
1

SECTION 1 - INTRODUCTION

1. An Interlab Problem: SRM 1946

2. Classical Solutions

3. BAYES Solution
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THE PROBLEM
Multiple laboratories perform repeated
measurements on the same quantity. The
objective is to arrive at

• consensus value
• associated consensus measure of

uncertainty.
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EXAMPLE:

SRM 1946: Lake Superior Fish Tissue,
analyzing for fatty acid and PCB
content.

(Michelle Schantz, Curtis Phinney,
Dianne Poster, Michael Welch, Steven
Wise, CSTL):

PCB 101:

Lab ID Mean
Conc.

St. Dev. # obs.

1 38.1 0.7 24
2 34.5 0.3 3
3 31.5 0.5 6
4 30.8 1.69 6
5 32.5 2.59 6
6 39.3 23.04 20
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Graph of the Lab means± 2 stdev.
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CLASSICAL SOLUTIONS

Solution 1.
The Simplest.
GRAND MEAN:

consensus mean (µ)

estimated by the average of all data

Y =
1

N j
∑ Yij

i
∑ .

(36.50)

consensus uncertainty measure
estimated by the standard deviation
of all data / N .
(2.82)



6

Assumptions:

1. The labs all have the same mean.
2. The labs all have the same

variability.
3. The data are random observations.

Advantages:

1. Conceptual simplicity.
2. Ease of calculation.

Disadvantages:

1. The assumptions are rarely met.
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Solution 2.
THE MEAN OF MEANS:

consensus mean (µ)

estimated by the average of lab
averages1

6
Yi

i
∑ .

(34.45)

consensus uncertainty measure
estimated by the standard deviation
of the lab averages/ Sqrt(nlab).
(1.44)
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Assumptions:

1. Within lab variability is negligible
or the same across labs.

2. Data are random observations.

Advantages:
1. Simplicity.
2. Ease of calculation.
3. Assumptions are less restrictive

than for Method 1.
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Solution 3.
More sophisticated.
Maximum Likelihood(MLE) &
variants:

consensus mean (µ)
estimated by a weighted average of
lab means.

(Weights are decreasing functions of lab standard
deviation.)

(34.59)

consensus uncertainty measure
estimated using the within and
between lab standard deviations, the
lab means and the lab sample sizes.

(1.29)
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Assumptions:

1.Large sample size for each lab.

2.Number of labs >5.

Advantages:
The assumptions are the least restrictive
so far and thus more likely to be met and
produce accurate results.

Disadvantages:
More computationally demanding.
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Summary of the Results for
PCB 101:

Method Consensus
Mean

95% CI

Grand Mean 36.50 (30.86, 42.14)
Mean of
Means

34.45 (30.73, 38.16)

MLE 34.59 (32.05, 37.14)

grand mean mean of means MLE

method
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Notes:

1. The true lab means and standard
deviations do not appear to be
equal, the standard deviations are
not all small, and the sample sizes
vary a lot. These facts argue
against the use of the Grand Mean
and the Mean of Means methods.

The MLE is the preferred method, but
the sample sizes and the number of
laboratories are not large so that the
asymptotic formula used to estimate
consensus uncertainty may be
misestimating the uncertainty size.
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Solution 4.
A Bayesian Solution:

Classical:
Parameterµ is fixed.
Data are random.

Bayes:
Data (once observed) are
fixed.
Parameterµ is random.

Consensus meanµ has a probability
distribution.

Before data - prior distribution.
After data - posterior distribution.
Plot of the posterior distribution for
PCB 101:
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Estimateµ by the posterior mean
(34.33).

Estimate the consensus uncertainty by
the posterior stdev. (0.8417) .
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Advantages of the Bayesian formulation.

1. It enables us to make constructive
use of expert opinion via the prior
distribution.

2. It allows for rigorous incorporation
of known physical constraints (e.g.
µ > 0) via the prior distribution.

3. It is better at handling complicated
problems than the classical
methods.

4. It can be employed to incorporate
Type B error, even in complicated
problems.

5. It allows naturally for successive
updating of estimates upon the
introduction of new data.
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Disadvantages of the Bayesian
formulation.

The prior distribution can be hard to
specify because:

1. There may not be reliable expert
opinion, or previous data
experience.

2. There may be too much expert
opinion which needs to be
reconciled.

3. There may be many other
parameters (nuisance) for which we
need a prior distribution.

The posterior distribution can be hard
to compute.
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Specifying the prior distribution.

1. Using expert opinion. An expert
may be able to give a range of
possible values ofµ with a
probability distribution.

2. Using past data. That is, data from a
related experiment can be used to
give a mean and standard deviation
for µ. Then a standard distribution
such as the Gaussian can be used
for the prior.

3. Using a so called “non-
informative”, “vague” or
“objective” prior. This models our
ignorance about the parameter by
assigning equal probability to
values within some (usually large)
interval. (Uniform distribution)



18

We will get back to the construction of
priors later.

Now, more on the mechanics of
Bayesian Statistics.
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SECTION 2 – BAYESIAN
STATISTICS 101

2.1 PROBABILITY
a. Definitions
b. Conditional Probability
c. Law of Total Probability
d. Bayes’ Rule

2.2 MODELS FOR PROPORTIONS
a. Likelihood and

Posterior Probabilities
b. Choice of a Prior Density
c. An Example
d. Comparing Two Proportions

2.3 MODELS FOR MEANS
a. Prior Densities and Normal Models
b. Comparing Two or More Means
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2.1 PROBABILITY

Definition 1: Probability P(A) is a
measure of the chance that an event A
will happen.

Definition 2: Sample space S is the
collection of all possible outcomes of
an experiment.

Basic Properties:
1. 0≤ P(A ) ≤ 1.
2. P(S) = 1.
3. P(Ø) = 0.
4. P(A)=1-P(~A)
5. If A and B have no outcomes

in common then P(A U B) =
P(A) + P(B).
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Example 1: Throw a six-sided die.

Sample space S = {1, 2, 3, 4, 5, 6}

Event A: throw a 5,
Event B : throw a 6,
Event C: throw an even number.

Probability of A : P(A) = P(B) = 1/6.
Probability of C : P(C) = 1/2.
Probability of AUB : P(AUB) = 1/3
Probability of AUC : P(AUC) = 2/3.
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Interpretations of Probability:

1. Long – run Frequency

Definition: The long-run frequency of
an event is the proportion of time it
occurs in a longsequence of trials.

Example 1, die tossing, is a good
illustration of this.

2. Degree of Belief

Definition: A probability based on
degree of belief is a subjective
assessment of whether an event in
question will occur.
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Example 2: Weather forecasting.

Let T be the highest temperature that will
occur outdoors tomorrow at 321
Penwood Drive.

We can assign probabilities to such
events as:

Event A is that T� 55˚ F

The associated probability is
P(A) = 0.3
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Conditional Probability:

In Example 1, suppose that you know
that the outcome must be an even
number.

Conditionally on this fact the new
sample space = {2,4,6}

Conditionally on this fact, the probability
of getting a 6 is:

P(B|C) = 1/3.

This is called conditional probability.
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Definition:
The conditional probability of B given A
is

P(B|A) = P(A� B)/ P(A),

where P(A� B) is the joint probability
that both A and B occur.

Multiplication Rule:
P(A� B) = P(A) P(B|A).

Independence of events:
A and B are independent if

P(A|B) = P(A) or P(B|A) = P(B).

For independent events,
P(A� B) = P(A) P(B).
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In Example 1:
Event B : throw a 6,
Event C: throw an even number.

B � C is the event that 6 has occurred and
an even number has occurred.

This is the set {6} and so P(B� C) = 1/6.

P(B|C) =
  

P B CI( )
P C( )

=
1

6
1

2
= 1/3.
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Example 3: Test a randomlyselected
subject’s blood to determine whether
infected by a disease.

Event A = subject is infected
Event B = test is positive

P(A) = probability of subject being
infected.

(can be estimated based on the
proportion of the population that is
infected)

P(B|A) = probability of positive test
result given that the subject is
infected.

P(B|~A) = probability of positive test
given subject not infected.

( both generally known by manufacturer
of the test)
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P(A|B) = probability of subject being
infected given a positive test
result.

(Unknown - Main quantity of interest)

By definition:

P(A|B) = P(A� B)/ P(B)

= P(B|A) P(A) / P(B) ***

We know: P(A) and P(B|A) , P(B|~A),
and P(~A) = 1- P(A).

We do not know: P(B)

*** This is the Bayes Rule.
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LAW OF TOTAL PROBABILITY

P( C ) = P(C� A) + P(C� B)
= P(C|A) P(A) + P(C|B) P(B)

A B

C∩B

C∩A
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Applying the Law of Total Probability to
Example 3:

P(B) = P(B|A) P(A) + P(B|~A) P(~A)

So

P(A|B) =

P(B|A) P(A) /
(P(B|A) P(A)+P(B|~A) P(~A))

This result is referred to as the expanded
form of the Bayes’ Rule.
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In Example 3:

Recall that
Event A = subject is infected
Event B = test is positive.

Let
P(A) = 0.2

P(B|A) = 0.9
( 1 – P(B|A) = 0.1 is the false negative rate)

P(B| ~ A) = 0.05
( the false positive rate)
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P(B) = P(B|A)P(A) + P(B|~ A)P(~ A)
= 0.9 (0.2) + 0.05 (0.8) = 0.22

P(A|B) = P(B|A) P(A) / P(B)
= 0.9(0.2)/0.22= 0.82
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How do we apply BAYES THEOREM
in interlab experiments ?

Event A - observe data Y
Event B - consensus mean�

= some particular value

Wish to obtain P(B|A) = P(� |Y)
Posterior distribution

Need : P(Y|� ) Likelihood function
P(� ) Prior distribution

To apply Bayes Theorem:
P( � |Y) = P(Y|� ) P(� ) / P(Y)
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Classical statistical models use only the
function P(Y|� ) .

This can be used to produce statements
such as:

Given that the true value of the
consensus mean is 34 and that the
standard deviation is 1.0, the probability
of observing a measurement between 32
and 36 is 0.95.
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Given data, this can be inverted into a
confidence interval which enables us to
say:

We are 95% confident that the true value
of the consensus mean lies between 31
and 37.

Unfortunately, this is not a true
probability statement.
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Bayesian models use Bayes Theorem to
obtain P(� |Y) which enables us to say :

Given the observed measurements Y, the
probability that the true value of the
consensus mean is between 31 and 37 is
0.95.

This is a true probability statement.
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We will now turn to the simpler situation
of models for proportions to fully explain
the concepts of prior distributions,
likelihood functions and the use of Bayes
Result to obtain posterior distributions.
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2.2 MODELS FOR PROPORTIONS

Example 4: Cigarette Safety

Experiment to study how a cigarette
causes ignition by transferring enough
heat to fabric.

Two types of cigarettes:
low air permeability (# 529)
conventional air permeability (#531)

Data: proportion of ignitions
��

� ������ ������

���������� ����	
��� �����	
��� ����	
��� ����	
��� �����	
��� ����	
���

���� ������ ������ ������ ������ ������ ���������

���� ������ ������� ������ ��������� ������� �������
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Objective:

Compare the responses of the two
types of cigarettes for the three types
of substrate.

Let p1 = probability that #529 ignites

10 layers (1993),

P2 = probability that #531 ignites

10 layers (1993).
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Classical Analysis:

Calculate a 95% confidence interval
for p1 and p2 based on the sample
proportionsp̂1 = 0

16, p̂2 = 16
16 , i.e.

p̂i −1.96
p̂i 1− p̂i( )

16
≤ pi ≤ p̂i +1.96

p̂i 1− p̂i( )
16

We obtain:

0.005728 ≤ p1 ≤0.240736

0.759264 ≤ p2 ≤0.994272
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To make a more direct comparison
between the two proportions we can
compute a 95% confidence interval
for the difference p1 – p2:

p̂1 − p̂2 −1.96
p̂1 1− p̂1( )

16
+

p̂2 1− p̂2( )
16

≤ p1 − p2

≤ p̂1 − p̂2 +1.96
p̂1 1− p̂1( )

16
+

p̂2 1− p̂2( )
16

This interval is an approximation
which in this case, due to the extreme
values ofp1, p2, does not work very
well. In fact the classical 95% CI says
that p1 − p2 = −1. (There are other forms
of the classical CI that we could use
see p. 229 of “An Introduction to
Mathematical Statistics” by Larsen
and Marx)
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For Bayesian analysis:

Event A - observe data

Event B - p1 and p2 equal some

particular values.

Wish to obtain: P(B|A).

Need:

1. prior probabilities for p1 and
p2, i.e. P(B)

2. P(A|B) called the likelihood
function.
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Prior Distribution for p1:

Even though p1 can have one of
infinitely many values between 0 and 1,
we can make its range discrete. An
example of a possible prior distribution
is:

Value of p1 Probability

0

0.0625

0.125

0.1875

0.25

0.3125

0.375

0.4375

0.5

0.5625

0.625

0.6875

0.75

0.8125

0.875

0.9375

0.6

0.15

0.1

0.07

0.05

0.03

0

0

0

0

0

0

0

0

0

0
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1 0

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

p1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
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y

The mean of a discrete distribution can
be thought of as its center of gravity.

It is calculated as:
���������������Mean= π P( p = π )

all π
∑ �

Mean of p1 = 0.0625 (0.15) + 0.125 (0.1)

+ 0.1875 (0.07) + 0.25 (0.05)

+ 0.3125 ( 0.03) = 0.057
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Consider p2 , possible prior distribution:

Value of p2 Probability

0

0.0625

0.125

0.1875

0.25

0.3125

0.375

0.4375

0.5

0.5625

0.625

0.6875

0.75

0.8125

0.875

0.9375

1

0

0

0

0

0

0

0

0

0

0

0

0.03

0.05

0.07

0.1

0.15

0.6

Mean of p2 = 0.9431
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The prior distribution of p2 :

-0. 1 0. 1 0. 3 0. 5 0. 7 0. 9 1. 1

p2

0. 0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6
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Likelihood Function:

The Likelihood of a model is the
probability of the data occurring,
calculated assuming that model.

For cigarette # 529,

data = 0/16 (ignitions/ trials)

For cigarette # 531,

data = 16/16
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We can obtain the likelihood values by
assuming a binomial distribution.

If x = number of ignitions

P( data =x

16
| p =π) =

16!

x! 16 − x( )!
 

�  
�  

�  

�  
�  π x 1− π( )16−x

The use of this distribution is justified by
assuming that for each of the 16
cigarettes, the probability of ignition is
some fixed numberπ, and that the fact
that one cigarette ignites has no effect on
the ignition of the next cigarette.
(identical and independent trials)
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We obtain for #529:

P(data= 0/16| p1 = 0.0000) = 1.0

P(data= 0/16| p1 = 0.0625) = 0.3561

P(data= 0/16| p1 = 0.125 ) = 0.1181

P(data= 0/16| p1 = 0.1875) = 0.0361

P(data= 0/16| p1 = 0.2500) = 0.01

P(data= 0/16| p1 = 0.3125) = 0.0025

P(data= 0/16| p1 = 0.375) = 0.0005

P(data= 0/16| p1 = 0.4375) = 0.0001

P(data= 0/16| p1 = 0.5000) = 0.0000

P(data= 0/16| p1 � 0.0625) = 0.0
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In table form:

Value of p1 Likelihood

0

0.0625

0.125

0.1875

0.25

0.3125

0.375

0.4375

0.5

0.5625

0.625

0.6875

0.75

0.8125

0.875

0.9375

1

1

0.3561

0.1181

0.0361

0.01

0.0025

0.0005

0.0001

0

0

0

0

0

0

0

0

0
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The likelihood and the prior plotted
on the same graph display the
difference between our prior belief
and the evidence given by the data:

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

p1

0.0

0.2

0.4

0.6

0.8

1.0

likelihood
probability

The likelihood is much more
concentrated on the values 0 to 0.1.
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For cigarette #531:

In table form:
Value of p2 Likelihood

0

0.0625

0.125

0.1875

0.25

0.3125

0.375

0.4375

0.5

0.5625

0.625

0.6875

0.75

0.8125

0.875

0.9375

1

0

0

0

0

0

0

0

0

0

0.0001

0.0005

0.0025

0.01

0.0361

0.1181

0.3561

1
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To calculate the posterior:

Use Bayes’ Rule:

Posterior = PRIOR X LIKELIHOOD

P(Data )

Where for example for p1:

P(Data = 0
16) = P Data= 0

16| p1 = 0( )P p1 = 0( )

+...+ P Data= 0
16| p1 = 0.4375( )P p1 = 0.4375( )=

0.66833
��
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We obtain for p1:

Value of
p1

Prior Likeli-

hood

Prior X

Likelihood

Poste-
rior

0 0.6 1.0 0.6 0.898

0.0625 0.15 0.3561 0.0534 0.08

0.125 0.1 0.1181 0.01181 0.017

0.1875 0.07 0.0361 0.002527 0.004

0.25 0.05 0.01 0.00051 0.0007

0.3125 0.03 0.0025 0.000075 0.0001

0.375 0 0.0005 0 0

0.4375 0 0.0001 0 0

0.5 0 0 0 0
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We obtain for p2:

Value of
p2

Prior Likeli-

hood

Prior X

Likelihood

Poste-
rior

1.0 0.6 1.0 0.6 0.898

0.9375 0.15 0.3561 0.0534 0.08

0.875 0.1 0.1181 0.01181 0.017

0.8125 0.07 0.0361 0.002527 0.004

0.75 0.05 0.01 0.00051 0.0007

0.6875 0.03 0.0025 0.000075 0.0001

0.625 0 0.0005 0 0

0.5625 0 0.0001 0 0

0.5 0 0 0 0

Here P(data = 16/16) =0.66833.
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To compare the three distributions for p1:

-0.1 0.3 0.7 1.1
p1

0.0
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