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ABSTRACT

The measurement of a diameter of a cylinder has widespread application

in the metrology field and industrial sector. Since the cylinder is usually

placed between two flat parallel anvils, one needs to be able to apply corrections

to account for the finite measuring force used, for the most accurate determina-

tion of a diameter of the cylinder.

An extensive literature search was conducted to assemble the equations

which have been developed for deformation' of a cylinder to plane contact case.

There are a number of formulae depending upon the assumptions made in the develop-

ment. It was immediately evident that this subject has been unexplored in depth

by the metrology community, and thus no coherent treatise for practical usage

has been developed.

This report is an attempt to analyze the majority of these equations and

to compare their results within the force range normally encountered in the

metrology field. Graphs have been developed to facilitate easy computation of

the maximum compressive stress encountered in the steel cylinder-steel plane

contact case and the actual deformation involved.

Since the ultimate usefulness of any formula depends upon experimental

verification , we have compiled results of pertinent experiments and various

empirical formulae. A complete bibliography has been included for the cylinder-

plane contact case for the interested reader.



INTRODUCTION

The problem of contact between elastic bodies (male , female or neuter

gender) has long been of considerable interest. Assume that two elastic

solids are brought into contact at a point 0 as in Figure 
If collinear

forces are applied so as to press the two solids together
, deformation

occurs , and we expect a small contact area to replace the point of the

unloaded state. If we determine the size and shape of this contact area

and the distribution of normal pressure, then the interval stresses and

deformation can be calculated.

The mathematical theory for the general three-dimensional contact

problem was first developed by Hertz in 1881. The assumptions made are:

the contacting surfaces are perfectly smooth so that the actual

shape can be described by a second degree equation of the form

z = Dx + Ey + Fxy.

The elastic limits of the materials are not exceeded during

contact. If this occurs, then permanent deformation to the

materials occurs.

The two bodies under examination must be isotopic.

Only forces which act normal to the contacting surfaces are

considered. This means that there is assumed to be no fric-

tional forces at work within the contact area.

The other assumption is that the contacting surfaces must be

small in comparison to the entire surfaces.

Based on the above assumptions and by applying potential theory,

Hertz showed that:

the contact area is bounded by an ellipse whose semiaxes can

be calculated from the geometric parameters of the contacting 
bodies.
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The normal pressure distribution over this area is:

2 1/2
(1 - (x/a) - (y/b) J

where p = maximum pressure at center

= major axis of ellipse of contact

= minor axis of ellipse.

The above assumptions are valid in the field of dimensional metrology

because the materials (usually possessing finely lapped surfaces), and the

measuring forces normally used are sufficient for the Hertzian equations

to be accurate. In the case of surfaces that are not fine 1y lapped , the

actual deformation may differ by more than 20% from those ca1cu1a ted from

eqUB tions.

Since the subject of deformation has such widespread impact on the

field of precision metrology, We have decided to publish separate reports -

(1) dealing with line contact and particularly the contact of a cylinder

to a plane , and; (2) which treats the general subject of contacting bodies

and derives formulae for all other major cases which should be encountered

in the metrology laboratory.

An exhaustive literature search was conducted to determine eq.uations

currently in use for deformation of a cylinder to flat surface. The

ultimate usefulness of deformation formulae depends on their experimental

verification and, while there is an enormouS amount of information avai1-

able for large forces, it was found that the data is scarce for forces

in the range used in measurement science. One reason for this scarcity

is the degree of geometric perfection required in the test apparatus and

the difficulty of measuring the small deformations reliably.



Depending upon the assumptions made , there are a number of formulae

in use. Various equations will be analyzed along with the assumptions

inherent in their derivations. There are basically three approaches to

the problem for the deformation of a cylinder with diameter D in contact

with a plane over a length L and under the action of force 

the approach where a solution is generated from the general

three-dimensional case of curved bodies by assigning the plane

surface a radius of curvature. This is the same as replacing

the plane surface with a cylindrica 1 surface with a very large

radius of curvature. The area of contact is then a~e10ngated

ellipse.

The approach where the contact area between a cylinder and plane

is assumed to be a finite rectangle of width 2b and length L

where L ~:;::.b.

The determination of compression formula by empirical means.



GENERAL DESCRIPTION OF CONTACT PROBLEM

When two homogen~ous , elastic bodies are pressed together , a certain

amount of deformation will occur in each body, bounded by a curve called

the curve of compression. Th. theory was first developed by H. Hertz ClJ~

Figure 1 shows two general bodies in the unstressed and undeformed

state with a point of contact at The two surfaces have a common tarigeRt

at point O. The principal radii of curvature of the surface at the point

of contact is R
l for body 1

, and R
2 for body 

R ' and R I repr~sent

the other radii of curvature of each body. The radii of curvature are

measured in two planes at right angles to one another. The principal

radii of curvature may be positive if the center of curvature lies within

the body, .and negative if the center of curvature lies outside the body.

Also planes x
l z and

Z should be chosen such that

- +- :;:. - 

1 "2. "
1 ' "2 '

The angle (j) is the angle between the normal sections of the two bodies

which contain the principal radii of curvature R
1 and R

Figure 2 shows a cross-section of the two surfaces near the point of

contact O. We must limit our analysis to the c.ase where the dimensions

of the compressed area after the bodies have been pressed together are

small in comparison with the radii of curvature of bodies 1 and 

also assume that the surface of each body near the poin t of contact can

be approximated by a second degree equation of the form

Z = Dx + Ey + 2 Fxy

where D , E and F are arbitrary constants.
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If the two bodies are pressed together by applied normal forces (Figure

3), then a deformation occurs near the original point of contact along the

Z-axis. Here again, we consider only forces acting parallel to the z-axis

where the distance from the z-axis is small.

The displacements at a point are w 1 and ~2 where w I is the deformation

of point P 
1 of body 1 and w2 is the deformation of point P2 for body 2

plane C is the origina 1 plane of tangency; z l is the distance from Pl to

the undeformed state , and z
2 is the distance from P 2 to the undeformed

state. For points inside the contact area , we have

+ w ) + (z
2 + w ) = 0 (1)

where 6 is the total deformation which we are so diligently seeking.

The equation for surface 1 may be written as:

l = D1 x + E1 Y + 2F 1

and for surface 2

z 2 = D 2 x + E 2 Y + 2F 
2 xy.

Since the sum of z
l and z2 enter into the equation we obtain

l + z2 = (Dl + D
)x + (E

l + E
)y + 2(F

l + F
)xy. (2)

Now Hertz showed that the axis can be transformed so that F 1 = -F 2' and

hence , the xy term vanishes. To simplify the above equation further We

replace the constants (D
l + D

) with A and (E
l + E

) with B thus giving,

l + z2 = Ax
2 + By

From equation (1) we obtain:

2 + By2 + w + w
= 6 (3)



The constants A and B are expressible in terms of combinations of

the principal curvatures of the surfaces and the angle between the planes

of curvature. These combinations have been derived by Hertz and are as

follows: 

A + B = '2 R
1 + ;

' + R~' + ;
(4)

B - A = 1 - 1 

2 +
- 1

2 +

2 R1 R ' R2 R

- 1 - 1 cos 2W
1/2

R' R R' (5)

Since the points within the compressed area are in contact after the

compression we have:

1 + w 2 = 6 - Ax - 

and since 6 is the value of w
1 and 1012 at the. origin (Figure 3 , x = = 0),

e must evaluate w
I and w

The pressure P between the bodie.s is the resultant of a distributed

pressure (P' per uni t of area), over the compressed are. From Prescott C2J

the values of the deformations w
1 and w2 under the action of normal forces

are:

== A
l ~ 

, y)

(6)

and

2 = A2 ~ (x (7)

where vl.i - TIEi
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i = Poisson
s ratio for the Lth body

i = Modulus of elasticity for the ith body,

and ~ (x, y) = dx ' dy I which represents the

potential at a point on the surface. ~re r is the distance from Some

point (x, y) to another point (x

, y

) and p". is the surface density.

By substitution in Equation 3 we obtain,

l + A
' dy I = 6 - Ax

2 - By (8)

where the subscripts 1 and 2 represent the elastic constants for bodies

1 and 2.

One important Jact should be observed from Equations 6 and 7 and this

is:
1 - 1) 2 

TIEi

1 - 

TIE 2

(9)

which means if the two bodies are made of the same material w
1 = w

The integral equation 8 allows one to compute the contact area , the

pressure distribution, and the deformation of the bodies.

The problem is now to find a distribution of pressures to satisfy

equation 8. Since the formula for ip is a potential function due to matter

distributed over the compressed area with surface density P' we see the

analogy between this problem and potential theory. Hertz saw the ana logy

since the integral on the left side of equation 8 is of a type commonly

found in potential theory, where such integralS give the potential of a

distribution of charge and the potential at a point in the interior of a

uniformly charged ellipsoid is a quadratic~ ~unctio~ of the coordinates.



If an ellipsoid = 1 has a uniform charge density p witha b2 c
mass npabc, then the potential within the ellipse is given by Kellog (JJ

~.ex , y, z) =

TIP~C~( 1 . 2 + If l: y

((.

2 on) (b

/: 

y) (0
2 + y)) 1/

(10)

If we consider the case where the ellipsoid is very much flattened (c .... 0)

then we have

. (x, y) = TIPabcf(' - 

/:~

((82 + ~)(

:~ +~) (~)) 

~/2
(11)

The potentia 1 due a mass density 

..1.1L

, y 

- 2TIab
1 - (l2)

2 ,
distributed over the ellipse = 1 in the plane Z = 0, where thea b
total load P is given by,

P = 4/3 TIPC ab. (13)

By substituting into Equation 11 we obtain

4'(", y) . 

~I'

: ~ /: ~ ((/ + 

'f) (b

/: 

~) ('1')) 1/2

(14)

From Equations 8 , 11 and 14 we obtain

1 + A ) 4"

(A + A E.:. ' dy l =2')~ r
'A 

'J.'1 - 
~ + ~ b

~ + ~ ((.

~ + ~)(b2 + ~)(m
(15)

Thus we have

' dy l = 

/:~ /: 

d'J.'

1 ((a2 + 'J.')(b 2 + 
'J.'HIf)Y 2

(16)
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We now substitute into Equation 8 to obtain,

1 + A t p 1 - 

/:~ /: 

2 d

~ \ 

((a + 'i') (b + 'i') ('i') =

6 - Ax - 
2 ..

Since the coefficients of 1 , x , and y must be equal in Equation 17,

(17)

we have

3 P (A + A ) ~oo 
'i'

6 ~ 4" 1 2

((.

2 + y) (b2 HHy)r/2
(18)

A = ~ P (A
1 + A

'i'

0 (a2 + 'i') 3/2 ((b2 + 'i')('i'))1/2
(19)

B = p (A
1 + A

d'i'

0 (b2 + 'i') 3/2 ((a 2 + 'i') 

('i')tI2

(20)

Equations 19 and ZO determine a and b (major and minor axis of the

ellipse of contact) and equation 18 determines the total deformation 

(or the normal approach) when a and b are known.

Since the integrals i.n Equations 18, 19 and 20 are somewhat cutnbersome

they may be expressed in terms of complete elliptic integrlii1s where tables

are readi 1y avai lab Ie. Since the eccentricity (e) of any ellipse may be

expressed in terms of the major and minor axis as

2 1/2

= 1 - or e = (1 - ~)

we mliiy express Equations 18, 19 and 20 in terms of the eccentricity of

the contact ellipse.

From Equation 19 we obtain,
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;::: 1. P (A. 

+;.... 

d'i'

2 0 (a2 + 'i') 3/2 2 - a 2 + 'i') 1/2 'i' 1/2

5/2
By multiplying the numerator and denominator by (- and making the

change of variab 1e a ;::: 'i' we obtain,

A =.~ P (~
1 + ~

(1 + i;)

: .

2 + !;) 1/2~ 1/2

Aa 3 ::: .~ P (A.
1 + A.

) F . d ~

(1 + ~ ) 3/2
(1 - e

2 +~) 112 ~ 1/2
(21)

From the same analysis we obtain for Equations 18 and 20

Ba 3 ;::: 1. P (A. + A. ) d ~

(1 - e 
2 + ~ ) 3 I 2 (~ 

(1 + ~ ) J 1/2

(22)

and 00 
6a = 

7; 
(A.

1 + A.

(~ (1 + ~ ) (1 .. e 2 + ~ )J 11 2
(23)

By making the f?ubstitution ~;::: cot e (3 J, andd ~ ;:::-2 cot e csc e d e
where e: '2 to 0 and ~ :0 to 00 we obtain,

;::: 1. P (A. + A. 
. -2 cot csc

2 ,,/2 

(~+ oot 3/2 (00t
e (1 - ~ 2 + oot

2 e) ~/2

and since (1 + .cot e) ;::: csc 

;::: ~ 

(A.
1 + A.

2 csc 

3/2 2 l/2
/2 (csc e) (csc e - e )
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= ~ P ("-1 + "- 10 

n/2 (csce) (csc e - e
) l/2

= t p ("-1 + "-
10 

.. .

' e
1/2

n/2 (csceH csc e (l ) J

. . 

csc e

= 4 P ("-1 + "- 2 e
/2csc e.(l 

csc e

--1....and since sine - csce '

. 2
Sln eAa = 4 P "-1 + "- . 2 . 1 2 de/2 (1 - e Sl.n e)

(24)

By the same ana lysis we find

3 = l P (~
l + "-

-2 sin

TI/2 (l ~ e
2 sin 3/2 (25)

and

6a = 

p ("-

1 + "- . 2 
TI/2 (1 .. e sin e)

(26)

By rearranging the above equations we obtain

TI/2 

. .

Ai 

= ~ p ("-

1 + "-
~l.n e 2 

l/2(l - e sin e)
(27)

n/2 . 23 = ~ P ("-
1 +"-

~n ~2 3/2
(1 - e sin e)

(28)

n/2
5a = 2 ("-1 + "- 2 . 2(l - e Sl.n

(29)
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Now the Legendre forms of elliptic integra 1s of the first .and second

ki nds are from Boas (4 J,

F(e, 

q,) = 

jtb dq,

sin q,) 1/2
:5; e s; 

. . = oinB

\ 0 :5; e :5; n/2E (e

q,)

.t(1 

- e siiq,) 
112" 

dq,

where e is the modulus and q, the amplitude of the elliptic integral.
2 1/2 (1 - e ) and ~s called the complementary modulus.

The complete elliptic integrals of the first and second kinds are the

values of F and E for 

q, = 

/2 so that,
n/2

/2) 

TI/2

E = E(e) = E(e , TI /2) 

=1 

(1 - e Sin e) 1/2 de

I( = K(e) = F(e,
2 . 2 

- e s~n e

There are numerous ways to evaluate the above integrals. Hastings (5J,

has po1ynomia 1 approximations accurate to 2 parts in 10
8 which are of

the form

K(e) = (ao +a 1 + ... + a 1 J +

o + b l + ... + b l J In(l/m

= 1.38629 436112 b =

1 = . 09666 344259

2 = . 03590 092383
l = . 12498 593597

2 = . 06880 248576

3 = . 03328 355346

4 = . 00441 787012

) = .

03742 563713

4 = . Ol451 196212
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where e = sin a. and m l = COB 

and the approximation for the elliptic integral of the second kind is

given by,

E (e) = C1 + a 1 + ... a l J + (b 1 + 1 J In 

a 1 = . 44325 141463

2 = . 06260 601220
1 = . 24998 368310

2 = . 09200 180037

3 = . 04069 697526

4 = . 00526 449639
3 = . 04757 383546

4 = . 01736 506451

Now since the complete elliptic integral of the first kind is

TI/2 2 . 2 -1/2K - (1 - e Sl.n e) 

we can obtain
TI/2

Sl.n 
= e (1 3/2

- e sin e)

and in a simi 1ar manner for the elliptic integra 1 of the second kind

e obtain
TI/2

-e! sin e. 2 l
e sin e)

and we obtain from Equations 27 , 28 and 29,

Aa 3 = .2.. P 

("- + "- ) 

-1)1 2 de 

3 = .2.. P 

("- + "- ) 

de e

6a = 2 P ("-1 + "- ) (K)

(30)

(31)

(32)

(33)

(34)
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We may .rewrite Equation 32 as

TI/2

J = t ~ (A.

I. + A.2'! (I. - e2~l.n
e) 1/2

(1 - e
2~in l/2 (1 .. ;::n 1/2

~ ~ P (~
1 + ~lt~~1 )::~~:;b

(1 - ~2$in 1/2 J de

:= ("- +"-

- e sin e) 1

(1 - . .irt e) 

1/2

:= % p ("-

1 + A.
(K .. E J (35)

Equating equations 32 and 35 we obtain

dE 
= - (E - K)de (36)

From equation 30

e s~n 

(1 3/2
- e sin e)

TI/2
(1 - e sin e) 1/2 (e sin

- 0 e (1 .. e sin e) 1/2 (1 .. e sin 3/2

TI/2
(1 - ~ s1n 8) 

1/Z
fl - (1 - ~ sin en-

e(l .. e sin (1 - e sin 3/2

1/2 2 . 2 1/2 2 . 2 (l - e sin e) 

.. 

(1 .. e s~n e) (l .. e Sl.n (1)
. de

2 ' . 2 3 2 . 2 2 3 12
e (1 - e sin e) (1 " e s~n e) e (l .. e Sl.n e) (1 - e sin) 
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/2 

. 1 

.. 

e(l 'in l/~ e(1. ;Sin 3/~

TII 2

...! K + 

! .

. . dde (1 2 i 2 )3/20 -e
The integral above may be reduced to the form"

2 - e s ne e (l - e )

thus

= -

!K + de 
e (1 - e 

(E - (1 - e 2) K J

e(l - e

(37)

By dividing Equation 32 by 33 We obtain

-dE

-=-

(38)

and substituting the values in Equations 36 and 37 into Equation 38, we

obtain

! = 

- (1 - e ) (E - K)
E - (1 - e 2) K

(39)

We noo see that for any va 1ue of the eccentricity of the contact e 11ipse

we can obtain values for~, K, and ~ which wi 11 allow us to compute the

normal approach 0 (deformation).
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SPECIAL CASE OF LINE CONTACT

In the metrology field one fundamental measurement occurs frequently,

e., the measurement of the diameter of a cylinder. Figure 4a shows .

cross-section of the typical measurement between plane parallel anvils

of a measuring machine. Since it is infinit~ly difficult to measure the

object with zero force applied , Figure 4b shows the exaggerated resultant

shape of the anvi 1s and cylinder after a measuring force is applied. Since

the customer usually desires to know the lIunsquashed" diameter , certain

corrections must be applied to account for the measurement process.

To solve this problem we shall make use of the expressions already

deve loped to solve for the "pressure distribution" and size of the area

of contact by allowing one axis of the ellipse of contact to become infinite.
To determine the deformation, the contact area will be taken as being a

finite rectangle wit:h one side very much greater than the other.

The derivation will be for the case of a pair of cylinders with their

axes parallel and is based on the works of Thomas and Hoersch (7J, and

Love (8J. The solution for a cylinder to plane contact can easily be

obtained by allowing the radius of one of the cylinders to become infinite.
Line contact occurs when two cylinders rest on each other with their

axes parallel (figure Sa), and when a cylinder rests on a plane. As the

two cylinders are pressed together along their axes , the resulting pressure

area is a narrow " rectangle " of width 2b and length L (assuming no taper

in the cylinders). In other words , the area of contact is an elongated

ellipse with the major axis of the ellipse equal to L and the eccentricity

a ppr oachi ng uni ty .

The distribution of compressive stress a long the width 2b of the surface

of contact is represented by a semi-ellipse (figure Sc). The stress



-17-

distribution over the ellipse of contact for the three-dimensional case

wi 11 be remembered from Equation 12 as

p("

~:b 1 . 
:L.....

where a(x represents the stress acting at any point (x

Now the integrated pressure over the surface of a finite rectangle

across the minor axis of the ellipse in the plane x = 0 (figure Sc), is

p = 

a (0

f1 - 

y.!!:..) 

1/1 d. '2TIab 
b 2 

..1L 2nab 2 - (40)

Now as a 4 00, let P - 00 in a manner so that pia remains equal to a finite

constant. Then the va lue of P is the force per unit length of the contact

area. For a = 00 , the compressive stress at any point is given by,

3P 2 1/2

a(y) = 2nab (1 - ~) (41)

and by substitution of Equation 40 .into Equation 41 we obtain, since

P = pIL 2P 2 1/2

a(y) = nLb (1 - ~) (42)

We can now see that the maximum value for the stress within the area

of contact will be at the center where = 0 and is

a =-max TILb
(43)
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The maximum compressive stress is important in anycont~ct problem

because the surface area of contact is small and very high stresseS may

easily be obtained with relatively light loads. If 

(j 

exceeds the
max

microplastic yield point of the material, then permanent deformation

will occur. A relationship for hardened steet" relating yield stress to

surface finish is shown in Figure 

We now need to develop ~n expression for the width of contact b , and

by knowing b , the stress at any point can be computed. The surface of

each cylinder may be represented by the equations,

l = B 1 Y

2 = B2 Y

From Equation 20 and using the expression developed in Equation 40

we obtain

B = (A. + A. ) 'J:'

2 L 
0 (b

2 + 'J:') ((a2 + 'J:')'J:')
(44)

and since the one axis of the ellipse , a -+ 00, the expression becomes

'00
'J:'B - ("-1 + "- ) L 3/2 1/2

(b + '.l') '.l'

(45)

By using the expression in Equation 42 , Thomas and Hoersch evaluated the

above equation to give

B = 2 (A.I + "- ) plLb or

2 ("- 1 + "- (46)

where b is the half-width of contact,

P is the tota 1 force

L is the contact length.
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For a pair of cylinders with their axes parallel and radii r1 and r

respectively, we have

l = B 2r 1

2 = B

Thus
1 + r

B = B
l + B2 - 2r 1 r

2 = 4("-
1 4- A.

)P(r
L(r 1 + r

(47)

For a cylinder on a plane surface

Z = 

z =-=0

thus

4r ("-1 + "-

) p

(48)

Now since our cylindrica 1 surfaces are described by By forms, we obtain

from Equation 8,

where r = ((Y

(A. + A. 

p(y

l = 6 - By

- y

2 +x 1/2 and the integral applies to the flnite

(49)

rectangle of contact with one side (L) very much longer than the other (2b).

We now have

-I-b
. 2 

P(y , ) 
~(O

, y) ::: 

. 2 2 1 dx dy

((y - y

) + X l )

-b -L 
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~p(y ' , ((y -

-b 
. I~p(y'

) In 

(~+ ((y 

;/?;.t (P~

I/~

If We assume 
('2) is 

very large in relation to 

(y - y

) then,

y '

) 2 + x I 2) 1
dx '

and

0(0

, y) 

~J-H,
2P(Y In (

y -

) dy (50)

0(0 , 0) ~ 2P(Y ~n 

~.)

(51)

Let us pause a moment to recap what we are doing. Equation 49 gives

us the relation between the total deformation 0 to the potential for
points within the contact area. Since we are interested in the maximum

deformation which occurs, we need to evaluate the integral in Equation 49

at the center line or where y = Thus , Equation 51 represents that

maximum potentia 

Continuing, we may rewri te Equation 51 as

Ho, 0) ~ 2 In L fp(Y )dy . . (pey' ) In(y ) dy-b 
Since the force per unit lengtl?-.

f = frb

p(y '

)dy I and from Equation 41 

may substitute into Equation 52 to obtain,

(52)

ip (0, 0) = 2 f tn L "
1J t2 

tn(y, )4Y (53)

To evaluate the integral in the above relationship, we make the substitu-

tion ; = Sin e and then dy = b cos e d e to obtain,
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tTT
'll - ie) 

V 2 (In 0. 
sin 2e))(~"o.e) de

-rr/2 

~ ), 

coo e (10(O .10 e)) de

12TI/2 
b(21nb)r CDie de + Zbr coa e Inlsinelde/2 -TI/2 ..

we know that,.,

l2 

cos e de = 

TI/2
and the integral

+rr/2 I = . cos e 1n Isine de
TI 12

has been evaluated by Birens de Haan (9J, to give

I = (1 + 1n4)

So we obtain the value for the total integral as

= b 21nb 11. + 
2b 

11. - !!. In4- 2 
1n4

= TIb (lnb - - 

--)

Thus by substituting into Equation 53 we obtain

0(0 0) . 2 t 1n L - (rtb (lnb (1 ; 1n4)

- 2 t (lnL - lob + 
1 + 104

, 0) 2t (1"1 - 1nb + 1, 193145)

Since

6 = (A. + A. 
Fey2 . ' r

dx ' ' + By
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and if1 (0, 0) gives uS th~ potential at the center of pressure zone we have,

0 = ("-1 + "-
) 2 L

(rnL - .
1nb + 1. 193145)

as the total defo.rmation of a pair of cylinders with their axes parallel

or a cylinder on a flat surface. The value of. b (half-width of contact) is

substitute:l into equation 54 to obtain the appropriate answer for any

particular case.

Since equation 48 gives us the value of b as

b =
(4r ("-

l : "-
1/2

we have
4r ("-1 + "- ) P 

6 = ("-1 + "- ) 2 L 1nL - 
2" 1n 

+ 1.193145

= L ("-1 + "- (:l1n1 - 1n( 

4'("
+ 2. 38629J

= - 

(Ae + "- ) 21nL + In + 2. 38629
4r ("-1 + "-

) p 

0 = L ("-1 + "- (1~ 4(/"

\ /..

) + 2.38629) (54)

where P = total measuring force

= length of contact between plane and cy1id

i = 1 - v I ITIE

= radius of cylinder

= total deformation of cylinder and plane.

Another form of Equation 54 can be obtained by not evaluating the

term 
(1 + 2 ln4 which gives
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::;: L (/..1 + "- (1.00 + I. 

I ;
1,. ) Pr

(55)

Remember this formula is for th~ case of a cylinder to plane on only one

side. If both sides are desired , such as the case in Figure 4, then

::;: 20

If the lengths of the lines of contact are not equa 1 or if the ma teria 1

of either cylinder or plane are different, then the total deformation

will be

T = 0 1 + 6

A similar approach for the computation of the deformation of a

cylinder to plane has been obtained from correspondence with Bob Fergusson (1OJ.

The basis of the work is a paper by Airey C llJin which formulae are given

for the solutions of elliptic integrals when the eccentricity (e) approaches

unity.

From Equations 4 and 5 we have

1 1
A + B ::::0---. + 

, + - + - 

1 D1 D2 D

..l 1...

,) (

1... cos 2UJ
A) 

::;:

1 D

where a il. are the two principa 1 diameters body

and are the two principa 1 diameters body

Iii the case cylinder plane, body the cylinder aad body

is the plane , then

::;: 

Diameter of cy1inde~

D ' ::;: 00
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2 = ~ if the plane is truly a flat surface

D '

= ~

Since we have shown for the case of a cylinder to plane

B=-"'-
l D

Thus the parameter ~ = --- = AD

From the previous Equation 38, we knOW"

A - 

where E is the complete elliptic integral of the second kind

K is the complete elliptic integral of the first kind

e is the eccentricity of the "ellipse" of contact which approaches unity
In Airey s work Ill), expressions were given for evaluation of the

elliptic integrals when the eccentricity approaches one , viz

where

K (e 2) = In ~. K - Vh 
K(e ) = complete elliptic integral of first kind

= square of modulus e

(56)

h = square of the complementary modulus or (1 - e )

~ 1 2 . 3

l = 1
1 + . h + 2

2 . 42 . h +

2 = J 

~~ 

- i). h + 

:~ (i
). h

2 +

. . .

and E(e ) = In 

~. 

E + Vh (57)

where E (e ) = complete elliptic integral of second kind

0: ~ _1 . h + 
2 . 3

2 + 

. 2

. .

Z = j 

~ - 

- ~). h - 

~~ : :

(i - 
). h

Z - . 

. .!
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Thus as e ..... 1

k(e ) = In 4
(1 - e

(58)

From Equation 37 and using Airey I s expressions when e--1

IK+ 
dE - 

e(l - e

which reduces to

dK dE = (59)

and

p:. - 

h B
(60)

Since from previous derivations , namely Eq.. 32 where

A a3 = ~p ('\
1 +'\

) (~)(-~)

We substitute (6) into the above to obtain

A a3 = ~p (A.
l + A

) (*~)

and

A a = 
IP (~ + ~) h (AD

3 PD
= 2 (A1 + A

3 PD
h = 2 (AI + ~) 3""

Now since a = 2 (the ellipse of contact approach where the major axis of the

ellipse is a) we have

h = 12 (\ + A 
2 L
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From Equation 34

8a = 2'P 0' 1 + ~ ) (K)

3 P 
= '2 a (~l + ~) ;Jh

Since 1n = '2 In 16 - '2 1n h = '2 1n 

3 P 16 L
3 j

8 = '2 ;: (1\ 1 + '\ '2 In 1Z(A )PD)j

and since a = L/2

4 L
8 = '2 (A

1 + A ) I 1n
3(Ar + A )PD

4 L

(61)

8 = 1. (.\ + A ) 1.02 L 3(\ + A )PD

since D = Zr

= 1. (.\ +

.\) 

In 
4 L 

.. 

2 L 3(2)(A1 + AZ)pr

4 L
In 6(\ +.\

)pr = In '6 + 1.0 (.\
1 + .\

In % = 1n 4 - In 6 = 1.386Z9 - 1.79176 

... -

40547

8 = ~ (A
l + ~)t: t . 40547 + In 

L 1 

Az)~

~ ~ (~ 

+Az) f 

(. .

60S205 + 1. 5 In (~ f 9~,:J
(62)

This expression is for the contact case of one side of the cylinder pressed
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against a plane. If the normal approach (deformation) for the cylinder is

des ire d then

Total = 8 1 + 8

If the materials of body 1 (cylinder) are the same as body 2 (plane)

then X
l = X2 and Eq. 61 becomes

2 L 38 = 3 ().
) L 1n 3 A. PD

where ).0 = ( ).1 + ~) = 2).
P = Total load applied

L = Length of contract

D = Diameter of cylinder

Another approach for the cylinder-plane case was undertaken by

Lundberg ~2J in 1939 in which the contacting bodies were treated as elastic

half-spaces. Lundberg obtained approximations for the deformation by assuming

an elliptical pressure distribution in the narrow dimension (2b in Figure 5b)

and constant in the length of contact dimension (L in Figure 5b).

Recalling Eq. 1 and Figure 3 we have

1 + w2 + Zl + Z2 = 8

whe re 8 is the approach ing dis tance of the points at the surface of the bodies.

4(1 4(1 J' )
Z '-

where V is the potential function

v = F(x
y) = t 

(~:t:\
(8 - Zt .
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where 9. = 

~ 2
1 - 

Now F(x

, y) ~ 

i; '" (x
,y) = i; 

) d,, ' dy

l/2where r (x - x) 

+ (y - y )

and if w
I = F1 (x

,y)

2 = F 2 (x

,y)

that is some function of x and y.

Then we have

f(x

, y) = 

~:~ 9 )r. t 
(x,y) -~ (x

, y~

Do not confuse the potential F(x,y) with Fl (x,y) and F2 (x ,

y).

total deformation is

Since the

8 = 4 (t
l + 

F (x (63)

where (xo'Yo ) represents the point where the deformation is largest

we have

1 + "2 = Fl (x,y) + F (x,y) = 4(~
1 + *Jr("",

) - F(X'Y~ (64)

Thus we see the relationships between the pressure distribution and the total

deformation is expressed by Eqs. 63 and 64.

The interested reader is invited to folloW' Lundburg I S analysis but for

brevity the results will only be given here.

The relationship for the displacement of the surface of the plane under

the action of an elliptical pressure distribution when b"::::..::::a 
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l (x o) + FlX, o) = (t
1 + ~ )f ~ (1.

1932 + In (65)

where F
1 (x

o) + F 0) = depression of the center of the contact area 

(y 

- 0)

e. = 
L 2

1 - v

P = Total Load

::: Length of contac t

b = Hertzian half-width

1'. = Poisson s ratio

E. = Modulus of elasticity
The relationship for the total deformation 8 

8 = 
1 + 

! ~

L rr 8864 + in ~bJ

This equation is based upon an approximation as a

is accurate for all values of )excePt when ~ 1.

is approximately four percent.

Since we have shown that

4r(1.. + A 
1/2

b = 

we may substitute into Eqs. 65 and 66 to obtain

0 = (A + A (1. 88.64 + In L - 1n 2bJ

= (1..1 + 1.. ) t (2(1.
8864) + 2 In L - 2 1n 2bJ

= (1..
1 + 1.. ) L (3. 7728 + 2 1n L - 2 In 2 - 2 1nb)

(66)

function of 1n(~)and

In this case the accuracy

= (1..
1 + 1.. ) L

= 0. 1 + 1.. ) L

I 4r(A.l + 1..
7728 - 1.3863 + 2 1n L - 2(1) 10 

3865 + in L
2 + ln

4r(A~ + A )PJ 



= (A
1 + A ) L 3865 + In

OOO9 + In
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25) + in (A
1 + A

)Pr

~ + 

9pr (67)8 = (A
i + " ) L

This 8 gives uS the normal approach for one side of a cylinder-plane contact.

. .

and

F = ("1 + " ) f (1.
1932 + 1.0 L ... ln 2b)p r. 4r("1 + "

= ("

l + " ) L ~. 1932 + 1n L - 1.0 2 ;2 1n L
= ('r + A ) t (10

11932 - ~9315 +t In 4r(Ai + 91'

F = (1.1 + 1. ) f (:5 

+! 

4r(A.~ + A.

F = (" + A 

) -

2 L 193145 + 2 1n ("
1 + A

)pr (68)

This equation gives uS .the deformation of the plane surface.

In 1933 Weber (13) considered the deformation of a circular cylinder

loaded on aside by pressure distributed elliptically in the narroW' dimension

and constant along the longitudinal axis of the cylinder.

The assumption made here 'Was that the Hertzian half-width b ~~ radius of

cylinder r. The expression for the deformation of the cylinder (one-sided) is

v = 
l-v

1 n 

& - 

1/'E L (69)

where b is Hertzian half-width

This equation assumes that both contacting bodies are of the same material.

If they .are not we may rewrite the above relationship as

= 2 
1 - \, ~n'-!fL 1c 1/'E
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~1 ;t(

:~~

) I (In - t)

Now

1n -- = In 4 + 1nr- 1nb

4r(A
1 + A

= 1n 4 + 1nr - 
2' ln 

1n 4 + 1nr + 2' ln 4r(A
1 + A

. L= l. 38629 + 2' 1nr 
+ 2 

1.0 4r(A
1 + A

= 1.38629 + 2' 1n 4(A + 
A )P

= 1. 38629 + 21n (8 25) + 2'ln (A + A)P4r 
In --. = 8 693l45 + _

1 +A

So we have

~ ~l + A ) t

Weber also obtained an expressed for the deformation of

(19314, + t 1n f ~)

F " 

~)( + 

2 in 

~ )

Using the same logic as before in the case of the cylinder

- 2
(1 ;E

)(f) (t + in 

l - 1 1 - 1' l .
F ~ 

';;

7:;' 2" + In ~bj

(70)

the plane surface as

(71)
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In ...1 == 1n L ln7T - 1nb
7I'b

1 4r(A1 + A
== In L 1n7T - 2~n 

== '2 1n 
L - 1n7T + 2 In 4r(A

1 + A

L 3
== -ln7T 

+ 2 1n 4r(A
1 + A

= -1. 1447 + 2 1n (. 25) + '2 1n (A
I + A

)Pr

== -1. 1447 - 693l5 . In 

1 + 1\.2 Pr

In 1- == -1. 83787 + 11n L7Tb 2 (A
l + A

)Pr

P ( 
== (A

l + A ) L C1.
33787 + '2 1n (A

1 + A
)Pr

To obtain the total deformation for the case of a cylinder between two

anvils we have

Total == 2(V
c + V

" Z ((A1 + A ) t (.
193145 + t 1n 

~ A
.1.337~7

" 2 ((A
I + 1, ) fr1. 14473 + 11n 

I +
)9 

8 = 2 (0'1 + ' ) f(-lo
14473 + In 

L: X

+ t In ~F"

Various other relationships for deformation of circular cy1 inders have

been derived by Db'rr (14), FO'pp1 (15), Kovalsky (16) , and DinniK (17) .

the pertinent results will be given here.

D8rr calculated the displacement of the points of initial contact by

assuming a smooth circular cylinder of radius r was compressed between smooth

rigid" planes from the re lations hip

(72)

(73)

Only
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2(1 - I' 2

== 

7TE

one-sided
(f) (In 

~ - 

where b == (4r (\ + 1..
) t) 1/2

2(1 - v
I )

7TE L 0 193145 + '2 In
1 + A

(74)

Thus the change in diameter of the cylinder according to Dorr would be

== 28Total

According to Roark (18) a similar expression for the total compression of

of a cylinder between two rigid planes was derived by Foppl. It is

Total " 4 ( ) f (1 + ln
where b is Hertzian half-width

1 - P r LR 
one-side . Z .E Z t ( 3333 -Ie '2 1-n 

(\ + '

)1'
(75)

Roark also gives an expression for the mutual approach of remoted points in

two plates as

1 - 1rEL
== 4 7TE . L P(l

(76)

When a cylinder is compressed between two parallel planes.

Kovalsky, in 1940 , derived an expression for the deformation of a circular

cylinder of finite length loaded from two sides by pressure distributed

elliptically across the contact width. The change in diameter parallel to the

direction of the force was



Tot
4(1 - 

7I"E

-34-2r In 
b + 0.407 (77)

Again \I = Poisson ratio for the cylinder

E = Modulus of elasticity for cylinder

. .

P = Total load

L = Length of contact

r = Radius of cylinder

b = Hertzian half width

Dinnik also calculated the change in diameter of a circular cylinder but

by assuming the pressure distribution across the contact width was parabolic

in nature. His expression was

= 4 

- '0Tot 7I"E L (In 

+ ~J
(78)

Since Lundberg calculated the displacement of the surface of an elastic

half-space under the action of an elliptical pressure distribution from the

relation

. - 2 :t? (1.1932 + In 

where ~ = depression at the center of pressure zone.

We may write the normal approach of a distant point in the elastic plane to

the axis of the cylinder as the sum

where
.1. 8 +

Tot
Another relationship was obtained from a Canadian report which gives the

compression at the point of contact of a cylinder and a plane as
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8 ;: (1 + 1n 

where F = Appl ied measuring force

a = Length of contact

w = Diameter of the cylinder

1 + l' 1 + 

= 7I"E
l 7I"E

if we replace L = a and 2r = 'W then

8 = .E.Q 1 + 1 
QFr (79)

Thus the total deformation for a cylinder between two planes would be

= 8 + Total 
In a paper by Loo 

(19) the 
problem of line contact between two infinitely

long isotropic , elastic circular cylinders of radius and R
2 under the

action of a compressive force P (where P :: load per unit longitudinal length)

is discussed.

1/2
8 . P 

(~ 

In 2R
I + 111 In 2R2 + (Kl + K ) In 

.. t(K1 + K (80)

where 8 = Normal approach of the two cy1 inders

P = Load per unit length P
Tota1 1contact length

2(1 - 1,K. = 
7I"E.
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v. = Poisson s ratio for the i th body,

i = Modulus of elasticity for the ~ 0 y

1 + 1 + z.\p
~J 

In the case of a cylinder to a plane we may replace the plane surface

2(" +
(81)

with a cylindrical surface with a very large radius of curvature. In the

real world of metrology this may well be the case anyway because any "flat
measuring surface is not perfec tly flat. In Figure 4, if one of the contac ting

anvils has a very s light curvature and its surface can be approximated by the

arc of a circle , then we can solve for the radius by the sagitta formula.

For example , if the anvil surface is 5p. higher at the center than the

ends and the anvil width is 0. 375 inch then

.......jA .,....

---- 

Anvil Width

( Anvil Width

Radius =
z . 

(~y

2(0 5)(10

Radius = 35156 inches

Thus we may solve for the deformation by plugging this value back into

Equation 80. To obtain the total deformation for the case of a cylinder

between two planes
Tota1 = Sl + S
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EXPERIMENTAL VERIFICATION

Since the validity of any theoretical formulation is dependent upon experi-

mental verification, we have performed a literature search for verification of

the formula describing the deformation of a cylinder between two planes 

Bochman (20J performed his dissentation on this subject along wi th measurement

of the deformation of steel balls. He began by assuming the ob1ateness of a

cylinder between two planes increases in proportion to the load and is

influenced by the size of the measuring surfaces. An elaborate lever system

was devised for amplifying the deformation and a Zeiss optimeter was used as

the readout device. The c.ontacting anvils were hardened and finished to

end-s tandard qual i ty

" .

The optimeter was calibrated with end standards but

could only be estimated to 1;u (4p.") with a measuring accuracy of approximately

2p. (8p.

") 

The cylinders used in the test 'Were steel wires (used tome.asure

the pitch diameter of external threads) with nominal diameter 0. 18mm to 50 7Ommo

The applied load varied from 1 Kg to 10 Kg in some cases Anvil pairs used

were 5. , 8. 03, and 14095mm in 1engtho

The contac t case where the wires were shorter than the measuring surfaces

was also examined. The test results proved that the length of the wire exceeding

the size of the measuring surface has no effect on the amount of deformationo

In other words it is immaterial whether the length of the wire exc~eds that of

the measuring anvil or whether the measuring anvil is larger.

The values for ob1ateness for the 1 Kg load were plotted against the cube

root of the curvature (reciprocal cylinder radius) with the result being linear..

Thus he concluded the proportionality equation was

- 3 P 3t:'T,..M = C x 10 v1/D mm (82)
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where M = ob1ateness in mm

C = Constant of proportion~lity

P = App1 ied load in Kg

L = Contac t length in II1Il1 .

D = Cylinder diameter in mm

The factor C was determined as 0.9228 from 35 test series. The mean

error of the individual value of C was + 1.99% and the maximum deviations from

the mean were + 3. 6% and - 5. 1%.

By rewriting the equation we obtain

20 = 0.2207 L -1/3 microinches

where 20 = ob1ateness in micro inches (10-6 inches) of a

steel cylinder when compressed between two flat

steel planes

P = Measuring force in pounds

L = Contac t length in inches

D = Cylinder diameter in inches

In a 1921 report by the National Physical Laboratory a test was conducted

on the compression of a 0.05 inch steel cylinder between a pair of flat.

measuring anvils 0.25 inch in diameter. The resu1 ts of that experiment are

shown in Figure 7 along with the results of Equations 55 62 and 82 from this

paper. There is no mention o.f the uncertainty in the NPL experiments.

see from Figure 7 that the data from NPL agrees quite closely with Equation 62..

In a more recent study of line contact deformation by Fergusson C6J the
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resu1 ts of a series of tests on hardenec;l steel rollers between parallel plates

was discussed. From Equation 61 the equation for two bodies of the same

material ti
B = 3(A

) f In 3A PD

Thus the total deformation for the case of a cylinder between two planes would be

Tota1 = 2B

From communication with Fergusson a number of tests were performed and

an empirical relationship was found which agreed within 7% of those values

given by the theoretical equation above for values of force from .2 1b to

16 lb, values of diameter . 01 inch to 10 inch, and values of L from 001 to

1 inch. The relation is

B = 0. 00534 L
-0. 765 D-0. 053 p 94 (10

) inch (83)

where B = Deformation

L = Contact length in inches

D = Cy1 inder diameter

p = Total force in Ibs

Again the total de format ion would be 2 B .

The experimental results for a 1.0 inch cylinder between flat , parallel

planes 0. 118 inch in width were summarized by still another empirical formulao

B = 0.0091 L-0. 73 D-Oo08 p 6666 (10 ) inch (84)

Many factors have an effect upon the deformation in a cylinder to plane

case such as the type of surface finish and the parallelism of the plane

surfaces.
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In the most recent measurements on the compression of a roller between

parallel planes Thwaite (21) devised an apparatus consisting of a cylindrical

shaft with an air bearing for loading coupled with capacitance probes to sense

the compressi.on. The test cylinder and flat were made of Cr - Mn hardened

tool steeL The plane was flat within 0. 025llm (Ill ) and the cylinder was

" .

straight to 0.025llm. Both plane and cylinder possessed a surface roughness

of O. Olllm 4ll center line average.

The entire system possessed a resolution of 0. 003llm 12ll Three series

of measurements were made on a 6. 35mm diameter cylinder in contact over a length

of 9. 525mm for the load/contact length range of 0.05 to 0. 4 Kg/mm. The mean

observed slope differed by approximately 5% from the equation based on the

finite rectangle , that is Equation 55

215 ~ 
L (AI + A

. 1. 0 + In 

I + A
)pr

while the values predicted by the Bochman and Berndt (20) relationship differ

from Thwaite ' s slope by 45%.

Thwaite concludes that within the load range tested the equation based on

the finite rectangle gives the b~st approximation to compute the compression

involved in the case of a cylinder between two planes. That is, the finite

rectangle relation seems to be the one that would be of more practical use in

the metrology field.

CONCLUSIONS

Since the contacting case of a cylinder between two planes has such

widespread application in the science of metrology one needs to be able to

apply elastic corrections for the most precise determination of a diameter of the

cylinder. There are many prediction foDnulae depending upon the assumptions made.
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This paper has assembled the majori tyof the equations in existence in the
literature and a master computer program was written to evaluate their

agreement over the range normally used in precision metrology. Figures 8

and 10 give the results of three equations 62 55 and 82 which are representative

of the three basic types of cylinder-plane equations discussed on page 4.

Eight of the equations were evaluated over the range 0. 5 - 2. 5 1b forc~

and cylinder diameter varying from . 001 to 1. 00 inch. The slopes (micro-

inches lIb) of five theoretical equations are plotted in Figure 11. The slopes

of three empirical equations over the same range are shown in Figure 12. 'ro

obtain the deformation for anyone equation

a) Find the diameter of the cylinder

b) Read the corresponding slope from the vertical axis , and

c) Multiply that slope by the measuring force in pounds to obtain the

total deformation.

Note: Keep in mind that these slopes are for the total deformation of a

cylinder between two plane surface. For example the values are

twice the values given by the equations listed. Also the values for

Poisson I S ratio and Young ' s Modulus are for 52100 bearing steel

in which

= 0.295 and E = 29. 0 x 106 psi.

The length of contact between cylinder and plane is 0. 375 inches

in all cas.es.

One importan t fact to remember in all contact problems is to keep the

measuring force less than that force which will cause permanent deformation to

the objec t under test. For the case of a cylinder against a plan~ a

nomograph has been developed for easy computation of the stress (Figure 13).
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In certain cases where the compression needs to be known to better than

5% then the only practical way to account for surface finish, the actual

material parameters , and the exact geometry of the cylinder and flat would be

to determine the compression experimentally. For the load range normally

. .

used in the metrology field it appears that Equation 55 , based on the finite-

rectangle approach, gives the best approximation to the compression obtained

between a cylinder and flat (Figure 14).

On a practical basis, since most line compress ion is small an error of

10 - 30% is not enough to give one insomnia because the measurement uncertainty

(standard deviation) ~il1 likely be the same order of magnitude if not larger

than the actual deformation of the system.

SUMMARY OF EQUATIONS

b = Hertzian half-width of contact

~R(\ + Ab = 
. Equations for Compression of Cylinder and Plane in Contact

(55) . r .

~ =

L 0' 1 + A ) L1.
00 + ln (A

1 + A
)PR

~ = 

I + A

- .

608205 + 1. 5 1n 

(!. 

. ~ 3

. )PR

1 + " 1 + '. 1 + ~1 1 + 

~ = -

00 + 1n PR 

1 7T2 7T 1 7T

(62)

(79)

Empirical (Steel Cy1inder--Steel Flat)

(82)2 ~

(83) 8

-1/3 = 0.2207 L D (10 ) inches

= 0. 00534 L 765 D 053

p .

940 (10
) inches

= 0. 0091 L 73 D 08 p 6666 (10
) inches(84) ~



-43-

Equations for Deflec tion of Elastic Half-Space

F . t (A
I + 1.

) ~ .

193145 + t In f\)PR

(72) 8
p * t (A1 + A

) t1.
33787 + t 1n 

1 ~\)PRJ

(68)

. Equations for Compression of A Cylinder Between Rigid"Planes

1 - 1 ' 
(70) S = 2 L 

1TE 
193145 

+ 2 
1n (11.

1 + A

1 - LIt
(75) S = 2 L. 

1TE
3333 

+ 2 

1n (A
I + A

1 - 

(77) 8 = 2 
1TE

. .

407 + In 

1 - v
(78) at = 2 L

333 + in 

Equations for Normal Approach of Two Planes with Cylinder Between the Planes

(73) . = L (1.1 + 1. . -1. 14473 + 1n 

(1.1 +A

Equation 73 is the sum of Eqs. 70 " 72

1 - I' 1TEL
(76) M = 4 L 

1TE
In 

P(l _
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Geometry of the contact between elliptic pa.roboloids
with principal axes of body I ( x I, Y I , z) and the
principal axes of body 2 (X2 ,Y2 , z). The angle w
the angle between the x, z and x2 z planes, i. e.
the princi po I radii of curvatures R I and R2.

",.

FIGURE I



Body 

Body 2

Cross -section of two surfaces nea.r the point of
contact O.

Body I Force

FIGURE 2

Force
Body 2

Geometry of deformed bodies. Broken lines show the
surface as they would be in the absence of deformation.
Continuous lines show the surfaces of the deformed bodies.

FIGURE 3
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Contact geometry of two parallel cylinders.
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Relationship for Yield Stress as function
of Surface Finish from reference 

YS=K/~
YS = Stress at which permanent

deformation will occur
':: 400, 000 pounds per square

inch for hardened s tee I
AA = Arithmetic Average 

finish in 10-6 inclies

AA SURFACE FINISH MICROINCHES
FIGURE 6
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ompreSSion of 0,05 inch diameter
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NPL 1921 data

I 0 

LB FORCE
FIGURE 7



::x: 5

IE 6 2

" /

Eq.

Total deformation of 0.001 i.nch
diameter steel cylinder between

37. inch flat steel contacts
using equations ' 55, 62, and 
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Eq. 62

Total deformation of 0.010 inch
diameter steel cylinder between

375 inch flat steel contacts
using equations 55, 62. and 82",

5 '
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Total deformati.on of LOO inch
diameter steel cylinder between

375 inch flat steel contacts
using equations 55, 62, and 82 /Eq.

Eq. 55
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Slope of Total System Deformation
Empirical Equ at ions
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FIGURE 13 (a)

NOMOGRAM FOR COMPUTATION OF MAXIMUM STRESS
ENCOUNTERED IN CONTACT PROBLEM OF A

CYLINDER AGAINST A PLANE

Purpose: To determine whether the force one uses in the measurement of
the diameter of a steel cylinder will exceed the yield point
and cause permanent deformation to the cylinder.

Governing Equa tion: max TILb

where = measur ing force

= contact length between
= Hertzian half-width of

~R(A 1/2

= Radius of cylinder

1-.. = 
1 - vi 

TIEi

i = Poisson ratio for one material

cylinder and plane
contac t

Ei = Modulus of elasticity for one material.

The nomograph was developed for 52100 steel in which

= 0. 295 and E = 29. 0 x 106 psi
Example:

If Force = 1 lb, Contact Length
mum stress

375 inch, Radius = 0. 01 inch--Find maxi-

...

375

010

...- -

Force

,.,

Rodiu.
Contact Length

(1) Locate measuring force and length of contact on the appropriate scales
and connect these points until the turning axis T is intersected; (2) Lo-
cate the radius and connect with the intersected T axis; (3) Read maximum
stress to be expected wi thin the contact area; (4) Compare maximum stress
read from nomograph with curve in Figure 6.
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Equation For The Calculation Of Compression Between
A Cylinder And Plane Surface

Force

L3 

8 = L (X I + X 2 ) 1.00 + I n (
). rt X2 ) P R

where P*= measurin9 force
L" contact length between
R = radius of cylinder

I-u

...

Vi = Poisson ratio
*' Young s modulus

cylinder and plane

When material of cylinder and flat are same , X, ::: X

Cylinder Between Two Parallel Planes

---

8Total = 8, + 

FIGURE 14


