Technical Assessment of Micro-Generation Technologies within the United States

> Mark Davis, NIST Building Integration of Micro-Generation Technologies October 27, 2010

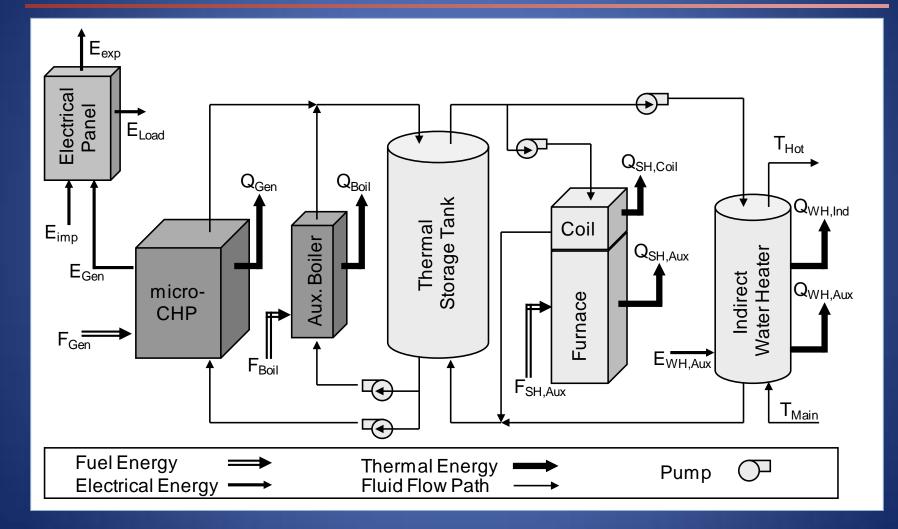
National Institute of Standards and Technology • U.S. Department of Commerce

Purpose

Demonstrate the potential primary energy savings, carbon dioxide emission savings, and annual energy cost savings that result from the integration of micro combined heat and power within a typical house in six representative US cities using predictive performance models

Outline

- Micro-CHP Devices
- Predictive Performance Models
- Residential Micro-CHP System Equipment
- "Typical" US Residence
- Modeling Assumptions
- Results
- Conclusions


Representative Micro-CHP Devices

Parameter	Small ICE	Medium ICE	Large ICE	Small SE	Medium SE	Large SE
Fuel Consumption (kW)	4	12	20	4	12	20
Electrical Output (kW)	1	3	5	0.35	1	1.7
Electrical Efficiency	25 %	25 %	25 %	8.5 %	8.5 %	8.5 %
Recovered Heat (kW)	2.6	7.8	13.0	3.4	10.3	17.2
Heat Recovery Efficiency	65 %	65 %	65 %	86 %	86 %	86 %

Predictive Performance Model

- Developed by IEA/ECBCS Annex 42
- Implemented in TRNSYS
 - Transient building energy simulation platform
- Steady state efficiency affected by
 - Electrical power
 - Circulating fluid temperature
- Transient performance accounts for
 - Startup/shutdown
 - Changes in electrical power and fluid temperature

Residential Micro-CHP System

"Typical" US Single-Family House

- Modeled in Energy Plus
- Based on DOE/Energy Info. Admin. Statistics
 - Conditioned floor area: 210 m² (2260 ft²)
 - Rooms: 3 bedrooms, 2 bathrooms, basement, garage
 - Windows: 14 Low-e, double glazed / 20 m² (215 ft²)
 - Appliance/Lighting load: 9400 kWh
- Hourly annual space heating load determined
 - 6 cities representing US climate zones

Cities Representing US Climate Zones

Assessment of Micro-CHP

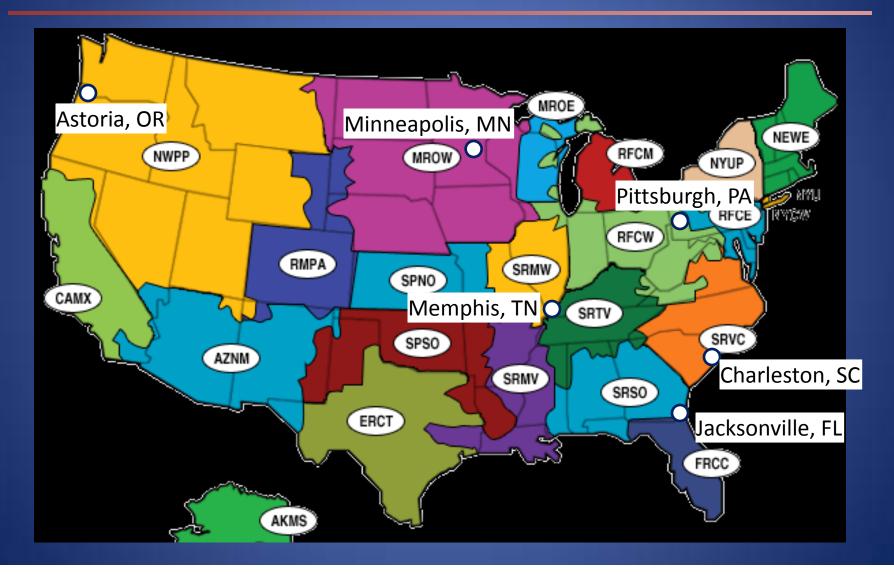
"Do I replace my existing heating system with micro-CHP or a high-efficiency conventional system?"

- Conventional equipment varies between climate zones
 - Minneapolis, Pittsburgh, and Memphis
 - 90 % AFUE furnace
 - Gas water heater with Energy Factor = 0.62
 - Astoria, Charleston, and Jacksonville
 - Heat pump with HSPF = 8.2
 - Electric water heater with Energy Factor = 0.92

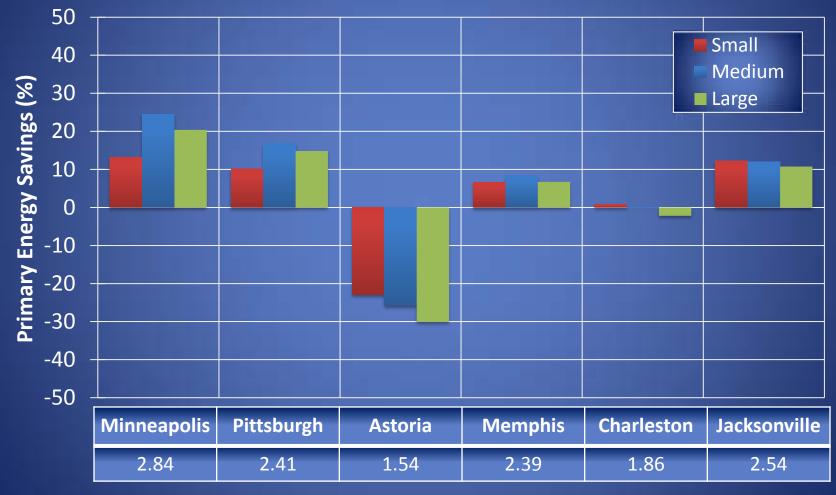
Primary Energy Savings

- Electricity generated at the central plant requires fuel
 - Range from 35% (Minneapolis) to 69% (Astoria)
 - Efficiency varies by region
- Electricity produced on-site by micro-CHP reduces required output of central plant
- Heat rate ratio of fuel energy to net electrical output of central plant

Primary Energy Savings Calculation

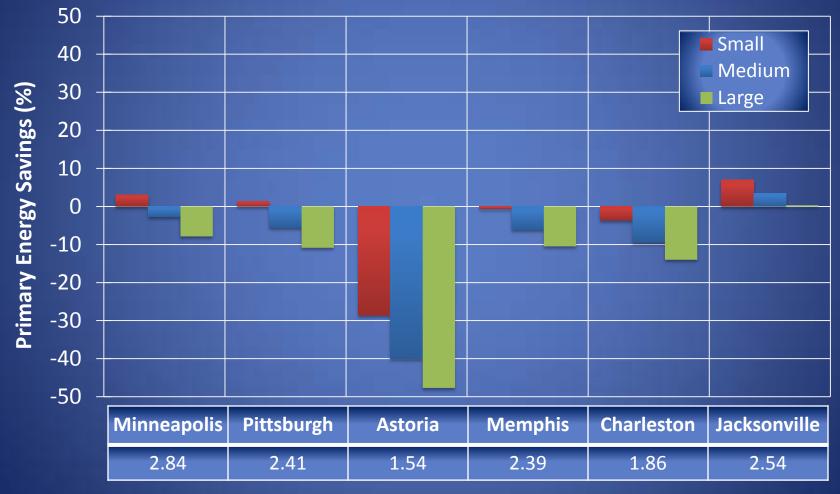

- Natural gas reference system
 - Minneapolis, Pittsburgh, Memphis

$$PESav = 1 - \frac{Fuel_{CHP} + Fuel_{Aux} + HeatRate \cdot (Elec_{import} - Elec_{export})}{Fuel_{Furnace} + Fuel_{WH} + HeatRate \cdot (E_{Load} + E_{A/C})}$$


Electrical reference system
Astoria, Charleston, Jacksonville

$$PESav = 1 - \frac{Fuel_{CHP} + Fuel_{Aux} + HeatRate \cdot (Elec_{import} - Elec_{export})}{HeatRate \cdot (E_{HP} + E_{WH} + E_{Load} + E_{A/C})}$$

Heat Rate and CO2 Vary by Region


Primary Energy Savings - ICE

Heat Rate (kWh Natural Gas / kWh Electricity)

Mark Davis

Primary Energy Savings - SE

Heat Rate (kWh Natural Gas / kWh Electricity)

Mark Davis

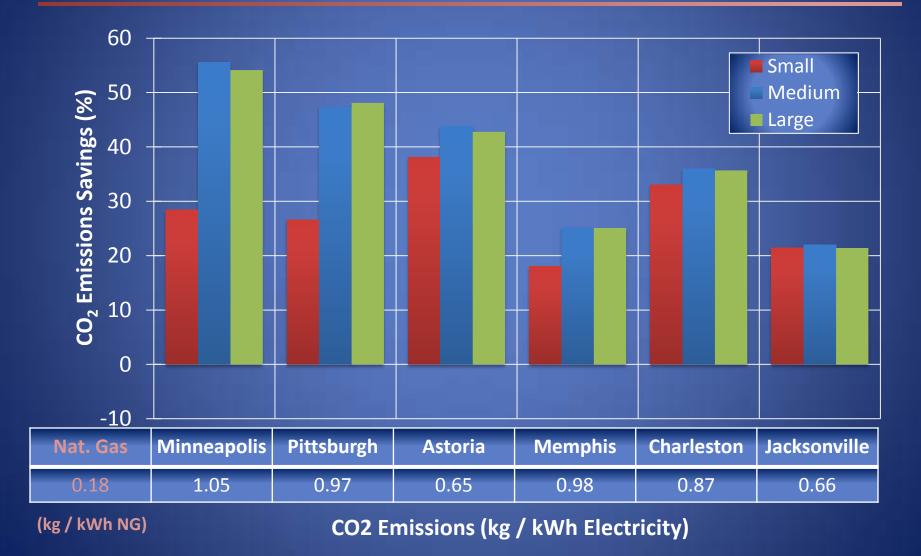
Building Integration of Micro-Generation Technologies Seminar

CO₂ Emissions Savings

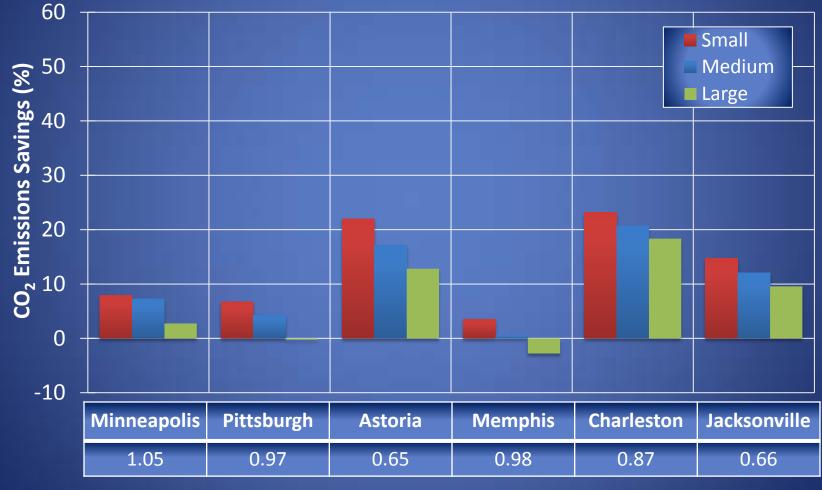
• CO₂ emissions vary by source of electricity

- Coal releases much CO₂
- Natural gas contributes much less
- Generating stations that meet non-baseload demand often contribute more CO₂
- Micro-CHP can be advantageous because
 Efficiency
 - $-CO_2$ content

CO₂ Emissions Savings Calculation


- Natural gas reference system
 - Minneapolis, Pittsburgh, Memphis

 $CO_{2}Sav = 1 - \frac{CO_{2}Rate_{NG} \cdot (Fuel_{CHP} + Fuel_{Aux}) + CO_{2}Rate_{Plant} \cdot (Elec_{import} - Elec_{export})}{CO_{2}Rate_{NG} \cdot (Fuel_{Furnace} + Fuel_{WH}) + CO_{2}Rate_{Plant} \cdot (E_{Load} + E_{A/C})}$


Electrical reference system
Astoria, Charleston, Jacksonville

$$CO_{2}Sav = 1 - \frac{CO_{2}Rate_{NG} \cdot (Fuel_{CHP} + Fuel_{Aux}) + CO_{2}Rate_{Plant} \cdot (Elec_{import} - Elec_{export})}{CO_{2}Rate_{Plant} \cdot (E_{HP} + E_{WH} + E_{Load} + E_{A/C})}$$

CO₂ Emissions Savings - ICE

CO₂ Emissions Savings - SE

CO2 Emissions (kg / kWh Electricity)

Mark Davis

Energy Cost Savings

- Electricity and gas prices vary by utility and region
 - Gas prices are lower than electricity
 - Difference is referred to as "spark spread"
 - Larger spread is advantageous to on-site generation
- Some states allow micro-CHP devices to sell power to utility
- Investigation assumes home owner sells electricity for same prices as they buy it

Energy Cost Savings Calculation

- Natural gas reference system
 - Minneapolis, Pittsburgh, Memphis

$$CostSav = \left[\$_{NG} \cdot \left(Fuel_{CHP} + Fuel_{Aux}\right) + \$_{Plant} \cdot \left(Elec_{import} - Elec_{export}\right)\right] - \left[\$_{NG} \cdot \left(Fuel_{Furnace} + Fuel_{WH}\right) + \$_{Plant} \cdot \left(E_{Load} + E_{A/C}\right)\right]$$

Electrical reference system
Astoria, Charleston, Jacksonville

$$CostSav = \left[\$_{NG} \cdot \left(Fuel_{CHP} + Fuel_{Aux}\right) + \$_{Plant} \cdot \left(Elec_{import} - Elec_{export}\right)\right] - \left[\$_{Plant} \cdot \left(E_{HP} + E_{WH} + E_{Load} + E_{A/C}\right)\right]$$

Mark Davis

Energy Cost Savings - ICE

Building Integration of Micro-Generation Technologies Seminar

Energy Cost Savings - SE

Building Integration of Micro-Generation Technologies Seminar

Conclusions

Micro-CHP shows potential to provide benefits

- Society
 - Primary energy savings as much as 25%
 - CO₂ emission savings as much as 55%
- Home owner
 - Energy cost savings up to \$400 per year
- Benefits are maximized in regions
 - High spark spread
 - Large heating loads
 - High electrical efficiency