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LIST OF SYMBOLS

Number of degrees of freedom’

Fourier {cycle) frequency

Qpen-loep.transfer function of a phase-locked loop

Transfer function of the loop filter of a phase-locked loop

Transfer function of a filter

Sensitivity of a linear phase detector in volts per radian

Number of counts accumulated by a time-interval counter

Quality factor of a resonance, equal to the ratio of the stored energy to the
energy lost in one cycle

Independent variable of the Laplace transform

Estimate of the two-sample or Allan variance

One-sided power spectral density of the fractional-frequency deviations

One-sided power spectral density of the phase deviations

Two-sided power spectral density of the phase deviations

Two-sided power spectral density of the phase deviations of the carrier

Two-sided power spectral density of the phase deviaiions of the pedesial

Two-sided power spectral density of the instantaneous voltage

Peak voltage of a signal generator _

Output voltage of a phase detector

Voltage applied to the tuning element of the voltage-controlled oscillator of a
phase-locked. loop

Instantaneous voltage of a signal generator or other device

Time deviation required. by. a signal generator operating at nominal frequency v,

to.accumulate phase equal to. ¢{t).

Fourier transform of xit}

Instantaneous fractional-frequency offset from nominal

Mean fractional-frequency offset over the kth interval

Exponent of f for a power-law spectral density

Frequency uncertainty due to the quantization of measurements

Damping constant of a phase-locked loop

Expdnem of 7 for a power-law Allan variance

Instantaneous. frequency

Nominal frequency of a signal generator

Mean frequency over the interval t, <+ < t,

Heterodyne frequency: or difference frequency between two oscillators

Probability density of the chi-squared distribution

Sample variance of N fractional-frequency deviations, each averaged over a
period t spaced at intervals T

The two-sample-or Allan variance of the {ractional-frequency deviations

Modified Allan variance

Averaging time

Period of the time base of a counter

Instantaneous phase deviation

Chi-squared distribution

Fourier (angular). frequency

Natural frequency of a phase-locked loop
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.1 CONCEPTS, DEFINITIONS, AND MEASURES
OF STABILITY

This chapter deals with the measurement of the frequency or time stability
"precision oscillators. It is assumed that the average output frequency is
ttermined by a narrow-band circuit so that the signal is very nearly a sine
ave. To be specific, it is also assumed that the output is a voltage, which is
mventionally (Barnes et al., 1971) represented by the expression
Vt) = [Vo. + elt)]sinf2mvot + ¢tr)], (12-1)

here V¥, is the nominal peak voltage amplitude, &) the deviation of
nplitude from nominal, v, the nominal fundamental frequency, and ¢(t) the
sviation of phase from nominal. }
When either specifying or measuring the noise in an oscillator, one must
ynsider the nature of the reference. This may be either a passive circuit such
i a narrow-band filter, another similar oscillator, or a set of oscillators,
mthesizers, and other signal-generating equipment. A reference with lower
dise than the device under test may be available, and in this case the
tpressions developed in this chapter describe. the noise in the oscillator
one. However, a state-of-the-art device will have lower noise than any
vailable reference. In this case all the expressions below refer to the sum of
svice and reference noise. The most common approach to solving this
roblem is to compare two or more nearly identical devices. Under most
reumstances it is then reasonable to assume that each oscillator contributes
alf of the measured noise.

The most direct and intuitive method of characterizing the properties of
signal is to determine the two-sided spectrum of V(t), which is denoted
'S¢f) (Rutman, 1978). The variable f is called a Fourier frequency and is
xry closely related to the concept of a modulation frequency. A positive
indicates a frequency above the carrier frequency v, while a negative f
idicates a frequency lower than the carrier. Since the noise can in theory
odulate the carrier at all possible frequencies, a continuous function is
:quired to describe the modulation of ¥(t). S is called a spectral density and
() is the mean-square voltage ¢V/2(t)) in a unit bandwidth centered at f. It
. proportional to the rf power per unit bandwidth delivered by the oscillator
> a matched load. The total signal power is proportional to the mean square
oltage, which is also called the variance of the signal since the mean vatue of
(t) is zero. The variance is therefore equal to the two-sided spectral density
itegrated over all frequencies.

The two-sided spectrum is usually measured by an rf spectrum analyzer, a
evice that functions like a bandpass filter followed by a bolometer, as shown
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BANDPASS FILTER | V')  MeAN-sauare
H(1-1tg) — METER

fr———a- O
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FIG. 12-1  An rf spectrum analyzer. The device produces an output proportionat 1o the
mean-square value of the signal passing through a tunable narrow-band filter centered at
frequency fo.

in Fig. 12-1. The spectrum of the filtered voltage V'(z) is equal to the square
of the magnitude of the filter transfer function H(f — f,) multiplied by the
spectrum of the input signal (Cutler and Searle, 1966), The variance of the
filtered voltage is obtained from Parseval’s theorem:

arfo) = J.

.00

H(f = fPST(Cf) df. (12-2)

If the bandpass filter is sufficiently narrow, so. that Sy ) changes negligibly

over its bandwidth, then Eq. (12-2) may be inverted. With this assumption,

the power spectrum is estimated from the measurement using Eq. (12-3):
SV fo) = o34 fo)/B, (12-3)

where B = {2 [H(f" — fo)i>df" is the noise bandwidth of the filter and f; its
center frequency. Figure 12-2 shows a typical two-sided rf spectrum. For
many oscillators the spectrum has a Lorentzian shape, that is,

2 Vz)/ﬂ Afssn
1+ (fAAfsap/2)

The Lorentzian lineshape is completely described by the mean square voltage
{¥%) and the full width at half maximum Afy.p.

SEUf) = (12-4)

S |
SN

FIG. 12-2 The rf spectrum of a signal. It is often useful to divide the spectrum into the
carrier and the noise pedestal. Ihe spectral density of the carrier exceeds that of the noise
pedestal for Fourier frequencies smaller in magnitude than f, . «
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12.1.1 'Relationshf,p between the Power Spectrum and the
Phase Spectrum

‘The power spectrum differs from a delta funetion 8(f) due to the presence
of the amplitude- and phase-noise terms, ¢(t) and ¢(t), respectively, includd
in Eq. (12-1). Usually the noise modulation separates into two distinct
components, so that one observes a very narrow feature called the carrier
above the level of a relatively broad pedestal. The frequency that separates
the carrier and pedestal is denoted f,. Below this frequency the spectral
density of the carrier exceeds that of the pedestal. Assuming that the ampli-
tude noise is negligible compared to the phase noise and that the phase
modulation is.small, the relationship between the power and phase spectra
is-given by (Walls and DeMarchi, 1975)

V2 8(f) i —f<f<f
STS(f) o =2 oW o JTV 1 e o
Vi) 7 ¢ * {S.j,“( f),  otherwise.
S3(f) is the two-sided spectrum of the phase fluctuations, which divides

into a carrier component S;>(f) and a pedestal component Sp5,(f): ([ is
given by '

(12-5)

1) = fj Sanlf)df = ff " sy df (12-6)

sinee abuve f; the pedestal dominates the noise spectrum. The variance of the
carrier is equal to (V¢/2)e ™!V, with the remaining variance in the pedestal. If
Ay, is the width of the pedestal and Av, the width of the carrier, then the
power density in the carrier is equal to that in the pedestal when I(f;) =
In(Av,/Av,). For the pedestal, one may use the 3-dB linewidth for Av,
provided that {2 Sy(f) df < In 2. Otherwise the pedestal width is estimated
from {8,z S(f)df =In2. For the carrier, the linewidth is estimated by
calculating [&, /5 Sy (/) df = In2. _ .

The foregoing analysis makes it possible to draw certain conclusions
concerning detection of the carrier. We use {,, df to denote the integral over
the phase noise pedestal. If |, S,(f).df < In 2, then the carrier may be resolved
irrespective of detector bandwidth. When In{Av,/Av.) > [, Sy(f)df > In2,
the carrier may be resolved by restricting the detection bandwidth. But when
fo So(f)df > InfAv,/Av,), the carrier can no longer be distinguished from the
pedestal since its spectral density is smaller.

12.1.2 The IEEE Recommended Measures of Frequency Stability

By the mid-1960s the problem of the specification of precision oscillators
had become extremely important, but there was very little uniformity among
manufacturers, metrologists, and applications engineers in the methods of
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performing measurements or the description of measurement results. This
situation was complicated by the difficulty of comparing the various
descriptions. A measure of stability is often used to summarize some
important feature of the performance of the standard. It may therefore not be
possible to translate from one measure to another even though the respective
measurement processes are fully described and all relevant parameters are
given. This situation resulted in a strong pressure to achieve a higher degree
of uniformity.

In order to reduce the difficulty of comparing devices measured in separate
laboratories, the IEEE convened a committee to recommend uniform
measures of frequency stability. The recommendations made by the com-
mittee are based on the rigorous statistical treatment of ideal oscillators that
obey a certain model (Barnes et al., 1971). Most importantly, these oscillators
are assumed to be elements of a stationary ensemble. A random process. is
stationary if no translation of the time coordinate changes the probability
distribution of the process. That is, if one looks at the ensemble at one instant
of time, then the distribution in values for a process within the ensemble is
exactly the same as the distribution at any other instant of time. The elements
of the ensemble are not constant in time, but as one element changes value
other elements of the ensemble assume previous values. Thus, it is not
possible to determine the particular time when the measurement was made.

The stationary noise model has been adopted because many theoretical
results, particularly those related to spectral densities, are valid only for this
case. It is important for the statistician to exercise considerable care since
experimentally one may measure quantities approximately equal to either the
instantaneous frequency of the oscillator or the instantaneous phase. But the
ideal quantities approximated by these measurements may not both be
stationary. The instantaneous angular frequency is conventionally defined as
the time derivative of the total oscillator phase. Thus,

!
wlt) = 2‘1? [2nvot + (1], (12-7)
and the inswantaneous frequency is written

1 dg |
\(f)—Vo'l‘E—(;. (12-8)

For precision oscillators, the second term on the right-hand side is quite
small, and it is useful to.define the fractional frequency
) —vo 1 dd _ dx

—_ = (12-9)

= = - =
e Vo 2rve dt dt’
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where

x{t) = ¢(t)/2mvy (12-10)

is the phase expressed in units of time. Alternatively, the phase could be
written as the integral of the frequency of the oscillator:

Pty = o + J:Zn[v(()) — vold0. (12-11).

However, the integral of a stationary process is generally not stationary.
Thus, indiscriminate use of Eqgs. (12-7) and (12-11) may violate the assump-
tions of the statistical model. This centradiction is avoided when one
accounts for the finite bandwidth of the measurement process. Although a
more detailed consideration of the statistics goes beyond the scope of this
treatment, it is very important to keep in mind the assumption that lie behind
the statistical analysis of oscillators. In order to analyze the. behavior of real
oscillators, it is necessary to adopt a model of their performance. The model
must be consistent with observations of the device being simulated. To make
it easier to estimate the device parameters, the models nsnally include certain
predictable features of the oscillator performance, such as a linear frequency
drift. A statistical analysis is useful in estimating such parameters 10 remove
their effect from the data. Tt is just these procedures for estimating the
doterministic model parameters that have proved to be the most intractable.
A substantial fraction of the total noise power often occurs at Fourier
frequencies whose periods are of the same order as the data length-or longer.
Thus, the process of estimating parameters may bias the noise residuals by
reducing the noise power at low Foutier frequencies. A genceral techuique for
minimizing this problem in the case of oscillators actually observed in the
laboratory is discussed below.

It has been suggested that measurement techniques for frequency and time
constitute a hierarchy (Allan and Daams, 1975), with the measurement of the
total phase of the oscillator at the peak. Although more difficult to measure
with high precision than other quantities, the total phase has this status
owing to the fact that all other quantities can be derived from it.
Furthermore, missing measurements produce the least deleterious effect on a
time series consisting of samples of the total phase. Gaps in the data affect the
computation of various time-dependent quantities for times equal to or
shorter than the gap length, but have a negligible effect for times much longer
than the gap length. The lower levels of the hierarchy consist of the time
interval, frequency, and frequency fluctuation. When one measures a quan-
tity somewhere in this hierarchy and wishes to obtain a higher quantity, it is
necessary o integrate one or more times. In this case the problem of missing
data is quite serious. For example, if frequency is measured and one wants to
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know the time of a clock, one needs to perform the integration in Eq. (12-11).
The missing frequency measurements must be bridged by estimating the
average {requency over the gap, resulting in a time errov that is propagated
forever. Thus, it is preferable to always make measurements at a level of the
measurement hierarchy equal to or above the level corresponding to the
quantity of principle interest. In the past this was rather difficult to do.
Measurement systems. constructed from simple commercial equipment suf-
fered from dead time, that is, they were inactive for a period after performing
a measurement. To make matters worse, methods for measuring time or
phase had considerably weorse noise performance than methods for measur-
ing frequency. As a result, many powerful statistical techniques were.
developed to cope with these problems (Barnes, 1969 Allan, 1966). The effect
of dead time on the statistical analysis has been determined (Lesage and
Audoin, 1979b). Other techniques have heen developed to combine short
data sets so that the parameters of clocks over long periods of time could be
estimated despite missing data (Lesage, 1983). The rationale for these
approaches is considerably diminished today. Low-noise techniques for the
measurement of oscillator phase have been developed. Now, commercial
equipment is capable of measuring the time or the total phase of an oscillator
with very high precision. Other equipment exists for measuring the time
interval. These devices use the same techniques that were previously
employed for the measurement of frequency and are very competitive in
performance.

The proliferation of microcomputers and microprocessors has had an
equally profound effect on the field of time and frequency measurement.
There has been a dramatic increase in the ability of the metrologist to acquire
and process digital data. Many instruments are available with suitable
-standard interfaces such as IEEE-583 or CAMAC (IEEE, 1975) and
IEEE-488 (IEEE, 1978). As a result, there has been a dramatic change in
direction away from analog signal processing toward the digital, and this,
process is accelerating daily. Techniques once used only by national
standards laboratories and other major centers of clock development and
analysis are now widespread. Consequently, this chapter will focus first on
the peak of the measurement hierarchy and the use of digital signal
processing. But the analysis is directed toward estimating the traditional
measures of frequency stability. Considerable attention will be paid to’
problems associated with estimating the confidence of these ctability meag-
ures and obtaining the maximum information from available data.

The IEEE has recommended as its first measure of frequency stability the
one-sided spectral density S,(f) of the instantaneous fractional-frequency
fluctuations y(t). It is simply related to the spectral density of phase fluctua-
tions since differentiation of the time-dependent functions is equivalent to.
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‘multiplication of their Fourier transforms by jew:
S, = (o) Syl f) = (nfPS.LS) {12-17)

Section 12.1.1 on the relationship between the power spectrum and the
phase spectrum described the analog method for the measurement of a
spectral dénsity. If a voltage V is the output of the oscillator, then the result of
the measurement is proportional to.the rf power spectral density. But if the.
voltage were proportional to the frequency or phase of the oscillator, then the
result of the measurement would be proportional to the spectral density of
the frequency or phase. The most common units of S,(f) are radians squared
per hertz.

Alternatively, the spectral density can be obtained by digital analysis of the
signal. For example, the quantity S,(f) can be calculated from the Fourier
transform of x(t). The relevant continuous Fonrier-transform pair is defined
as follows:

Xif)y= f x(tye ™2 dt 12-13)

and

__l_ - " pJ28SL -
x(t)= > me(] Yel#H It df. (12-14)

However, one does not generally have continuous knowledge of the phase of
the oscillator. Since it is relatively easy to measure x(¢) at equally spaced time
intervals, we assume the existence of the series x,, where x, = x(it) for integer
valucs of I. The discrete Fourier transform is defined by analogy to the
continuous transform (Cochran et al., 1967):

©

XY= Y x{he {12-15)

i=-0m
In practice the time series has finite length T consisting of N intervals of
length <, and it is not possible to compute the infinite sum. Nevertheless, it

remains possible to compute a spectrum that is not continuous in f but rather
has resolution Af, where

Af = T = {/Nx. (12-16)

The need to sum over all values of the index ! is removed by assuming that the
function x(z) repeats itself with period T. The resuiting spectrum contains no
information on the spectrum at Fourier frequencies less than 1/T. Truncation
of the time series also introduces spurious effects. due to the turn-on and turn-
off transients. These problems can be minimized through the use of a window
function. The computed spectrum is actually the square of the magnitude of
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the window function multiplied by the desired spectrum. The use of a window
function reduces the variance of the spectrum estimate at the expense of
smearing out the spectrum to a smail degree. With these changes but no
window function, we arrive at the diserete finite transform

N-1

X(nAf) = % Y x(krye Sz ark (12-17)
k=0

The spectral density of x(7) is computed from Eq. (12-17) by squaring the real
and imaginary components, adding the two together, and dividing by the
total time T:

{R[X(m Af}® + {H[X(m Af)]}z_

S{mAf) = T

(12-18)
The digital method of estimating spectral densities has many advantages
over analog signal processing. Most important is the fact that it may be
computed from any set of equally spaced samples of a time series. As a result,
the technique is compatible with other methods of characterizing the signal,
that is, the sampled data can be stored and processed using a variety of
algorithms. In addition, each record of length T produces a single estimate of
the spectrum for each of the N frequencies Af, 2 Af, ..., N-Af. It is therefore
possible to estimate the entire spectrum much more quickly using the digital
technique than it would be using analog methods. The fast Fourier
transform, a very efficient algorithm for the computation of the discrete finite
transform, has opened the way to versatile self-contained, commercial
spectrum analysis. It is also very straightforward to compute the spectrum
from data acquired by computerized digital data acquisition systems,

A result of the finite sampling rate is that the upper frequency limit of the
digital spectrum analysis is 1/2t, called the Nyquist frequency (Jenkins and
Watts, 1968). Power in the signal being analyzed that is at frequencies higher
than the Nyquist frequency affects the spectrum estimate for lower frequen-
cies. This problem is called aliasing. The out-of-band signal is rejected by
only approximately 6dB -per octave above the Nyquist frequency. Thus,

- when significant out-of-band signals exist, they must be reduced by analog
filtering. One or more low-pass filters are usually sufficient for this purpose.

As its second measure of frequency stability, the IEEE recommended the
sample variance oﬁ(t)_ of the fractional-frequency fluctuations. It is a measure
of the variability of the average frequency of an oscillator between two
adjacent measurement intervals. The average fractional-frequency deviation
¥, over the time interval from ¢, to 7, + 7 is defined as

T et
=z o (1219

e
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x(t) 7

TIME

FIG. 12-3 Measurement process for the computation of the sample variance. The phase
difference between two oscillators is plotted on the ordinate. The measurement yields a set of
frequencies averaged over equal intervals t separated by dead time T 7.

from which it follows that-

x{ty + 1) — x(t)
—

= (12-20)
The quality 7 is often referred to as the sampling time or the averaging time.
Equations (12-19) and (12-20) are not the only way to define mean frequency,
but they are the simplest. Other definitions lead to alternative measures of
stability that may have desirable properties.

Suppose that one has measured the time or frequency fluctuations between
a pair of precision oscillators and a stability analysis is desired. The process is
illustrated in Fig, 12-3. These are N values of the fractional frequency ;.
Each one is measured over a time t, and measurements are repeated after
intervals of time T. If the measurement repetition time exceeds the averaging
time, then there is a dead time equal to T — 7 between each frequency
measurement, during which there is no. information available.

There are many ways to analyze these data. A fairly general approach is the
N-sample variance defined by the relation

1 N / 1 N 2

AN, Ty = <XJ’Z‘1 Py (y, “NE yk) > (12-21)
where the angle brackets denote the infinite time average. Frequently, Eq.
(12-21).does not converge as N — 0o, since some noise processes in oscillators
diverge rapidly at low Fourier frequencies. This implies that the precision
with which one estimates the variance does not improve simply as the sample
size is increased. For this reason, the two-sample variance with no dead time
is preferred. Also called the Allan variance, it converges for all the major
noise types observed in precision oscillators. It may be written as

o3(®) = G0ksr ~ FD- (12-22)
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FIG. 12-4 N-samplevanance versus Allun vanance. The two-sample variance converges for
the important types of noise observed in frequency standards but the ratio of the traditional
variance to the two-sample variance is an increasing function of sample size for flicker frequency
noise and random-walk frequency noise.

The dependence of the classical variance on the number of samples is shown
in Fig. 12-4 for the case of no dead time. The quantity plotted is the ratio of
the N-sample variance to the Allan variance. Note that ¢Z(r) has the same
value as the classical variance for the white-noise frequency modulation.
However, the classical variance grows without bound for flicker-frequency
and random-walk-frequency noises.

One may combine Egs. (12-20) and (12-22) to obtain an equation for ¢,(7)
in terms of the time-difference or time-deviation measurements:

o2(t) = (G Extr + 27) — 2x(t + ) + x(1)1*). (12-23)

N discrete time readings may be used to estimate the variance

N-2

Z (Xie2 — 2Xp4q F X.;_)Z, (12-24)

1
2y, ~
GOE N 27 A

where i denotes the number of the measurement in the set of N and the
nominal spacing between measurements is. 7. Since it has been assumed that
there is no dead time between measurements, one can write ©in Eq. (12-24) as
an integer multiple of 74, that is, T = mr,, where 7, is the smallest spacing of
the data. In this case ’

i N-2m

S Xip g — 25 2. (12-
AN — 2mym’t} L (ivam Fiem . 12:23)

i=1

2 ~
oy (mto) =
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2.1.3 The Concepts of the Frequency Domain and the Time Domain

Spectral densities are measures of frequency stability in what is called the
equency domain since they are functions of Fourier frequency. The Allan
ariance, on the other hand, is an example of a time-domain measure. In a
irict mathematical sense, these two descriptions are connected by Fourier
ransform relationships (Cutler and Searle, 1966). However, for many years.
he inadequacy of measurement equipment created artificial barriers between
hese two characterizations of the same noise process. As a result, many
pecialized techniques have been developed to translate between the various
neasures of stability (Allan, 1966; Burgoon and Fischer, 1978). The preceding
ections have demonstrated how easily both types of stability measures can
e computed from the same data provided that the measurement process
srovides complete information. For example, both ¢7{mt,) and S (m Af) can
e computed from evenly spaced samples of x(r). However, incomplete
nformation can result from either measurement dead time or interruptions in
he data acquisition process. In these cases translation techniques remain
raluable. :

Both the spectral density and the Allan Variance are second-moment
measures of the time series x(¢). However, it is only possible to translate
unambiguously from the spectral density to the Allan variance, not the
reverse. To calculate the spectral density it is necessary to use the autocor-
relation function of the phase. The following discussion on power-law noise
processes further demonstrates this dichotomy. As we shall see, the Allan
variance for a fixed measurement bandwidth does not distinguish between all
of the noise processes that are commonly observed in precision oscillators.

12.1.4 Translation between the Spectral Density of ¥ reyuency
and the Allan Variance

The power-law model is most frequently used for describing oscillator
phase noise. It assumes that the spectral density of frequency fluctuations is
equal to. the sum of terms, each of which varies as an integer power of
frequency. Thus, there arc two quantitics that completely specify Sy(f).for a
particular power-law noise process: the slope on a log-log plot for a given
range of f and the amplitude. The slope is denoted by o and therefore f*is the
straight line on a log-log plot that relates Sy( f) to f. The amplitude is denoted
h,. When we examine a plot of the spectral density of frequency fluctuations,
we represent it by the addition of all the power-law processes (Allan, 1966:
Vessot et al., 1966) with the appropriate coefficients:

SN =Y hJfe (12-26)

a=~-com
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TABLE 121

Correspondence between Common Power-Law Spectral Densities and the
Allan Variance”

Noise type S,tf) o)
White phase by f? 3, hyf(2m)Pe?

) 1.038 + 3@afr)] . 1
Flicker phase hS [—m(—zﬁi! hy b
White frequency » he Lhol1/1)

Flicker frequency hoyf! 20k, -
Random-walk frequency hoof? 1omth_

“ Where necessary for convergence the spectral density has been assumed to
be zero for frequencies greater than the cutoff frequency f,.

This technique is most valuable when only a few terms in Eq, (12-26) are
required to describe the observed noise and each term dominates over several
‘decades of frequency. This situation often prevails. Five power-law noise
processes (Allan, 1966: Vessot et al., 1966) are common with precision
oscillators:

{1) random-walk frequency modulation o =—2
{2). flicker frequency modulation «=-1
{3) white frequency modulation a=0
(4) flicker phase modulation =1
(5) white phase modulation a=2

The spectral density of frequency is an unambigueus description of the
oscillator noise. Thus, the spectrum can be used to compute the Allan
variance (Barnes.ct al., 1971):

_2

27 —
o(7) {mvgz)?

J So ) sin*(nfr)df, (12-27)
0

However, Eq. (12-27) shows that the Allan variance is very sensitive to. the
high frequency dependence of the spectral density of phase, thereby neces-
sitating a detailed knowledge of the bandwidth-limiting elements in the
measurement setup. The integral has been computed for each of the power-
law noise processes, and the results are summarized in Table 12-1 (Barnes et
al., 1971). For « in the range —2 < « < 0, the Allan variance.is proportional
to t, where 4 = —a — 1. When the log of the Allan variance is plotted as a
function of the log of the averaging time, the graph also consists of straight-
line segments with integer slopes. However, Table 12-1 also shows that even if
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¢ oscillator is reasonably modeled by power-law spectra, it is not practical
distinguish between white phase noise and flicker phase noise from the
pendence of the Allan variance on 1. In both cases 62 =~ 1/12.

1.5 The Modified Allan Variance

Table 12-1 also shows that the Allan variance has very different bandwidth
:pendence for white phase noise and flicker phase noise. Therefore, these
vise types have been distinguished by varying the bandwidth of the
easurement system. If x(¢) were measured, the noise type could be identified
¢ computing the spectrum. However, both the approach of making
easurements as a function of bandwidth and the computation of the
ectrum can be avoided by calculating a modified version of the Allan
iriance. The algorithm for this variance has the effect of changing the
indwidth inversely in proportion to the averaging time (Snyder, 1981 Allan
1d Barnes, 1981).

Each reading of the time deviation x; has associated with it a measurement-
rstem bandwidth £, . Similarly, we can define a software bandwidth £, = f/n,
hich is 1/n times narrower than the hardware bandwidth. It can be realized
y averaging n adjacent x;’s. Based on this idea it is possible to define a
odified Allan variance that allows the reciprocal software bandwidth to
range linearly with the sample time 7:

n 2
mod o3(s) = 55 <B S, Corvan — Bisa + x,-)] > (12:28)
i=1

here © = nt,. Equation (12-28) reduces to Eq. (12-23)for n = 1. One can see
1at mod aff(v:) is the second difference of three time values, each of which isa
pnoverlapping average of n of the x;s. As n increases the software
andwidth decreases as f;,/n.
For a finite data set of N readings of x; (i =1 to N), mod ¢(z) can be
stimated from the expression :
1 N—=3n+t ntji—1
—— Y ‘X . — . 2
2,t2,n2(N — 3" + 1) jgl igj (xx+2n 2xi+_n. + xx) »
(12-29)

thich is easy to program but takes more time to compute than the
orresponding equation (12-24) for o ().

Table 12-2. gives the relationship between the time-domain measure
nod o3(z) and its power-law spectral counterpart. In the right-hand column
re the asymptotic values of the ratio of the modified Allan variance to the
illan variance. It is clear from the table that mod o'.f(t) is very useful for white

mod ¢2(7) =
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TABLE 12-2

Correspondence between Common Power-Law Spectral Densities and. the Modified Allan
Variance®

Noise type SN mod a2(x) mod o2/0?
. . M 1

White phase hyf* hy "12-51- e n

1.038 In(2 1
Flicker phase hy S hy [——LM = 1

(2m)? T

White frequency hy o4t 0.5
Flicker frequency hoy f! k. ((0.936). 0.674
Random-walk frequency hoyf? h_,(5.42)x 0.824

* Where necessary the spectral density has been assumed to be zero for frequencies greater than
the cutoff frequency f . The constant nir the number of adjacent phase values that are averaged
to produce the bandwidih reduction. The values in the last two columns are for the asymptotic
limitn — . In practice, n.only needs to be 10 or farger before the asymptotic limit is approached
within a few percent. When.nr = I the ratio in the las{ column is 1 in all cases.

phase modulation and flicker phase modulation, but for « <1 the con-
ventional Allan variance gives both an easier-to-interpret and an easier-to-
calculate measure of stability.

It is interesting to make a graph of « versus u for both the ordinary Allan
variance and the modified Allan variance, such as the one shown in Fig. {2-5.

3R
AN
AN
2’— N
AN
1=
Q of

L
L <
-3 1 1} 1 I} 1

-4 -3 -2 -1 [+ 1 2

FIG. 12-5 Relationship between a power-law spectra) density whose slope on.alog-log plot
is @ and the corresponding sample variance whose slope on a log-log plot is p. The solid line
describes the behavior of the Allan variance, while the dashed line shows the advantage of the
maodified Allan variance for white phase noise and flicker phase noise.
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This graph allows one to determine power-law spectra for noninteger as well
as integer values of a. In the asymtotic limit the equation relating p and « for
the modificd Allan variance is

a=—pu—1 for -3 <a<3 (12-30)

12.1.6 Determination of the Mean Frequency and Frequency Drift
of an Oscillator

Before the techniques of the previous four sections can be meaningfully
applied to practical measurements, it is necessary to separate the deter-
ministic and random components of the time deviation x(t). Suppose, for
example, that an oscillator has significant drift, such as might be the case for a
quartz crystal oscillator. With no additional signal processing, the Allan
variance would be proportional to 12, The variance of the Allan variance
would be very small, further demonstrating that deterministic behavior has
been improperly described in statistical terms and the oscillator’s predict-
ability is much better than the Allan variance indicated. Unfortunately, it
is difficult to estimate the oscillator’s deterministic behavior without intro-
ducing a bias in the noise at Fourier frequencies comparable to the inverse
of the record length. In practice, it has been sufficient to consider two
deterministic terms in x(t):

x(1) = xo + (Avfvo)t + D% + x,(1) (12-31)

The first term on the right-hand sidc is thc synchronization crror. The sccond
term is due to imperfect knowledge of the mean frequency and is sometimes
called syntonization error. The quadratic term, which results from frequency
drift, is the most difficult problem for the statistical analysis because the Allan
variance is insensitive to both synchronization and syntonization errors.

For white noise, the optimum estimate of the process is the mean.
Therefore, a general statistical procedure that can be followed is to filter the
data until the residuals are white (Allan et al., 1974; Barnes and Allan, 1966).
For example, at short times the frequency fluctuations of atomic clocks are
usually white. Taking the first difference of Eq. (12-31), we find that

5oy = & 4 pp Ml ED =0 (12-32)
v Vo T

and a linear least square fit to the frequency data yields.the optimufn estimate
of Av. However, the drift in atomic clocks is generally so small that the value
obtained for D will not be statistically significant when t is smali enough to
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satisfy the assumption of white frequency noise. Thus, we are led to consider
the first difference of the frequency,

WD =30 _p X+ 20 =240 +D+x00) g a9
L .

T T

Many atomic clocks are dominated by random walk of frequency noise for
long averaging times. Thus, the first difference of the frequency data (the
second difference of the phase data) is white, and the optimum estimate of the
drift is just the simple mean. If instead, a linear Jeast square fit were removed

" from the frequency data in this region of 1, then the random-walk residuals.
would be biased, and it is likely that an optimistic estimate of g,(t) would be
obtained. .

The optimum procedure would be different if the dominant noise type
were flicker of frequency, rather than random walk. But there is no simple
prescription that can be followed to estimate the drift in that case.
Fortunately, a maximum likelihood estimate of the prameters for some
typical cases has shown that the mean second difference of phase is still a
good estimator of frequency drift in the sense that it introduces negligible bias
in the Allan variance. Thus, in practice there is a simple prescription for
computing the. Allan variance in the presence. of significant drift. Starting.
with the phase data. one forms the second difference and uses the simple
average to estimate the mean. The value of z chosen for creating these second
differences must be long enough so that the predominant noise process is
random-walk frequency modulation. After subtracting this estimate, the
second-difference data is integrated twice to recover phase data with drift
removed, and further analysis, including the computation of the Allan
variance, may proceed. Figures 12-6 through 12-10 illustrate the estimation
of drift. The quadratic dependence of the phase data in Fig, 12-6 nearly
obscures the noise. The first difference of this data produces the nearly linear
frequency dependence shown in Fig. 12-7, and the second difference produces
the residuals shown in Fig. 12-8, which appear to be nearly white. Rigorous
statistical analysis of this data indicates that the first difference of the
frequency is indeed white with 90% confidence. Next, the mean frequency
difference is subtracted. Then the residuals of Fig. 12-8 are integrated twice,
and the result is the estimate of the phase deviation with drift removed shown
in Fig. 12-9. Fig. 12-10 illustrates the Allan variance of this data calculated by
three techniques. The squares were computed from the data of Fig. 12-6,
while the open circles were computed following the recommended procedure
for estimating the drift. The validity of the approach is illustrated by the black
dots, which are the result of a statistically optimum parameter estimation
procedure.
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FIG. 12-6 Measured phase difference between a frequency standard and a reference during
a 140-day experiment. The nearly. quadratic form of the data effectively obscures the noise.
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TIME (DAYS)

FI1G. 12-7 - Onc-day frequency averages-obtained by taking the first diffcrences of the data in
Fig. 12-6. The ordinate is the fractional difference of the daily frequency from a nominal value.
The nearly linear change in frequency with time is apparent, although the random deviations are
visible.
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16 " day

FREQUENCY DIFFERENCE
(x1¢
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TIME(DAYS)

FIG. 12-8 Second difference of the data in Fig. 12-6. The second difference operation has
removed the nonrandom behavior and. the residuals appear to be nearly white.
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FIG.12-9 Phase variations of the frequency standard due to. the residuals, obtained by
performing two integrations on the data of Fig, 12-8. The ordinate scale is expanded
approximately 10 times compared to Fig. 12-6.
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FIG. 12-10 Logarithm of the square root of the Allan variance as a function of the
logarithm of the averaging time for three different computation methods. The squares were
computed from the data of Fig. 12-6 and show the effect of the drift. The open circles were
computed from the data of Fig. 12-9. The closed circles were computed using an optimum-
parameter estimation procedure.

12.1.7 Confidence of the Estimate and Overlapping Samples

Consider three phase or time measurements of one oscillator relative to
another at equally spaced intervals of time. From this phase data one can
obtain two adjacent values of average frequency and one can calculate a
single sample Allan variance (see Fig. 12-11), Of course, this estimate does not
have high precision or confidence, since it is based on only one frequency
difference.

For most commonly encountered -oscillators, the first difference of the
frequency is a normally distributed variable with zero mean. However, the
square of a normally distributed variable is not normally distributed. This is
so because the square is always positive and the normal distribution is
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x(t)

TIME

FIG. 12-11 Calculation of two average frequencies 7, and. 3, by measuring the phase of an
oscillator x(r) at times ), t,, and 1;.

completely symmetric, with negative values being as likely as positive ones.
The resulting distribution is called a chi-squared distribution, and it has one
“degree of freedom™ since the distribution was obtained by considering the
squares of individual (i.., one independent sample), normally distributed
variables (Jenkins and Watts, 1968).

In contrast, from five phase values fonr consecutive frequency values can
be calculated, as shown in Fig. 12-12. It is possible to take the first pair and
calculate a sample Allan variance. A second sample Allan variance can be
calculated from the sécond pair (i.e., the third and fourth frequency
measurements). The average of these two sample Allan variances provides an
improved estimate of the true Altan variance, and one would expect it to have
a tighter confidence interval than in the previous example. This could be
expressed with the aid of the chi-squared distribution with two degrees of
freedom.

However, there is another option. One could also consider the sample
Allan variance obtained from the second and third frequency measurements,
that is, the middle sample variance, This last sample Allan variance is not
indcpendent of the other two, since it is made up of parts of cach of the others.
But this does not mean that it cannot be used to improve the estimate of the
true Allan variance. It does mean that the new average of three sample Allan
variances is not distributed as chi squared with three degrees of freedom. The

LIt A A 5

x(t)

|

R
{ i i
r H 1
| ] 1
| ) |
| ! )

t, t, 1, t, ts
TIME

FIG.12-12 Calculation of four frequency values §,, ¥,, ¥5. and J, from five phase

measurements at times £y, I, f3, Ly, and (5. The sample variance formed from j, and 7, and the

one formed from j, and §, are independent. The sample variance formed from 5, and j; is not

independent of the other-two but does contain some additional information useful in estimating
the true sample variance.
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number of degrees of freedom depends on the underlying noise type, that is,
white frequency, flicker frequency, etc., and may have a fractional value.

Sample Alfan variances are distributed as chi square according to the
equation

2% = (df)s¥fo2, (12-34)

where .s_yz is the samplc Allan variance, df the number of degrees of freedom
{possibly not an integer), and ¢ the true Allan variance, which we are
interested in knowing but can only estimate imperfectly.

The probability density for the chi-squared distribution is given by the
relation (Jenkins and Watts, 1968}

(xz)dfll—le—xlll’ (12_35)

!
2
P = ety X

whérej: I'(df/2) is the gamma function, defined by the integral

00
Ity = J- X lem* dx. (12-36).
o

A typical distribution is shown in Fig. (12-13).

Chi-squared distributions are useful in determining confidence intervals for
variances and standard deviations, as shown in the following example.
Suppose one has a sample variance s> = 3.0 and it is known that this
variance has 10 degrees of freedom. The object is to calculate a range around
the sample value of s} = 3.0 that probably contains. the true value o7, The.
desired confidence is, say, 90%4. That is, 1094 of the time the true value will
actually fall outside of the stated bounds. The usual way to proceed is to
allocate 5% to the low end and 59 to the high end for errors, leaving 90% in
the middle. This is arbitrary and a specific problem might dictate a different

FIG. 12-13 Approximate form of a typical chi-squared distribution. For 10..degrees. of
fieedom, 57 uf the arca upder the cwrve Gurnicsponds to values of g7 less than 3.94, and an
additional 5% corresponds to.values of x? greater than 18.3.
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allocation. By referring to tables -of the chi-squared distribution, one finds
that for 10 degrees of freedom (df = 10) the 5%, and 95%, points correspond to

x%0.05) = 3.94, ¥%(0.95) = 183, (12-3%

Thus, with 90% prabébility the calculated sample variance si = 3 satisfies the
inequality

3.94 < (df)s2fo? < 18.3, (12-38)
and this inequality can be rearranged in the form
1.64 < 6% < 7.61. {12-39)

The estimate s? = 3 is a point estimate. The estimate 1.64 < 67 < 7.61 is
an interval estimate and should be interpreted to mean that 90% of the time
the interval calculated in this manner will contain the true a,’.

12.1.8 Efficient Use of the Data and Determination of the
Degrees of Freedom

Typically, the sample variance is calculated from a data set using the
relation

1 N
st - 2, 12-40)
Py LD {12-40)

where it is implicitly assumed that the z,’s are random and uncorreiated (i.e.,
white) and where Z is the sample mean calculated from the same data set. If all
of this is true, then s* is chi-squared distributed and has N — ! degrees of
freedom.

Consider the case of two, oscillators being compared in phase with N values
of the phase difference obtained at equally spaced intervals t,. From these N
phase values.one obtains N — 1 consecutive values of average frequency, and
from these one can compute N. — 2 individual sample Allan variances (not all
independent) for t = r,. These N — 2 values can be averaged to obtain an
estimate of the Allan variance at © = 7.

The variance of this Allan variance has been calculated (Lesage and
Audoin, 1973; Yoshimura, 1978). This approach is less versatile than the
method of the previous section since it yields only symmetric error limits.
However, it is simple and easy to use. Let A(N) be the relative difference
between the sampfe Allan variance and the true value. Thus,

s2 = [1 + AN)Jo2(x). (12-41)
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FIG.12-14  [lustration of the case of T = 414, for which the ratio of the-number of fully
sverlapping t6 nonoverlapping estimates of the variance is more than 8 for the 57 phase points
shown. When the averaging time for the computation of mean frequencies t exceeds the
sampling time 7o, the number of fully overlapping mean frequencies is far larger than the number
of nonoverlapping frequencies. In general, for large N approximately 2m. times as many
estimates. of the sample variances can be computed using the fully overlapping technique.

TABLE 12-4

Number of Degrees of Freedom for Calculation of the Confidence of the
Estimate of a Sample Allan Variance®

Noise type ‘ df
White phase W+ IXN - 2m)
AN — m)
Flicker phase exp[-ln(N — 1)‘n<[2_m + NN -~ 1))]
/ 2n 4
- - 2
White frequency [3(N b ——2(N' 2 R 4m
2m N 4m* + 5
. AN -2}
Flicker fi — =
icker frequency 23N — 49 orm = |
5N?
e 2
TN T orm=
- — 12 — 3mN — 2
Random-walk frequency N-2WN-1y - 3mN -+ 4'."'
m (N - 3)?

“ For t = mr, from N phase points spaced t, apart.
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TABLE 12-5

‘Number of Degrees of Freedom for Calculation bf the Confidence of the Estimate of a Sample
Allan Variance for the Major Noise Types®

White Flicker White' Flicker ~ Random-walk
N m. phase phase frequency. frequency frequency.
] 1 3665 4838 4.900 6.202 7.000
2 3.237 3.537 3.448 3.375 2.866
4 1.000 1,000 1.000. 1.000 0.999
129 1 65.579 79.015 84.889. 110.548 127.000
2 64.819 66.284 71.642 771.041 62.524
4 63.304 52.586. 42.695 36.881 29.822
8 60.310 37.306 21.608 16.994 13.567
16 54,509 22.347 9.982 7.345 5.631
32 44.761 9.986 4.026 2.889 2.047
64 1.000 1.000 1.000 1.000 1.000
1025 1 526.373 625.071 682.222 889.675. 1023.000
2 525.615 543.863. 583.622 636.896 510.502
4 524088 459.041 354.322 316.605 253.755
8 521.038 366.1413 186.363 156,192 125.398
16 514.952 269.849 93.547 76,495, 61.241
32 502.839 179.680 45.947 36.610. 29.210
64 478.886. 104.743 21.997 16.861 13.288
128 432.509 50.487 10.003 7.281 5.516
256 354914 17.429 4.003 2.861 2.005
512 1.000 1.000 1.000. 1.000 1.000

“ N is the number of equally spaced phase points that Are taken np at a time to form the averaging
time.

12.1.9 - Separating the Variances of the Oscillator and the Reference

A measured variance contains noise contributions from both the oscillator
under test and the reference. The individual contributions are easily sepa-
rated if it is known a priori that the reference is much less noisy than the
device under test or equal to it in performance. Otherwise, the individual
contributions can be estimated by comparing three devices (Barnes, 1966).
The three possible joint variances are denoted by ¢, 6%, and ¢, while the
individual device variances are o7, o7, and o7. The joint variances are
composed of the sum of the individual contributions under the assumption
that the oscillators are independent -

2 _ 2 2
g = 0; + 0j,

0% = o} + of, (12-43)
ak = o} + op.
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FIG.12-15  Number of degrees ol freedom as a function of averaging time for the case of 101
phase measurements: The heavy broken line is for random-walk frequency noise, the light
broken line is for flicker frequency noise, the dotted line is for white frequency noise, the heavy
solid line is for flicker phase noise, and the light solid line is for white phase noise.

An expression for each individual variance is obtained by adding two joint
variances. and subtracting the third:

2 2 2 2
o} = Yok + ol — o),

o = Yo% + o} — o}), (12-44)

o} = Yo% + af — of).

This method works best if the three devices are comparable in performance.
Caution must be exercised since Egs. (12-44) may give a negative sample
Allan variance despite the fact that the true Allan variance is positive definite.
This is. possible because the confidence interval of the estimate is sufficiently
large to include negative variances. Such a result is an indication that the
confidence intervals of the sample Allan variances are too large and that
more data is required.

122 DIRECT DIGITAL MEASUREMENT

12.2.1 Time-Interval Measurements

A common technique for measuring the phase difference between oscil-
lators having nearly equal nominal frequencies is the use of direct time-
interval measurements, In this section and those that follow, the symbols v,
and v, are used to.indicate the nominal values of v, and v,, respectively. In
the simplest form of this technique, a time-interval counter is started on some
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FIG. 12-16 The phase difference measured by a time-interval counter is the phase difference
between the start signal and the stop signal modulo. the period of the stop signal.

arbitrarily selected positive-going zero crossing of the signal from one
_oscillator (started on v, at time f,) and stopped in the next positive-going
zero crossing of the second oscillator {stopped on v, at time t,). The
measured time difference is

xa(t) — x4(ty) = — Prf1 + (vao — vio)/¥i0ls (12-45)

where P is the reading of the time-interval counter and 1, the period of its
time base (Allan et al., 1974). The units of the time difference is seconds of
oscillator number 1. Equation (12-45) demonstrates an important character-
istic of both time- and phase-difference measurements. Because of distortion
the phase of an oscillator is generally not well known except at zero crossings.
Thus, the quantity usually measured is x,(t,) — x4(t;). However, all analysis
techniques require the phase difference at the same time, and the translation
requires a correction that takes into account the difference in frequency
between the two oscillators. This correction is the reason for the second term
in the brackets on the right-hand side of Eq. (12-45).

The simple scheme deseribed above measures a maximum accumulated
phase difference of one cycle of the signal. When the phase difference exceeds.
onc cyele the counter reading is periodic, as shown in Fig. 12-16. This
ambiguity can be reduced by dividing the signals from each oscillator before
the time-interval measurement. The complete system is shown in Fig. 12-17.
The effect of the divider is to increase the time interval before an ambiguity

DIVIDER
I" B . .
~ +N START
OSCIL%.ATQR ' TIME-
INTERVAL
. (oMiDER COUNTER
2 TN sTop

OSCIL;.ATDH

FIG. 12-17 Schematic diagram_of the dividers used in conjunction with a time-interval
counter to increase the maximum measurable phase difference to. N cycles of the stop signal.
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occurs to N/vyo, where N is the divisor. Such measurement systems are used
at many standards laboratories for the long-term measurement of atomic
clocks, whose output is usually divided down to.1 pulse/sec. Since time-
interval counters with resolution better than 0.1 nsec are available, this
measurement scheme is suitable for long-term performance monitoring,
yielding frequency-measurement precision of 10™14 for 1-day averages.

12.2.2 Frequency Measurements

Average frequency is measured most directly using a frequency counter.
Used this way, the counter determines the number of whole cycles M
occurring during a time interval 7 given by the counter’s time base, Thus.

H0: 1) = (M + AM)/v ~ Mz, (12-46)

where ¥(t,: t,) denotes the average f_re(juency. over the interval from ¢, to t,
and AM, the fractional cycle, is not measured by the counter. The starting
time is arbitrarily called ¢ = 0. Thus, the quantization error is given by

Avol<vy < 1/M. (12-47)

12.2.3 Period Measurements

For low frequencies, the number of cycles counted may be small and the
quantization error can be very large. By measuring the period instead of the
frequency, it is possible to decrease the error without increasing the duration
of the measurement. A period counter measures the duration of M whole
cycles of the signal as N cycles of the time base .. The fraction of a cycle AN
is not measured. Thus, we have

. M = H0; M/vo)N + AN)r,, (12-48)
and therefore
#0; M/vo) = M/Nt, (12-49)
and the quantization error is
Avg/{vy < /N. (12-50)

Frequency measurements are almost never used to characterize precision
oscillaters, but period measurements are very common. A straightforward
extension of this method eliminates the bias potentially introduced by the
quantization error and permits the measurement of aceumulated phase. The.
counter must be capable of being read without halting the counting process.
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F1G.12-18 Two-counter system to eliminate dead time.in period measurements. The two.
counters alternately count the number of cycles of the time base in N periods of the oscillator
under test.

Alternatively, a second counter may be used to begin counting the same time
base when the first counter stops. The second approach is illustrated in Fig.
12-18, This type of measurement system is. sometimes called a chronograph.

12.3 SENSITIVITY-ENHANCEMENT METHODS
12.3.1 Heterodyne Techniques

It is possible for oscillators to be very stable, and values of g,(r) can be as
small as 107!® in some state-of-the-art standards, Thus, one often needs
measuring techniques capable of resolving very small fluctuations in y{£). One
of the most common techniques is the heterodune or beat-frequency
technique. In this method the signal from the oscillator under test is mixed
with a reference signal of almost the same frequency so that one is left with a
lower average frequency for analysis without reducing the frequency {or
phase) fluctuations themselves. )

In principle, it is possible to. analyze the most general measurement case,
where no restrictions are placed on the average frequency or phase difference
between the two oscillators under test. Equation 12-1 can be inverted as

2mvot + Pit) = arcsin Vit)/ Vo] (12-51)

and used to obtain the series ¢{mt) by sampling the voltage at regular time
intervals. This direct technique is not used, because it requires unobtainable
mixer performance characteristics. The high-level rf signals that are required
for low-noise phase measurements produce significant harmonic distortion,
so that the output of the phase detector deviates significantly from a sine
wave. Furthermore, the distortions are generally sensitive to leve! and
environmental perturbations. However, the phase relationships among the
various harmonics are very stable, so it is possible to use the repetition of one
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point on the waveform in order to count cycles. The positive-going zero
crossings are normally chosen in order to provide immunity. from changes in
both the amplitude and symmetry of the waveform.

Consider two signals whose frequency difference is much less than e
frequency of either oscillator:

Vi) = Vi sin[2mv10t + 1) + 10l
and ’ {12-52)
Vo) = Vo sin[2mvygt + @olt) + @20,
where [v;9 — vao| <€ vy and the constants ¢ and ¢, represent the nominal
phases of the two signals.
Suppose that the two signals are mixed in a linear product detector and.

filtered so that the signal at the sum frequency v, + v, is highly attenuated.
The result is

() = Vo cos[2m(vyg — vaolt + @i — d20 + ult) ~ ¢a()], (12-53)

which may be characterized by any of the measurement techniques discussed
in Section 12.2. The amplitude V; of the mixer output is a function of the
mixer design, the input amplitudes, and the output termination (Walls et al.,
1976). Using the definition (12-10), we find that for the heterodyned signal

xylt) = (1/27vy) Ag(e), (12-54)
where
Vi = V1o — V2ol {12-55) .
and
Ag(t) = ¢y(t) ~ (). (12-56)
Equation (12-54) may be rewritten as
x(t) = (vo/va)x(), (12-57)

from which we conclude that a given phase change corresponds to a larger
time deviation for the heterodyne signal than for the original signal. As a
result, the quantization error for the period measurement technique is
reduced by the factor vy/vg.

12.3.2 Homodyne Techniques

The limit of the heterodyne method, called homodyne, occurs when
Vio = Vzo- In this case the output of the phase detector is given by

Vit) = Vo cos[ro — a0 + &4lt) — ¢:01)]- . (12-58)
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The analysis of phase noise is 'accomplished by arranging that
¢10 — P20 = 7/2, which can be achieved with a phase shifter. Then,

V(t) = — Vo sin[gy(t) — ()] = Vol da(t) — ¢4(0)]. (12-59)

There are various methods by which one can control the signal ¥,(t) so that
vyo = V3o Without producing significant correlation between ¢,(t) and ¢,{t).
When any one of these methods is used, it is possible to use ¥(t) as a measure
of ¢{t). Two methods, delay lines and phase-locked loops (Gardner, 1966), are
described below.

12.3.2.1 DISCRIMINATOR AND DELAY LINE

* The circuit of a discriminator or delay-line system for measuring phase
noise is illustrated in Fig. 12-19. The delayed signal is given by

¥t} = Vit — tg) = Vao sin[2mv ot — tg) + y(t — ta) + @10 + b5

(12-60)
When the phase shifter is set for quadrature, ¢, — 2zv oty = 7/2 and
V() = Voo sin[2mviot + it — tg) + ¢yo + /2], (12-61)
The output of the phase detector is given by
V(t) = VoLt — ta) — ¢(0)]. (12-62)
Substituting Eq. (12-62) inte Eq. (12-20), we obtain
e — tgs8) = — V() 2mvo Vyt, (12-63)

and we see that the delay-line method can be used to produce samples of
Jimzo) by varying the delay time. However, the technique is used more
frequently with a fixed delay by restricting its application to the region of t
much greater than the delay time, so that j(r — t4: t) is a good approximation
for the instantaneous frequency. Under this assumption spectrum analysis of

| eHase swirTer | Vi) [piscriMINATOR OR | Ya(t)

1 e . DELAY LINE
Vott) | : vit)
( ) i PHASE
OSCILLATOR DETECTOR

FIG. 12-19 A delay-line phase-noise-measurement system. When the phase shifter is
adjusted so. that V(1) is in phase quadrature with Vglr), the output of the phase detector is
approximately equal to the instantaneous [requency deviation of the oscillator. The spectral
density of the source may be estimaled for Fourier frequencies small compared to. the inverse of
the delay time. )
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: signal from the mixer can be used to estimate the spectral density of the
iquency fluctuations:

SN G Somnl) Tor [l (1260
equency discriminators are applied in an analogous fashion. A resonant
cuit is often used to provide discrimination since it produces a phase shift
oportional to. the frequency deviation from the resonant frequency. For
ample, the phase shift on reffection from a resonance with loaded quality
stor Q is

¢ = arctan(2Qy) = 20y, (12-65)

ovided that the frequency deviation is small compared to. the bandwidth of
e resonance and the applied signal is nearly at the center frequency of the
scriminator. This can be accomplished either manually or with a frequency-
cked loop. The design of such a loop is similar to the phase-locked loop of
e next section. Once again, one can spectrum analyze the signal from the
ixer to obtain

1 '

Sy(f) = (2—Qf)75wyo(f ) for < v/Q. (12-66)
1¢ noise floor for measurements made with either a delay line or discrimi-
itor normally results from. white voltage noise in the analysis circuitry and
independent of the Fourier frequency. We denote the noise floor Sy,
1inimum) and find the noise floor for frequency or phase measurements by

Sy (minimum).
(12-67)

onsequently, the discriminator or delay-line technique is limited in sensi-
7ity since the output voltage is proportional to the frequency deviations.
reater sensitivity is possible using two oscillators in a phase-locked loop.
ae noise in the reference is an important consideration, even though the
ference is passive in the case of a discriminator or a delay line. If the
cillator has sufficiently low noise, then the circuits described measure the
iriations of the discriminator center frequency or the delay variations in the
slay line.

2 2
S Jnoise limit) = }% S (noise limit) = TT(VEQQV

)3.2.2 PHASE-LOCKED LOOP

The block diagram for the most general phase-locked loop that will be
msidered here is shown in Fig. 12-20. The noise voltage summed into the
op is a schematic way of representing ¢,(¢), the open-loop phase noise of the
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OSCILLATOR (-
UNDER TEST

FIG. 12-20. Block diagram of a phase-locked loop. The order of the loop is determined by.
the filter transfer function. For convenience, noise in the oscillator under test is introduced at the
summing junction.

FILTER
o)

{notsE

\
VOULTAGE

oscillator under test. Phase noise in the reference oscillator is denoted by
¢rel'(t)‘

The purpose of using a phase-locked loop is simply to guarantee that the
tweo oscillators are, on the average, in phase quadrature. When the oscillators
are near quadrature, the vo!tage'output of the phase detector is proportional
to the difference in phase between the two output signals.

Analysis of the phase-locked loop. yields the result

- b _Geds) 68
il = da.(ﬂ[l - Gw(s)] - qs,.f(s_)[I ; G,,,(s')]’ (12-68)

where Gq(s) is the open-loop transfer function defined by
Gufs) = 22T (12-69)

and ¢,(s) and @,{s) are the Laplace transforms of the corresponding time-
varying quantities. We can also calculate the voltage output of the phase
detector,

% (S) _ Kd[¢rgf(s) - ¢n(5)}

. 2-
[+ G s (12-70).
as well as the feedback voltage to the varactor,
Gools
Wis) = Fsats) = 80 16, 5) — (o). (2-71)
. Geols) ]
Assuming that the phase noise of the two oscillators is not correlated,
. _ K3 : . ,
Sylw) = T .ch(jﬁ))lz [Ss, (o) + S, ()], (12-72)
G, (jo):
Syley = 28O _g () ys, @1 027

11+ G i)l
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INPUT ©

FIG, 12-21 Circuit diagram of the most common loop filter for a second-order phase-
sked loop. Resistor R, is required for stable operation. Capacitor C provides the low-
'quency. gain needed-to reduce the phase errors of the first-order loop.

-6.dB/OCTAVE

IFGuw)l

FIG, 12-22  Bode plot for the loop filter of Fig" 12-21.

hus, if we know the behavior of G q(jw), then we can relate the measured
sectrum of the voltage at the output of the phase detector or at the varactor
mer to the sum of the spectral densities of the phase noise of the two
scillators.

The loop filter is often chosen to be a pure gain. The resulting first-order
op has a significant drawback : the two oscillators are offset from quadra-
ire by a phase shift proportional to their open-loop frequency difference. In
rder to maintain system calibration, the operator must remove the fre- -
nency offset from time to. time. This problem can be eliminated by using a
:cond-order loop. Figure 12-21 illustrates one loop filter that can be used to
chieve the desired frequency response. The transfer function of this filter is

F(s) = (1 + st5)/s1y, (12-74)
here 7, = R,C and 7, = R,C. Figure 12-22 shows the Bode plot of the
equency-response function of this filter. Substitution of Eq. (12-74) into Eq.
2-69) yields the open-loop frequency-response function

w? + 2jlw,w
G ljw) = D TS w’f , (12-75)

there

0, =[Kohg " (12-76)
nd

£ =41,0,. 12-77
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FI1G. 12-23 Bode plot.of the open-loop frequency-response function for a phase-locked loop
having the loop filler of Fig. 12-21. Parameters. were chosen to illustrate a stable condition.

The first requirement to be satisfied by the loop parameters is that the
closed loop be stable. Since the transfer function G.4(s) has no poles or zeros
for s > 0, a sufficient requirement for the phase-locked loop. to be stable is
that the slope of the Bode plot of |G, ,( jw)| be less steep than — 12 dB/octave at
the point where |G,q(jo)l = 1. The Bode plot of |G.(jw)| is shown in Fig.
12-23 for a case where the loop operation is stable.

It is desirable for the loop to be nearly critically damped, that is, { = 1. At
critical damping the natural frequency of the loop is related to 7, by

W g=y = 2/T3. (12-78)
Under the same conditions the unity gain frequency is
Wy gy = 412/75. (12-79)

The second requirement to be satisfied by the phase-locked loop is related
to the accuracy with which spectral-density measurements can be made.
Substitution of Eq. (12-75) into Eq. (12-72) yields

Kio*

Sy, (w) = @ 2P 1 4(3,2(1‘)2“)2 {840} + Sy ()] (12-80)

Since the proportionality factor has a high pass response, it is possible to use
an essentially constant calibration to relate Sy, (w) and Sy(w). For example, if
we require that

Sy fw) = K3[S,,. () + S, ()] ‘ (12-81)

with no more than 10% error for all Fourier frequencies greater than
27 rad/sec, then for thé critically damped loop the requirement on t, is
T, > l.4sec.
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The third requirement on loop performance is. that the frequency offset
tween the. two oscillators produce negligible phase shift of the oscillators
»m quadrature. In the ideal loop the phase error for a frequency error Av
troduced at time t = Q is

Berror = 27 Avt €™t

owever, in the actual circuit there is a finite phase error due to the limited
op gain of the amplifier of Fig. 12-21. Nevertheless, the phase error is
duced by 10° compared to its value for a first-order loop. Typically, the
ror is less than the residual phase error due to the voltage offset at the mixer
itput and should be much less than 1°.

The feedback loop reduces the sensitivity of the system for measurements
the phase spectral density for Fourier frequencies less than the unity-gain
:quency of the phase-locked loop. One way to avoid this problem is to
ilize the feedback voltage V;. Substituting Eq. (12-75) into Eq. (12-73), we
id that

2mvi(ws — 40l0?)

(@? — ©})? + 4 0jw?

Sydw) =

[S)..d@) + S, (@)].  (12-82)

or this case, the proportionality factor has a.low pass response and a
nstant calibration factor may be used to relate S, (w) to S (w).

3.3 Muitiple Conversion Methods

Quite often the beat frequency between the signal under test and the
soratory reference is unsuitable or inconvenient for frequency-stability
:asurements. The frequency may be too high for the available counters or
¢ heterodyne factor may be too small to yield the required noise enhance-
:nt. Under these circumstances a sccond mixing stage in serics with the first
n be used to produce the desired beat frequency. On the other hand, the
rect beat frequency between two oscillators may be too-small. For example,
e frequencles of commercial cesium-beam frequency standards are usually
close together that the beat frequency between two devices would be near
cycle/day, making it impossible to observe the stability at shorter times.
is. limitation can be overcome by the use of two parallel mixing stages.

3.3.1 FREQUENCY SYNTHESIS

A commercial frequency synthesizer is usually the most convenient way to
oduce arbitrary reference frequencies for stability measurements. A mixing
1ge preceding the synthesizer can be used both to bring the signal into the
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F1G.12-24 Use of frequency synthesis to measure oscillators whose frequency differs
significantly from the available low-noise reference. It may be necessary to use a [requency
multiplier to bring the signal into. the range of the available synthesizer or to overcome the
synthesizer's phase noise.

appropriate range and to enhance the oscillator noise compared to the short-
term phase noise of the synthesizer, Figure 12-24 demonstrates both aspects
of the technique. »

The initial mixing stage from the microwave frequency to the rf results in a
substantial hcterodyne factor, 77.5 for the example chosen. The output of the
first conversion stage lies within the range of low-noise commercial frequency
synthesizers, which makes it possible to obtain a fixed, low beat frequency:

" over a wide range of input frequencies. The initial mixing stage also reduces
the frequency synthesizer’s contribution. to the measurement-system noise.
Figure 12-25 shows the typical phase excursions of a high-quality commercial
synthesizer operated near 5 MHz.

Under some circumstances a frequency divider may be used to provide
the signal for the second mixing stage, as shown in Fig. 12-26. This technique:
has the disadvantage of requiring a custom divider but results in much
lower measurement noise than the direct use of a synthesizer with a single
heterodyne stage.

X o [

\

—
80.000.

Ery.
0

TIME (SEC)
FIG.12-25 Typical phase excursions of a commercial frequency synthesizer.
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FI1G. 12-26 Use.ofasimple divider as.a substitute fora commercial frequency synthesizer in
a heterodyne measurement system. Better noise performance can result from the initial mixing
stage.

12.3.3.2 THE DUAL-MIXER TIME-DIFFERENCE
TECHNIQUE

There is no best answer to the question of how to make frequency-stability
measurements. However, by combining versatility with low-noise perform-
ance, the dual-mixer time-difference technique (Cutler and Searle, 1966: Allan
and Daams, 1975) shown in Fig. 12-27 comes close to the ideal. The original
motivation for this method was to use a transfer oscillator and two mixers in
parallel to permit short-term frequency-stability measurements between
oscillators that have an inconveniently small frequency difference. The
transfer oscillator is most easily realized with a frequency synthesizer locked
to one of the oscillators, designated oscillator 1 in Fig. 12-27. By convention
the frequency of the synthesizer is set low compared to the oscillator under
test, so we write the frequency of the synthesizer as

v, = v,(1 — 1/R). (12-83)

The constant R is equal to. the heterodyne factor, which can be seen by
calculating the beat frequency between oscillator 1 and the synthesizer:

vy = ¥ — vs = v/R. (12-84)

OSCILLATOR 1

~

) SCALER
MIXER ZERO- | »

CROSSING .
DETECTOR [——{STaRT
| FREQUENCY - TIME-INTERVAL (=, |
SYNTHESIZER COUNTER -
— ZERO- |
v CROSSING
mixer] ~ |DETECYOR

OSCILLATOR 2

FIG. 12-27 A dual-mixer measurement system. The scalars measure the number of whole
cycles of elapsed phase, while the time-interval counter measures. the fractional cycle.
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The combination of oscillator, frequency synthesizer, and mixer functions as
a divider and scaler I functions as the system clock, recording elapsed time in
units. of cycles of oscillator 1.

The signals from oscillators 1 and 2 are represented according to Eq.
(12-52) with ¢, = ¢»0 = 0, and the signal from the synthesizer is written

Vilt) = Vi cos[2mv,ot + $(0)] (12-85)

The phase of the synthesizer retards nearly linearly in time compared to the
phase of oscillators | and 2, At time t, the synthesizer reaches phase
quadrature with oscillator 1 and the beat signal crosses zero {in the positive
direction), producing a pulse from the zero-crossing detector and starting
the time-interval counter. At a later time ty the continued sweep of the
synthesizer has brought it into quadrature with oscillator 2, and a pulse is
produced that stops the time-interval counter. The phase difference between
the oscillators can, be written in terms of the threc counter readings:

Galtn) — dilty) = AN — M)m — 2xlvg,(ta tw)]t. Py {12-86)

where N is the reading of scaler 2, M the reading of scaler 1, P the reading of
the time-interval counter, and 7 the period of its time base (Stein et al., 1983).
Comparison with Eq. (12-45) for direct time-interval measurements reveals
that the role of the scalers is to accumulate the coarse phase difference
between the oscillators, while the time-interval counter provides fine-grain
resolution of the fractional cycle. This process is itlustrated in Fig. 12-28. The
advantage of the technique over direct time-interval measurements is that the
noise performance is improved by the large heterodyne factor, allowing time
resolution of 0.1 psec to be obtained. The synthesizer degrades the noise
performance very little since it contributes 1o the noise only over the interval
. P.

x(t)

TIME

FIG. 12-28 Total elapsed phase measured by the dual-mixer system of Fig. 12-27 (solid
line). This phase measurement consists of two components: the number of full cycles that have
elapsed is the step.function plotted as.a dashed line: the fractional cycle is the saw-tooth function
plotted as open circles.
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The average beat frequency ¥p,(f): ty) €annot be known exactly, but it may
se estimated with sufficient precision if it changes slowly compared to. the
nterval between measurements. 1f the primed and unprimed variables
epresent two independent measurements, then

Toaltuei ty) = (V' = NYIROL' = M)Pvio + TP = P} (12:87)

:2.3.3.3  FREQUENCY MULTIPLICATION

A frequency multiplier produces » full cycles of the output signal for each
iycle of the input signal, where n is an integer determined by the design of the
levice. Such a device is also a phase multiplier, that is, the total phase
iccumulation of the output signal is n times as great as the phase accumu-
ation of the input signal;

Doyt = 2ot + Poult) = 2nlnvip)t + npis(1). (12-88)

t follows that the spectral density of the output signal is enhanced by a factor
if n* compared to the input signal,

So.df) = S, (1),

naking it easier to perform the necessary noise measurements. Similarly, it is
uso easier to. make Allan-variance measurements. If the oscillator under test
ind the reference are both multiplied by the same factor, the beat frequency
vill be n times larger than with no multiplication but the heterodyne factor
will be the same. The zero. crossings that must be detected by the counter
1ave n times higher slope and more easily overcome the voltage noise in the
sounter trigger circuits. The ability to measure frequency stability is only
:nhanced if the multipliers have extremely low phase noise themselves. This is
he case for many modern multipliers that are triggered by the zero crossings
f the input signal. ‘As a result, the use of multipliers can reduce the
»erformance requirements on the phase detector and the following low-noise
wmplifiers..

124 CONCLUSION

The IEEE recommendations have achieved the goal of introducing
jubstantial uniformity in the specification of oscillator performance. The
Allan variance and the one-sided power spectral density of phase have proved
wfficient to evaluate oscillators for all commen applications. In a few cases
nore specialized measures are helpful in relating performance to the specific
\pplication. For example, the rms time-prediction error is helpful in judging a
slock’s ability to keep time over long intervals (Allan and Hellwig, 1978).
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However, the specialized performance measures are generally calculable in
terms of the IEEE recommended measures.

Significant progress has been made during the last 15 years in measure-

-ment techniques and data processing. These advances have obscured the
dividing line between the frequency domain and the time domain. Today the
spectral density and the variance are most often computed from the identical
“input data set, the equally spaced time series of the phase deviations. The
choice of a specific measurement setup can be made mostly on a cost versus
performance basis. Perhaps the biggest advance in commercially available
equipment is the introduction of heterodyne measurement techniques for
time-domain {counter-based) measurements. As a result, the noise perform-
ance of these systems has improved dramatically.

One recommendation that should be made is to perform measurements as
high up in the measurement hierarchy as possible. Direct measurement of the
phase deviation is most desirable. This approach places the largest share of
the burden on the measurement equipment, minimizes long-term errors, and
maximizes data processing flexibility.





