
Grand Challenges for Advances in Photovoltaic Technologies

Roger Little, CEO, Spire Corporation Robert Collins, Professor, University of Toledo

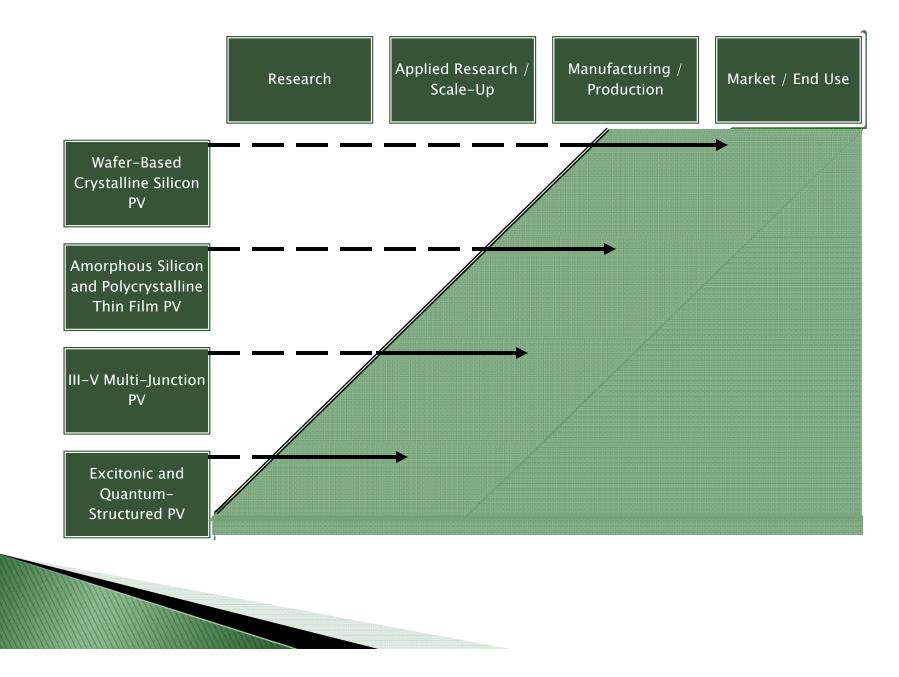


Steering Committee

Selection

- Identify "PV stars"
- More than half Industry, with remainder split between Academia and Government
- Represent the entire gamut of interests and expertise in breakout areas
- Major tasks
 - Finalize scope and breakout areas
 - Identify key participants
 - Lead workshop and associated activities

Steering Committee


Roger Little	• Chairman and Chief Executive Officer, <i>Spire Corporation</i>
Robert Collins	 Distinguished University Professor and NEG Endowed Chair of Silicate & Materials Science, University of Toledo
John Wohlgemuth	• Program Manager, <i>BP Solar</i>
Tom Surek	• President, <i>Surek PV Consulting</i>
Tim Anderson	 Distinguished Professor, Director of the Florida Energy Systems Consortium, University of Florida
Benny Buller	• Director of Device Improvement, <i>First Solar</i>
John Iannelli	Chief Technology Officer, <i>Emcore Corporation</i>
Nasser Karam	 Vice President, Advanced Technology Products, <i>Boeing</i> <i>Spectrolab Inc</i>
Sarah Kurtz	• Principal Scientist, National Renewable Energy Laboratory
Gilles Dennler	• Director Device Research, <i>Konarka Tehnologies, Inc</i>
Dana Olson	• Research Scientist, <i>National Renewable Energy Laboratory</i>

Workshop

- May 11-12, 2010; Denver, CO
- Participants (75 total):
 - Industry: 42
 - Academia: 16
 - Government: 17
- Breakout Topics
 - Wafer-Based Crystalline Silicon PV
 - Amorphous Silicon and Polycrystalline Thin Film PV
 - III–V Multi–Junction PV
 - Excitonic and Quantum-Structured PV

Scoping

Workshop Outputs

- Vision/ Drivers
- Critical Technology Challenges
- Technology-Measurement Grand
 Challenges
- Recurring Themes

Vision / Drivers

- Atomic scale to module-level understanding
- Sustained growth rate of industry
- Predictable, reliable performance over life
- Wide acceptance for utility power plants and all new buildings
- Performance
- Cost
- Reliability and acceptance
- Lifecycle sustainability

Technology-Measurement Grand Challenges

- 22 grand challenges identified among 4 breakout areas
- Selected examples from each breakout area
 - What makes these challenges "grand?"

Wafer-based Crystalline Silicon

Technology-Measurement Grand Challenge

- Accurate Prediction of System Energy Production
 - Targets/Goals:
 - Prediction within +/- 3%
 - Major Applications:
 - All PV applications from residential to utility
 - Technology Barrier(s) Addressed:
 - Rating system must be accurate and become the standard
 - Pathway Elements:
 - Module energy rating system
 - Populated and validated module database
 - PV system prediction tool

Validated PV system performance

III-V Multi-Junction PV

Technology-Measurement Grand Challenge

- In-line Cell Characterization
 - Targets/Goals:
 - Testing should be <5% of cell cost
 - 10 min/wafer ~ 35 MW/year per tool
 - Major Applications:
 - High volume cell manufacturing and testing
 - Technology Barrier(s) Addressed:
 - Cells and interconnects, yield and reliability
 - Pathway Elements:
 - Evaluation of EL as a screening technology for cells
 - High concentration solar simulation compatible with in-line testing
 - Measurement methods for J ratio of components in the cell
 - Alternative cell evaluation methods

Amorphous Silicon and Polycrystalline Thin Film PV

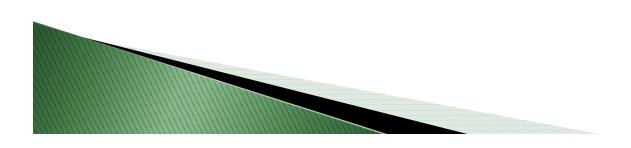
Technology-Measurement Grand Challenge

- Low Cost/High Throughput Manufacturing
 - Targets/Goals:
 - Market share of thin-films greater than 50%
 - Pathway Elements:
 - 20% module efficiency

- Identification of process and material parameters predictive of performance
- Continuous and automated production
- Process modeling and validation from substrate to package
- In-situ, real time process monitoring and control
- Vertical integration of the entire supply chain

Excitonic and Quantum-based PV

Technology-Measurement Grand Challenge


Accelerated Life and Reliability Testing

• Targets/Goals:

- Strong correlation between accelerated indoor and outdoor tests;
- Key probes and level of uncertainty over time
- Major Applications:
 - Product R&D, module reliability, system level financing
- Technology Barrier(s) Addressed:
 - Material and device stability and reliability
- Measurement Barrier(s) Addressed:
 - Lack of robust instrumentation for key properties
- Pathway Elements:
 - Outdoor testing to assess key properties & degradation factors
 - Environmental test chambers to mimic outdoor testing under accelerated time scales
 - Understand degradation mechanisms

Recurring Themes

- Efficiency > 20%
- Understanding performance from atomic level to device level
- In-line testing in manufacturing for higher throughput and reduced cost
- Energy rating methodologies
- Module characterization (power output)
- Standards for reliability

Next Steps

- Impact of workshop on participants
 - Interactive participation; honed prioritization
 - Networking across technology areas
- Documents
 - Workshop Summary
 - Opportunities Document
- Knowledge Use
 - PV community

