessor qualification Yes?
12.11 Verification testing Yes Yes?
12.12 Statistical testing Yes Yes
12.13 Structural testing Yes
12.13 Statement testing Yes Yes
12.13 Branch testing Yes Yes?
12.13 Boundary value testing Yes Yes Yes?
12.13 Modified Condition/Decision testing Yes?
12.15 Accredited testing Yes
12.16 System-level testing Yes Yes
12.17 Stress testing Yes Yes
12.18 Numerical reference results Yes Yes Yes? Yes?
12.19 Back-to-back testing Yes Yes
12.20 Source code with executable Yes?

Table 11.2: Recommended techniques, see text for selection.

All techniques should be considered. For instance, if a “mathematical specification” has not
been produced, then the implications of that need to be taken into account. (For an example
without a mathematical specification, see the analysis of images in appendix C.3.)

Ensuring that numerically sound results are produced is clearly vital. In consequence, in
all but the simplest of calculations, one must gain assurance by using only stable algorithms
(i.e., ensuring the design is correct, see section 12.9), or by checking the implementation using
numerical reference results (see section 12.18), or by testing the implementation against
a reference implementation (using back-to-back testing, see section 12.19). (Very high
assurance would require more than one technique.) Since we know of no other appropriate
methods of gaining assurance for numerical calculations, one of these techniques should be
used.

The fact that a technique is recommended at a specific Index does not (in general) imply
that not applying the method would imply poor practice or that all the methods should be
applied. For instance, the example given under Accredited testing (see section 12.15) is a
good choice precisely because other strong methods are not effective. Any design should
involve a trade-off between the various relevant methods.

In the context of certification to IEC 61508, the techniques recommended here should
be applied, or a reason produced as to why any errors that are likely to be detected would
be found by techniques which have been applied (and are also recommended here).

There is one important factor that should be taken into account in determining the
techniques that should be used. In performing the software risk analysis, it was noted that
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the complexity of the software increases the software risk significantly (see chapters 4 and
10). Hence, in the case of complex software, almost all of the recommended techniques
should probably be used. Conversely, in the case of very simple software, the number of
techniques used could be reduced. Note that therefore the cost of validation can be expected
to increase more than linearly with the size of the software.

Note that Structural testing, Statement testing, Equivalence partition testing, Boundary
value testing and Branch testing are all (software) component test methods (see section
12.13).

11.4 Software development practice

The issues here are again listed as questions. The first set are generic to all Indexes, and the
others are specific to a given Index. The lists increase in complexity with increasing MSI.
Since the requirements at Index n (n > 0) imply those at Index n − 1, all the questions
should be asked up to the Index required.

More detailed questions which are designed for auditing, appear in appendix B.3.

11.4.1 General software issues

1. What information is available from the measurement system supplier or developer of
the software?

2. What confidence can be gained in the software by end-to-end tests on the measurement
system?

3. Can the raw data be extracted from the measurement system?

4. Can the raw data be processed independently from the measurement system to give
an independent check on the software?

5. Are software reliability figures available for a measurement system using similar soft-
ware (i.e., produced by the same supplier)?

6. Is a log available of all software errors?

Has this log been inspected for serious errors?

7. Does the control function have a direct effect on the basic test or measurement data?

8. Has an assessment been made of the control software against the operating manual?
If so, by whom?

9. Do operators of the measurement system require formal training?

10. Have all the answers to the questions above in this list been taken into account in
determining the MSI?

11. Has a list been made of all the unquantifiable aspects of the software?

Page 52 of 134



SSf M Best Practice Guide No. 1 NPL Report DEM-ES 014

11.4.2 Measurement Software Index 0

1. Is there design documentation?

2. Is there evidence of test planning?

3. Is there a test acceptance procedure?

4. Is there an error log?

5. What evidence is there of clearance of errors?

6. Is there a detailed functional specification?

7. Are security, usability and performance aspects covered in the specification?

8. How is configuration control managed?

9. Is there a defined life-cycle?

10. How can the user determine the version number of the software?

11. Have all changes to: hardware platform, operating system, compiler, and added
functionality been checked?

12. Have all corrections been checked according to the defined procedures?

13. Have all the staff the necessary skills, and are these documented?

11.4.3 Measurement Software Index 1

1. Has a review of the informal specification been completed?

2. Has a mathematical specification been produced of the main algorithms used for
processing the test/measurement data?

3. Is the processing code derived directly from the mathematical specification?

4. Are all possible paths in the software either handled or covered by defensive program-
ming checks?

5. Has a code review been completed?

6. What form of structural testing has been applied, and what metrics of the level of
testing have been produced?

7. What level of testing has been applied to the control and processing components of
the software?

8. How has the completeness of the system testing been assessed?

9. Has the system testing covered all reasonable misuses of the measurement system?

10. What records are available on the system tests?

11. Are the security features consistent with any regulations or intended use?

12. Are the test strategies, cases, and test completion criteria sufficient to determine that
the software meets its requirements?

13. Are the key metrology algorithms checked by means of numerical reference results?
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11.4.4 Measurement Software Index 2

1. Has an independent audit been undertaken?

Have all problems identified been resolved?

Did the audit apply to the basic quality management system or to the software
techniques as well?

2. Have activities been undertaken in the development which are not auditable (say, no
written records)?

3. Unless software inspection has been applied, has a review of the informal specification
been successfully completed?

4. Assuming software inspection been used on the project, what documents has it been
applied and what was the estimated remaining fault rate?

5. Has any form of static analysis been applied to the software? Note that this covers
boundary value analysis.

6. Has the numerical stability of the main measurement/data processing routines been
checked?

Has a floating point error analysis been taken into account in formulating the mathe-
matical specification of the routines?

7. Has any form of statistical testing been applied to the software?

8. For what components has equivalence partition testing been applied?

Has the technique been applied to the components processing the basic test or mea-
surement data?

9. To what components has statement testing been applied? What coverage was ob-
tained?

10. Has boundary value testing been applied to key components?

11. Has regression testing been applied?

If so, at what point in the development did it start?

12. Does accredited testing have a role in gaining confidence in the software?

If a test suite is used for accredited testing, have all the results of other forms of testing
been fed into this?

13. Has stress testing been applied to the software?

To what extent have the limits of the software been assessed by this testing?

Has the stress testing revealed weaknesses in the system testing?

14. Could back-to-back testing be applied to the software to compare it to some equivalent
software?

15. Are known remaining software bugs documented?

Are they adequately communicated to the user?

16. What methods have been applied to avoid structural decay?
(See appendix A.3.)
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11.4.5 Measurement Software Index 3

1. What forms of static analysis have been undertaken?

2. Has verification testing been performed with the appropriate degree of independence
and level of effort?

3. What coverage was obtained with branch testing?

11.4.6 Measurement Software Index 4

To be considered in detail in a later edition of the Guide.

1. Has a Formal Specification been produced of any of the software components?

Has this revealed weaknesses in the functional specification, testing, etc.?

Is it possible to derive an executable prototype from this specification to validate the
equivalence partition testing?

2. Has the microprocessor in use been suitably qualify?

3. Has the source code been compared with the executable?

11.5 A simple example revisited

We reconsider the simple example mentioned in section 10.2. Having undertaken the
preliminary analysis, the instrument is to be regarded as MSI1, and complete access is
available to the design and coding of the system. We assume that the basic hardware
satisfies the required safety integrity target.

The instrument has calibration constants stored in non-volatile memory. However, an
analysis showed that if the user made a mistake during calibration, the calibration constant
could fall outside the allowed range. Hence the supplier added sanity checks within the
calibration software.

The analysis of the instrument showed that there were only 216 possible data input
values. Hence exhaustive end-to-end testing was agreed to be adequate in this case.

Note that in this example, we have used an analysis of the software to show, in effect,
that we can treat the device much like hardware, but this is sufficient only because of the
extreme simplicity of the software.

11.6 A pressure transducer

We now consider a pressure transducer very similar to Druck’s device mentioned in section
3.6. We assume that the instrument is required to satisfy MSI2, and that it needs to
have a safety integrity better than one failure per 106 hours of continuous operation (this
corresponds to SIL2 of IEC 61508, see table 6.1).

Although the software is not complex, there is no possibility of validating the software
comprehensively according to this Guide, since the safety integrity requirements are quite
demanding. Indeed, we cannot test the system directly to measure safety integrity, since
the mean time between faults should exceed 110 years.

Hence we consider each of the recommended techniques:
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Review of informal specification. Undertaken using an independent consultant, who
advised some changes which were applied.

Software inspection of specification. Not done as the review above was thought suffi-
cient.

Mathematical specification. Done, and checked as part of the review.

Static analysis. C code checked as complying with the standard. Manual checks applied
to ensure code would execute correctly.

Boundary value analysis. Done as part of component testing.

Defensive programming. Run-time checks added as a consequence of the review.

Code review. Done.

Numerical stability. Done by a qualified numerical analyst.

Statistical testing. No adequate information available on usage to allow such testing to
be meaningful — not done.

Statement testing. Done, with the exception of defensive checking code.

Boundary value testing. Done as part of component testing.

Accredited testing. No available service for such a device.

System-level testing. Done.

Stress testing. Not done.

Numerical reference results. Not done, since the checks on numerical stability were
thought to be adequate, and no such numerical results available for this application.

Back-to-back testing. Not done as there was no available system to compare with.

Hence, of the 16 techniques, 10 were undertaken. The manual checks for correct execution
were thought to be adequate since the code was small. Since the system was certainly not
complex, and there was a reasonable balance of static and dynamic techniques, the conclusion
from validation was positive.

With any system, it is worthwhile to consider what errors might remain. In this case,
the basic microprocessor used does not have floating point hardware. Since the C code uses
floating point, it is possible that the subroutines added by the compiling system have some
errors which were not detected during testing. This is a question of Software of Uncertain
Pedigree [SOUP–1, SOUP–2]. This is a difficult issue, in general, although in this specific
case, tests are available to validate basic numerical operations [FloatingPointValidation].
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Chapter 12

Software Validation Techniques

Here we list specific recommended techniques. These are either defined here, or an appro-
priate reference is given. A good general reference to software engineering is SERB. The
techniques are ordered by their use within the life-cycle of software development. This Guide
only considers validation and therefore techniques which are appropriate for development
are not necessarily considered.

In the context of safety systems, it is very important to use a mixture of techniques which,
when combined, give a high assurance of the suitability of the system. The mixture needs to
include dynamic methods which execute test cases, and static methods which depend upon
an analysis of the design. For further information, see Appendices A and B of IEC 61508–3.

12.1 Independent audit

In the UK, independent audit to ISO 9001 is widely established. This provides evidence to
third parties of a MSI of 0. It would not require that the stronger (and more expensive)
techniques are applied, nor that the recommendations here are applied. In consequence,
auditing to comply with the other standards mentioned in chapter 2 would be better.

Example

NPL, and many other organisations, are independently audited to ISO 9001. In the context
of measurement (and testing), assessment to ISO/IEC 17025 is probably more relevant.

Scope

The scope of this technique is universal, but such auditing/assessment is not as widespread in
the USA as in many other developed countries. This implies that assurance via independent
audit may not be effective for some imported measurement systems.

Safety implications

Independent audit (for functional safety) is a requirement of IEC 61508. When software is
a key component of the safety system, auditing of the software development process is to be
expected. This Guide assumes that such an audit is undertaken.
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The CASS scheme provides a means to gain certification of a organisations management
processes to IEC 61508 through Functional Safety Capability Assessment (FSCA), see
section B.1.

Cost/Benefits

The cost of auditing and assessment depends largely on the number of man-days of auditing
effort. The benefits are in a similar proportion.

Conclusions

If you have any doubts about the standing of a measurement system supplier, you should ask
about registration to ISO 9001. If the supplier calibrates any measurement system, including
their own, then they should be assessed independently to ISO/IEC 17025 or an equivalent
standard. As a user, you may be able to calibrate the measurement system yourself, but
nevertheless, the supplier should be able to demonstrate this capability too.

12.2 Review of the informal specification

It is widely thought that errors in the specification of software are the most common and
most expensive type of error in software. In consequence, techniques which are likely to
detect faults in the specification prior to investing effort in the implementation are very
worthwhile.

Some form of review should always be undertaken — hence the main issue is to decide
the nature of the review and the level of effort that should be devoted to it.

Unfortunately, a long and detailed specification is hard to check completely before
implementation. Some aspects of the specification may only become clear when part of the
implementation has been completed. On the other hand, with some measurement systems,
the mathematical formulae giving the relationship between the basic sensor outputs and the
resulting measurement gives an effectively complete specification. Hence software developers
should assess the potential risks of an error in a specification and direct the review effort
appropriately.

Individuals undertaking a review should be independent1 of the writers of the spec-
ification, but have the necessary expertise to criticise the specification. If the software
specification is written by a physicist (say), but is to be implemented by a software engineer
(say), then appropriate checks should be made that the specification reflects the need to
bridge the two disciplines.

When a detailed review is being considered, the Software Inspection method may well
be appropriate, see section 12.3.

Scope

This technique is applicable to all systems.

Safety implications

A review of some type for the complete system is the requirement of IEC 61508 (Part
2, 7.4.2.6 for the software requirements). A review which is not a software inspection is

1Safety standards typically define the degree of independence required.
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recommended at MSI1 and MSI2. Further guidance in the context of the certification to
IEC 61508 is given in section B.3.1.

Cost/Benefits

It is probably unwise to spend less than a third of the cost of writing the specification on
a review. A well-focused review is likely to be highly advantageous in ensuring a quality
product.

Conclusions

Some kind of review of the specification should always be undertaken; if the specification
is informal then an informal review, as described here, is recommended. The review should
focus on areas of risk. At higher MSIs the review should be more formal, such as software
inspection, mathematical specification review, or formal specification review; as described
in the following sections.

12.3 Software inspection

This technique is a formal process of reviewing the development of an output document from
an input document. It is sometimes referred to as Fagan inspection. An input document
could be the functional specification of a software component, and the output document the
coding. An excellent book giving details of the method and its practical application is given
in SoftwareInspection.

The method is not universally applied (in industry), but many organisations apply it
with great success. It tends to be applied if the organisation has accepted it and endorses
its benefits.

Scope

The requirements are an input document, an output document and terms of reference for
the inspection. As such, the method can be applied to a very wide range of documents, and
hence to the processes producing such documents.

However, the method is only effective if used on a regular basis within an organisation.
People need some training in the technique in addition to reading the reference given (or
similar material).

Safety implications

Applying software inspection to the specification of the software is a recommended technique
for MSI2/MSI3 systems. In the context of safety systems, auditing recommendations are
given in section B.3.2. Note that a software inspection is regarded as being a stronger
technique than review and hence is recommended at MSI3 while review is not.

Cost/Benefits

The process requires at least three people in an inspection. Experience shows that one
needs to allow at least half an hour per page, and some preparation time and time to write
up the results of the inspection. Hence the cost is probably twice that of a single person
undertaking a review — the alternative which is probably more widely used in industry.
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The advantage is that after a successful inspection, one has more confidence in the
output document than is attained by an individual review. Specifically, the result produces
a document that is very likely to have consensus support within the organisation.

Conclusions

Organisations should consider applying the technique on a regular basis if it is felt that this
depth of review of documents is advantageous.

For those organisations who already apply the technique, it is recommended that they
review the proportion of critical documents that are inspected. Internal quality procedures
and records should indicate the areas where the main gains are to be found.

12.4 Mathematical specification

A mathematical specification gives the output data values as a function of the input data
values. This method is suitable for the simpler processing of basic measurement data, and
should clearly be expected. The mathematical function may well not be the way the actual
output is computed, for instance, the specification may use the inverse of a matrix, while
the results are actually computed by Gaussian elimination. This method should avoid a
common error of not specifying the exact effect of the end of a range of values. It is not easy
to apply the method to digital images (say); since the algorithms applied are quite complex,
any “complete” specification is likely to be very similar to the software itself.

The mathematical specification needs to be validated against the underlying physics.
This includes establishing that the model describes the system sufficiently well and ensuring
that the errors introduced by the system are fully understood.

In some cases, the mathematical specification could be based upon an empirical rela-
tionship rather than directly upon the underlying physics. The validation of this empirical
relationship has been covered in the Modelling Theme [SSfM-Model] of the SSf M programme
[SSfM–2].

Example

See SmartInstrument for an example of mathematical specification applied to a pressure
transducer. In that case, the mathematical specification has been analysed to show the
accuracy of the computation in the implementation.

Scope

I often say that when you can measure what you are speaking about and express
it in numbers you know something about it; but when you cannot measure it,
when you cannot express it in numbers, your knowledge is of a meagre and
unsatisfactory kind: it may be the beginning of knowledge, but you have scarcely,
in your thoughts, advanced to the stage of science, whatever the matter may be.

Lord Kelvin, Lecture on Electrical Units of Measurement, 3rd May 1883.

This quotation expresses the universal nature of mathematical specifications in the area
of measurement.
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Safety implications

Although IEC 61508 does not mention mathematical formulae, it is clear that, in the
context of safety related measurement systems, a precise specification is vital. Hence, such 3–7.4.2.5

a specification is recommended at all Indexes. Auditing recommendations are given in
section B.3.3.

Cost/Benefits

Given its universal nature, the only question is the rigour with which the method is applied.
For linear systems, supported by calibration, perhaps little needs to be done.

Conclusions

Apply in all cases in which the mathematical formulae are not obvious.

12.5 Formal specification

Several methods are available for providing a specification in a completely formal way which
can handle most functional aspects of a specification. The best known methods are VDM
[VDM-SL] and Z [Spivey-Z]. For the primary author’s personal views of this technique, see
FormalMethods.

Example

The use of such techniques is more frequently associated with safety and security systems
than metrology. However, an example of such a specification involving measurement is from
a system to alleviate the effects of gusts on an aircraft [AttitudeMonitor].

In this application, three basic measurements are combined and then, if the alleviation
mechanism is invoked, the Flight Control System (FCS) must be informed to take the
necessary action. The key issue here is that the FCS is safety-direct, and therefore, by
association, so is the gust alleviation system. Moreover, the logic is complex enough to
demand very careful specification which, in this case, is achieved by the application of the
Z language.

Scope

Formal specification languages have wide applicability, but are most effective when used to
specify complex discrete systems. If all the relevant parties can read such a specification, it
substantially reduces the risk of an ambiguity resulting in an error in the software.

Safety implications

This method is certainly relevant to MSI4 systems, but no additional guidance is given in 3–7.4.2.5

this Guide (although it may be available in a later edition).

Cost/Benefits

Effective use requires people trained in the use of the technique being employed (such as
VDM or Z). This could mean high additional costs for a project, which implies using Formal
Methods only on the most critical systems.
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Conclusions

If a system has a large number of discrete states, all or most of which could influence the
measurement results, then it is unlikely that sufficient assurance can be gained from testing
alone. In such cases, the use of a Formal Specification should be considered.

12.6 Static analysis/predictable execution

This technique determines properties of the software primarily without execution. One
specific property is of key interest: to show that all possible executions are predictable,
i.e., determined from the semantics of the high level programming language in use. Often,
software tools are used to assist in the analysis, typically using the programming language
source text as input. In general, the analysis techniques employed range from the very simple
(say, all variables are explicitly declared) to the very strong (formal proof of correctness),
but the goal of showing predictable execution should be cost-effective for high Indexes of
safety integrity software. In essence, this technique performs a complete analysis of the code
to detect the errors noted in section 11.2.

The use of this technique does have implications on the design methods used. The
requirement of the nuclear guidance [EUR 19265] reflects this: The design shall be deter-
ministically constrained in ways which make the execution of the software verifiable and
predictable.

An important aspect of static analysis is to ensure that the boundaries between different
paths taken by the algorithm are correctly placed. This is boundary value analysis, and can
reasonably be undertaken as part of static analysis. This is recommended at MSI2/MSI3.

For a general discussion on static analysis, see StaticAnalysis.

Example

An example of this technique is to be found in the SmartInstrument project. NPL analysed
the C code within Druck’s pressure transducer using the NPL C code validation service
tools.

The code was first converted to work in a free-standing manner on a Linux system.
Then the code was compiled with a special compiler which warns of any non-standard (or
potentially non-standard) constructs. Lastly, the code was executed with test cases designed
to ensure statement coverage and boundary value testing. A few problems were located
which were either corrected, or shown not be of concern in this application.

This form of testing is a comprehensive method of demonstrating the correctness of the
source code of an application. It will not locate errors in the specification of the software,
nor errors which an incorrect compiler could introduce.

Scope

All software written in languages with precisely defined semantics.

Safety implications

This technique helps to ensure that the software performs the intended function. It is very
useful in conjunction with conventional testing, since it can reveal defects in software which3–7.4.4.5

would be hard to demonstrate with specific test cases. This technique is recommended at
MSI2 and above, see section B.3.5.
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Cost/Benefits

Effective use depends upon appropriate tools. Such tools exist for C. For Ada and Java,
most of the checking is undertaken by the compiler. Comprehensive checking of C++ code
is not within the state of the art. Most proprietary languages have no static analysis tools.

Conclusions

Consider the application of the method when the source text is available and high assurance
is required.

12.7 Defensive programming

Defensive programming is essentially a design technique but is included here due to the
impact upon validation. Coding of a component part inevitably depends upon assumptions
made about the program state when the component is called. If such a pre-condition is not
satisfied, then the program could behave in unpredictable ways.

One method that partly avoids such problems is to test dynamically that the pre-
condition is satisfied, producing an appropriate indication if it fails. Another method is
to prove by static analysis of the program (see section 12.6) that the pre-condition cannot
be violated.

For measurement systems, it is usually possible for no measurement result to be produced
— hence one has an alternative when such a pre-condition check fails. Simpler systems may
not have a means of producing a diagnostic message indicating the reason for a failure.

Example

The example given in appendix A.7, shows how spurious measurement results can be gener-
ated by unexpected situations. Trapping values outside the expected range and attempting
to correct for this situation can lead to further problems.

Scope

The method has virtually universal scope. However, it is particularly appropriate for systems
having a large set of states in which some actions can only be undertaken in certain states.
An example of this could be an interactive dialogue with the user to calibrate an instrument.

Safety implications

This method is recommended at MSI1 and MSI2. (Note that, at the higher Indexes, static
analysis should be used to prove that the pre-conditions are satisfied.) Further guidance is 3–7.4.2.10

provided in the context of certification to IEC 61508 in section B.3.6.

Cost/Benefits

Dynamic checking of pre-conditions is usually cheap and simple to undertake. Testing
that all such pre-conditions have been implemented correctly is more demanding. Proof
that pre-conditions are not violated is typically only undertaken in high Indexes of safety
systems.
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This technique has the major benefit of ensuring that the pre-conditions required for
predictable execution hold. For instance, if an array subscript can go outside the bounds of
the array, then program execution could be unpredictable.

Conclusions

This technique is highly advantageous to ensure a robust implementation.

12.8 Code review

This technique is similar to software inspection, but carried out only on the source code of an
application. The concept is to ensure the readability and maintainability of the source code,
and potentially to find bugs. Ensuring the traceability of the code from the specification
would be covered in a software inspection, but is not usually undertaken in a code review.
We are considering the code review as a manual process, rather than the analysis of source
text by tools as in static analysis (see section 12.6).

Organisations developing software typically have a procedure for undertaking code review
which may list a number of aspects to be checked, such as ensuring that the programming
language identifiers are meaningful.

If the supplier makes the source text available to users, then a user may undertake an
independent code review.

Code review is vital if long-term support of the software is required, see appendix A.5.

Example

This example relates to an extensive review of software source code for a robot measuring
system by a user. In this review the following points were found.

In two modules the comment “this needs checking” was present. Either the software
developer had not returned to check the code or had checked it and not removed the
comment.

In one module a decision element was if 1 = 1 then. Thus, over a page of software
under the else option could never be entered.

In another module the following series of decision elements was found:

if a = 1 then A
was followed by

else if a = 1 or b = 1 or c = 1 or d = 1 then B
which was followed by

else if a = 1 or b = 1 or c = 1 or d = 1 then C
and again followed by

else if a = 1 or b = 1 or c = 1 or d = 1 then D

Again elements C and D could never be entered.

Poor constructs led to the decision to do a 100% review of the code. This resulted in a
number of actual errors being detected, e.g. the setting of an incorrect flag or warning lamp
which would lead to the operator searching for a fault that had not occurred rather than
the actual fault.

The developer had to perform a number of changes to the code.
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Scope

Code review should be undertaken by any organisation developing software. In this Guide,
we assume that either this technique is applied, or another method is applied of a similar
strength to gain confidence in the software in its source text form.

Safety implications

Code review is typically a less rigorous process that static analysis, but should certainly be
performed if static analysis is not undertaken. Code review is recommended at MSI1 and 3–7.4.4.5

MSI2, see section B.3.7.

Cost/Benefits

As a manual process, its success depends upon the skill of the reviewers and the level of effort
applied. The costs can vary from a few minutes per page to over an hour per page if the
intention is to study the source in depth. The varying costs are also reflected in the benefits
which can vary from just an increased confidence in the readability, to a clear indication
that the reviewer confirms the belief that the program is correct.

Conclusions

As part of software development, either the process of code review should be undertaken or
a process which is clearly superior, like software inspection.

12.9 Numerical stability

It is unreasonable to expect even software of the highest quality to deliver results to the full
accuracy indicated by the computational precision. This would only in general be possible
for (some) problems that are perfectly conditioned, i.e., problems for which a small change
in the data makes a comparably small change in the results. Problems regularly arise in
which the conditioning is significant and for which no algorithm, however good, can provide
results to the accuracy obtainable for well-conditioned problems. A good algorithm, i.e., one
that is numerically stable, can be expected to provide results at or within the limitations
of the conditioning of the problem. A poor algorithm can exacerbate the effects of natural
ill-conditioning, with the consequence that the results are poorer than those for a good
algorithm.

Software used in scientific disciplines can be unreliable because it implements numerical
algorithms that are unstable or not robust. Some of the reasons for such failings are

1. failure to scale, translate, normalise or otherwise transform the input data appro-
priately before solution (and to perform the inverse operation if necessary following
solution),

2. the use of an unstable parameterisation of the problem,

3. the use of a solution process that exacerbates the inherent (natural) ill-conditioning
of the problem,

4. a poor choice of formula from a set of mathematically (but not numerically) equivalent
forms.
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The development of algorithms that are numerically stable is a difficult task Higham,
and one that should be undertaken with guidance from a numerical analyst or someone
with suitable training and experience. It requires that the intended data processing is posed
sensibly and, if “off-the-shelf” software modules are used, that such software is appropriate.

There are established high-quality libraries of numerical software that have been devel-
oped over many man-years and cover a wide range of computational problems. Examples
include the NAG library [NAG] (which is available in a number of computer languages and
for a variety of platforms), LINPACK [LINPACK], and NPL libraries for data approximation
[DASL] and numerical optimisation.

Example

An example which shows numerical (in-)stability is the calculation of the angle (θ) between
two unit vectors. Given two vectors, a and b, each of unit length, two mathematically
equivalent formulae for evaluating the angle are

θ = cos−1(aTb)

and

θ = 2 sin−1

(
1
2
||b− a||

)
For vectors that are very nearly parallel, i.e., aTb = 1− δ, where |δ| is much less than 1,

the first formula gives θ =
√

2δ (using the approximation cos θ = 1− θ2

2 ).
The smallest θ computable in this way is the square root of the computational precision,

i.e., approximately 10−8 radians for IEEE arithmetic. Thus, the first formula is unable
to detect an angle smaller than 10−8 radians unless it is computed as zero, whereas the
alternative formula can be expected to return accurate values.

This example has serious consequences for those concerned with implementing the pro-
cedures described in the International Standard [ISO 10360–6]. This standard is concerned
with testing software for computing Gaussian best-fit geometric elements to measured data
that is used in industrial inspection and geometric tolerancing applications. The standard
requires that the unit direction vector used in the parameterisation of such geometric
elements as planes, cylinders and cones and returned by test software is compared with
a reference solution by computing the angle between the test and reference vectors. The
standard defines acceptance of the test vector if this angle is smaller than 10−8 radians. It
is clear from the above analysis that if the first formula is used to evaluate the angle, this
acceptance criterion can never be satisfied no matter how close are the test and reference
vectors unless the angle is computed as zero. On the other hand, there is no problem with
undertaking the comparison if the second formula is used.

Scope

Numerical stability is an issue for all mathematical software except, perhaps the simplest
arithmetic.

Safety implications

For safety applications, it is essential to ensure that the numerical results correspond to the
mathematical specification (to within the required accuracy). For MSI1 systems, numerical
reference results could be applied instead, but for all other Indexes, numerical stability
analysis is recommended. See section B.3.8 for further guidance.
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Cost/Benefit

There are costs in finding a sufficiently stable numerical algorithm for a particular application
and there may be increased costs of development and computation in using a numerically
stable algorithm as compared to the “obvious” calculation. However the costs from inaccu-
racy in the output from using an unstable algorithm can be catastrophic; they can certainly
lead to “out of bounds” errors (e.g. 1/0, or

√
x where x < 0) in subsequent calculations.

Conclusions

It is usually right to use a numerically stable algorithm if one is known. The use of respected
software libraries for generic calculations will take advantage of the numerically stable
algorithms used by such software. Otherwise, it is usually right to do some investigation
of the stability of algorithm being used. If a numerically stable algorithm is much more
expensive to implement or use, then an analysis of the benefits in terms of the desired
accuracy and robustness is needed.

12.10 Microprocessor qualification

For safety systems, the safety integrity requirements imply that any design error in the
microprocessor itself could be significant. In consequence, a process needs to be undertaken
to assess the risk of such an error and, potentially, undertake measures to reduce the risk.

It might be thought that this process applies only to hardware and therefore is not
relevant to this guide. However, design errors may be effectively software errors in the
microcode of the processor and hence should be treated as similar to conventional software
errors.

For details of the issues raised, see Microprocessor.

Example

A frequently quoted example of a microprocessor design fault is that of the divide error in
the early Pentium chips from Intel. When the error was first reported, substantial usage
of the chip had been made, and therefore it could potentially have been used in safety
applications. Note that the error was found by a person using the Pentium in an unusual
way, which indicates that such errors can remain dormant for a considerable time.

Analysis of the Pentium bug

The bug was reported by Dr Nicely on the 24 October 1994. He was able to detect the error
because he was undertaking calculations with long integers, which are most efficiently done
with the floating point hardware. In some cases, he knew the result should be an integer,
but the Pentium was not giving that.

The bug was in the FDIV instruction, which for about 1 in 1010 pairs of randomly
chosen divisors suffers a catastrophic loss of precision, ending up accurate to only 4 to 6
digits instead of the usual 18.

The bug is easily detected with the NPL/NAG Floating Point Validation package
[FloatingPointValidation] since the package uses carefully constructed bit patterns for test-
ing, which give a much higher rate of detection than random operands.2

2There is a very obscure error in all the early Intel chips in that denormalised numbers are not rounded
correctly. This error should never cause a safety system to go unsafe and it is quite reasonable for a supplier
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The actual fault has been reconstructed from knowledge of the patterns that fail, without
Intel’s assistance. The algorithm is a radix 4 division with a four-way case statement. One
of these cases which is very rarely executed was incorrectly coded. If this error was in code
rather than microcode, the non-execution of a test case would be a gross error according to
DO-178B, the civil avionics standard.

There is no question that this bug could cause a “correctly” coded safety system to be-
come unsafe. This is worrying since the error rate with random operand values is sufficiently
low to remain undetected during the conventional testing process.

Given a safety system using a Pentium, then it is quite likely that floating point division
is not used, or that the four digits of precision are sufficient. Let us assume that this does
not apply and that one division is undertaken per millisecond. We can assume that the
operands are random, since the physical quantities would not have the specific bit patterns.
Hence the error rate would be once every 116 days. The key issue would be to determine
the system error rate from this software error rate. In any case, the evidence from this bug
is that “proven in use” is inadequate unless carefully reasoned, since the Pentium chip had
been around in very large quantities before the bug was reported.

More worrying are the implications of similar Pentium-like bugs. Division is a very
well-defined operation, but the detection depended upon Dr Nicely’s use of the instruction
which gave a degree of self-checking that would not be typical of other uses. Hence error
rates of the same magnitude could remain undetected for much longer (and obscure ones
might never be corrected since the market would not demand it).

Scope

This technique is only relevant to MSI4 systems, since it is only in that context that the
safety integrity of conventional processors need be questioned.

Safety implications

As above, this is only relevant for MSI4 systems.

Cost/Benefits

If the microprocessor vendor does not provide the necessary information, it can be hard and
expensive to resolve the issue.

Conclusions

It would be best to ensure that a supplier is identified, who can provide the assurance needed,
before a specific chip is chosen.

12.11 Verification testing

By the term “verification testing”, we mean functional testing that aims to be as “complete”
as possible (sometimes called “validation testing”). Such testing is conventionally under-
taken separately from the development team and uses tests based upon a detailed functional
specification. The testing acts as a check on the specification as much as it acts as a check
on the implementation.

not to repair such faults, unlike the Pentium divide.
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Such testing can require a substantial effort but cannot easily be avoided if a high level
of assurance is required, i.e., MSI3 or MSI4.

Since the concept of “completeness” cannot be effectively defined, it is conventional
practice to combine this form of testing with structural testing to some level, say branch
testing. In the case of the avionics standard [DO-178B], the structural testing required at
the highest level of assurance (MSI4) is MC/DC (see section 12.13).

Scope

Due to the cost, this technique is only appropriate to MSI3/MSI4 systems.

Safety implications

This technique is recommended for MSI3/MSI4 systems, and further guidance in the context 3–7.4.8.1

of certification to IEC 61508 is to be found in section B.3.10.

Cost/Benefits

The main benefit of such testing is to increase confidence in the specification of the software.
It is therefore essential that the specification is analysed separately from the implementation
team, otherwise a simple misinterpretation could be missed.

Conclusions

This is an expensive technique which cannot be avoided for high assurance systems.

12.12 Statistical testing

At the software component level, statistical testing is one of the methods in the British
Standard [BS 7925]. However, in this case, we are using the technique for the entire software
system, rather than a component.

If the statistical distribution of the inputs to a system is known, then statistical testing
can be undertaken by observing the result of samples from that distribution. One can then
deduce the reliability rate for the system. Unfortunately, it is rarely the case that the
distribution is known accurately enough, and even if it is, it may not be possible to check
the correctness of the outputs (i.e., the measurements in our case).

Scope

In principle, the method can be applied to any system. In practice, the limiting factor is
the lack of accurate enough data on the input distribution.

Safety implications

A key advantage of this method is that it gives a bound to the reliability of the system.
Unfortunately, the bound is inadequate for highly reliable systems since it is practically
impossible to run the millions of tests that would then be necessary, see Littlewood.

This method is recommended in the context of certification to IEC 61508 for MSI2/MSI3
systems, see section B.3.11 for further guidance.

Page 69 of 134



NPL Report DEM-ES 014 Validation of Software in Measurement Systems

Cost/Benefits

Depending on the nature of the system, running the number of tests needed can be expensive.

Conclusions

This method is very different from most forms of conventional testing but provides direct
evidence of reliability.

12.13 Component testing

Component testing is a basic software engineering technique which can (and should) be
quantified. The software component to which the method is applied is the smallest item of
software with a separate specification (sometimes called a module). It is very rare for the
technique not to be applicable for a software development. The best standard, which is now
available through BSI, is the British Computer Society standard [BS 7925]. The method is
objective, repeatable and reproducible, and hence satisfies the requirements for accredited
testing.

The BS 7925 standard allows for many levels of testing and in this Guide we reference
five forms below. The term structural testing is really a generic term to all those forms
of testing related to the structure of the code. However, here we use it in a specific sense
for the simplest testing technique.

Structural testing. This method requires that there is evidence of component testing
which shows that all the primary program units have been executed. This is a way of
ensuring a degree of adequacy of the testing. This is recommended at MSI1.

Equivalence partition testing. This is complete functional testing at the component
level. This is to be applied to those components handling the basic measurement/test
data. This method is not recommended due to the practical difficulties of its im-
plementation. But it is an ideal technique to be used if available; and if used, it is
recommended to undertake this to 100% coverage.

Statement testing. This method concerns the statement coverage for those components
handling the basic measurement/test data. If a statement has not been executed,
then a reason for this should be documented. Defensive programming techniques and
detection of hardware malfunction give rise to statements that cannot be executed
(but are quite acceptable). It is recommended to undertake this to 100% statement
coverage for MSI2 and MSI3.

Branch testing. This method requires testing of different branches from decision points.
The aim should be 100% coverage, but this may not be achieved in which case the
reasons need to be documented. This is recommended at MSI3 and MSI4, taking the
same approach as for statement testing.

Boundary value testing. In this case, values are chosen which lie on the boundary be-
tween partitions. This form of testing is designed to show that the boundary cases
themselves are correctly handled. It is recommended to use it for MSI2 and above.

Note that this is a dynamic testing technique as opposed to boundary value analysis
which is a static analysis method to analyse boundary values within an implementation.
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Modified Condition/Decision testing. This form of testing is required at the highest
levels in the civil avionics standard [DO-178B]. The terms used in that standard in
Modified Condition/Decision Coverage (abbreviated “MC/DC”, see reference MCDC),
even though the coverage required is 100%. However, due to its high cost, it is not
recommended (below MSI4) in this edition of the Guide. It is a technique which needs
to be considered when MSI4 guidance is completed.

Example

In the SmartInstrument research project, it was concluded that equivalence partition testing
and boundary value testing are the most cost-effective methods in this area. However, the
code in this example was relatively simple.

Scope

The technique is very general and can be applied to any software written in a conventional
programming language. The method is widely used and understood. Metrics are available
which provide a measure of the thoroughness of the actual testing undertaken.

The fundamental drawback of the method is that “missing code” cannot be identified.
For instance, if a routine is defective in not protecting itself against invalid input, then
structural coverage testing will not detect this.

The method cannot be applied to software only available in compiled form, such as
library routines provided by other parties (i.e., COTS).

The technique should be applied to each component within the software. However, it
may be difficult to produce test cases for some components in isolation from the rest of the
software. When a component is not isolated, it may be difficult to produce all the test cases
that are needed to attain a high coverage figure.

In the context of measurement system software, it may be difficult to apply if the software
cannot be isolated from the measurement system itself, since it may not be possible to get
complete repeatability. (This is when the entire software is regarded as a component.)

Safety implications

Testing is the most widespread form of validation for software. Component testing is one 3–7.4.7.1

of the most effective forms of testing, since it is often possible to obtain a high coverage of
the potential test cases. Hence any failure to undertake a reasonable coverage of test cases
would be regarded as inappropriate for safety related software.

Various forms of component testing are recommended at all Indexes, and the details are
to be found in section B.3.12.

Cost/Benefits

The only cost-effective method of applying the technique is with the aid of tools which
automatically indicate which statement, etc. has been covered in the testing. Such tools are
used on a routine basis by some software development teams but not others.

Costs can be high if, say, 100% coverage is required. Under such circumstances, work in
analysis of the algorithm to produce the necessary test cases can be very demanding.

Equivalence partition testing is effectively black-box testing for a component done in an
ideal manner. This method should be applied for the most critical software components of a
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system. The method is simple and easy to apply to simple software, but much more difficult
with complex software.

Conclusions

Software development teams should ensure they have the necessary tools to perform at least
statement coverage analysis without a significant burden on their development process. The
author of a component should review that statement coverage data to see if crucial test cases
have been omitted.

Initial test cases should be derived from equivalence partition testing. The statement
coverage data then shows if the testing is adequate.

12.14 Regression testing

Regression testing requires that tests are developed and used to re-test the software whenever
a change is made. Typically, sometime before the first release, a set of tests will be designed
and run on the software. From that point on, all errors located should result in an additional
test being created which would detect the bug.

To be effective, one needs a method of re-running the set of tests automatically. For
this reason, we have considered the technique to be part of the programming environment,
see section 11.2. The technique is very good for software that is widely used and for which
initial bugs are not a major problem. The effect of the method is that subsequent releases
of software should be able to rely fully on the unextended facilities.

Scope

This method is very powerful for software that is being constantly updated and enhanced.
Correspondingly, it is not effective for software embedded within a measurement system
(say) which has to be without a serious defect on the first release. If a field upgrade is
needed with such software, there could be very serious cost implications.

To be applied, the software must be separated from the hardware of the measurement
system.

Safety implications

In many cases, regression testing is not appropriate for safety related systems, since the
method assumes an initial relatively high failure rate. On the other hand, for bespoke
SIL1/SIL2 systems, for which an upgrade does not have serious cost implications, regression
testing may be very effective in ensuring the absence of known errors.

Cost/Benefits

Individual test cases need to be recorded within a system which allows for minimal effort to
re-execute them. Hence, given a modest additional effort in the initial tests, further releases
of the software should be testable very effectively. (One reason why compilers, which are
typically very complex, are actually very reliable, is that almost all software developers use
regression testing.)
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Conclusions

Regression testing should be undertaken if there are to be regular new releases of the software
with large amounts of functionality remaining unchanged between releases.

12.15 Accredited software testing
using a validation suite

Accredited software testing requires that a set of tests be developed (the validation suite)
against which the software can be tested. This is appropriate for software having an
agreed detailed specification, such as compilers and communication software. Accredited
testing ensures that the tests are run and the results interpreted correctly, with the specific
requirements of objectivity, repeatability and reproducibility.

The method is significantly stronger if the set of tests is updated regularly by means of
regression testing. This implies that errors in any implementation will result in tests being
applied to all (validated) systems.

This form of testing provides an ideal basis for certification.

Example

An example of this form of testing for a measurement system is that being proposed in the
area of Nuclear Medicine [COST B2]. Here, gamma-camera pictures are taken of patients
when being treated with substances containing radio-active trace elements, see appendix C.3.
The camera output is translated into a standard file format, but the difficult numerical part
is the analysis of the picture to give the basic information for a medical diagnosis. Other
strong methods, such as a mathematical specification cannot be applied, and hence this
method provides a means for the whole international Nuclear Medicine community to gain
confidence in the analysis software.

Note that the application is safety-indirect and the complexity of the processing of
data is complex which implies a high MSI, usually MSI3. At this Index, the technique of
accredited testing is not actually recommended (see table 11.2 in section 11.2), but it is one
of the few methods which can provide reasonable assurance in this context.

This method is made more effective by means of software phantoms which are pictures for
whom an agreed diagnosis is available (at least in the cardiac and renal areas), as explained
in COST B2.

Scope

All the known applications of this method are generic: such as compilers, for which many
instances are available (to effectively the same specification).

A potential example in the area of length metrology would be tests for the software that
analyses data from Coordinate Measuring Machines.

For such a method to be effective, there has to be an underlying test strategy which
can be applied to a range of software products. For instance, it is unclear that the method
could be applied to word processors, since there is no generic specification (with sufficient
precision for testing).

On the other hand, the method could be applied to the common mathematical operations
within a spreadsheet.
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Safety implications

This is a specialised method which is only appropriate for systems of MSI1 or MSI2. It is
only recommended here for MSI2 systems, see section B.3.14.

Cost/Benefits

The costs to produce the generic test data can be quite high so that the method is limited to
those cases in which there is a national or international consensus that such a development
should be undertaken.

Conclusions

This technique is appropriate if the relevant industrial sector can agree on the production
of the required validation suite, and the MSI required is 1 or 2.

12.16 System-level software functional testing

System-level software functional testing (or simply “system testing”) is based upon testing
the entire software as a black box by a careful examination of the functionality specified,
ensuring that every aspect of the functionality is tested. An International Standard is based
upon application of this test method [ISO 12119].

The method can clearly be applied to any system. In this context, we are considering its
application to the complete software, but separate from the measurement system hardware.
This limits the application to those cases in which such separation is possible.

The problem with the technique is the cost of constructing the necessary test cases, and
ensuring that the test cases are sufficient. Since errors have been reported in many software
systems which have been very carefully tested, one cannot gain very high assurance from
this method.

However, in cases in which the software has a simple structure, such testing may be
sufficient.

Example

NPL has recently tested a software product to ISO 12119. The product was a small item of
software to detect if a PC had a problem with the clock at the time of the millennium year
change, and correct it, if required.

The program came on a floppy disc, with essentially no options. Hence the testing was
mainly to ensure that different types of PC would have their clocks corrected, as claimed
in the supplier’s specification. This could be undertaken by first seeing if the PC had a
problem, then running the software, and finally checking the machine again.

The testing was undertaken in line with UKAS requirements, and the test report pro-
duced is available for inspection [Year2000].

If the program had 20 different installation options, then the complete testing required
by the standard could require 220 test cases and hence be too costly to undertake.

Scope

The technique can be applied to software systems which are sufficiently simple that complete
functional testing is economically viable.
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Unfortunately, the method is not viable for most complex software.

Safety implications

System level testing is recommended at MSI1 and MSI2. If reliance is placed on this form
of testing alone, then it is important that the complexity of the software is such that all the
functionality is adequately demonstrated to have complied with the specification. Additional 3–7.4.8.1

guidance in the context of certification to IEC 61508 appears in section B.3.15.

Cost/Benefits

As noted above, the problem is that the costs can be high unless the software is very simple
(at least in its specification). If high assurance is required and the claims made for the
software can be converted to appropriate test cases, then the method can be applied.

Conclusions

Since this technique is completely independent of the development, it can be considered
whenever resources are available and the independence of the assurance provided is thought
to be worthwhile.

12.17 Stress testing

Stress testing involves producing test cases which are more complex and demanding than are
likely to arise in practice. It has been applied to testing compilers and other complex software
with good results. The best results are obtained when the results can be automatically
analysed.

Example

Consider a measurement system which claims to be able to make measurements even when
there is some background “noise” on the input data. Then a method of stress-testing would
be to take a set of input data without noise, and then add noise. The correct answer is
therefore known and if the noise can be added in an effective manner, then a stress-testing
method can be applied. Clearly, when the level of the noise gets too high, the measurement
system cannot be expected to give a reading. However, a false reading should not be given.

The generation of the “noise” by software should be easy to undertake, and since the
correct result is known, the automatic testing of the measurement system should be possible
with perhaps a few hundreds of individual test cases. If any failures arise, these can be
examined manually to determine the source of the problem.

A special case of this technique is the application to video images. The starting image
could be a high quality image or one produced artificially. An increasing level of noise is
added to the image until the processing software fails. The final image which the software
failed to process is then printed and a manual inspection made to see if a failure is acceptable
in this case. It appears that this technique is widely used in validating software which
processes video images.

See StressTest for an example in testing compilers.
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Scope

The method can be applied without knowledge of the internal structure of the software. It
is particularly appropriate for complex software when it is possible to generate test cases
automatically.

Safety implications

Additional guidance on the method in the context of certification to IEC 61508 is to be
found in section B.3.16.

Cost/Benefits

The costs depend on the development needed for the test case generator. The benefits
depend upon the assurance that passing such tests gives. For the example using compilers
[StressTest], the cost of producing the test generator was quite high. However, the cost may
be acceptable because very few other means are available for independently generating a
large number of complex test cases.

The technique applied to video images does not require a test generator, since noise can
be added to captured images. Also, graphics processing packages can be used to manipulate
images prior to the addition of the noise. However, very high confidence in image processing
is hard to achieve since the variety of images that can be produced is very large.

Conclusions

Stress testing is recommended at MSI2 and MSI3. The use of the technique depends upon
the ability to derive test cases and expected results with ease. Given these requirements,
then a cost/benefit analysis should be undertaken to see if the method is viable.

12.18 Numerical reference results

There is a growing need to ensure that software used by scientists is fit for purpose and
especially that the results it produces are correct, to within a prescribed accuracy, for the
problems purportedly solved. Methodologies, such as that presented in ReferenceDataSets,
have been developed to this end. The basis of the approach is the design and use of reference
data sets and corresponding reference results to undertake black-box testing.

The approach allows for reference data sets and results to be generated in a manner that
is consistent with the functional specification of the problem addressed by the software. In
addition, graded data sets corresponding to problems with various “degrees of difficulty”
or conditioning (section 12.9), and with application-specific properties, may be produced.
The comparison of the test and reference results is made objective by the use of quality
metrics. The results of the comparison are then used to assess the degree of correctness of the
algorithm, i.e., the quality of the underlying mathematical procedure and its implementation,
as well as its fitness-for-purpose in the user’s application.

The methodology has been applied successfully in particular areas of metrology. In
dimensional metrology, for example, coordinate measuring machines (CMMs) are typically
provided with software for least-squares (Gaussian) geometric element fitting. The method-
ology provides the basis of an International Standard [ISO 10360–6] for testing such software,
and it is intended to base a testing service on this standard. Data sets have been developed in
such a way that the corresponding reference results are known a priori. Consequently, there
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is no reliance on reference implementations of software to solve the computational problems,
but the generation of the data sets is dependent on a set of simpler “core” numerical tasks
that are well understood.

Example

In a number of metrology areas it is necessary to identify peaks within spectral and other
traces and, particularly, to quantify a peak in terms of parameters such as location, am-
plitude and width. Algorithms for peak analysis occur in a range of measurement-system
software [Chemometrics, Dyson, AOAC]. Commonly, a particular functional form for the
mathematical representation of the peak is assumed, e.g., Gaussian, Lorenzian or modified
Gaussian. This form is fitted by, e.g., least squares, to the measured values from the trace.
The required parameters are then determined from the fitted form. A widely-used form is
the Gaussian model:

y = A exp
(
− (x− x)2

2σ2

)
where x represents location, A amplitude and σ peak width.

In order to determine whether peak-fitting software is functioning correctly, numerical
reference results can be devised. Such test sets consist of synthesised reference data sets and
corresponding reference results [CISE 26/99]. Such data sets can be generated corresponding
to ranges of key variables (extent of peak spanned by the data, peak height, width ratio,
signal/noise value, etc.) using the null-space data generation technique;
see [ReferenceDataSetsDesign, CISE 25/99, ReferenceDataSets, GradedReferenceDataSets].
These ranges should be selected to correspond to those expected to be experienced in the
use of the measurement system.

Scope

The null-space method of data generation is very general, being applicable to a wide range
of fitting and optimisation problems [Gill, SoftwareTesting]. Function forms other than
Gaussian peaks can be considered, and fitting measures other than least squares can be
entertained. The use of the numerical reference results permits an assessment of the extent
to which a numerically-satisfactory algorithm solution has been implemented. For instance,
it will be possible to deduce whether a potentially-unstable process such as one based on the
formation of the normal equations [CISE 27/99, Golub], as opposed to the direct use of the
observations (design) matrix, has been employed. Moreover, it can be discerned whether
conceptual errors in the solution process have been made, such as fitting the logarithm of
the Gaussian model (which is equivalent to a quadratic polynomial) to the logarithm of
the data. Within such approximate solution processes there are “degrees of correctness”
such as partial compensation, through the use of appropriate weighting functions, for such
model and data transformations. Again the use of numerical reference results can help to
identify such techniques, the adequacy of which depends on practical quantities such as the
signal-to-noise ratio.

Safety implications

This technique is recommended at MSI1 and MSI2. If an analysis for numerical stability is
not possible, then the method is particularly appropriate. Thus, it can also be used at MSI3
and MSI4. Additional guidance in the context of the certification to IEC 61508 appears in
section B.3.17.
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Cost/Benefits

The methodology for generating data sets for numerical reference results is established. Its
implementation in any particular instance may be governed by the ease with which the
measurement system supplier has made provisions for software testing using simulated data.
Since such testing should be fundamental to measurement system development, there would
be an advantage in the manufacturer providing comparable facilities for user testing to
establish fitness for purpose.

Conclusions

Synthesised numerical reference results provide a powerful facility for testing the degree of
numerical correctness of measurement software. Techniques such as the null-space method
can be used to generate test sets with known solutions. It is only necessary to be able to
provide a characterisation of the solution to the problem purportedly solved by the software.
This characterisation is closely related to the functional specification of the software, which
has to be prepared in any case.

It is necessary that the measurement system supplier provides a facility by which data
sets may be input to, and corresponding results output from, the software. Such provisions
should be a design consideration of the manufacturer’s system configuration and testing
regime.

Arguably the most important feature of numerical reference results is that they can be
prepared to accord with the expected function of the measurement system and the nature
of the measurements taken, in terms of data densities, signal-to-noise ratios, etc.

12.19 Back-to-back testing

In back-to-back testing, two comparable software systems are tested with the same input.
The outputs from each test are compared — identical results are not usually expected when
numerical testing is undertaken. Therefore, the comparison should seek agreement with
an appropriate tolerance. If the comparison can be automated, then it may be possible
to run a large number of tests, thus giving a high assurance that the two items produce
similar results. Of course, one of the items under test is likely to be a version of known
characteristics, while the other is the item being assessed.

This form of testing can be applied at a higher level than just a single software component.
Indeed, the standard method of calibrating measurement systems can be seen as a back-to-
back test of a trusted measurement system against one to be calibrated.

This form of testing can also be used to test the soundness of numerical software within
a measurement system. The results of the numerical calculation from the measurement
system are compared against the results of a piece of reference software which is a proven
implementation of the numerical calculation. This is one of the methods used in the
SSf M numerical software testing project, see CISE 25/99. Where there is no existing
implementation, it may be possible to produce a reference implementation based on sound
numerical analysis and using reliable software libraries. This reference implementation will
presumably be less useful than the implementation used by the measurement system (e.g.
it may be very slow) but it should give trusted output.

In the case of communications software, back-to-back testing takes a different form.
Two versions of the software are coupled back-to-back and then run through appropriate
test sequences to show whether or not they will interoperate satisfactorily. Such software is
not relevant to conventional measurement systems, but will be used in distributed systems
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in which the complete measurement system consists of two or more component systems,
interconnected by a communications link.

Example

In the SMART reliability study SmartInstrument, this form of testing was used by testing a
MatLab implementation against the C code within the measurement system. The test cases
used were those derived from boundary value and equivalence partition testing.

Scope

The key requirement is a trusted system (or oracle) against which the testing can be applied.
It is also necessary to have a comprehensive set of test cases from which a comparison can
be made.

Note that back-to-back testing is quite different from parallel running or multi-channel
systems. In this case, it is assumed that diagnostic information is available to allow the
discrepancy to be traced and the software corrected. Hence the oracle forms no part in the
delivered system.

Safety implications

This method is recommended at MSI2 and MSI3. Clearly, the method depends upon the
availability of a trusted system with which to compare the system under test. Additional
guidance in the context of the certification to IEC 61508 is to be found in section B.3.18.

Cost/Benefits

Given a trusted implementation and a set of test cases, the method is cheap to apply.
Conversely, if a trusted implemented is not available this method is probably not applicable,
except in the case of communications software, when two copies of the same software can
still usefully be run back-to-back.

In the case of testing numerical software, if there is not an existing reference implemen-
tation it may be possible (but expensive) to produce an implementation of the numerical
calculations in isolation.

Conclusions

Since a trusted implementation is required and would be expensive to produce specially, the
method depends upon the existence of such an implementation. On the other hand, given
such an implementation, the method is recommended for MSI2 and MSI3.

12.20 Comparison of the source and executable

Since it is effectively impossible to test dynamically all the possible cases with any non-trivial
piece of software, one is bound to depend upon the source text. This implies an implicit
dependence upon the correctness of the compiler (linker, etc) in producing the executable
program.

For the highest level of assurance (MSI4), it is necessary to ensure that a compiler bug
does not invalidate the reasoning that the system will be safe. One method of achieving this
is to compare the source code with the executable image.
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Example

An excellent example of this method is to be found in SIZE1 and SIZE2. However, although
two errors were found in 100,000 lines of code, it is thought that most compilers would be
more reliable than that. An alternative method of obtaining confidence in a compiler is by
stress-testing, see section 12.17.

Scope

This technique is universal to compiled languages, but only appropriate for the highest
assurance (MSI4).

Safety implications

This method is only recommended in the context of certification to IEC 61508 for MSI4
systems. Additional guidance is to be found in section B.3.19.

Cost/Benefits

This technique is too expensive for use with anything but MSI4 systems.

Conclusions

Comparison of source and executable code should be applied for MSI4 systems, especially
when information about the status of the compiler is lacking.
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Appendix A

Some Example Problems

A number of illustrative examples are collected here of software problems that have been
reported to NPL over a number of years. The exact sources are deliberately not given, even
when they are known.

A.1 Software is non-linear

A simple measuring device was being enhanced to have a digital display. This was controlled
by an embedded microprocessor, with the code produced in assembler. The product was
then to be subjected to an independent test. The testers discovered, almost by accident,
that when the device should have displayed 10.00 exactly, the actual display was nonsense.
The fault was traced to the use of the wrong relational operator in the machine code.

The example contrasts with pre-digital methods of recording measurements in which the
record is necessarily linear (or very nearly linear).

The example illustrates that the testing of software should include boundary conditions.
However, only the most demanding standards actually require that such conditions are
tested. For a four-digit display in this example, it should be possible to cycle through
all the possible outputs to detect the error.

A.2 Numerical instability

The repeatability standard deviation of a weighing balance was required as part of a reference
material uncertainty estimate. Successive weighing of a nominal 50 gramme weight produced
a set of fifteen replicate values as follows: 49.9999 (1 occurrence), 50.0000 (5 occurrences),
50.0001 (8 occurrences) and 50.0002 (1 occurrence).

The processing of the data used an in-built “standard deviation” function operating to
single precision (eight significant figures). Because the data could be represented using six
significant figures, the user anticipated no difficulties. The value returned by the function,
however, was identically zero.

The reason is that the function implements a “one-pass” algorithm that, although fast
to execute, is numerically unstable. The standard deviation computation in this algorithm
is based on a formula involving the difference between quantities which are very close for
the above data values, thus causing the loss of many figures. An alternative “two-pass”
algorithm that first centres the data about the arithmetic mean and then calculates the
standard deviation returns an answer for the above data that is correct to all figures expected.
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Unfortunately, the “one-pass” algorithm is widespread in its use in pocket calculators and
spreadsheet software packages.

The example described above is concerned with the stability of the algorithm chosen
for the required data processing. Numerical difficulties may also arise from the improper
application of good algorithms. In one example, the processing software was to be ported
from one (mainframe) platform to another (PC) platform. Although the platforms operated
to similar precisions, and the same numerically stable algorithm was used (albeit coded in
different languages), the results of the processing agreed to only a small number of significant
figures. The reason was that the linear systems being solved were badly scaled and, therefore,
inherently ill-conditioned, i.e., the solution unnecessarily depended in a very sensitive way
on the problem data.

The lessons of this are: ensure the required data processing is stated as a well-posed
problem; then use a stable algorithm to solve the problem.

A.3 Structural decay

A contractor is used to develop some software. They have very high coding standards which
include writing detailed flow diagrams for the software before the coding is undertaken. The
contractor corrects these diagrams to reflect the actual code before delivery to the user. It
is satisfactory to use flow charts to generate a program. But once the program is written,
these charts become history (or fiction), and only charts generated from the program source
are trustworthy.

The user has tight deadlines on performing modifications to the software over the sub-
sequent five years. For the first two amendments, the flow diagrams were carefully updated
to reflect the changes to the code, but after that, no changes were made so that the flow
diagrams were effectively useless. As a result, the overall “design” provided by the contractor
was effectively lost. The problem was that the “design” was not captured in a form that
could be easily maintained.

The conclusion from this is that for programs which have a long life, one must be careful
to capture the design in a format that can be maintained. Hence it is much better to use
design methods which support easy maintenance — hand-written flow charts are exactly
what is not needed!

A more serious example of the same aspect is the use of programming languages which
do not support high-level abstraction, for instance C as opposed to C++.

A.4 Buyer beware!

Professor W Kahn is a well-known numerical analyst who has also tested many calculators
over many years. Several years ago, he illustrated an error in one calculator in the following
manner: assume the calculator is used to compute the route to be taken by an aircraft flying
between two American cities, then the error in the computation would result in the aircraft
flying into a specific mountain.

Modern calculators are cheap and usually reliable. However, errors do occur. Hence the
use of such machines in life-critical applications needs serious consideration. If the same
calculations were being performed by software within the aircraft, then the very demanding
avionics standard would apply DO-178B. Hence, when used for a life-critical application the
same level of assurance should be provided by the calculator (however, it probably would
not be cheap).
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In the context of a measurement system, the above dilemma is critical. Many systems are
sold without any specific application in mind. If the supplier makes no claim about such a
system, is it appropriate to use the system in a safety application? If the measurements have
a direct impact upon the safety of a system, then it is clear that the user has a responsibility
to ensure that the system will not make the system unsafe (within the constraints of As Low
As Reasonably Practical — ALARP).

With most physical devices, if high quality/assurance is required, there is likely to be
a significant cost implication. Hence the supplier could be expected to charge a premium
for an system qualified for use in safety application. However, with software, the situation
is not so clear-cut, since the replication cost of software is effectively zero. Why should a
mass-produced calculator be any less reliable/accurate than a similar device produced for a
specialist market?

A.5 Long term support

Many applications at NPL are required to be available for over 10 years. For this length of
time, problems can easily be encountered in ensuring the (hardware and) software will be
properly supported.

Even with short-term support, problems can arise. Often, software is purchased some
time before very extensive use is made of it. When such extensive use is applied, the initial
support may have lapsed. Very many years ago, some defects were found in a small computer
which resulted in the following response:

The software engineer who wrote the ZX81 BASIC is no longer with us, and his
successors do not feel qualified to comment on your findings.

Of course, this machine is no longer of interest, but the principle still applies. Companies
can respond more easily and more quickly if faults are reported in the first few months of
release, while the original design team is still available.

Users should estimate the expected life-time of an application and plan for the required
support.

A.6 Measurement System Usability

In the quest for higher accuracy, it is sometimes forgotten that a measurement system will
not always be used by the expert who designed it. With modern interactive software, it is
possible to make the most complex of measurement systems “easy” to use. However, it can
be poor unless the design ensures that operator error is minimised.

Software within a measurement system can aid the user, but care is needed if the user is
not to be misled. For instance, one modern spectral analyser provided an automatic means
of separating adjacent peaks on a spectrograph, rather than being operator-driven. This
worked satisfactorily most of the time, but the cases of failure were hard to detect and
easy to miss. If automatic analysis is to replace manual analysis, one needs to ensure a
comparable level of accuracy.

A.7 Tristimulus colour measurement

In this section, we consider an actual application with its own lessons to be learnt.
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Three standard curves were developed by user trials in NPL many years ago as part
of work with the CIE (International Commission on Illumination — abbreviated as CIE
from its French title Commission Internationale de l’Eclairage). These curves correspond to
nominal spectra for Red, Green and Blue respectively.

When a tristimulus colorimeter performs a measurement, the system performs a match
of the spectra generated to apportion a best fit to the standard curves. The software then
uses a set of standard equations to display the colour using one of the very many possible
scales. The particular scale used was the LC H where L is the Lightness, C the Chroma
and H the Hue.

A source code review of the internal code of this particular instrument was undertaken
and a number of protocols were performed to test the functionality of the instrument.

After about 3 months routine use, some trials were undertaken to introduce a new
product. In theory, the maximum value for L is 100. The instrument obtained results
of over 10000. Close examination of the sample showed it was generating a small stream
of CO2 bubbles through incomplete degassing of the solution. The minute stream of CO2

bubbles was blocking the light path. The result was that the detector was only picking up
noise and was trying to match this to the standard curves.

The manufacturer added a software trap to detect transmission values of less than 0.5%.
Two months later on a routine test, several samples produced a lightness value of 100 and

a chroma value of 10. This was investigated as the chroma should have been approximately
25. This time investigation showed the fault lay with the operator who had calibrated the
instrument using a cell filled with the solvent as the “white” standard. In this case the
cell had not been properly cleaned before the calibration. It then was revealed that the
manufacturer’s software contained a trap that if the sample’s measured values were greater
than obtained for the white standard they would be reduced to that of the white standard.
The manufacturer’s theory was that as a white standard is defined as 100% of light being
transmitted then you can never exceed 100% and any values exceeding 100% could only be
noise.

The manufacturer removed this trap.

A.8 Balances

A new balance was launched and was assessed for its suitability for use. One of the options
when the balance was linked to a PC was to send a command to lock out parts of the
keyboard. When we carried out some trials it was found that following a certain combination
of commands a fault occurred and the balance keyboard was completely disabled.

The manufacturer issued a new software version.
Internally the user produced a check weighing package. Extensive test protocols were

performed using a wide variety of balances from a number of suppliers. The software was
issued to one of the user’s customers using a balance option that had not been specifically
tested. It was found that when a sample was added to the balance the weight displayed on the
balance continued to display zero. Investigation showed that the user software was requesting
a weight from the balance and used an algorithm to test that weight had increased. If the
weight had not increased the software would request a further weight. The problem was that
the balance contained two chips which gave rise to the difficulties. The first contained the
software communicating to the weighing cell. The second contained general software that
collected the weight from the first chip and sent it to the balance display and the PC. What
was happening was that the software on the second chip was prioritising the data link to the
PC. The manufacturer’s testing had been performed using a 486 PC. The user’s customer
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was using a Pentium II processor and the additional speed at which data was requested was
overwhelming chip 2. Chip 2 no longer had the capacity to talk to chip 1 to see if the weight
had increased.

The manufacturer modified the software to solve the prioritisation.
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Appendix B

Certification to IEC 61508

B.1 The CASS Scheme
for Safety-related Systems

Systems comprising electrical and/or electronic components have been used for many years
to perform safety functions in most industry application sectors. Computer based systems,
generically referred to as programmable electronic systems, are being used in all application
sectors to perform non-safety functions and, increasingly, to perform safety-related functions.
If computer system technology is to be effectively and safely exploited, it is essential that
those responsible for making decisions have sufficient guidance on the safety aspects on
which to make those decisions. Such decision makers need assurance that instrumenta-
tion they purchase for integration into safety-related systems itself meets acceptable safety
requirements.

Where measurements are made as part of safety-related systems, for example detectors
initiating automatic emergency shut-down in petrochemical plants, the design of both hard-
ware and software aspects of the measuring instruments must be carefully considered to
ensure they do not compromise the overall functional safety of the system. Safety-related
systems must be reliable and must ensure that, in an emergency, plant shut down is achieved
in a controlled manner. IEC 61508 is the international standard for the functional safety
of safety-related systems comprising electrical, electronic and/or programmable electronic
components. It sets out a generic approach for all safety life-cycle activities from initial
specification, through operation and maintenance, to eventual de-commissioning of systems
that are used to perform safety functions.

This unified approach has been adopted in order that a rational and consistent technical
policy can be developed for all such systems, and provides the basis for facilitating the
development of application sector safety standards. CASS (Conformity Assessment of
Safety-related Systems), is an initiative that has been developed by industry, in conjunc-
tion with the Health and Safety Executive (HSE) and supported by the Department of
Trade and Industry. It provides an overall safety framework for the development of a
conformity assessment scheme meeting the requirements of IEC 61508, and those of the
HSE, whereby accredited third party certification bodies can offer consistent conformity
assessment certification for safety-related systems. The scope of the CASS Scheme, which is
being introduced in phases, will cover the activities of all those involved in the specification,
design, development, manufacture, implementation, support and application of hardware
and software components and complete systems, across many sectors. It will cover both
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off-the-shelf products and application-specific systems, and the operation and maintenance
of those systems.

The first phase of the Scheme is for the certification of an organisation’s Functional
Safety Capability Assessment (FSCA), which relates to management processes rather than
individual products, and is the first step for an organisation seeking certification to IEC 61508
through CASS. Organisations can then go on to have products or systems individually3–7.3.2.4

certified where appropriate. This two stage approach avoids duplication of assessment of the
common safety management system elements when issuing individual product certificates.

Manufacturers of measurement instruments having embedded software, especially where
such instruments may be used in safety-critical field bus applications, are increasingly likely
to be asked to demonstrate conformance to IEC 61508. CASS offers a route by which this
can be achieved.

Further information on the CASS Scheme can be obtained from:

CASS Scheme Ltd, South Hill, Chislehurst, Kent, BR7 5EH;
Tel: 020 8295 2951; Fax: 020 8467 0145;

and on accredited certification from:

Sira Certification Service, South Hill, Chislehurst, Kent, BR7 5EH;
Tel: 020 8467 2636; Fax: 020 8295 1990; e-mail: certification@siratc.co.uk

B.2 Software documentation checklist

Table A.3 of IEC 61508–1 gives an example of the information and/or documentation needed3–7.1.2.7
3–7.7.2.3 for a compliant system. This is re-worked here in the context of this Guide. The list below

is in life-cycle order.

Software safety requirements. The assumption in this Guide is that the safety issue is
the provision of correct measurements. See also section 12.2.

Software validation planning. This issue is covered implicitly by the guidance given.

Software architecture. Not specifically covered, but this could impact validation in a
major way if the architecture allowed for components to be treated separately, see
section 6.2. A complex architecture can give rise to timing issues, see appendix A.8.

Software system design. Not specifically covered as this is a validation Guide, not a
design guide; but see BPG-Software.

Software module design. Not specifically covered as this is a validation Guide, not a
design guide, but (again) see BPG-Software.

Coding. See section 11.2, and the techniques:

• Defensive programming (section 12.7),

• Code review (section 12.8), and

• Static analysis (section 12.6).

Software module testing. See the techniques:

• Component testing (section 12.13),
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• System testing (section 12.16),

• Statistical testing (section 12.12), and

• Stress testing (section 12.17).

Software integration. Not specifically covered in this Guide.

Programmable electronic integration.
Not specifically covered in this Guide.

Software operation and maintenance procedures.
Not specifically covered in this Guide.

Software safety validation. The assumption in this Guide is that the safety issue is the
provision of correct measurements. On this basis, the Guide provides comprehensive
advice throughout.

Software modification. Not specifically covered in this Guide. Validation is assumed to
be based on the specific version of the system.

B.3 Auditing checklists

Auditing checklists identify specific questions which should ideally have a positive response.
The rationale for the questions and potential reasons for a negative response are given. Each
checklist is specific to the MSI for which the technique is applied. However, when a lower
Index checklist item is applicable to a higher Index, it needs to be interpreted in a manner
appropriate to the higher Index.1

The checklist below (for the review of a specification at MSI1) is a general checklist which
should be applied to all systems.

B.3.1 Review of informal specification (12.2)

List for MSI1

1. Is the person (or persons) undertaking the review independent2 of the developers of 3–7.3.2.4

the specification?

2. Do the person (or persons) undertaking the review have all the necessary knowledge
and skills?

3. Is the level of effort devoted to the review agreed to be adequate, taking into account
factors like the knowledge of the reviewer(s), novelty of the system, etc.?

4. Is the elapsed time to deliver the review long enough not to endanger its completeness?

5. If the system involves interaction with the user, has this interaction been checked to
ensure that the user is unlikely to be confused?

6. If the measurement device has more than one mode of operation, is this clearly 3–7.2.2.7

indicated?
1The third item under Review of specification (MSI1) is to check that the level of effort is appropriate;

clearly the actual level will be higher when applied to MSI3, for example.
2Degrees of independence are defined in IEC 61508–1, 8.2.12.
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7. Has the operating manual (if required) been checked against the software and checked
for completeness?

8. If the system requires a skilled operator, is this clear from the specification?

9. Has the specification been checked against the required standards and regulations?

10. Is manual input this properly acknowledged and checked? (See the text in IEC 61508–7
clause B.4.9, which is very helpful.)

11. If facilities are available to change the characteristics of the measuring device (like
changing calibration data), is this clearly separated and controlled?

12. Are any “errors” in basic sensor data detected or corrected? Is this covered adequately
in the specification?

13. Have all concerns raised in the review been resolved (and documented)?

List for MSI2

In addition to the checklist above, add:

1. Have the special skills required to review the specification been documented and is
it clear that the reviewing team has those skills? (Such skills are to include software
engineering and an area of metrology.)

2. Has at least one member of the review team reviewed a safety system software speci-
fication before?

3. If major problems were located on an initial review, was a further review undertaken?

4. Can one be confident that any misunderstanding by the user/operator cannot result
in an unsafe action?

5. Does the review confirm the design decisions with respect to protection against oper-
ator/user error?

B.3.2 Software inspection of specification (12.3)

List for MSI2

1. Has the specification had a detailed review by those responsible for the specification
(prior to the inspection) and had no major outstanding problems?

2. Does the organisation have a procedure to cover software inspection, or does it have a
documented history of undertaking such inspections?

3. Have all concerns raised in the inspection been resolved (and documented)?

List for MSI3

In addition to the checklist above, add:

1. Prior to the inspection, have difficult areas of the specification been identified and
have appropriate people been brought into the inspection team to cover these areas?

2. Is it true that no unreasonable barriers have been placed upon involving external
experts on the software inspection?
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B.3.3 Mathematical specification (12.4)

List for MSI1

1. Those aspects of the system which can be expressed by means of appropriate mathe-
matical formulae, are they included in the specification of the software?

2. Is the range of the validity of the those formulae specified?

3. Have all the issues raised in section 3.2 been resolved?

List for MSI2

In addition to the checklist above, add:

1. Is the relationship between the basic sensor data and the resulting measurement
specified by mathematical formulae?

2. Are the relevant mathematical formulae those derived from the underlying physics of
the device?

3. Is it true that there are no gaps in the underlying model, see section 3.3?

4. Is it true that there are no essential difficulties in converting the formulae into a
computational form?

List for MSI3

In addition to the checklists above, add:

1. Has the mathematical model used been validated, see section 3.3.

List for MSI4

In addition to the checklists above, add:

1. Is the validated mathematical model widely used, see section 3.3?

The above is to be reviewed in a later edition of the Guide.

B.3.4 Formal specification (12.5)

There is no additional guidance available at this time. An interesting possibility would be to
include model checking since this has gained in popularity since IEC 61508 was produced.

B.3.5 Static analysis/predictable execution (12.6)

In this Guide, we do not make any recommendations about a “suitable programming
language”, although highly recommended advice is to be found in ATS-Language–1 and
ATS-Language–2. Instead, we recommend static analysis to show that the program behaves
predictably. Static analysis can also be used to show that vital safety conditions are satisfied.

Note that the development environment as a whole is considered in section 11.2.
Static analysis can be used to perform boundary value analysis.
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List for MSI2

The application of static analysis is quite difficult due to the second item on the list below.
Hence, although recommended, at this Index, it may be more practical to rely on Code
review, see section 12.8.

1. Are the semantics of the programming language well-understood?

2. Will the main tool used to undertake static analysis locate almost all cases in which the
program execution could be unpredictable? (This requires a detailed case-analysis.)

3. Are there no reservations on the analysis of access to unassigned variables? (Con-
ventional analysis only handles simple variables, and hence an element of an array or
record could still be unassigned.)

4. Are obscure cases in which the tool may not detect unpredictable execution properly
documented? (This could involve, for instance, a function with a side-effect.)

List for MSI3

In addition to the checklist above, add:

1. Are the semantics of the programming language defined by a national or international
standard, or by a formal definition?

2. Are all the areas in which a compiled program can behave unpredictably properly
documented?

3. Does the development have a defined approach to detecting unpredictable behaviour?

List for MSI4

In addition to the checklists above, add:

1. Are all critical safety properties discharged by formal proof or appropriately docu-
mented reasoning?

The above is to be reviewed in a later edition of the Guide.

B.3.6 Defensive programming (12.7)

List for MSI1

1. Is there a defined strategy on the use of defensive programming?

2. When a defensive programming check fails, what is assumed (if anything) of the state
of the variables and the external environment?
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List for MSI2

In addition to the checklist above, add:

1. Are all reasonable sources of unpredictable execution excluded by means of defensive
programming?

2. Are physically impossible/unlikely values excluded by means of defensive program-
ming?

In spite of being recommended in IEC 61508 for all Indexes, defensive programming is
not included at the higher Indexes for the following reason. If a specific situation should
be detected at run-time, then this should be part of the specification — perhaps to give a
degraded reading “dazzled”, say.3 This property could be important in a determination of
the correctness of the measurement which could have serious safety consequences. On the
other hand, if the situation cannot arise due to the design characteristics, then this should
be proven by static analysis.

B.3.7 Code review (12.8)

List for MSI1

1. Is there a coding standard to review against?

2. Is there a review list of aspects to be covered by code-review?

3. Are “tricky” language features subject to a special review or explicitly prohibited?

4. Is the person undertaking the review experienced in the language and (preferably) in
maintaining code in the language?

List for MSI2

In addition to the checklist above, add:

1. Have sources of known problems in the language been identified to ensure that all
known pitfalls are avoided?

In spite of being recommended at all Indexes in IEC 61508, code review is not recom-
mended here at the higher Indexes. The reason for this is that any technique used at the
higher Indexes needs to be shown to have a measurable effect on the quality of the software.
This is hard with code review, which is essentially a manual method.

As a means of gaining confidence in the code, the use of static analysis is thought to be
more appropriate at SIL3 and SIL4.

Those developing safety systems at SIL3 and SIL4 may well feel that they should follow
the recommendation of IEC 61508 and undertake code review anyway. However, there is a
view that attempting code review with the thoroughness appropriate to SIL3 and SIL4 may
well not be cost-effective.

3The term “dazzled” is used to refer to situations in which a correct measure may not be possible, as in
Fieldbus and similar standards.
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B.3.8 Numerical stability (12.9)

List for MSI2

1. Is the person undertaking an analysis for numerical stability competent? (This subject
is not covered by most undergraduate courses; for example, the person must under-
stand the term “backward error analysis”.)

List for MSI3

In addition to the checklist above, add:

1. Has the numerical analysis been formally reviewed by an independent analyst?

2. Have appropriate test cases for the worst-case of rounding errors been produced and
applied successfully?

List for MSI4

In addition to the checklists above, add:

1. Has back-to-back testing been applied, or acceptance testing based upon the numerical
analysis?

B.3.9 Microprocessor qualification (12.10)

List for MSI4

This is to be considered in a later edition of the Guide.

B.3.10 Verification testing (12.11)

A degree of independence for the testing team is essential for this verification testing to be
effective, bearing in mind the other testing undertaken.

The assumption here is that the testing is performed with the aid of some test harness
to ensure the exact repeatability, to ensure there is no dependence upon inexact external
stimuli.

List for MSI3

1. Does the testing team have both the independence and expertise necessary?

2. Have targets been agreed for the test coverage to be obtained from the tests devised
entirely under this activity?

3. Is the level of effort in producing the tests at least comparable with that needed to
obtain branch coverage?
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List for MSI4

In addition to the checklist above, add:

1. Is the testing carried out “blind”, i.e., the expected results produced without the
benefit of the target software?

2. Have all the unexpected results which the testing team regard as their fault been
checked against the documentation?

This checklist is to be reviewed in a later edition of this Guide.

B.3.11 Statistical testing (12.12)

The assumption here is that the tests are exactly repeatable, presumably due to the use of
the test harness.

List for MSI2

1. Is there a sound basis of the statistically chosen test data?

2. Is there a clear reason for the selection (number) of test cases?

3. If test data is generated automatically, can one be assured of its statistical properties?

4. Is there a documented method for determining the expected results?

List for MSI3

In addition to the checklist above, add:

1. Does each test produce extra (diagnostic) data, apart from pass/fail?

B.3.12 Component testing (12.13)

The various forms of component testing are taken from BS 7925, and for MSI1, the recom-
mended technique is “structural testing”.

List for MSI1

1. Has the chosen form of structural testing been documented?

2. Are there means to ensure that appropriate test cases have been used and the results
validated?

One could instrument the code, use a tool to undertake this, or rely upon an analysis
of the specification (for simple software).

List for MSI2

At this Index, statement testing and boundary value testing are recommended.
In addition to the checklist above, add:

1. Has adequate coverage been obtained with both types of component testing?

2. For those statements which were not executed, were all covered by the use of defensive
programming?
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List for MSI3

At this Index, the reason for each statement that has not been executed must be fully doc-
umented. At this Index, branch testing is recommended, along with the testing appropriate
to MSI2.

In addition to the checklists above, add:

1. Has adequate coverage been obtained with branch testing?

List for MSI4

This is to be considered in a later edition of the Guide and is likely to include recommen-
dations to use Modified Condition/Decision testing, branch testing, and boundary value
testing.

B.3.13 Regression testing (12.14)

There is no specific recommendation for use of regression testing at any Index, but see
section 11.2.

B.3.14 Accredited software testing using a validation suite (12.15)

List for MSI2

1. Does the validation suite have some kind of formal recognition?

2. Can the validation suite be considered (to some extent) a complete functional test of
the software?

B.3.15 System-level software functional testing (12.16)

List for MSI1

1. Can the tests be considered (to some extent) a complete functional test of the software?

2. Has the specification been analysed to ensure all the basic functionality is covered?

List for MSI2

In addition to the checklist above, add:

1. Has some form of structural coverage been measured to ensure that the functional
tests are complete in the sense of covering the code?

B.3.16 Stress testing (12.17)

List for MSI2

1. If the tests are machine-generated, do these tests sufficiently cover the functionality of
the software?

2. Is it documented how the expected results for checking the correct result from the
software are produced?

Page 96 of 134



SSf M Best Practice Guide No. 1 NPL Report DEM-ES 014

List for MSI3

In addition to the checklist above, add:

1. Does each test produce extra (diagnostic) data, apart from pass/fail?

B.3.17 Numerical reference results (12.18)

List for MSI1

1. Have the reference data-result pairs been validated?

2. Do the tests sufficiently cover the functionality of the software from the numerical
analysis standpoint?

List for MSI2

In addition to the checklist above, add:

1. Have the numerical reference results been used to validate other software?

B.3.18 Back-to-back testing (12.19)

List for MSI2

1. Except for communications software, are the two implementations independent?

For communications software, is the relationship between the two implementations
clear and appropriate?

2. If one implementation is a reference implementation, is its status clear and acceptable?

3. Are differences in rounding error between the two implementations handled appropri-
ately? (The difference should be less than the claimed accuracy of the measurements.)

List for MSI3

In addition to the checklist above, add:

1. Is adequate code coverage obtained with this back-to-back testing?

2. If verification testing is performed, is both the selection of the tests to be applied with
back-to-back testing, and the coverage of those tests, acceptable?

B.3.19 Comparison of the source and executable (12.20)

List for MSI4

1. Have the papers on this topic been studied and an appropriate application designed?

2. Has an appropriate level of assurance been specified?

3. Is reliability data available for the compiler in order to assess the risks?

This checklist is to be reviewed in a later edition of this Guide.
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B.4 Traceability

This section considers how IEC 61508 relates to this Guide. The Guide has been written
to aid the validation of measurement software which can be seen to satisfy the objective of
quality measurement. Hence the relationship with the generic safety standard is not always
clear. Those who already know IEC 61508 may find this section useful.

B.4.1 Recommended techniques

The techniques from IEC 61508–7 are considered in the order in which they appear in that
document.

Many techniques are not used in this Guide and the reasons for this are stated here. This
is to be expected, since the scope of the techniques in the standard covers entire systems
— hardware and well as software. Even software development methods are not necessarily
used in the Guide unless they have a direct bearing on the software validation process.

Techniques such as structured programming are very widely used and effective, but
only have an indirect impact on validation and therefore are not considered in this Guide.
Such techniques are marked Not critical to validation in the list below, even when
they are marked as “HR” (for “highly recommended”) in one of the tables in IEC 61508.
Suppliers may well wish to claim compliance with such techniques, but this Guide does not
provide any assistance in them. For development guidelines for measurement software, see
BPG-Software.

In some cases, techniques which are thought to be very effective for validation are not
handled in this Guide due to their lack of widespread use.

7–B.1.1 Project management: Required, since this Guide assumes ISO 9001 or an
equivalent quality management system is in use.

7–B.1.2 Documentation: There are extensive documentation requirements in
IEC 61508. The certification process of the software covered in this Guide requires
documentary support for the auditing questions/checklists given above. See
section B.2.

7–B.1.3 Separation of safety-related systems from non safety-related systems:
This is not a requirement of this software validation. However, if separation is used,
the validation costs could well be reduced. For an example of this, see section 6.2.
(The separation is not a requirement of IEC 61508, merely a recommendation.) Not
critical to validation.

7–B.1.4 Diverse hardware: Outside the scope of this Guide. The safety integrity of the
hardware needs to be assessed for certification, but again, this is outside the scope of
this Guide.

7–B.2.1 Structured specification: It is not useful to assess a specification for its
structure alone. Clearly, a poorly structured specification will make the entire
development more difficult. It is also likely to make validation more expensive. Not
critical to validation.

7–B.2.2 Formal methods: See 7–C.2.4 below.

7–B.2.3 Semi-formal methods: This does not seem to be a technique which can be
audited for the purposes of validation.
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7–B.2.3.2 Finite state machines/state transition diagrams: This can be a very
useful technique to ensure the completeness of a specification, which can be carried
through to test cases. There are some tools for this technique which can aid the
development. At this stage, it is not one of the chosen techniques in this Guide. If
there is a request for it to be added, this could be considered in a later edition of the
Guide.

7–B.2.3.3 Time Petri nets: This technique is rather specialised and it is not thought
worthwhile to consider it here.

7–B.2.4 Computer aided specification tools: The approach taken in this Guide is to
consider the specification, rather than how it was developed. Of course, such tools
can be very useful, especially in aiding traceability.

7–B.2.4.2 Tools oriented towards no specific method: This technique does not
provide a method of checking its application to aid validation.

7–B.2.4.3 Model orientated procedure with hierarchical analysis: This technique
does not provide a method of checking its application to aid validation. The
reference to a paper of 1977 may indicate a method not in current use.

7–B.2.4.4 Entity models: This could certainly be an effective specification method, and
the proposals in this Guide would allow the use of this technique.

7–B.2.4.5 Incentive and answer: This method does not seem to provide the clarity or
precision needed for safety systems.

7–B.2.5 Checklists: General checklists are not useful since they cannot be effectively
checked for completeness. On the other hand, this Guide uses prepared ones to
identify issues which should be addressed. In other words, checklists can be useful
but need to be assessed with other material.

7–B.2.6 Inspection of the specification: Appears to be Fagan Inspection, in which
case, the reference to Myers is incorrect. This method is used directly in this Guide,
see section 12.3. It is unclear how this relates to 7–C.5.15.

7–B.3.1 Observance of guidelines and standards: Only specific standards and
guidelines are considered in this Guide.

7–B.3.2 Structured design: It is not useful to assess a design for its structure alone.
Clearly, a poorly structured design will make the entire development more difficult.
It is also likely to make validation more expensive. Not critical to validation.

7–B.3.3 Use of well tried components: As specified in IEC 61508, this seems to be a
hardware technique and therefore not relevant. The use of such software components
is not considered here, but see SOUP–1, SOUP–2.

7–B.3.4 Modularisation: The same remarks apply as for “structured design” (7–B.3.2,
above), and so modularisation is therefore not used in this Guide. Not critical to
validation.

7–B.3.5 Computer aided design tools: This is surely useful but not considered in this
Guide.
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7–B.3.6 Simulation: As described in the standard, this seems to be a hardware
technique and therefore not relevant to this Guide. However, there is one application
that is likely to be vital. To provide repeatable tests for a software-based instrument,
it is essential to have a source of repeatable test cases which in turn means
simulating the environment for the software.

7–B.3.7 Inspection (reviews and analysis): Not considered in the form specified in
IEC 61508, but is related to the techniques that are used: software inspection of the
specification (see section 12.3) and static analysis (see section 12.6).

7–B.3.8 Walk-through: This is potentially a very good technique. Unfortunately, it is
very difficult to provide convincing evidence of its effective use. In consequence, it
cannot be audited and therefore is not effective for the validation process used here.

7–B.4.1 Operation and maintenance instructions: This is part of required
documentation — but this seems to apply to the hardware rather than the software
(and hence is not relevant here).

7–B.4.2 User friendliness: This can be important if a misunderstanding can result in
an unsafe action. See section B.3.1.

7–B.4.3 Maintenance friendliness: As worded in IEC 61508, this seems to be
hardware-oriented. Obviously, not relevant for embedded software as user
maintenance is not possible.

7–B.4.4 Limited operation possibilities: This appears to be a design technique to
reduce possibilities during “ordinary” operation. It is unclear if this applies to safe
measurement.

7–B.4.5 Operation only by skilled operators: This is common to the complex
measurement devices used in metrology and covered by this Guide.

7–B.4.6 Protection against operator mistakes: This is related to the previous item.
See section B.3.1.

(7-B.4.7 No such technique is listed: it was deleted from an earlier draft.)

7–B.4.8 Modification protection: Specific requirements for protection against
unauthorised modification appear in the area of legal metrology (see section 2, on
page 8). This is covered by ensuring that the specification review covers required
standards and regulations.

7–B.4.9 Input acknowledgement: A checklist item has been included for this, see
section B.3.1.

7–B.5.1 Functional testing: This Guide uses two forms of functional testing — system
testing, see section 12.16 for the complete system, and verification testing, see
section 12.11 for comprehensive testing of the software alone.

7–B.5.2 Black-box testing: The same as remarks apply as for 7–B.5.1, above.

7–B.5.3 Statistical testing: This is used in this Guide, see section 12.12.

7–B.5.4 Field experience: The view taken here is that this can only be undertaken for
the whole system, hardware and software and is therefore outside the scope of this
Guide. For its use for software alone, SOUP–1 and SOUP–2 could be consulted.
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7–B.6.1 Functional testing under environmental conditions: Not relevant as it is a
hardware issue.

7–B.6.2 Interference surge immunity testing: Not relevant as it is a hardware issue.
However, see “memory protection” on section 9.3.

(7-B.6.3 No such technique is listed: it was deleted from an earlier draft.)

7–B.6.4 Static analysis: This Guide puts a lot of emphasis on static analysis for the
higher MSIs, see section 12.6.

7–B.6.5 Dynamic analysis: This technique is not very clear. Several forms of testing
appear in this Guide which may be thought of as “dynamic analysis”, but it is
unclear which are intended in the standard.

7–B.6.6.1 Failure modes and effects analysis: This key hardware technique is
important for the overall system, but has little relevance to the software. Hence it is
not used in this Guide.

7–B.6.6.2 Cause consequence diagrams: This is not relevant as it is a hardware
technique.

7–B.6.6.3 Event tree analysis: This is not relevant as it is a hardware technique.

7–B.6.6.4 Failure modes, effects and criticality analysis: This is not relevant as it
is a hardware technique.

7–B.6.6.5 Fault tree analysis: This is not relevant as it is a hardware technique.

7–B.6.7 Worst-case analysis: This is not relevant as it is a hardware issue. However,
boundary value testing (see section 12.13) and boundary value analysis (see
section 12.6) are included.

7–B.6.8 Expanded functional testing: This appears to be part of functional testing,
see 7–B.5.1. The “rare” events covered under this heading should be part of
verification testing, see section 12.11.

7–B.6.9 Worst-case testing: Ignoring the environmental aspects of this technique given
in IEC 61508, the technique for software is the same as boundary value testing (see
section 12.13).

7–B.6.10 Fault insertion testing: Generally, this is not relevant as it is a hardware
issue. However, this is not strictly correct in that mutation analysis has been applied
to software but found to be too expensive in realistic cases.

7–C.2.1.2 Controlled Requirements Expression (CORE): This technique is not
explicitly covered, but the resulting specification can be reviewed according to the
techniques in this Guide.

7–C.2.1.3 JSD — Jackson System Development: This technique is not explicitly
covered, but the resulting specification can be reviewed according to the techniques
in this Guide.

7–C.2.1.4 MASCOT: This technique is not explicitly covered, but the resulting
specification can be reviewed according to the techniques in this Guide. In fact, this
technique is not now widely used.
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7–C.2.1.5 Real-time Yourdon: This technique is not explicitly covered, but the
resulting specification can be reviewed according to the techniques in this Guide.

7–C.2.1.6 SADT — Structured Analysis and Design Technique: This technique
is not explicitly covered, but the resulting specification can be reviewed according to
the techniques in this Guide.

7–C.2.2 Data flow diagrams: This technique is not explicitly covered, but the resulting
specification can be reviewed according to the techniques in this Guide.

7–C.2.3 Structure diagrams: This technique is not explicitly covered, but the resulting
specification can be reviewed according to the techniques in this Guide.

7–C.2.4 Formal methods: In practice, one needs to be assured that the users
understand the specification produced and that the specification has been effectively
and independently audited. This is likely to be effective for MSI4 and hence
consideration is delayed until this Index is handled more fully. Model checking may
well be an appropriate method which is not mentioned in IEC 61508.

7–C.2.4.2 CCS — Calculus of Communicating Systems: Potentially, a very strong
technique for the validation of concurrent systems, but it is not considered in this
Guide since it is thought not to be in widespread use. It could be considered later, if
requested.

7–C.2.4.3 CSP — Communicating Sequential Processes: Potentially, a very strong
technique for the validation of concurrent systems, but is not considered in this
Guide since it is thought not to be in widespread use. It could be considered later, if
requested.

7–C.2.4.4 HOL — Higher Order Logic: It could be considered later, if requested.

7–C.2.4.5 LOTOS: Potentially, a very strong technique for the formal specification of
concurrent systems, but is not considered in this Guide since it is thought not to be
in widespread use. It could be considered later, if requested.

7–C.2.4.6 OBJ: It could be considered later, if requested.

7–C.2.4.7 Temporal logic: It could be considered later, if requested.

7–C.2.4.8 VDM, VDM++, — Vienna Development Method: Potentially, a very
strong technique for the validation of sequential systems, but is not considered in this
Guide since it is thought not to be in widespread use. It could be considered later, if
requested.

7–C.2.4.9 Z: Potentially, a very strong technique for the validation of sequential systems,
but is not considered in this Guide since it is thought not to be in widespread use. It
could be considered later, if requested.

7–C.2.5 Defensive programming: As worded in IEC 61508, this is a design method
and the implications for testing are not mentioned. In this Guide it is both a design
method and has implications for testing and static analysis, see section 12.7.

7–C.2.6.2 Coding standards: Coding standards should be used in a code review, see
section 12.8. This is clearly related to the area of language subsets for which
ATS-Language–1 and ATS-Language–2 should be consulted. This is partly
considered in section 11.2.
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7–C.2.6.3 No dynamic variables or dynamic objects: This is poorly specified in
IEC 61508, since surely stack variables are permitted. This issue is important at
MSI4 and will be addressed in a later edition of the Guide. This is partly considered
in section 11.2.

7–C.2.6.4 Online checking during creation of dynamic variables: It is not clear
what is intended.

7–C.2.6.5 Limited use of interrupts: The intent is clear, but the wording is confusing.
Event programming with modern interactive systems is certainly to be avoided.
With MSI4 systems, the typical absence of an operating system implies a different
approach. To be addressed in a later edition of the Guide.

7–C.2.6.6 Limited use of pointers: The intent is clear, but the wording is confusing.
To be addressed with MSI3/MSI4 systems as part of static analysis. This is a major
problem with C unless a very small subset is used. Only one static analysis tool
appears to be able to analyse a C program adequately in this area. Considered in
section 11.2.

7–C.2.6.7 Limited use of recursion: The intent is clear, but the wording is confusing.
To be addressed with MSI3/MSI4 systems as part of static analysis. Conventional
practice is to prohibit recursion rather than permit it to a limited depth.

7–C.2.7 Structured programming: Structured programming is, of course, highly
recommended; but what is “statistically untestable behaviour”? This is covered in
this Guide by means of the environment (see section 11.2), code review (see
section 12.8) and static analysis (see section 12.6). Tools which produce complexity
measures are regarded here as management tools rather than having a direct bearing
on validation. Not critical to validation.

7–C.2.8 Information hiding/encapsulation: This is useful for program development.
Not critical to validation.

7–C.2.9 Modular approach: A modular approach is, of course, highly recommended;
but not included explicitly, as for structured programming (7–C.2.7, above). Not
critical to validation.

7–C.2.10 Use of trusted/verified software modules and components: As worded,
this is highly dubious since it says “not been formally or rigorously verified, but for
which considerable operational history is available”. Fortunately, the numbers given
on the data from operations seem unlikely to be met in practice. This could be
considered if requested, using SOUP–1 and SOUP–2.

Note that Annex D of IEC 61508–7 is useful here.

7–C.3.1 Fault detection and diagnosis: This appears to require diversity for software
which does not have consensus support in the industry. Otherwise it seems to be
merely part of the design and not relevant for validation. However, it is related to
defensive programming, see section 12.7.

7–C.3.2 Error detecting and correcting codes: This is not relevant as it is a
hardware issue. However, software components should use defensive programming
(see section 12.7) to ensure preconditions are satisfied. In the context of legal
metrology, see WELMEC–7.1.
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7–C.3.3 Failure assertion programming: This is just defensive programming, see
clause C.2.5 of the standard, and section 12.7 of this guide.

7–C.3.4 Safety bag: This method is not believed to be in widespread use and hence is
not included.

7–C.3.5 Software diversity (diverse programming): The problem with software
diversity is that it doubles the development and validation costs. In consequence, it
is not in widespread use and is not considered in this Guide.

7–C.3.6 Recovery block: It is unclear if this technique is in widespread use and hence is
not included.

7–C.3.7 Backward recovery: It is unclear if this technique is in widespread use and
hence is not included.

7–C.3.8 Forward recovery: It is unclear if this technique is in widespread use and
hence is not included.

7–C.3.9 Re-try fault recovery mechanisms: This is typically built into many data
communication protocols, but would only be within the scope of this Guide if an
instrument used such a protocol. Not explicitly handled at this stage.

7–C.3.10 Memorising executed cases: No use of this technique is known and hence is
not included in this Guide.

7–C.3.11 Graceful degradation: May be part of the specification, but does not need to
be considered separately here. One could have a measurement system consisting of
several sensors, some of which could “fail” without closing down the entire system.

7–C.3.12 Artificial intelligence fault correction: It is unclear that this would ever be
used in measurement systems — hence not included in this Guide. Any method of
fault correction clearly needs to be very carefully reviewed.

7–C.3.13 Dynamic reconfiguration: It is unclear that this would ever be used in
measurement systems — hence not included in this Guide.

7–C.4.1 Strongly typed programming languages: The use of such languages is good
software engineering practice, but the importance of using then depend on the degree
to which the language impacts static analysis for MSI3 and MSI4, see section 12.6.
See also section 11.2.

7–C.4.2 Language subsets: This is important at MSI4 and hence not handled at this
stage. At that Index, it is probably necessary to restrict this to Ada [ISO 15942] and
C [MISRA-C]. See section 11.2.

7–C.4.3 Certified tools and certified translators: Very few tools can be effectively
certified. This is only a real problem at MSI3–4, and then fitness-for-purpose should
be the objective. This issue needs to be considered more specifically for MSI4 in a
later edition of the Guide.

7–C.4.4 Translator: increased confidence from use: This is only a real problem at
MSI3–4, and then fitness-for-purpose should be the objective. However, the issue is
partly handled by source-code to executable comparison, see section 12.20.
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7–C.4.4.1 Comparison of source program and executable code: See section 12.20.

7–C.4.5 Library of trusted/verified software modules and components: Not
currently considered, but see SOUP–1 and SOUP–2.

7–C.4.6 Suitable programming languages: This issue is not considered in this Guide,
although it does have a significant impact on static analysis, see section 12.6.
However, ATS-Language–1 and ATS-Language–2 are recommended (but note that
since the publication of those reports, ISO 15942 has been published). See also
section 11.2.

7–C.5.1 Probabilistic testing: See 7–B.5.3, but this is included in the Guide, see
section 12.12.

7–C.5.2 Data recording and analysis: Documentation is a requirement of IEC 61508,
but this specific technique in not included.

7–C.5.3 Interface testing: The important part of this is included in static analysis, see
section 12.6. The dynamic aspect of this is included in defensive programming, see
section 12.7.

7–C.5.4 Boundary value analysis: The important part of this is included in static
analysis, see section 12.6.

7–C.5.5 Error guessing: Unfortunately, this technique is not repeatable and hence is
not included here.

7–C.5.6 Error seeding: This is not practical technique for systems of a realistic size.

7–C.5.7 Equivalence classes and input partition testing: Included in the Guide,
see section 12.13.

7–C.5.8 Structure based testing: Included in the Guide, see section 12.13.

7–C.5.9 Control flow analysis: This is part of static analysis, see section 12.6.

7–C.5.10 Data flow analysis: This is part of static analysis, see section 12.6

7–C.5.11 Sneak circuit analysis: This technique is not thought to be in widespread
use and hence is not included.

7–C.5.12 Symbolic execution: Insofar as this is useful, it is part of static analysis, see
section 12.6.

7–C.5.13 Formal proof: This is too difficult for consideration at anything but MSI4: it
will be considered in a later edition of the Guide. Model checking is not mentioned in
the standard, but could be very effective in checking complex logic.

7–C.5.14 Complexity metrics: These are regarded as a management tool, not relevant
to validation.

7–C.5.15 Fagan inspections: These are included in this Guide under “software
inspection”, see section 12.3.

7–C.5.16 Walk-throughs/design reviews: Walk-throughs are not included, but
reviews via Fagan-style inspections are; see the previous item.
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7–C.5.17 Prototyping/animation: This technique is to aid development and hence is
not directly relevant for validation.

7–C.5.18 Process simulation: The testing of the measurement software in a repeatable
fashion requires separation from the hardware, and in that sense, process simulation
is a requirement of verification testing, see section 12.11.

7–C.5.19 Performance requirements: Specific performance requirements are part of
functional testing, see 7–B.5.1.

7–C.5.20 Performance modelling: This technique is to aid development and hence is
not directly relevant for validation.

7–C.5.21 Avalanche/stress testing: This is included in this Guide, see section 12.17.

7–C.5.22 Response timing and memory constraints: For MSI3–4 systems, this is
effectively part of static analysis, see section 12.6.

7–C.5.23 Impact analysis: For a single validation, this is not relevant. However, small
changes are often made to systems which then require that all the necessary testing
is repeated unless impact analysis can show that fewer tests will suffice. This issue is
not currently addressed, but will be considered in a later edition of the Guide.

7–C.5.24 Software configuration management: This is required as part of ISO 9001,
see also section 11.2.

7–C.6.1 Decision tables (truth tables): There is no need to consider this separately
from a system specification.

7–C.6.2 Hazard and Operability Study (HAZOP): This technique is typically
hardware-based and used for the entire system. It is not clear that this Guide needs
to consider it. Of course, the consequences of a software error need to be taken into
account in determining the SIL. However, ensuring a robust design is very important,
see section 9.3.

7–C.6.3 Common cause failure analysis: This technique is typically hardware-based
and used for the entire system. It is not clear that this Guide needs to consider it.

7–C.6.4 Markov models: This technique is typically hardware-based and used for the
entire system. It is not clear that this Guide needs to consider it.

7–C.6.5 Reliability block diagrams: This technique is typically hardware-based and
used for the entire system. It is not clear that this Guide needs to consider it. It
could be used for software, but this is not considered here.

7–C.6.6 Monte-Carlo simulation: As described in the standard, this technique is
typically hardware-based and used for the entire system. It is not clear that this
Guide needs to consider it. The method could be used to generate test cases, perhaps
as part of stress testing, see section 12.17.

Monte-Carlo simulation is also used to validate uncertainty evaluations. As such, it
is relevant to measurement, but not to validation of measurement systems — apart
from any software specifically designed to evaluate uncertainties.
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B.4.2 Guide techniques

IEC 61508 does not consider the following Guide techniques:

Regression testing. The word “regression” does not appear in Parts 3 or 7. In any case,
one cannot release unsafe systems and wait for problems! Hence, in this edition of the
Guide (which considers safety), this method is not applied in the context of IEC 61508
validation. Note that it is referenced in section 11.2.

Accredited testing. The word “accredited” does not appear in Parts 3 or 7. However, the
method does have a role to play as the example in the Guide shows (see appendix C.3).

Numerical stability. This is not mentioned in Parts 3 or 7, which seems to be a serious
failing. Of course, most measurements made in a safety context do not quite high
accuracy, but unless numerical accuracy is considered, there is a danger that all
accuracy is lost.

Mathematical specification. This seems to be implicit:

“The software safety requirements specification will always require a descrip-
tion of the problem in natural language and any necessary mathematical
notation that reflects the application.”

Hence, in the measurement area it would appear that IEC 61508 almost requires this!

Numerical reference results. This is essentially an NPL method (see section 12.18) and
hence a reference would not be expected. The usefulness and effectiveness of this
method clearly shows the need for it becoming more widely known and used.

Back-to-back testing. This is not referenced explicitly but is implicit in “diverse soft-
ware”, see Part 7: C.3.5. The technique can be used to provide an oracle for stress
testing (12.17) or statistical testing (12.12).

Since IEC 61508 is generic, and not specific to measurement systems, it does not consider
issues such as the validity of the underlying physics or the accuracy with which the physics
can be modelled; see chapter 3.

B.4.3 Requirements

In IEC 61508, as in all International Standards, the requirements are specified with a shall.
This section considers those requirements and how they relate to recommendations in this
Guide.

In this Guide, we are only considering the validation of the software which implies that
many aspects of IEC 61508 are not considered at all.

To simplify issues, consider the design of a measuring instrument being undertaken by
a single company to satisfy IEC 61508. The user, responsible for a safety application,
purchases the instrument, making all reasonable checks that it satisfies the requirements of
the application. This implies that the following must be specified:

• The SIL for the instrument.

• The accuracy requirement for the safety application. The actual instrument is likely
to be much more accurate to give a large safety margin.
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• The MSI using this Guide.

• A validation plan, again based upon this Guide.

The directly applicable component of IEC 61508 is Part 3. Hence, we list the require-
ments of Part 3 and show how they relate to the Guide. The Guide itself is annotated
with references to the items below. Part 3 needs to be consulted for the details of each
requirement.

3–1.1 d) Safety life-cycle: The primary responsibility for this life-cycle must rest with the
user. The user must ensure that the suppliers’ specification satisfies the requirements.
Independent certification to IEC 61508 for the instrument would provide assurance
to the user of the suppliers’ claims. Certification would typically be based upon
confidential information provided by the supplier which would not necessarily be
available to a user.

The whole Guide is relevant to this life-cycle.

3–6.2.2 Functional safety planning: Assuming that the instrument satisfies its require-
ments, the user needs to ensure that, as a consequence, the total system will satisfy
the safety requirements. This aspect is not covered in this Guide.

Note that the accuracy of the instrument may be crucial to the safety assessment.
Due to a safety margin, the claimed accuracy is likely to be much less than that of the
basic instrument as specified in non-safety applications.

If calibration of the instrument is important to maintain the required accuracy, then
the calibration process needs to be suitably controlled, see EUR 19265.

3–7.1.2.1 Software development: This Guide takes the approach that the development
process should be appropriate to the MSI, see section 6.2.

3–7.1.2.2 Quality procedures: See sections 7.2 and 11.1. Note that some of the docu-
mentation requirements could be met by reference to this Guide.

3–7.1.2.3 Activities of life-cycle: See figure 6.1.

3–7.1.2.6 Techniques: The standard does not mandate specific techniques, but gives
recommendations instead. In the context of measurement software, it would be ap-
propriate to follow the recommendations given here instead, see table 11.2.

3–7.1.2.7 Documentation of activities: See section B.2.

3–7.1.2.8 Repeat changed activities: The need to repeat an activity due to a change to
the software is not specifically covered in this Guide, but is implicit in the validation
process, see figure 6.1.

3–7.2.2.2 Derivation of safety requirements: The implicit assumption here is that the
reliability and accuracy of the instrument are the key safety requirements. Aspects
such as the ease of use for calibration are not specifically addressed, but could be
crucial in certain circumstances. See chapter 6.

3–7.2.2.3 Detail of safety requirements: See the list of six key aspects in chapter 6.
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3–7.2.2.4 Software developer’s review and check list: The list includes the response
time for the instrument. This is typically not a problem but needs to be checked. For
the highest Index(MSI4), it would be necessary to compute the worst case execution
time.

3–7.2.2.5 Software procedures: It is important that the supplier and the user should
agree on the SIL of the instrument. Clearly, if the supplier rates the instrument at a
lower Index than that required by the user, safety assurance will not be provided. See
table 6.1.

3–7.2.2.6 Precision of requirements: The precision clearly requires the use of estab-
lished physics, see section 3.3.

3–7.2.2.7 Detail of modes of operation: It can be very important to check that a mode
of operation for re-calibrating the instrument is properly checked. Simple manual
errors should not permit a system to become unsafe.

3–7.2.2.8 Interaction of hardware and software: Not specifically covered in this
Guide.

3–7.2.2.9 Self-test: This topic is not explicitly covered in this Guide since the self-test
would typically be applied to the hardware. The software that performs testing of the
hardware might well be difficult to validate. It is clearly important that such software
should not “hide” serious faults in the hardware.

3–7.2.2.10 Non-safety functions: This is not specifically covered in this Guide.

3–7.2.2.11 Measuring instrument functions: This is not relevant in this context since
the previous sections (3-7.2.2.1/10) have already been considered for the measuring
instrument — there is no direct equivalent of “the project”.

3–7.3.2.1 Validation planning: See figure 6.1.

3–7.3.2.2 Validation planning checklist: The checklist in the standard should be used
when reviewing the validation report.

3–7.3.2.3 Choice of techniques: See table 11.2.

3–7.3.2.4 Assessor review and witness: It is essential that this issue is resolved for any
formal certification, see B.1.

3–7.3.2.5 Pass/fail criteria: Each validation technique will have its own pass/fail criteria.
For software testing, only limited assurance can be obtained by testing the instrument
as a whole, see 5.1. Hence it is necessary to test the software in isolation so that the
input and the results are completely predictable and do not vary with the external
environment.

3–7.4.2.1 Division of responsibilities: This is not covered in this Guide.

3–7.4.2.2 Design methods and checklist: Design methods are not explicitly covered in
this Guide. However, if this checklist is not followed, then validation is likely to be
much more difficult and expensive. For the highest Index(MSI4), it may be impossible
to obtain the assurance needed.
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3–7.4.2.3 Testability and safe modification: The ability to test the software in isolation
should imply that retesting can be repeated at a low cost (by a suitable script). The
assumption here is that the validation is repeated after any modification is performed.

3–7.4.2.4 Design for modification: This really seems to require an intelligible design —
vital for successful validation.

3–7.4.2.5 Unambiguous definition: This requirement is very demanding when taken
seriously. An unambiguous definition typically implies the use of mathematics (see
sections 12.4 and 12.5) and very little dependence upon natural language which can
easily be ambiguous.

3–7.4.2.6 Minimise safety part: This requirement appears to imply that the design is for
a system which is only for safety. In the case of a measuring instrument, the primary
market may be non-safety applications, which therefore gives rise to a potential conflict
in the design requirements.

3–7.4.2.7 Independence of non-safety part?: This issue does not seem relevant to most
instruments, since the entire system would have to be regarded as safety-critical when
used in a safety context.

3–7.4.2.8 Using different safety integrity levels: For an example of more than one
level , see section 6.2.

3–7.4.2.9 Proof tests: It appears that “proof tests” in the context of measuring instru-
ments are replaced by calibration — periodic tests to ensure that the instrument
functions as required. Hence this is a hardware issue, although some software to
support the process will be needed.

3–7.4.2.10 Monitoring control and data flow: This seems to refer to run-time checks
(see section 11.2) and defensive programming (see section 12.7).

3–7.4.2.11 Previously developed software: See SOUP–1 and SOUP–2.

3–7.4.2.12 Data validation: In the context of measuring instruments, the handling of
calibration data can be very important, see EUR 19265.

3–7.4.3.1 Documented responsibilities: These are not covered in this Guide.

3–7.4.3.2 Information and checklist about components: This is probably not rel-
evant in the sense that a measuring instrument is likely to be regarded as a single
component. The issue of multi-component (possibly distributed) measurement systems
should be addressed in a later edition of the Guide.

3–7.4.3.3 Changes agreed and documented: If the basic sensor is supplied to the
instrument maker, then it would be important that any change to the sensor results in
a formal acceptance of the change, which might require re-validation of the software.

3–7.4.4.1 Division of responsibility for conformance: In the context of this Guide,
responsibility for the specific application must rest with the user, while the claims made
for an instrument lie with the supplier. The supplier can in turn use evidence of the
suitability of an instrument for a safety application by obtaining formal certification.

3–7.4.4.2 Selection of tools: This is covered in section 11.2.
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3–7.4.4.3 Language with check list: The approach taken in this Guide is best illustrated
by the example in section 11.2.2.

3–7.4.4.4 Alternative language: It would seem that this clause is needed to cover the use
of C, since many constructs in that language can compile but execute unpredictably.
It is not possible to “qualify” a C compiler to overcome this problem. Rather it
is necessary to use tools to show that the code cannot execute unpredictably —
an expensive and time-consuming task, even with tool support. See static analysis,
section 12.6

3–7.4.4.5 Coding standards: This issue is handled in several ways in the Guide. There
is the question of the intelligibility of the code which is handled by code review (see
section 12.8). There is the question of ensuring the detection of common errors by
using a suitable programming environment (see section 11.2). Lastly, for the higher
Indexes (MSI3 and MSI4), strong static analysis techniques should be employed (see
section 12.6).

3–7.4.4.6 Source code documentation with check list: This is covered in section 11.2.

3–7.4.5.1 Division of responsibility for detailed design: The user needs to be assured
of the claims made by the supplier and that those claims are sufficient to ensure the
safety of the system. The suppliers’ claims can be backed by certification.

3–7.4.5.4 Module design: Module design is not explicitly covered in the Guide. However,
a poor design will necessarily make testing and analysis more difficult. In the extreme,
static analysis required for MSI3/MSI4 systems (see section 12.6) can be impossible
with poor design.

3–7.4.6.1 Source code and checklist: The checklist does not cover assurance of the
absence of common errors which this Guide does(see section 11.2).

3–7.4.7.1 Module test: This is called component testing in this Guide, see section 12.13.
Unlike the standard, this Guide recommends different levels of coverage according to
the MSI, see B.3.12.

3–7.4.7.2 Module test functionality: See section 12.13 and B.3.12. The form of module
test specified in BS 7925 does not cover the requirement in IEC 61508 to check that a
module does not perform unintended functions.

3–7.4.7.3 Module test results: The important aspect of module test results is that of
structural coverage which is not covered in IEC 61508. See B.3.12.

3–7.4.7.4 Module test corrective action: In this Guide, corrective action is covered by
compliance to ISO 9001. See section 11.1.

3–7.4.8.1 Integration test specification: Integration is not covered as a separate topic
in this Guide, but is covered under sections 12.16 and 12.11.

3–7.4.8.2 Integration test specification checklist: See above.

3–7.4.8.3 Integration test results: See above.

3–7.4.8.4 Integration test documentation: See above.
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3–7.4.8.5 Integration test corrective action: In this Guide, corrective action is covered
by compliance to ISO 9001. See section 11.1.

3–7.5.2.1 Hardware and software integration test specification: In the case of
measurement software, the testing of the integrated device with the hardware is
undertaken by the measurement of samples of known characteristics. This is a topic
of metrology and not covered in the Guide. However, if the software can be shown
to be very simple indeed, such end-to-end testing may be sufficient for MSI1 systems,
see 10.2.

3–7.5.2.2 Hardware and software integration test check list: See above.

3–7.5.2.3 Hardware and software integration test premises: See above.

3–7.5.2.4 Hardware and software integration test activities: See above.

3–7.5.2.5 Hardware and software integration: See above.

3–7.5.2.6 Hardware and software integration corrective action: In this Guide,
corrective action is covered by compliance to ISO 9001. See section 11.1.

3–7.5.2.7 Hardware and software integration results: See above.

3–7.5.2.8 Hardware and software integration corrective action: In this Guide,
corrective action is covered by compliance to ISO 9001. See section 11.1.

3–7.7.2.2 Validation activities: This Guide gives very detailed information concerning
validation. For an overview, see figure 6.1.

3–7.7.2.3 Validation results: The documentation itself is not explicitly covered in this
Guide, but see section B.2.

3–7.7.2.4 Validation results checklist: The list in the standard should be used to ensure
the documentation is complete.

3–7.7.2.5 Validation results corrective action: In this Guide, corrective action is
covered by compliance to ISO 9001. See section 11.1.

3–7.7.2.6 Validation requirements: The Guide places more emphasis on analysis meth-
ods at the higher Indexes, MSI3 and MSI4. Testing appears to require an environment
in which the input signals are simulated, and therefore potentially excludes end-to-end
testing (as in section 10.2).

3–7.7.2.7 Software tool qualification: This topic is not currently covered in this Guide.

3–7.7.2.8 Validation result requirements: In the case of certification, the results must
be documented in a detailed manner to satisfy an assessment. See also section B.2.

3–7.8.2.1 Software modification procedures: Software modification is not explicitly
covered in this Guide. In practice, it is necessary to use impact analysis to reduce the
amount of re-validation to do after such a modification.

3–7.8.2.2 Software modification check list: See above.

3–7.8.2.3 Software modification impact: See above.
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3–7.8.2.4 Software modification documentation: See above.

3–7.8.2.5 Software modification safety implications: See above.

3–7.8.2.6 Software modification planning: See above.

3–7.8.2.7 Software modification: See above.

3–7.8.2.8 Software modification documentation: See above.

3–7.8.2.9 Revalidation after software modification: See above.

3–7.8.2.10 Assessment of software modification: This Guide is written under the
assumption that the validation is performed after any software modification. If this is
not the case, then suitable justification needs to be produced.

3–7.9.2.1 Verification planning: In the context of a supplier, verification is the same as
validation, since details of the intended use are not relevant.

3–7.9.2.2 Verification planning check list: See above.

3–7.9.2.3 Verification: See above.

3–7.9.2.4 Verification documentation: See above.

3–7.9.2.6 Verification phases: See above.

3–7.9.2.7 Verification activities: This section simply lists other relevant sections in the
standard.

3–7.9.2.8 Verification safety requirements: See above.

3–7.9.2.9 Software architecture verification: See above.

3–7.9.2.10 Software design verification: See above.

3–7.9.2.11 Software module verification: See above.

3–7.9.2.12 Software code verification: Code verification is covered in this Guide by
code review (12.8) and static analysis (12.6). Note also the importance of defensive
programming, see section 12.7.

3–7.9.2.13 Data verification and checklist: Data embedded within an instrument
must be verified as part of the code, while dynamic data needs special attention.
For instance, some devices may have calibration data whose values are set during a
calibration mode. Such a mode needs careful checking if an incorrect calibration by a
user could make an application unsafe. See also EUR 19265.

B.5 Potential problems related to certification

In the context of certification to IEC 61508, a number of problems can arise which are not
covered in this Guide. Some of these are as follows:

SOUP. Software Of Uncertain Pedigree may be involved. In general, it does not seem
credible to offer certification in that context. However, the HSE Guidance in this area
is highly recommended [SOUP–1, SOUP–2].

Page 113 of 134



NPL Report DEM-ES 014 Validation of Software in Measurement Systems

Use of a safety case. This method is not included in IEC 61508, although it can be highly
advantageous.

Dependence on development. The supplier may wish to claim that the excellence of
their development process ensures that the product will satisfy the safety claims made
for it. Unfortunately, it is well-known that development is error-prone. One of the
authors has heard of a SIL4 development which produced a product that was so buggy
as to be unusable! Moreover, the development process is essentially indirect evidence
about the product. Hence, validation is crucial, and the supplier should be able to
provide evidence of validation that largely satisfies the recommendations stated in this
Guide. As noted in figure 6.1, it is crucial that the development process includes
the choice of the validation methods so that there is no retrospective element to the
validation work.

Validation methods not covered in this Guide. It must be assumed that these meth-
ods appear in IEC 61508, and hence the section above can be consulted. As a
general rule, an alternative method of validation may be used instead of one of the
recommended methods, provided that it delivers a comparable level of assurance.

Complexity versus safety integrity. The Guide uses both to determine the MSI. In
earlier versions of this Guide that did not handle IEC 61508, only complexity and
the risk involved in the application were used to determine the MSI. To conform to
the safety standard, only safety integrity is used to determine the SIL in the context
of IEC 61508. Thus the SIL may be different from the MSI.

This is not to say that complexity is not a problem, since the more complex the software
is, the more expensive it will be to apply the appropriate validation techniques.

Page 114 of 134



SSf M Best Practice Guide No. 1 NPL Report DEM-ES 014

Appendix C

Some Validation Examples

In this appendix, a number of examples are given of the approaches used in real measurement
systems for demonstrating high quality for the software component. Each example references
the main text and has been developed by using an earlier version of this Guide.

C.1 Measurement of flatness/length
by a gauge block interferometer

NPL is the supplier of both the hardware and the software of this equipment.
The physics behind the measurement system is categorised as validated physics, see

section 3.3.
The model of a measurement system (on section 3.1), applies to this measurement system.
The criticality of usage is critical, see section 4.1.1. If any fault were found, NPL would

be very embarrassed. On the other hand, no life-critical application is known, nor seems
likely.

The measurement system does not have to satisfy any specific legal requirement (see
section 4.1.2).

The complexity of the control is rated as very simple or simple, see section 4.1.3.
The complexity of the data processing is rated as modest or complex, mainly because

of the size (15-20,000 lines of C++), see section 4.1.4.
The answers to the six key questions (see section 5.1) were:

1. It is known that end-to-end testing cannot provide sufficient confidence in the software,
since it would be hard to locate any numerical instabilities in the processing by that
means.

2. Raw data can be extracted and used for testing and is probably adequate for the
length measurement, but not for flatness. However, many artefacts do not provide
demanding cases for the software.

3. The software had been tested against an older system by back-to-back testing.

4. All errors and comments are logged, but since the equipment is only in trial use at the
moment, error statistics are not very meaningful.

5. Any error in the control software cannot result in a false measurement.
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6. The operator interface is not thought to be complex nor likely to put any measurement
at risk.

Issues arising from the software risk assessment questions (see section 10.1) were as
follows:

• There is no record of a measurement system malfunction due to software (as opposed
to errors in the software detected during development).

• The NPL software development process is internally audited and subject to an external
audit by LRQA for ISO 9001.

• The measurement system does not require regulatory approval.

• The measurement system makes obvious internal checks and provides modest protec-
tion against operator error.

• The length computations are linear. The flatness calculations are non-linear, but have
been checked by the NPL mathematics group for stability. The algorithm used for
flatness is given in ReferenceSoftware and ChebychevGeometric.

• An internal numerical error (overflow, etc) should be detected by the software.

As a result of the above, the software was rated as MSI2.1

Issues arising from the general software questions (see section 11.4.1) were as follows:

• Since the measurement system has not yet been released to end customers, the provi-
sion of information (by NPL) has not yet arisen.

• No software reliability data is available, as the log of errors is an empty file at this
point.

• The question of operator training and assessment of the user manual has not yet been
addressed.

• The main aspect of the software which gives rise to concern is that of its size.

Issues arising from the MSI0 questions (see section 11.4.2) were as follows:

• No issues as NPL operates an ISO 9001 process.

Issues arising from the MSI1 questions (see section 11.4.3) were as follows:

• Software inspection is not undertaken, but code review is being done. The two people
on the project review each other’s code.

• There is a mathematical specification of the processing algorithms, and the code for
these algorithms has been derived from the specification.

• During the development, the main processing code was tested (informally) to branch
level.

Issues arising from the MSI2 questions (see section 11.4.4) were as follows:

• Regression testing has been applied from the start, and the results have been recorded.
1This determination of the MSI pre-dates the table for calculating the MSI.
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• The variant of stress-testing for image processing has been used. This testing revealed
a weakness in the specification.

• All known (and documented) errors are trivial.

• The system is too young to suffer yet from structural decay.

Issues arising from the MSI3 questions (see section 11.4.5), although not necessary for
MSI2 software, were as follows:

• As noted above, informal branch testing was undertaken on the main algorithms. This
should imply 100% statement coverage.

• No Formal Specification has been produced.

• Static analysis has not been undertaken.

• It is not thought that there is a role for accredited testing of the software.

• An attempt was made to detect memory leaks in the software.

The Software Engineering techniques listed in this Guide were applied as follows:

Independent audit: (see section 12.1.) (NPL audit, and external ISO 9001 audit.)

Review of informal specification: (see section 12.2.) Yes.

Software inspection of specification: (see section 12.3.) No, but code review under-
taken.

Mathematical specification: (see section 12.4.) Yes.

Formal Specification: (see section 12.5.) No.

Static analysis: (see section 12.6.) No.

Code review: (see section 12.8.) Yes.

Numerical stability: (see section 12.9.) Yes.

Component testing: (see section 12.13.) Yes, on processing algorithms.

Accredited testing: (see section 12.15.) Not applicable.

System-level testing: (see section 12.16.) Yes.

Stress testing: (see section 12.17.) Yes, for image processing part.

Numerical reference results: (see section 12.18.) Yes, for flatness algorithms.

Back-to-back testing: (see section 12.19.) Yes, with older software.

Regression testing: (see section 12.14.) Yes.

Conclusions

The validation of this software is generally consistent with the MSI of 2. One of the difficul-
ties facing the development is that only two people were involved, making a comprehensive
independent software inspection effectively impossible. Code review of each other’s code
was undertaken as a result of an internal NPL audit. The size of the code made this a large
task.
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C.2 Electrical measurement resistance bridge

The device with its software provides the primary service for NPL to calibrate resistance
measuring devices. The measurement system is entirely for in-house use by NPL, and hence
NPL is the supplier and the sole user.

Oxford Instruments are licensed by NPL to manufacture a similar device, but this device
has different software and is not considered here.

The physics behind the measurement system is categorised as validated physics, see
section 3.3.

The model of a measurement system (on section 3.1), applies to this measurement system.
The criticality of usage is critical, see section 4.1.1. If any fault was found, NPL would

be very embarrassed, especially with the international intercomparisons.
The measurement system does not have to satisfy any specific legal requirement (see

section 4.1.2).
The complexity of the control is rated as complex, see section 4.1.3. The control consists

of 10,000 lines of Turbo-Pascal which uses its own macro language to aid the control.
The complexity of the data processing is rated as simple, see section 4.1.4. Only two

stored calibration constants are used in a linear calculation. The data processing part is a
separate program from the control logic, communicating via a file.

The answers to the six key questions (see section 5.1) were:

1. Very good confidence in the measurement system can be established by end-to-end
testing. Standard artefacts can be used for this purpose and the number of individual
tests that need to be undertaken is widely recognised.

2. Since the control and processing programs are separate, they can be validated inde-
pendently.

3. The software has been in use for 10 years in various versions.

4. No errors have been recorded which gave an incorrect measurement. The main prob-
lems have been in the operator interface to the control program.

5. It seems hard for the control software to produce an undetected error in a measurement.
Only a few lines copy the basic data into a file for processing by the data processing
program.

6. Only qualified staff at NPL can use the measurement system for calibration work.

Issues arising from the software risk assessment questions (see section 10.1) were as
follows:

• As noted above, the control software has essentially no impact on the measurements
themselves.

• The data processing software in classified as simple and hence straightforward to
validate.

• Since the measurement system is only used by NPL staff, the control software does
not need to handle many cases of misuse. (The Oxford Instruments version is quite
different in providing simpler control with fewer user options.)
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As a result of the above, the software was rated as MSI1.2

Issues arising from the general software questions (see section 11.4.1) were as follows:

• With the supplier being the sole user, the provision of information is not a problem.

• The raw data is in a file used by the data processing program.

• An independent check has been made on the data processing program by comparing
it with the similar program developed for the Oxford Instruments device.

• Completeness of the system testing has not been measured by, for instance, test
coverage. This is not thought to be a problem due to the unlikelihood of the control
software giving a problem.

Issues arising from the MSI0 questions (see section 11.4.2) were as follows:

• Since the basic design of the software is ten years old, much of the design is actually
embedded in the code itself, rather than in a separate document. However, the complex
design aspects are in the control software which do not impact the basic measurements.

• The only recent change to the computing environment has been the compiler, which
caused the system to be re-tested.

• The system is maintained by a physicist rather than a programmer. This is adequate
in this instance, since the system is assessed at a MSI of 1. If a higher Index was
required, additional skills in software engineering would be needed.

Issues arising from the MSI1 questions (see section 11.4.3) were as follows:

• It was noted that a code review should have been undertaken on the software.

• The system testing applied to the control software did not provide any measurement
of test coverage, such as statement coverage.

Issues arising from the MSI2 questions (see section 11.4.4), although not necessary for
MSI1 software, were as follows:

• Only internal audits have been undertaken.

• It is thought that structural decay is a minor problem due to the age of the software.

The Software Engineering techniques listed in this Guide were applied as follows:

Independent audit: (see section 12.1.) (NPL audit, and external ISO 9001 audit.)

Review of informal specification: (see section 12.2.) No — specification not separately
documented.

Software inspection of software: (see section 12.3.) No.

Mathematical specification: (see section 12.4.) Yes.

Formal Specification: (see section 12.5.) No.

Static analysis: (see section 12.6.) No.

2Again, this determination of the MSI pre-dates the table for calculating the MSI.
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Numerical stability: (see section 12.9.) Yes.

Component testing: (see section 12.13.) No.

Accredited testing: (see section 12.15.) Not applicable.

System-level testing: (see section 12.16.) Yes, and gives required confidence in the mea-
surement system.

Stress testing: (see section 12.17.) No.

Numerical reference results: (see section 12.18.) No.

Back-to-back testing: (see section 12.19.) Yes, NPL data processing software against the
similar software for the Oxford Instruments device.

Regression testing: (see section 12.14.) Yes, for data processing program.

Conclusions

The software risk analysis shows that this software is of low risk but (the impact of) the
complexity of control is complex and hence a MSI of 1 is appropriate, even though a
measurement error would be an embarrassment to NPL. The key aspect is that testing
the measurement system as a black-box gives a high assurance of the system, including the
software relevant to the measurement.

The validation of the software undertaken by NPL is generally consistent with the MSI
of 0, rather than MSI1. Further validation is therefore to be recommended.

C.3 Mean renal transit time

This medical application consists of a gamma camera and associated software for measure-
ment of mean renal transit time. The diagnostic imaging procedure in question is called a
renogram, and the medical speciality of which it is a part is called nuclear medicine.

The patient is injected (in an arm vein) with an appropriate radiopharmaceutical, whose
passage through the body can be observed by the use of a large field of view (approx
50×40cm) radiation detector called a gamma camera. In this application, the detector is
positioned under the patient (lying supine on a low attenuation imaging couch), covering
the posterior aspect of the lower chest and abdomen, centred on the kidneys. Immediately
after injection, a sequence of digital images (10 second frames) is recorded for a period of
20 minutes, showing the passage of the injected material into, and out of, the organs within
the field of view (heart, spleen, liver, kidneys and bladder). In this case, the organs under
scrutiny are the kidneys.

The first stage of the image processing involves the creation of so called regions-of-interest
(ROI) around particular organs and structures (both kidneys, heart, and two “background”
areas). This is usually done manually, using a mouse/cursor. In image processing par-
lance this would be called “segmentation”. Each ROI is then applied, in turn, to each
of the 120 frames, and the “information density” (in this case count rate) within each
ROI plotted as a function of time. Five curves are thus produced. These curves are then
analysed further to calculate the mean renal transit time for each kidney. The use of this
model/algorithm/software simulates the effect of direct injection into the renal artery, which
is extremely invasive and requires an anaesthetic. Intravenous injection, by contrast, is
minimally invasive and is happily tolerated by the vast majority of patients. The passage
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of a non-reabsorbable solute (of which the radiopharmaceutical injected is an example)
through the kidney is slowed in various renal disorders, and the mean renal transit time (of
that solute) is thus prolonged. The measurement of mean renal transit time can be used to
diagnose kidney disorders such as upper urinary tract obstruction, which is usually caused
by narrowing of the junction between kidney and ureter.

The information below has been provided by Mr P.S.Cosgriff who is a user of the system,
but also has a detailed knowledge of its workings. He has written some software that can
perform part of the analysis, although most of the system being considered is supplied by
other (commercial) parties. The user-written software was produced according to general
principles described in a recent guide published by the Institute of Physics and Engineering
in Medicine [Cosgriff]. The gamma camera was supplied by one company, and the image
processing software by another.

The physics behind the instrument is categorised as Physics can be modelled, see
section 3.3.

The model of an instrument (on section 3.1), applies to this instrument, but note the
degree of interaction as noted above.

The criticality of usage is safety-indirect, see section 4.1.1. The patient’s doctor
(hospital consultant) makes the final decision regarding the use of the results in deciding
treatment.
The instrument has to satisfy the specific legal requirements (see section 4.1.2) in Medical
Device Regulations 1996 (as a Class 2A product).

The complexity of the control is rated as Complex, see section 4.1.3.
The complexity of the data processing is rated as Complex, see section 4.1.4.
The answers to the six key questions (see section 5.1) were:

1. Due to the complexity of both the control and data processing software, only limited
assurance can be obtained from end-to-end testing. It is also difficult to produce ap-
propriate models (hardware “phantoms”) for testing due to the difficulty in simulating
a complex biological system.

2. The data from the camera is essentially separate and is typically available in a format
that can be processed by any nuclear medical image processing. In consequence, the
gamma camera and the software can be considered separately.

Naturally, the camera can be considered as an instrument it its own right, but this is
not considered further here.

3. Similar instruments are available for which some reliability data is available.

4. An error log is available from the bug-fix information sent out by the software supplier.

5. False measurements are certainly possible. For instance, if the patient moves and the
operator fails to take this into account, the image processing software could fail to
locate the kidney correctly.

6. The operator interface is complex and only suitably trained staff can operate the
equipment.

Issues arising from the software risk assessment questions (see section 10.1) were as
follows:

• At worst, an instrument malfunction could cause inappropriate treatment to the
patient.
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• The gamma camera performs some built-in tests, but the software does not.

• The control functions cannot be effectively protected against operator error. (Hence
the need for skilled operators.)

• The computation is complex and non-linear. The final calculation after the image pro-
cessing uses differences and requires that the initial data points are heavily smoothed
to avoid numerical instabilities.

• It is unclear how robust the software is with regard to issues like numerical overflow.

For this example, the Measurement Software is taken as MSI3; MSI2 may be more
realistic from an economic point of view. A drug infusion pump connected to a patient on
an Intensive Care Unit would certainly be SIL4 with IEC 61508, but the software contained
would be probably 100 times less complex than that described above and would also probably
have hardware interlocks to prevent catastrophic failure. On balance, therefore, MSI3 is thus
considered reasonable for the measurement of mean renal transit time.

Issues arising from the general software questions (see section 11.4.1) were as follows:

• An independently specified file format is available which allows a user or manufacturer
to test the software without the use of the gamma camera.

The questions concerning software development usually be answered, since the informa-
tion available is from a user.

Issues arising from the MSI 0 questions (see section 11.4.2) were as follows:

• There is an error log and evidence of clearance of errors.

• It is unclear how the exact version of the software is identified (which is non-trivial
due to updates being applied by users). The Notifying Body oversight should check
for this.

There was no information available to answer any of the questions for MSI1–3.
The only information available about the Software Engineering techniques applied is as

follows (little information was available at the time):

Accredited testing: (see section 12.15.) Accredited testing to be undertaken under
COST B2.

Independent audit: (see section 12.1.) As part of type approval.

Conclusions

The software risk analysis shows that there is a moderate risk of inappropriate treatment
should the complex software produce an incorrect result. The ability to test the software by
means of “software phantoms” has led to a proposal to develop a formal certification process
for this type of medical software [COST B2]. The information to hand about the validation
so far completed is inadequate to make any positive conclusion about the validation of the
software.
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Note

The bibliography shows where each reference
is used and hence can aid locating specific
issues in addition to this index.

Page 134 of 134


	I Management Aspects
	Management Overview
	Standards and Legal Requirements
	From Physics to Measurement
	Specification of the physical processes
	Producing the model
	Validating the implementation of the model
	A measurement system model
	Abstraction at several levels
	Example 1: Druck's pressure transducer
	Example 2: A vacuum pressure measurement device

	Assessing the Software Risks
	Software Risk factors
	Criticality of Usage
	Legal requirements
	Impact of complexity of control
	Complexity of processing of data

	Reliability of software
	Some examples
	A warning from history
	Conclusions

	Software Implications
	Software issues
	Computing the Measurement Software Index

	IEC 61508
	Approach to IEC 61508 for software
	Measurement Software Index for safety systems

	Software validation techniques
	Appropriate applicable techniques
	Software and quality management

	Conclusions

	II Technical Application
	Understanding the Requirements
	Technical requirements
	Handling calibration data
	Ensuring a robust system

	Issues in Software Risk Assessment
	Software Risk factors
	A simple example
	A complex example

	Software Reliability Requirements
	Software and quality management
	Requirements for the development environment
	Development environment issues
	Illustrative example

	Recommended techniques
	Software development practice
	General software issues
	Measurement Software Index 0
	Measurement Software Index 1
	Measurement Software Index 2
	Measurement Software Index 3
	Measurement Software Index 4

	A simple example revisited
	A pressure transducer

	Software Validation Techniques
	Independent audit
	Review of the informal specification
	Software inspection
	Mathematical specification
	Formal specification
	Static analysis/predictable execution
	Defensive programming
	Code review
	Numerical stability
	Microprocessor qualification
	Verification testing
	Statistical testing
	Component testing
	Regression testing
	Accredited software testing using a validation suite
	System-level software functional testing
	Stress testing
	Numerical reference results
	Back-to-back testing
	Comparison of the source and executable


	Appendices
	Some Example Problems
	Software is non-linear
	Numerical instability
	Structural decay
	Buyer beware!
	Long term support
	Measurement System Usability
	Tristimulus colour measurement
	Balances

	Certification to IEC 61508
	The CASS Scheme for Safety-related Systems
	Software documentation checklist
	Auditing checklists
	Review of informal specification
	Software inspection of specification
	Mathematical specification
	Formal specification
	Static analysis/predictable execution
	Defensive programming
	Code review
	Numerical stability
	Microprocessor qualification
	Verification testing
	Statistical testing
	Component testing
	Regression testing
	Accredited software testing using a validation suite
	System-level software functional testing
	Stress testing
	Numerical reference results
	Back-to-back testing
	Comparison of the source and executable

	Traceability
	Recommended techniques
	Guide techniques
	Requirements

	Potential problems related to certification

	Some Validation Examples
	Measurement of flatness/length by a gauge block interferometer
	Electrical measurement resistance bridge
	Mean renal transit time


	Bibliography
	Index

