
Architecture, Design Methodology, and Component-Based Tools for a
Real-Time Inspection System

John Albert Horst
100 Bureau Drive, Mail Stop 8230

Intelligent Systems Division
National Institute of Standards and Technology (NIST)

Gaithersburg, Maryland, USA 20899-8230
john.horst@nist.gov
voice: (301)975-3430

Abstract
We describe a real-time, component-based

system for an inspection application. We chose the
inspection application and the accompanying task
(or scenario) so that we might fully exercise and
test our theories about real-time complex systems,
system architectures, design methodologies, and
software tools. We will describe the application,
give a history and description of our system
architecture and design methodology, describe the
real-time software tools we used, and conclude
with a discussion of real-time and object-oriented
challenges solved.

1 The Inspection Application
Our inspection workstation consists of a

coordinate measuring machine (CMM), an analog
3D contact probe, a charge-coupled device (CCD)
camera with frame grabber, and control computers.
The CMM is Cartesian (i.e., axis motion and axis
position sensing are along the three orthogonal
axes). The contact probe and camera are mounted
on the CMM arm. The software controller sends
velocity commands to each of the three axis
motors every 5 ms and it reads each of three axis
positions every 2 ms. The axis velocity commands
are converted to voltages by a digital-to-analog
converter. The voltages drive the motors. Figure 1
shows the CMM arm, the part to be measured, the
camera mounted on the arm, and the analog
contact probe. The application is more fully
described in [Messina 99].

The application performs the following
scenario. The operator specifies the features that
need to be verified by measurement. An inspection
plan is generated automatically from the

computer-aided design (CAD) solid model of the
part. The plan is translated into dimensional
measurement interface standard (DMIS) code. A
DMIS interpreter [Kramer 99] converts the DMIS
code into canonical control commands for the
CMM and vision subsystems. The CMM is

commanded to move to a predefined “bird’s eye
view” position. The part to be measured is placed
on the CMM table in an arbitrary position and
orientation. The human operator signals that the
part is on the table. The system determines the
position and orientation (i.e., pose) of the part
using the camera and computer vision algorithms.
The inspection plan is performed.

Real-time, dependable control of CMM arm
motion is imperative in order to achieve efficient

Figure 1: The inspection workstation.

Figure 2: The RCS generic building block (or control node).

and effective measurement while avoiding
expensive contact probe damage.

2 The RCS architecture
One of our goals is to develop and experiment

with hierarchical, modular system architectures.
The NIST Real-time Control System (RCS) [Albus,
96] is such an architecture. RCS defines the
structure and content of a generic “building block”
(or template control node) that is copied
throughout the system. A conceptual view of an
RCS generic building block and how it fits into a
system hierarchy is illustrated in Figure 2. The
control nodes are connected according to the rules
established by the architecture. Each control node
contains modules with appropriate taxonomy. RCS
does not require that the modules within a control
node map directly to distinct software components
or distinct processing modules, though in our
implementation, they do. Modularization within a
control node is an attempt to divide the labor of a
control node (a building block) into subcomponents
and interconnections. These design constraints
minimize component-to-component
communications bandwidth, provide for
component reuse, and minimize component
complexity. The intra-component modules within
each node are sensory processing, world modeling,

value judgement, and behavior generation (as
shown in Figure 2). Here are some examples of
what is commonly performed within these
modules. Plan generation and execution are done in
behavior generation (plans are finite state
machines in our implementation). Image
processing is done in sensory processing. Part pose
estimation is done in world modeling. Model
feature set attributes for the part to be measured
are stored within the knowledge database. This
basic pattern of the node is copied throughout the
system, but each node varies in content and in
temporal and spatial scope depending on where it
lives in the hierarchy. This is roughly equivalent to
human military hierarchies where, for example, a
general is concerned with plans and actions months
in advance and entire battalions of soldiers over
many battlefields, but the foot soldier may be
concerned with plans and actions for only a few
minutes over a small area.

The number and placement of control nodes in
the system hierarchy are based on the tasks to be
performed and the actuators that have to be
controlled, which is to say the hierarchy is
generated by both top-down and bottom-up
considerations. It is also an iterative process
[Quintero 92], namely, as the system is grown and

developed, the designer may discover a need to add
or subtract nodes, levels, or branches in the
hierarchy. The number of hierarchical levels in the
system is generally determined by a trade-off
between system complexity, system overhead, and
natural division of labor. Several other guidelines
help determine the number of levels including
coordinate frames of reference and the type of
sensor data processed [Albus 96]. An example of
the latter dictates the number of levels in our
vision subsystem. The lowest level (servo) handles
the pixels, the next highest level (prim) groups
pixels into linear features (line segments and
constant curvature arcs), and the highest level
(emove) forms linear features into feature groups
or patches. For motion control applications (like
this one), three levels, elemental move (emove),
primitive (prim), and servo, seem to be sufficient
to execute high level motion commands.

RCS control nodes have a standard and a non-
standard interface. The standard interface is
between supervisor and subordinate nodes. This
interface always consists of command from
supervisor to subordinate and status from

subordinate to supervisor. The non-standard
interface allows any node to communicate with
any other node as required. As an example of a
non-standard interface in our application, we
provided the probe_touched event to several
nodes at various locations in the hierarchy. Finally,
a node is allowed only one supervisor node per
sampling cycle.

3 The RCS Methodology
The RCS methodology consists of step-by-step

instructions for building a complex, real-time
system. The goal of the methodology is to
facilitate system design and maintenance
efficiency.

To begin, the system developer defines the
highest level task and identifies the resources
available (e.g., sensors and actuators). For
illustrative purposes, we’ll examine two mid-level
tasks, inspect_part and init, used in our
inspection application. Our resources are the
CMM, the CCD camera, and the probe, as well as
computing platforms, for both hard real-time and
soft real-time performance.

Figure 3: A task tree (task decomposition) for the inspect_part and init tasks.

Based on the node placement and
interconnection guidelines of section 2, the
developer “decomposes” the high level tasks into
subtasks as illustrated in Figure 3.

These tasks are then grouped into controllers
based on the bottom-up analysis of actuators to be
controlled. We have a probe, a camera, and a
CMM arm to control. Therefore, we have three
branches in our hierarchy. The grouping of tasks
into nodes for our example task is depicted in
Figure 4.

The next step is to create finite state machines
(FSM) for each of these commands at each of the
control nodes. These FSMs together define system
behavior. An example of an FSM for a prim level
goTo task is found in Figure 5.

The final step is to map the nodes onto specific
computing platforms. For example, the vision
branch in Figure 4 is mapped onto a soft real-time
platform (Sparc/Solaris1) and the CMM and probe
branches are mapped onto a hard real-time
platform (PPC/VxWorks).

Figure 4: A hierarchy of control nodes (RCS building blocks from Figure 1) with tasks mapped into nodes
for the inspect_part task.

1Commercial equipment and materials are identified in order to adequately specify certain procedures. Such identification does
not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the
materials or equipment identified are necessarily the best available for the purpose.

4 Tools to support RCS

The RCS architecture and methodology need
tool support to facilitate system design and
maintenance. For this application, we use two tool
sets. For distributed communications we are using
the Communication Management System. This
tool and other supporting tools under development
at NIST form a comprehensive tool set for RCS-
style system development [Shackleford 99]. This
development system was used at higher levels in
the application system hierarchy (task level and
above).

For the lower levels in the application system
hierarchy (see Figure 4), we are using a tool, called
ControlShell, from Real-Time Innovations, Inc.
(RTI). We will focus our discussion on the
ControlShell tool set. ControlShell is actually not a
single tool, but a set of several integrated software
tools that can be used to develop large and
complex control systems. It is a graphical,
component-based tool set for object-oriented, real-
time system development allowing synchronous
and asynchronous execution for a variety of
operating systems and target hardware. The target
application domain for the tool set is
electromechanical systems, but it is not inherently
limited to that domain.

ControlShell has a diagram editor in which the
user develops a graphical design for the

application. The diagram editor allows definition
and graphical interconnection of components.
Components requiring synchronous (cyclic)
execution of code can be executed within time-
triggered environments called sampling habitats.
FSM components are also graphically defined in
the diagram editor and are mapped into an
asynchronous, event-driven process for execution.
At lower levels in the RCS hierarchy, we
sometimes need to run portions of an FSM on a
cyclic clock. Sending a cyclic pulse from a
cyclically executing component to cause an event
stimulus in an FSM satisfies this need.

There is a one-to-one map between the
graphical design and what executes, i.e., what you
see is what executes (WYSIWE). Within a single
graphical design, one can link component subsets
to distinct executable systems, e.g ., one can define
both simulation and real systems within the one
design.

Component-to-component interface
components can be defined in the diagram editor.
These interfaces encapsulate user-defined method
calls and data. The method calls for RCS interfaces
between nodes consisted of commands and status.
All commands and status are processed as
asynchronous events. This topic is examined
further in section 6.

A run-time shell provides an execution
environment for the application within the host
operating system (VxWorks, Solaris, etc.). It
allows the execution of compiled code, the
modification of data values (at run-time),

Figure 5: A finite state machine diagram (generated in ControlShell) for the prim level CMM_goTo_prim
task from Figures 3 and 4. Note the use of the cyclic pulse stimulus sent from the synchronous process.

debugging, and other facilities. The compiled code
is a relocatable object and, therefore cannot
execute without the run-time shell tool. Data
modification without recompile is available due to
a run-time data binding facility that dynamically
binds all data to the compiled code each sampling
cycle.

5 Developing a new RCS
application with ControlShell

We have developed a template system in the
ControlShell environment that will facilitate RCS
style real-time system development. This template
system is a ControlShell executable consisting of
various components that can be used as a template
for creating a new RCS-based application. To
develop a new application or a new branch in an
existing application, the user simply copies and
edits the template system files. The template
system consists of one branch in the hierarchy
with three RCS nodes in the branch. One of these
nodes is shown in Figure 6. The template system
also contains reusable FSMs for init and halt

commands. To add additional commands (tasks) to
nodes, the developer would make a copy of the
init FSM component, edit it as required, then add
it to the parent FSM component. The newly
generated command would also have to be added to
the appropriate command interface.

In the template system, generic sensory

processing and world modeling components are
merely stubs to which application-specific code
would be added as needed and compiled. Template
interface components for command, status,
sensory processing (SP), and world modeling
(WM), as well as intra-node interfaces such as SP
to WM interfaces, have been defined in the
template system. The generic template component
in ControlShell, implementing the RCS building
block of Figure 1, is shown in Figure 6. Within the
“BG_COG” component of Figure 6 is the parent
FSM component.

6 Real-time Processing Models
The inspection application and scenario were

chosen, in part, due to the real-time and distributed

Figure 6: The generic template component for an RCS node. This is our implementation of the
RCS building block of Figure 1 using ControlShell.

control challenges we would have to overcome.
Both RCS and ControlShell have unique real-time
issues. The integration of the two technologies was
the stimulus for some important real-time effects.

Processing models for RCS typically handle real-
time by specifying that the control nodes, which
execute FSMs, are required to 1) have
deterministic, non-blocking execution and 2)
execute, worst case, in less than one cycle period.
Some RCS processing models require cyclically
executing FSMs [Quintero 92]. While helping
assure determinism, this system overly constrains
certain aspects of execution. For instance, if the
nodes are executed each cycle on one processor
and sequentially from the top to the bottom, a
high level command will reach the bottom node in
one cycle. However, status will take n-1 cycles to
reach the top node from the bottom node for an n
level system, because of the top-down node
execution ordering. With cyclically executing
FSMs, a node can only be in one state per cycle.
While real-time efficient performance can still be
met with these constraints, system perspicuity is
sacrificed, since for the sake of clarity, it is often
helpful to define several states with minimal or no
processing per transition. For example, such a
situation occurs between the states,
initializeCounter and
computingWaypoints, in Figure 5, since no
stimulus is required for transition. Additionally,
according to this model, there are no asynchronous
processes in the real-time execution system, since
adding interrupts can sacrifice determinism, a key
element of dependable systems. However, in an
execution model like ControlShell, we have both
synchronous and asynchronous processes at our
disposal. Each process executes as a separate
process in the real-time operating system, but is
intertwined through method calls and shared data in
the RCS design. Such a link between synchronous
and asynchronous processes has at least two
beneficial effects:

• since we model commands and status as
method calls, the method calls are
asynchronous, avoiding the n-1 delay
mentioned earlier

• since the FSMs are asynchronous, if there is
sufficient processing time during a given
cycle, the system can process as many stimuli
and state transitions for which there is
sufficient processing power

We found that successful real-time execution was
only possible when we gave a higher priority to the

synchronous process than that given to the
asynchronous process. This is, in part, because we
must guarantee that the tasks of the asynchronous
process never cause the tasks of the synchronous
process to fail to complete in any sampling cycle.
The asynchronous process is roughly equivalent to
a background process for the system, which we
execute with processor time remaining after
execution of the cyclic modules. Therefore, our
processing model for RCS still requires that we
have deterministic, non-blocking execution of the
synchronous code and that code must always
execute within the sampling period of the sampling
loop. However, under the new processing model,
we have the freedom to put FSMs in the
asynchronous process, which gives two benefits
(without seeming to sacrifice real-time, dependable
performance):

• the ability to design finite state machines so
that nodes can transition through multiple
states in a single cycle

• more efficient processor usage

7 Object-oriented issues
In the software industry, there are many and

varied uses of the terms, architecture, components,
and objects: We will simply describe how we have
defined them and how they interact in our system.

The RCS architecture and methodology has been
shown to map successfully into an object-oriented
environment [Huang 96]. Our work here is to
make this claim manifest in a real application with
a commercial off-the-shelf (COTS) component-
based objected-oriented tool.

In our view, objects support components,
components support the architecture, components
support objects, and the architecture supports
components. To be of any value, this support
interaction must help us reach the goal of software
engineering, namely, to discover and create
theories, architectures, methodologies, and tools
that facilitate the software lifecycle.

The ControlShell tool defines the nature of the
interface between components and objects and RCS
defines the interface between the architecture and
the components. We will now examine how our
system can be viewed from the architectural,
component-based, and object-oriented
perspectives, in turn.

From an architectural perspective, our system
defines

• component boundaries carefully to minimize
data bandwidth between components,
facilitate reuse, and minimize complexity

• building block template components that can
be used to facilitate design

• component interfaces and handshaking
between control nodes

• components within a control node and the
interfaces between those intra-node
components (see Figure 2)

• a component taxonomy
From a component-based perspective, our

system
• can encapsulate other components and

objects, therefore, components do not have
to map to a specific class as do objects, i.e.,
components provide further encapsulation to
the system

• supports the WYSIWE model
• creates component interfaces that can be

clearly exposed, standardized for reuse, and
modifiable for run-time execution

• defines the concept of a component “level” as
components embedded within components

• provides a component repository for
cooperative system development with strictly
defined and easily accessible software
component specifications [Horst 97] for
efficient code reuse

From an object-oriented perspective, our system
• provides three types of objects (called

“primitive components” in ControlShell):
data flow components (execute in time-
triggered environment), state transition
components (execute in event-triggered
environment), and atomic components which
can be synchronously or asynchronously
executed

• defines all processing elements as objects
• constrains all objects to live within

components
• automatically generates object source code

with user defined execution methods and data
• provides facilities to place user code within

automatically generated object source code
template files and compile the code for a wide
variety of target hardware and software.

• allows object inheritance and, in general, all
object-oriented principles are satisfied

8 Conclusion
We have successfully demonstrated a complex

inspection system that utilizes an RCS architecture
and methodology supported by a component-based
COTS tool called ControlShell.

We demonstrated that synchronous and
asynchronous processes can operate in an RCS
architecture, if the synchronous process is given
higher priority. This is because the synchronous
process must complete its execution each cycle. As
a consequence, we gain more efficient processor
usage. We also gain the ability to have more than
one state transition per cycle in the finite state
machines.

From the object-oriented perspective, we are
fully convinced (though we have no quantitative
proof) that a well-formulated architecture and
methodology on top of a component-based object-
oriented tool will significantly increase design,
debugging, testing, and maintenance efficiency. As
a qualitative measure of this claim, one engineer
was able to design, debug, test, and demonstrate the
CMM motion control, probe control, and vision
control subsystems in about 0.5 man-years of
effort, using the RCS architecture, methodology,
and supporting tools. The CMM branch of the
hierarchy in Figure 4 was the first branch built and
tested. Later we were able to integrate and test the
probe branch with relative ease and efficiency using
the generic system template, the ControlShell tool
set, the RCS methodology, and the architectural
guidelines.

9 References
[Albus 96] Albus, J. S. and Meystel, A.M., “A Reference

Architecture for Design and Implementation of Intelligent
Control in Large Complex Systems,” International Journal
of Intelligent Control and Systems, Vol. 1, No. 1, (1996),
pp. 15-30.

[Horst 97] Horst, J., Messina, E., Kramer, T., Huang, H.,
“Precise definition of software component

specifications”, Proceedings of the IFAC Computer-Aided
Control System Design Conference, (1997).

[Huang 96] Huang, H. and Messina, E., “NIST-RCS and Object-
Oriented Methodologies of Software Engineering: A
Conceptual Comparison,” Proceedings of the Conference
on Intelligent Systems: A Semiotic Perspective, (1996).

[Kramer 98] Kramer, Thomas R., “The NIST DMIS Interpreter:
Version 2,” NISTIR 6252, (1998).

[Messina 99] Messina, E., Horst, J., Kramer, T., Huang H., Tsai,
T., Amatucci, E., “A Knowledge-Based Inspection
Workstation,” Proceedings of the 1999 IEEE International
Conference on Information, Intelligence, and Systems,
(1999).

[Quintero 92] Quintero, R. and Barbera, A.J. “A Real-Time
Control System Methodology for Developing Intelligent
Control Systems,” NISTIR 4936, (1992).

[Shackleford 99] Shackleford, Will, et al, “NIST Real-Time
Control Systems (RCS) Library: Tools for Control System
Development,” Web site address: http://eewww.eng.ohio-
state.edu/nist_rcs_lib/ , (1998).

