

Optimization Designs

С	S
R	O 2 ^k with Center Points Central Composite Des. Box-Behnken Des.
R	

Response Surface Methodology

A Strategy of Experimental Design for finding optimum setting for factors. (Box and Wilson, 1951)

Response Surface Methodology

- When you are a long way from the top of the mountain, a slope may be a good approximation
- You can probably use first–order designs that fit a linear approximation
- When you are close to an optimum you need quadratic models and second-order designs to model curvature

Strategy

• Fit a first order model

• Do a curvature check to determine next step

10.15

Run	Factors in original units		Factors in coded units		Response
	Time (min.)	Temp. (°C)			Yield (gms)
	x_1	x_2	x_1	x_2	У
1	70	127.5	_	_	54.3
2	80	127.5	+	_	60.3
3	70	132.5	_	+	64.6
4	80	132.5	+	+	68.0
5	75	130.0	0	0	60.3
6	75	130.0	0	0	64.3
7	75	130.0	0	0	62.3

Results From First Factorial Design

Curvature Check by Interactions

- Are there any large two factor interactions? If not, then there is probably not significant curvature.
- If there are many large interaction effects then we should not follow a path of steepest ascent because there is curvature.

Here, ℓ_{time} =4.7, ℓ_{temp} =9.0, and $\ell_{time*temp}$ =-1.3, so the main effects are larger and thus there is little curvature.

Curvature Check with Center Points

• Compare the average of the factorial points, \overline{y}_f , with the average of the center points, \overline{y}_c . If they are close then there is probably no curvature?

Statistical Test: $n_f = \#$ of points in factorial $n_c = \#$ of points in center

 s_c = Standard deviation of points in center

$$\overline{y}_f - \overline{y}_c \pm t_{\alpha/2, n_c - 1} s_c \sqrt{\frac{1}{n_f} + \frac{1}{n_c}}$$

If zero is in the confidence interval then there is no evidence of curvature.

Path of Steepest Ascent: Move 4.50 Units in x_2 for Every 2.35 Units in x_1

Equivalently, for every one unit in x_1 we move 4.50/2.35=1.91 units in x_2

Points on the Path of Steepest Ascent

-	Factors in coded units		Factors in original units		Run	Response
			Time (min.)	Temp. (°C)		Yield (gms)
	x_1	x_2	x_1	<i>x</i> ₂		У
- center conditions	0	0	75	130.0	5,6,7	62.3
ٳ	1	1.91	80	134.8	8	73.3
nath of steenest	2	3.83	85	139.6		
ascent	3	5.74	90	144.4	10	86.8
	4	7.66	95	149.1		
	5	9.57	100	153.9	9	58.2

Results of Second Factorial Design

Run	Factors in original units		Factors in coded units		Response
	Time (min.)	Temp. (°C)			Yield (gms)
	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂	у
11	80	140	_		78.8
12	100	140	+	_	84.5
13	80	150	_	+	91.2
14	100	150	+	+	77.4
15	90	145	0	0	89.7
16	90	145	0	0	86.8

Curvature Check by Interactions

Here, ℓ_{time} =-4.05, ℓ_{temp} =2.65, and $\ell_{time*temp}$ =-9.75, so the interaction term is the largest, so there appears to be curvature.

The Central Composite Design and Results

Run	Variables in original units		Varia codea	bles in l units	Response
	Time (min.)	Temp. (°C)			Yield (gms)
	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂	У
	second f	irst-order	design		
11	80	140	_	_	78.8
12	100	140	+	-	84.5
13	80	150	_	+	91.2
14	100	150	+	+	77.4
15	90	145	0	0	89.7
16	90	145	0	0	86.8
runs added to form a composite design					
17	76	145	-√ 2	0	83.3
18	104	145	$+\sqrt{2}$	0	81.2
19	90	138	0	_√ 2	81.2
20	90	152	0	$+\sqrt{2}$	79.5
21	90	145	0	0	87.0
22	90	145	0	0	86.0

Must Use Regression to find the Predictive Equation

The Quadratic Model in Coded units

$$\hat{y} = 87.38 - 1.38x_1 + 0.36x_2$$
$$-2.14x_1^2 - 3.09x_2^2 - 4.88x_1x_2$$

Must Use Regression to find the Predictive Equation

The Quadratic Model in Original units

 $\hat{y} = -3977 + 17.86 * time + 45.00 * temp$

 $-0.0975 * time * temp - 0.0215 * time^{2} - 0.1247 * temp^{2}$

Canonical Analysis

Enables us to analyze systems of maxima and minima in many dimensions and, in particular to identify complicated ridge systems, where direct geometric representation is not possible.

Quadratic Response Surfaces

- Any two quadratic surfaces with the same eigenvalues $(\lambda's)$ are just shifted and rotated versions of each other.
- The version which is located at the origin and oriented along the axes is easy to interpret without plots.

The Importance of the Eigenvalues

• The shape of the surface is determined by the signs and magnitudes of the eigenvalues.

Type of Surface	Eigenvalues
Minimum	All eigenvalues positive
Saddle Point	Some eigenvalues positive and some negative
Maximum	All eigenvalues negative
Ridge	At least one eigenvalue zero

Stationary Ridges in a Response Surface

• The existence of stationary ridges can often be exploited to maintain high quality while reducing cost or complexity.

