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Abstract

A simplified realization for the Gaussian filter in surface metrology is presented in
this paper.  The sampling function uusin  is used for simplifying the Gaussian
function. According to the central limit theorem, when n approaches infinity, the
function ( )nuusin  approaches the form of a Gaussian function.  So designed, the
Gaussian filter is easily realized with high accuracy, high efficiency and without
phase distortion.  The relationship between the Gaussian filtered mean line and
the mid-point locus (or moving average) mean line is also discussed.
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1. Introduction

The Gaussian filter has been recommended by ISO 11562-1996 and
ASME B46-1995 standards for determining the mean line in surface metrology
[1-2].  Its weighting function is given by
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where 4697.0=α , t is the independent variable in the spatial domain, and cλ  is
the cut-off wavelength of the filter (in the units of t).  If we use )(tx  to stand for the
primary unfiltered profile, )(tm  for the Gaussian filtered mean line, and )(tr  for
the roughness profile, then

)()()( thtxtm ∗= (2)

and

)()()( tmtxtr −= , (3)

where the * represents a convolution of two functions.  Therefore, the key issue is
how to calculate the mean line )(tm .  Many researchers [3-7] have worked on this
problem and faced the same difficulties that arise from the collective requirements
for high accuracy, fast speed, no phase distortion, and simplicity in the computer
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algorithm.  A number of methods have been developed, including the direct
convolution integral method [3], FFT fast filtering method [4], fast filtering method
based on the symmetry and recurrence of the weighting function of the Gaussian
filter [5], and various kinds of approximation methods [2,6,7,8].  In this paper, we
present a simple new method using the sampling function uusin  for Gaussian
filtering.  This method not only is practical, but also indicates quantitatively how
one approaches a Gaussian filtered mean line with successive mid-point locus (or
moving average) mean lines [9-11].  For comparable accuracy, the method
presented here is even faster than a similar approximation method presented

previously [8] using ( ) n
u

−
+ 21  as the basis function.

2.  Basic Theory

2.1 Sampling Function uusin  and Gaussian Function 
2ue−

Consider the limiting form of the Gaussian function as follows
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This fact implies that 1 is a special approximation of the Gaussian function.  In the
spatial frequency domain, if the transmission characteristic of a filter
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can refer to this ideal low pass filter as an approximation of the Gaussian filter.
Here ω  is the spatial angular frequency, equal to λπ2 , where λ  is the spatial
wavelength, and cω  is equal to cλπ2 .  In the time domain, if
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th , we can consider )(th  to be a low pass filter.  It has equal

weighting coefficients and is also an approximation of the Gaussian filter.  Here �
represents a spatial length.  The time domain filter with equal weighting
coefficients is useful for designing an accurate Gaussian filter.  Since the Fourier
transform of a Gaussian function is also a Gaussian distribution, we can deduce

that the Fourier transform of the special function 
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approximates the Gaussian function.  In fact, the Fourier transform of this special
function is a function with the shape of uusin .  That is, the sampling function

uusin  is a prototype for approximating the Gaussian function.  The two formulas,
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closely resemble each other.  Further, according to the central limit theorem [12],
the self-multiplication of the uusin , i.e., ( )nuusin , approaches the shape of the
Gaussian distribution.  The larger the n, the higher the approximation accuracy.
In brief, that is
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where nc  is a constant related to n.

2.2 Gaussian Filter for Surface Metrology

The Fourier transform of the Gaussian weighting function in Eq. (1) is a
Gaussian transfer function )(ωH

( )2)( ceH ωαωπ−=ω  . (8)

We choose now to express this function in terms of the normalized spatial
wavelength cλλ / , so that

( )2)/( λαλπ−=λλ ceH c  . (9)

With Eqs. (7) and (9) in mind, we can construct a series of approximation filters,
)/( λλcnH , of the Gaussian filtering characteristic.  The form of these

approximation filters is as follows

( ) n

cn

cn
cn c

c
H ��

�

�
��
�

	

λπλ
λπλ=λλ sin

)/(  , (10)

where nc is a constant to be determined by the condition that when cλ=λ ,
%50)/( =λλcnH .  Some values of nc  are given in Table 1.

Table 1.  Coefficient nc  and Filtering Order n

n 1 2 3 4 8 16 32
nc 0.6034 0.4429 0.3661 0.3189 0.2275 0.1616 0.1145
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The transmission characteristics of the Gaussian filter and these
approximation filters are shown in Table 2 and Fig. 1a, while the approximation
error is shown in Fig. 1b.

Table 2.  Gaussian Filter and Some Approximation Filters, )/( λλcnH

cλλ / 2)/( λαλπ− ce 1H 2H 3H 4H 8H 16H

0.1 0.0% 0.6% 0.5% 0.0% 0.0% 0.0% 0.0%
0.2 0.0% -0.6% 0.8% -0.1% 0.1% 0.0% 0.0%
0.3 0.0% 0.6% 4.6% -0.5% 0.0% 0.0% 0.0%
1/3 0.2% -9.9% 4.2% -0.1% 0.0% 0.1% 0.1%
0.5 6.3% -16.0% 1.6% 3.4% 4.2% 5.3% 5.8%
0.7 24.3% 15.5% 21.2% 22.4% 22.9% 23.7% 24.0%
1.0 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0%
1.5 73.5% 75.4% 74.4% 74.1% 73.9% 73.7% 73.6%
2.0 84.1% 85.7% 84.9% 84.6% 84.5% 84.3% 84.2%
2.5 89.5% 90.7% 90.1% 89.9% 89.8% 89.6% 89.6%
3.0 92.6% 93.5% 93.0% 92.9% 92.8% 92.7% 92.6%
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Fig. 1a Amplitude Transmission Characteristics of the Gaussian Filter and Its
Approximation Filters
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Fig. 1b The Transmission Characteristic Deviations of the Approximation Filters
from the Gaussian Filter.  The data points show, for selected spatial
wavelengths, the results of calculations using an implementation of the

8H filter described  in Sec. 3.

In fact, when 1=n , )/(1 λλcH  represents the transmission characteristic of
the mid-point locus (or moving average) mean line method [9-11].  In other words,
the mid-point locus mean line filter is the first-order approximation to the Gaussian
filter.  The mid-point locus mean line is very simple conceptually and is easily
realized in instruments.

When 2=n , )/(2 λλcH  is the second-order approximation to the Gaussian
filter.  It is equivalent to a triangular function in the spatial domain, an
approximation discussed in the ASME B46 standard [2].  This is shown by Fig. 2,
which is a re-plot of the data of Fig. 1b so that it can be compared to a similar
graph in the ASME B46 standard.  The results for 2H  here agree with those for
the triangular function in the standard.

When n is odd, there are spatial wavelength regions where the function
)/( λλcnH  is less than zero, thus producing filtered profile components �180  out of

phase from the input profile components in those regions.  Although this problem
becomes less important with n increasing, we prefer even values of n  to odd
ones.  In general, when 2≥n , )/( λλcnH  can be called a high order
approximation for the Gaussian filter.

λλ /c
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Fig. 2 The Transmission Characteristic Deviations of the Approximation Filters
from the Gaussian Filter

2.3 Mid-Point Locus Mean Line Filter

The weighting function of the mid-point locus mean line filter is
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Therefore, the mid-point locus mean line )(1 tm  can be computed by
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Obviously, the transmission characteristic equation of the mid-point locus mean
line is )/(1 λλcH , i.e.,
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Under the condition of digital measurements, if )(ix  represents the equally
spaced, digitized surface profile, then the mid-point locus mean line )(1 im  is given
by
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where 12 +k  is the number of sampled points within the length cc λ⋅1 .
Correspondingly, the transfer function )(1 zH  in z -transform space [13-14] is as
follows
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From Eq. (15), the digital transmission characteristic of the mid-point locus mean
line method is represented by
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where cN  is the number of sampled points within a cut-off length cλ ; N  is the
number of sampled points within a wavelength λ , i.e., cc NN ⋅λλ= )/( ; k  is an
integer determined by

cNck ⋅=+ 112  ; (17)

and the value of k is chosen to make |12| 1 cNck ⋅−+  minimum.

2.4 High Order Approximation Filters

Analogously, the digital forms of these high order approximation filters
must be
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where k satisfies the condition of |12|min cn Nck ⋅−+ .

By comparison with the mid-point locus mean line method, the
z-transformation transfer functions, )(zHn , of the high order approximation filters
are represented by
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So we can use the same form of difference equation n times and finally obtain the
approximation Gaussian filtered mean line.  The computational processes are as
follows.  The unfiltered profile 0m  is given by

)()(,),2()2(),1()1( 000 MxMmxmxm === �  . (20)

Then, for any intermediate or final filter stage p such that np ,,3,2,1 �= , the
filtered line pm  is given by
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A normalizing factor is then included at the end:
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where M is the number of sampled points within a traversing length and )(im ,
nkMnki −+= ,,1�  is the accurate Gaussian filtered mean line.  In general, the

sampling condition for Gaussian filtering must be satisfied with cNnkM ×≥− 52 .
These cN5  data points are used for surface assessment, and the points at both
ends are omitted.  A QBASIC program for the Gaussian filter for 8=n  is
presented in the Appendix.

3. Experiments

Two approximation filters, )(8 zH  and )(16 zH , are selected as examples.
Assuming a value of 1600=cN , a typical setup condition for one of our
instruments, the values of k are 181 and 129 for the two filters, respectively.  The
results of their amplitude transmission characteristics calculated from Eq. (18) are
shown in Table 3.
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From Table 3, it can be seen that the maximum error of the approximation
is about 1% for )/(8 cNNH , and about 0.4% for )/(16 cNNH .

Table 3.   Transmission Characteristics of the Approximation Filters

cNN 2)/( NNce απ− )/(8 cNNH )/(16 cNNH

0.1 0.0% 0.0% 0.0%
0.2 0.0% 0.0% 0.0%
0.3 0.0% 0.0% 0.0%
1/3 0.2% 0.1% 0.1%
0.5 6.3% 5.5% 5.9%
0.7 24.3% 24.0% 24.1%
1.0 50.0% 50.4% 50.1%
1.5 73.5% 74.0% 73.7%
2.0 84.1% 84.4% 84.2%
2.5 89.5% 89.8% 89.6%
3.0 92.6% 92.8% 92.7%

A simulated surface profile with traversing length 6.57 =λc  mm is shown in
Fig. 3a that consists of ten harmonic components with known frequencies ranging
from cλ/1.0  to cλ/25 .  So we can compute its theoretical Gaussian filtered mean
line according to the standard Gaussian filtering transmission characteristic.  For
this example, the sampling interval is 0.5 µm, and therefore the total number of
the sampled data points, 112007 =cN .  The small differences between the
theoretical Gaussian filtered mean line and )(8 zH  filtered mean line are shown in
Figs. 3b and 3c, respectively.  At the two ends of the profile, totaling
2×8×181=2896 data points, the )(8 zH  filtered mean line cannot be carried out.
These are the “end effects” of the filter )(8 zH .

We have installed the 8H  approximation into a BASIC program for
instrument control of a system for measuring sinusoidal roughness standard
reference materials [15] and for analysis of the measured surface profiles.  The
QBASIC code for the filter is given in the Appendix.  We have performed
numerical tests of the filter transmission characteristic for 8.0=λc  mm as a
function of spatial frequency of the sinusoidal input ranging from 25 mm to
0.08 mm.  The results, some of which are shown in Fig. 1b, indicate a maximum
error of 1.05% in the amplitude transmission characteristic for the selected spatial
frequencies and excellent agreement with the theoretical error function for 8H .
The system, including this new filter, has been used to calibrate the most recent
batch of NIST SRM 2071 [16], sinusoidal roughness blocks with nominal Ra of
0.3 µm and nominal spatial wavelength of 100 µm.
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Fig. 3 (a) Surface Profile and Its Filtered Mean Lines;
 (b) Difference Curve between the Theoretical Gaussian Filtered Mean

Line and the Practical Approximation 8H ;
(c) Difference Curve of (b) Amplified further

4.  Summary

Based on the relationship between the sampling function uusin  and the

Gaussian function 
2ue− , a new simplified realization method for the Gaussian filter

in surface metrology has been set up.  The new method has a simple form, high
accuracy, and fast computational speed and has no phase distortion.  Even in the
modestly efficient programming language QBASIC 4.5 using a 486/33MHz
computer, less than 5 seconds are required using the 8H  level of approximation
for the Gaussian filter to process a surface profile containing 11200 sampling data
points.

The new method also shows quantitatively how successive mid-point locus
mean line filters approximate the Gaussian filter.  As shown by its amplitude
transmission characteristic, the mid-point locus mean line filter is the lowest order
approximation to the Gaussian filter.  In other words, many cascades of the mid-
point locus mean line filter can realize the Gaussian filter in surface metrology.
The Gaussian filter approximation method discussed in the ISO 11562-1996 and
ASME B46.1-1995 standards is composed of two cascades of the mid-point locus
mean line filter.

µm
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One version of the new approach has been implemented in an existing
calibration system for surface roughness measurement.
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Appendix:  Example of a QBASIC Program for the
Gaussian Approximation Filter )(8 zH

The Gaussian filtering algorithms above have been programmed in
QBASIC for our purposes.  It is also easy to write down the programs using C
language.  The QBASIC program for the filter )(8 zH  is as follows:

DIM X(11200), R(11200), M(11200) : X(11200) measured profile
      K=181 : Filtering constant for )(8 zH
      FOR I=1 TO 11200
               M(I)=X(I)
      NEXT I
      FOR N=1 TO 4 : Filtering
              J=K+1
              R(J)=0
              FOR I=J-K TO J+K
                      R(J)=R(J)+M(I)
              NEXT I
              FOR J=(K+1)+1 TO 11200-(K+1)
                       R(J)=R(J-1)+M(J+K)-M(J-K-1)
              NEXT J
              J=K+1
              M(J)=0
              FOR I=J-K TO J+K
                      M(J)=M(J)+R(I)
              NEXT I
              FOR J=(K+1)+1 TO 11200-(K+1)
                      M(J)=M(J-1)+R(J+K)-R(J-K-1)
              NEXT J
      NEXT N
      FOR I=1600 TO 11200-1600
             M(I)=M(I)/(2*K+1) /(2*K+1) /(2*K+1) /(2*K+1)
             M(I)=M(I)/(2*K+1) /(2*K+1) /(2*K+1) /(2*K+1) : M(I) filtered mean line
             R(I)=X(I)-M(I) : R(I) roughness profile
      NEXT I
END


