Workshop on High Megawatt Electronics

December 11, 2009

An Isochronous Grid Through Electronics

Colin Schauder
Satcon Technology Corporation

The Grid is a Wonderful Thing – But ...

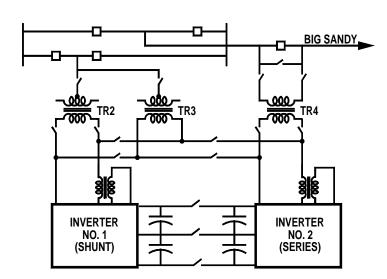
- The US electric power grid is a modern wonder.
- We are
 - Usually it's <u>BENEFICIARIES</u> everything is electrical
 - Sometimes it's <u>VICTIMS</u> suffer through power outages
 - But always it's <u>CAPTIVES</u> almost impossible to change
 - Huge capital investment in equipment and infrastructure
 - Entrenched bureaucracy and operating procedures
 - No financial incentive to do anything differently
 - Nothing changes unless legislation forces it
- Given the technology and hindsight available today, Edison and Westinghouse might come to different conclusions about how to deliver electricity.

The Utility-Scale Electronic Generator

- A static or other electronically-controlled sinusoidal 3phase voltage source
- Self-commutated (i.e. independent of ac line voltage)
- High power rated
 - Multi-megawatts to hundreds of MW
- Capable of real power flow in one (or both) directions from (or to) a real power source (or sink, or energy storage) – analogous to the "prime mover"
- Capable of connection at transmission voltage levels
- Capable of generating (and absorbing) reactive power
- High Efficiency
 - Expected power losses < 1%</p>

Electronic Generators Arrived Quietly in the 1990's - In Disguise

- Not billed as generators, but <u>disguised</u> as part of other equipment types – up to 320 MVA
 - STATCOM Static Compensator
 - Westinghouse, Mitsubishi, ABB, Alsthom US installations TVA, AEP, PG&E, NYPA, SDG&E, VELCO, NU, Austin
 - UPFC Unified Power Flow Controller
 - Westinghouse (Siemens) AEP, NYPA, Korea
 - SSSC Static Synchronous Series Compensator
 - Westinghouse (Siemens) AEP, NYPA
 - IPFC Interline Power Flow Controller
 - Westinghouse (Siemens) NYPA
 - Arc Furnace Flicker Compensator
 - Westinghouse, Mitsubishi
 - Back-to-back asynchronous intertie
 - ◆ ABB US installation at AEP
 - HVDC Lite
 - ABB worldwide

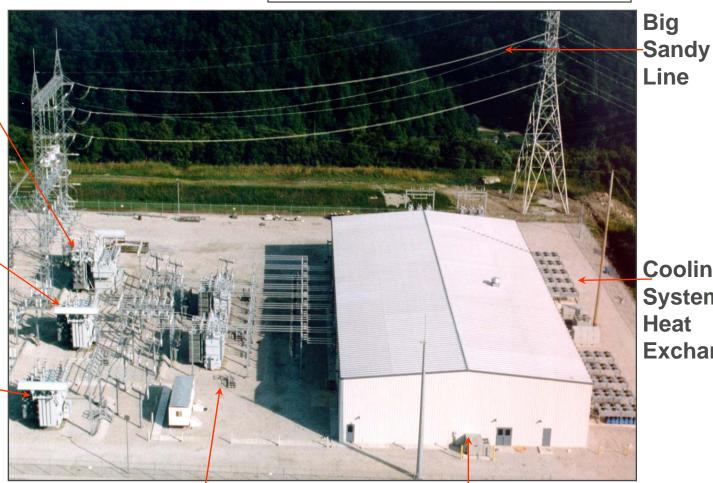

Various High-Power Equipment Has Been Built Around Large Electronic Generators

- All of these types of equipment qualify as electronic generators as defined here.
- The power ratings achieved are comparable with moderately large utility generating units
- None of the equipment types has typically been associated with a built-in capability to produce electrical power from fuel or renewable sources or to and from bulk energy storage.
- They were designed to serve different purposes from conventional utility power generation
 - Var generation Voltage support Flicker reduction
 - Transmission line power flow control Power oscillation damping.
 - Underwater and underground power transmission by cable
- But .. Connected to suitable dc power sources or energy storage the same designs could serve as very high performance ac generating units for the grid.

WESTINGHOUSE (SIEMENS) UNIFIED POWER FLOW CONTROLLER AEP INEZ SUBSTATION, KENTUCKY. 320 MVA (2 x 160 MVA) INVERTER - DEDICATED JUNE 1998

- First back-to-back inverter installation
- Largest inverter installation in the world (when dedicated)
 - First high power 3-level pole installation
- First demonstration of series connected inverter-based compensation
 - First demonstration of UPFC with automatic power flow control

ACKNOWLEDGEMENT TO AEP FOR USE OF PICTURE


UPFC Installation at AEP Inez Substation

ACKNOWLEDGEMENT TO AEP FOR USE OF PICTURE

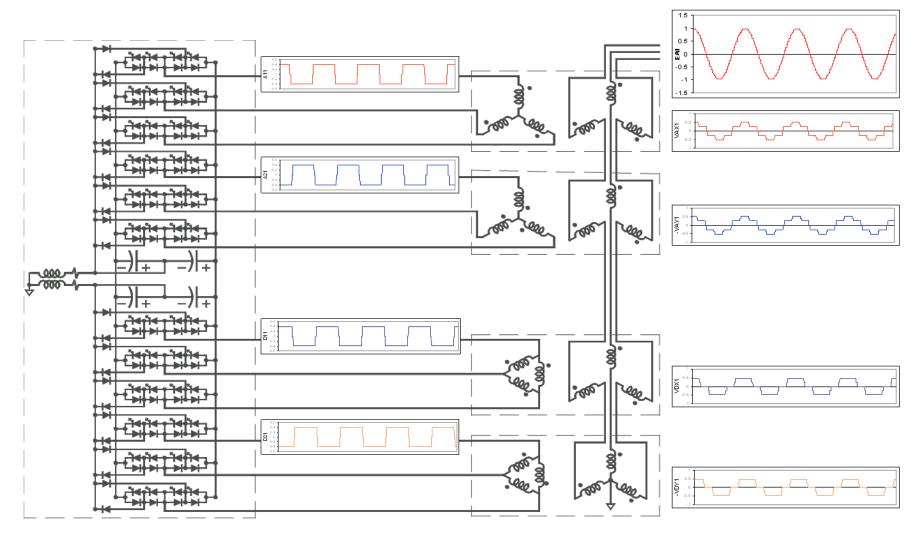
Series **Transformer**

Spare Shunt Transformer

Main Shunt **Transformer**

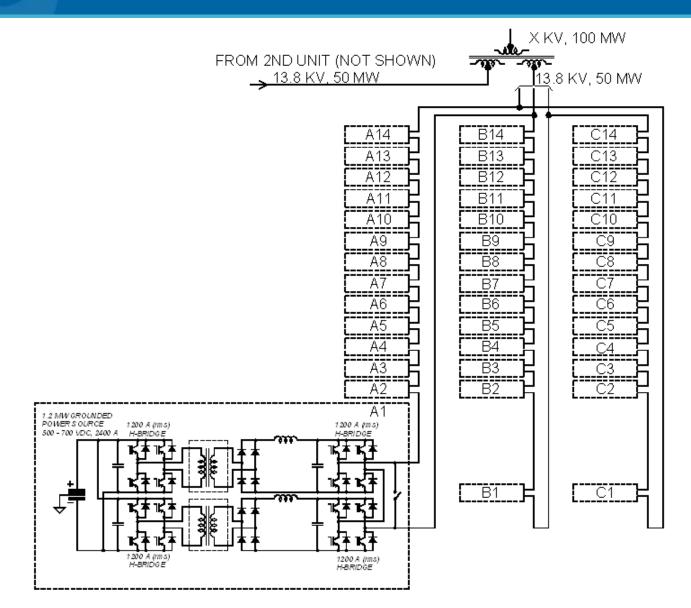
Shunt & Series Intermediate Transformers

UPFC Building (Inverters & Controls)


Cooling **System** Heat **Exchangers**

View of the 320 MVA (2 x 160 MVA) GTO-Based Inverter at AEP Inez Substation

Example of Electronic Generator Waveform Synthesis


- AC Series Cascade 60 Hz Switching 48-Pulse Output Voltage
- Practical Design in Service at 150 MVA

Example of a Hypothetical 100 MW Electronic Generator

- H-Bridge Series Cascade Low Voltage IGBT's
- Multiple Grounded Power Sources

Large-Scale Self-Commutated Electronic Generators Failed in Some Markets – Succeeded in Others

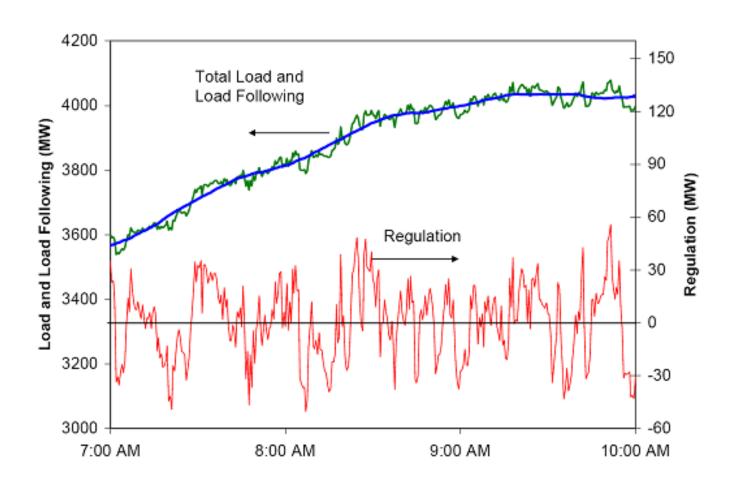
- After many successful demonstration projects established the technical viability, commercial reality set in.
 - Failed in transmission compensator market
 - Utilities prefer alternative line-commutated thyristor-based equipment for var generation - Lower performance, lower cost.
 - Little interest in power flow control or oscillation damping
 - Succeeded in underwater and underground cable transmission market.
 - HVDC Lite (ABB) (and very recently HVDC Plus (Siemens))
 - DC cable beats AC cable transmission.
 - Self-commutated beats line-commutated on weak AC bus

Return of the Electronic Generators – No Disguise

- Electronic generators are returning to the grid, with a new raison d'être as the grid connection interfaces for renewable and alternative energy sources and storage
 - Lower unit power ratings (1MW 3MW typical) but sometimes aggregated to tens of MWs per site
 - Often connected to the <u>distribution system at MV levels</u> rather than a transmission bus
 - With built-in power sources / sinks:
 - Renewable energy (PV storage (x 1 MW)
 - Grid interface for wind turbines (x 3 MW DFIM)
 - Energy storage
 - Usually not owned and operated by utilities

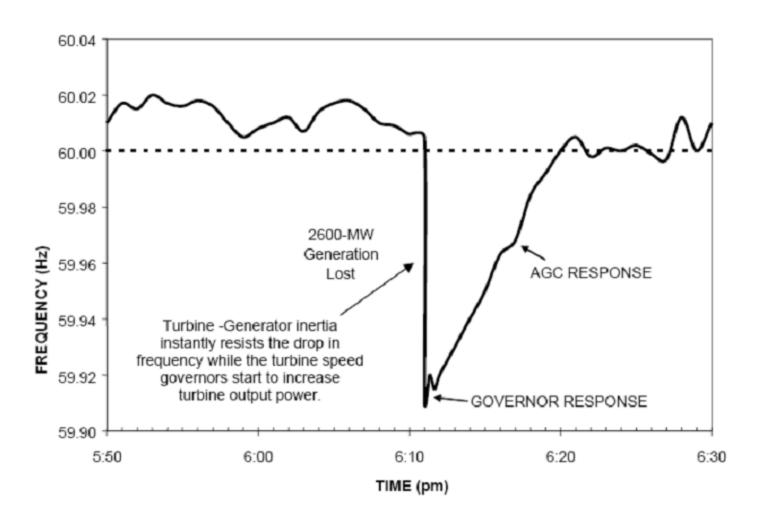
Electronic Generators Have Been Relegated to Menial Duty Providing an Interface with the AC Grid

- Presently electronic generators act as simple low-tech power sources connected to the grid.
 - Allowed to push current into the grid for various purposes
 - Regulate voltage at transmission buses and ride through disturbances
 - Regulate nothing on distribution buses get out of the way during disturbances and let the big boys handle it



Control of the AC Interconnected Grid Has Evolved Around Synchronous Machine Generators

- Frequency is used as a global control variable
 - Effectively establishes a form of communication between generating units.
- Grid control <u>depends</u> on frequency change.
- Generator governor action provides a power/frequency droop characteristic that establishes equitable load sharing.
- Sudden load changes are transiently supplied from the collective stored energy (inertia) until governor action stabilizes the grid at a new frequency.
- Secondary control from a control center slowly adjusts the droop characteristics so that the load/generation equilibrium point returns to 60 Hz.



Control is Based on Frequency Deviation and Correction – Power Used For Correction is Expensive

Stored Energy (Inertia) Supplies Load Excess Until Governor Action Stabilizes Frequency – AGC Corrects

How Would You Utilize The Capability of An Electronic Generator to Control a Grid?

 Emulate a conventional synchronous machine generator in a conventional ac interconnection

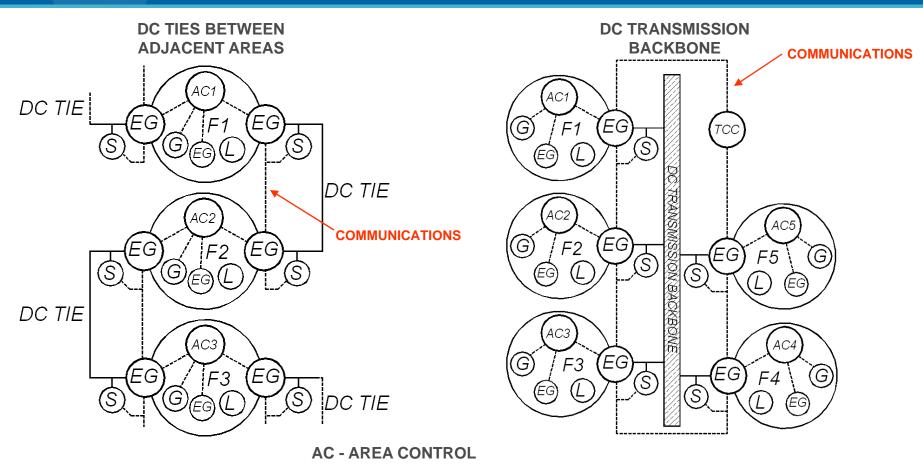
<u>OR</u>

Establish an isochronous ac interconnection area under electronic control

How Should Electronic Generators Be Incorporated Into A New Modern Grid Architecture?

- Electronic generators can be forced to suppress their fast control capability, and mimic the behavior of their rotating synchronous machine counterparts.
 - Frequency/Power droop with slow secondary frequency correction –
 Business as usual Same power system stability issues.
 - This is the basis of the CERTS approach to microgrid control

<u>OR</u>


- Electronic generators can be used to
 - Maintain constant grid frequency
 - Instantaneously absorb real and reactive load/generation differences
 - Provide dc interties for stable power exchange with other ac grid segments
 - Respond rapidly to control center commands through secure high speed communications.

Electronic Generators Can Be More Than Just Grid Interfaces – They Can Control The Grid Frequency

- An electronic generator of sufficient rating can support a quasi-infinite ac "swing" bus, defining the frequency of the entire ac interconnection in an absolute sense.
 - An electronic generator provides a nearly ideal Thevenin voltage source behind a finite tie impedance
 - Frequency and phase of the controlled voltage source is <u>not</u> <u>dependent on load</u>
 - The electronic generator supplies or absorbs all of the differential real and reactive power for the grid (i.e. the difference between other generation and loads) – virtually instantaneously.

Two Hypothetical Electronic Grid Architectures

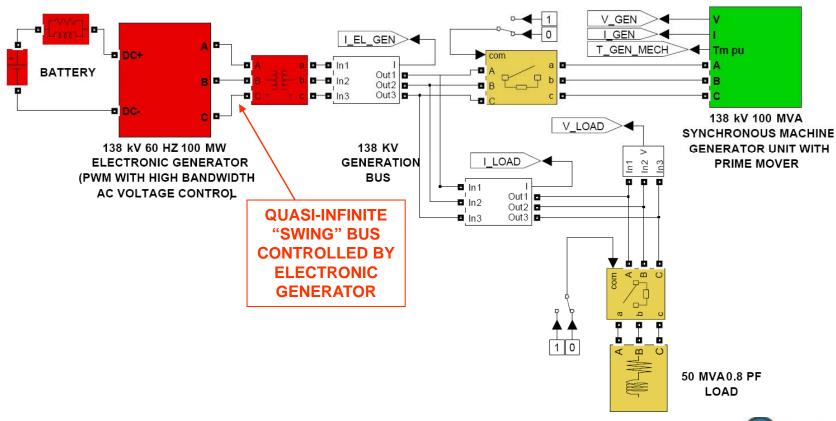
G - SYNCHRONOUS M/C GENERATION

EG - ELECTRONIC GENERATION

L - LOAD

S - ENERGY STORAGE

F - FREQUENCY


TCC - TRANSMISSION CONTROL

An Isochronous Grid With Electronic Generator Control

SIMULINK MODEL FOR HYPOTHETICAL GRID CONTROLLED ISOCHRONOUSLY BY AN ELECTRONIC GENERATOR

- Battery feeds electronic generator serving as isochronous swing generator , controlling voltage and frequency
 - Electronic generator supplies or absorbs transient real power and continuous reactive power as needed
- Rotating synchronous machine generator unit supplies continuous load with prime mover under dispatch control



An Isochronous Grid With Electronic Generator Control

Average Frequency Constant At 60 Hz

100 MW
Electronic
Generator
Supports
Isochronous
Grid With
Instantaneous
P and Q

100 MW
Synchronous
M/C Generator
Supplies
Real Power On
Command

The Challenges For Proponents of Utility Scale Electronic Generators

- Achieve high reliability and availability
 - Essential for equipment controlling a grid
 - Should be easier with electronics than rotating machines
- Develop/incorporate suitable energy storage (High MW short or long term) and/or power sources to enhance the capability of electronic generators to absorb, store, and deliver energy
- Gain acceptance through large "island" grid projects incorporating synchronous machine generators
- Fight the good fight Work to revise standards that impede the progress of new forms of generation
- Establish a sound commercial basis for the use of electronic generators – Otherwise they will disappear!

