Material Requirements

For 3D IC and Packaging

Presented by: W. R. Bottoms

Frontiers of Characterization and Metrology for Nanoelectronics
Hilton Dresden April 14-16, 2015



Industry Needs Are Changing

v"Moore’s Law is reaching limits of the physics
— Scaling can no longer support the pace of progress

— Power requirement and performance no longer scale
with feature size

v'Electronics Industry Drivers have changed

— Mobile wireless devices, loT and the Cloud are driving
future demand

v'Electronics are entering every aspect of our lives
— Each area has unique requirements
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Moore’s Law Scaling Is Nearing Its End
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Moore’s Law Scaling Is Nearing Its End
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New Technology Drivers

Are Emerging
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Emerging Technology Drivers

There are 2 market driven trends forcing more
fundamental change on the industry as they move into
position as the new technology Drivers.

v Rise of the Internet of Things

v Data, logic and applications moving to the Cloud
Over the next 15 years almost everything will change

iIncluding the global network architecture and all the
components incorporated in it or attached to it.
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The Internet of Everythmg

S The past 25 years of internet growth was fueled
by human communications. The next 25 years
will be fueled by machines- much of it by loT
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loT With Trillions Internet Connected

Trillion Sensor Visions
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New Connected Products Are Coming

Even diapers will be connected
— 40M/day in the US alone h
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loT Medical Devices
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\What will we have in 15 ears?
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Source: https://sites.google.com/site/ism6021fall2011/telepresence-is- flnaIIy coming-of-age
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Migration to the Cloud
Data, logic and Applications

Driving Change in The Global
Network
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Data Traffic Drives Network Requirements

Changes driving data traffic:
v" Global IP traffic will pass 1.4 Zettabytes (10%1) by 2017

v Wireless traffic will surpass wired traffic by 2016

v" The number of mobile-connected devices first exceeded the
number of people on earth this year

v 10T growth will drive demand for bandwidth
v" Data, Logic and Applications are migrating to the Cloud

Today packaging is a limiting factor
in cost, performance and size.
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The Network Architecture Must Change
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The Network Architecture Must Change

Globally.and.l.ocally
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Photonics to the Board, package and even chip
level may be required.
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The Network Architecture Must Change

All this is needed at no increase in total cost
and total Network power.

Power and cost/function need >10¢
improvement over the next 15 years.
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The Major Challenges to Achieve this

Ision.nclude

v' Power
— Delivery in complex 3D packages
— Integrity at low operating voltage

v' Latency

— In the package, on the Board, in the global network and
everything in between

v" Thermal management
— At die, package and board level

v Bandwidth density
— At the die, in the package and on the board

v" Cost

— Initial cost, cost of power and cost of reliability in a world
where transistors wear out
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The Major Challenges to Achieve this

visiondnclude:

v' Power
— Delivery in complex 3D packages
— Integrity at low operating voltage

v | atancyvy

We must move photons closer
to the ICs and all other things
closer together

— At the die, in the package and on the board
v" Cost

— Initial cost, cost of power and cost of reliability in a world
where transistors wear out
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Only a Revolution in Packaging can

atisfy,these diverse INeec

At the leading edge everything will change.

NN N X X KX

v

his requires:

New co-design and simulation tools
Use of the 3 dimension
Heterogeneous Integration

New materials

New device designs and architectures
New package architectures

New network architectures

New manufacturing processes

Frontiers of Characterization & Metrology for Nanoelectronics Dresden April 2015



Tools that integrate across the boundaries of device, package,
printed circuit board and product will speed the process of
migration to higher density (SoC, SiP, 2.5D, 3D, etc.).

This enables:

v’ Increased
performance and
bandwidth

v Decreasing latency, %
power, size, cost

v" Reduced time to
market
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3D Packaging And Heterogeneous

Photonic Chip
MMIC Chip
<+<— Analog LSI
Control IC
CMOS RF-IC

TSV (Through-Si Via)
(104-107 / Chip) Full System integration

,_ in a 3D Package
Sizes

Heterogeneous integration

presents new packaging

(Si, Ge, [TV Challenges

Source: Tohoku University
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Heterogeneous Integratlon by Circuit

v Logic
Hots spot locations not predictable, high thermal density, high frequency,
unpredictable work load, limited by data bandwidth

v' Memory
Thermal density depends on memory type and thermal density differences
drive changes in package architecture and materials

v RF
Noise isolation is critical, may require compound semiconductors with
different mechanical properties

v MEMS

There is a virtually unlimited set of requirements; hermetic, non-hermetic,
variable functional density, plumbing, stress control, etc.

v Photonics

Extreme sensitivity to thermal changes, O to E and E to O, Optical signal
connections, new materials

v Plasmonics
Requirements are yet to be determined but they will be different from other
circuit types
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Other 3D Package Examples of
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New Materials Will Be Required

Many are in use tor' \@)
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New Materials

v'  Conductors
Semiconductors

Dielectrics
Composites
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Carbon Conductors Look Better Than Cu

Cu CNT GNR

Max “";rfi’r':z?e"s“y ~106 > 1x10° @ x102
Many questions still to be answered before
graphene or CNT can be considered as a practical
interconnect materials. The results so far are

very promising.

<1.1 -1.47
Temp. Coefficient of ) Shao et al.

. 4 Kane, et al.
Resistance (10 /K) ’ Appl Phys. Lett.,
Europhys. Lett.,1998 2008

Mean Free Path > 1000 X25
40 McEuen, et al. Bolotim, et al.

@ room-T (nm) Trans. Nano., 2002 | Phys. Rev. Let. 2008
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Low temp Cu Nano-solder

v Package assembly at low temp (100C)
v Reflow solder to PCB <200C
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New Semiconductors

2D Replacements for Si
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2D Replacements for Si
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@aphene nanoribbonfield-effect transistor

Conductance is function of initial electron
energy and on/off ratio Is poor. Contacts A
and B are at two different Fermi levels.
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ElmeV] Source: Brazilian Journal of Physics
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http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332002000200012

2D Replacements for Si

2D Black phosphorous >

v Has a band gap for high on7offratio
v Compatible with Si making it a good candidate for silicon photonics
v The bandgap is tunable by varying # of layers on silicon substrate

v" It is a direct-band semiconductor

Source: EE Times
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2D Replacement for Si

Siliccne O

A

Its carbon-based cousin graphene gets more attention, but
silicene is catching up. Unlike graphene, silicene has a band gap
and may be a fast follower.

v
v
v
v
v

2D crystals of silicon were identified theoretically in 1994
The name “silicene’ is coined in 2007.

Fabrication of silicene nanoribbons in 2009

First reports of silicene sheets formed on silver in 2012
First demonstration of silicene transistor in 2015
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2D Replacements for Si

Silicon Telluride

One of a class of 2D chalcogenide semiconductors that have band gaps.
Elements can be substituted (Mo, W, S, Se, etc.) to tailor properties.

Silicon Telluride is a 2D chalcogenide semiconductor:

v
v
v
v
v

It is transparent but brilliant red

It is a native p-type semiconductor.

Can be grown as nanoribbons, flat nanoplates or standing nanoplates
Can be used as light detectors and light emitters

High on/off ratios
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Composite Materials

Properties not available in Nature
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Composite Cu Properties

Measured Properties show:

v" The strength of the Cu-SWCNT composite is more than
twice that of pure copper

v" Ductility is significantly lower. .\l

v Coefficient of thermal expansion 7 \ o soWN=cen 4 to
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Conductors Are Changing

Composite Copper is in evaluation.

Current status:

Measurement cog‘;ep";g:nal TeraCopper®
Resistivity (Ohm-cm) 1.66 x 10-€ 1.26 x 106
Conductivity (S/m) 6.02 x 107 7.94 x 107
Increase in Conductivity N/A < 32"/05
Avg. Current Capacity(Amps/cm?) 3.88 x 104 5.57 x 104
Increase in Current Capacity N/A

The first electrical performance improvement in copper since 1913 makes composite
copper the most electrically conducting material known at room temperature.

Targets for improvement compared to conventional copper are:

v' 100 % increase in electrical conductivity
v' 100% increase in thermal conductivity
v' 300% increase in tensile strength

Frontiers of Characterization & Metrology for Nanoelectronics
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Polymer CNT Composites

Until recently results were disappointing:

v’ Less impact on thermal, mechanical and
electrical properties than expected.

v"Now that is changing rapidly due to:
— Higher purity
— Fewer defects
— Chirality control
— Reduction in production cost
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Polymer CNT Composites
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Composite Nanomaterials

Nano-composites improve high voltage capacity for
polymer insulators in high voltages cables.

v" The addition of carbon nanoballs (Buckyballs) to polymer
Insulated high voltage lines increases voltage capacity by 26%

v" Theoretically it should be even better with optimization
—  Dispersion of Buckyballs in the polymer
—  Optimal nano-particle loading of polymer
— Understanding the mechanism Source: Chalmers University of Technology
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Nanomaterials are changing Energy

Superior ultracapacitors with an inexpensive composite of
graphene flakes mixed with single-wall carbon nanotubes.

The great advantage of this hybrid structures design is:

v Graphene provides good conductivity in
plane of nanostructures and high surface

area for the ultracapacitor.

v" Single walled carbon nanotubes connect
the structure into a stable, uniform network

SEM |mage of uItracapamtor S hybrld film
with graphene flakes and single-walled

carbon nanotubes.
Source: George Washington University
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Packaging Materials Requirements

Examples
Thermal Interface Mat.

Mold Compound

Functional
Properties

Conductors

Adhesives _ Moisture

Underfill Adhesion Resistance
Fracture

Modulus Toughness

v" Highly coupled Material Properties
v Novel materials needed to optimize performance for each parameter
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Packaging Materials Requirements

Examples
Thermal Interface Mat.

Mold Compound

Conductors Svj eﬂ | u
Adhesi ot!
Undgf.fli\llleS Adhesion @t be @@J]@m @fj D
A\ \j\l3 W e))(v@ \
Lf‘v " Fracture
Toughness

v" Highly coupled Material Properties
v Novel materials needed to optimize performance for each parameter
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Trade-offs For Optimization

Base Manufacturing Cost, Yield, Channel
1/Cost Integration, Data-rate, Reliability ...

Density

Packaging Integration, Channel Integration,
Margin, Data-rate...

1/Latency

Metwork Architg
Distance, Codi

T~ Better BER but worse POWER
" Lower cost but reduced reliability

1/BER 1/Power

Margin, Packaging Integration,
Data-rate. ..

Reliability

Cost (Packaging, Materlals. . ), Temperature, Margin, redundancy. ..
This chart is equally relevant for integrated circuits, photonics,

plasmonics and new materials with slightly changed parameters

Source: IBM
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Interfaces control Materials Properties

Everything is getting thinner

v" All layers in a packages

v" All layers in integrated circuits

v Composite structure interfaces

In many cases bulk properties no longer matter
v Metals

v Insulators

v" Semiconductors

v' Composites
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Interfaces control Materials Properties

Everything is getting thinner

v" All layers in a packages

v" All layers in integrated circuits
We don’t yet have metrology to define the
interface properties which we must have to

optimize a structure

v Insulators

v" Semiconductors

v' Composites
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Co-integration Of Electronics,
Dhotonicsi/And.Rlasmonics.OnSO
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Source: Dr. Nikos Pleros
Aristotle University
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Co-Integration of Technologies

Use each technology where it is the best:

v" Electronics
— Active logic and memory (Processing and routing)
— Smallest size

v" Photonics
— High bandwidth
— Energy efficient
— Long and intermediate distance

v Plasmonics (R. Zia et al., “Plasmonics: the next chip-scale technology”,
Materials Today 9(7-8), 2006)

— Much smaller than photonic components

— Potentially seamless interface between Optics and
Electronics

— Low power active functions
— Sub-wavelength confinement of photon energy
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Requirements for 10T/Cloud driven Global Network
v Cost and power reduced by >104
v" Flatten the architecture increase ports by >10°
v Reduce latency
v Support software defined networks

Technolooy idertifiedeainrdetiver-to*improvement-atros

A majority of |mprovement will come from materlals & packaglng
Innovation s Treeced-bt oractical-to-find-anetherorder o
magnitude?

In the first 40 years of Moore’s Law scaling every parameter
improved by more than one million times.

Maybe 2 orders of magnitude in 15 years is too
conservative
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Conclusion

New devices and new materials will drive the
development of new metrology tools and
techniques. Some key issues are:

v"Interfacial adhesion
v Nano-particle dispersion

v Interfacial stress/strain
— Layer to layer
— Matrix to nano-particle

v" Porosity
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Conclusion

New devices and new materials will drive the

development of new metrology tools and
techniaues. Some kev 1ssues are:

These data sets will be essential to enable
optimization of new, engineered materials and
processes demanded by the emerging
technology drivers

hvl,vl - lvl,vl

— Matrix to nano-particle
v" Porosity
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