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Outline

• Introduction and motivations

• Chip design verification for sign-off EM assessment
- On-chip interconnect elemental unit for EM reliability vs. standard test-structures
- A role of interconnect redundancy in the resistance degradation
- Power/ground grid vs. signal nets

• A role of residual stress and temperature in EM-induced degradation

• Methodology of across-interconnect residual stress assessment

• Methodology of across-interconnect temperature assessment

• Voiding-induced IR-drop degradation – parametric failure

• Multi-scale materials data as input for the simulation

• Characterization techniques for models/methodology validation
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Reliability vs. Performance

• Current assessment of chip reliability kills chip performance!

• Reduction of the operation frequency or voltage at the instance in time 
when IR drop degradation (increase) exceeds a projected value is killing 
the chip performance while not affecting the chip EM reliability. 

∆IRth = 7%

Required life-time

Question:
How can one predict an 
IR-drop degradation for a 
particular chip design?  

Answer:
• Accurate physics
• Solid models
• Fast and clever algorithm

FCMN2015, Dresden
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Electromigration Basics

� Material depletion and accumulation occurring
at the sites of atomic flux divergence results the
localized tensile and compressive stresses

� Resulting stress gradient creates a backflow
atomic flux

� If the electron-wind and back-stress forces
balance each other before the critical stresses
needed for void nucleation or metal extrusion
are developed the interconnect segment will be
immortal.

DC AC

FCMN2015, Dresden
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General Physical Model
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If atom an flux divergences somewhere inside metal line then accumulation or 
depletion of atoms is happening there: 
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Evolution of the hydrostatic stress (a) along the metal line loaded with 
DC current, and at the cathode end of line, (b) j = 5x109A/m2, T = 
400K. 
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Solution of Korhonen’s equation:

Condition for the stable void formation:

Nucleation time for stable, growing void:
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V. Sukharev, “Beyond black’s equation: Full-chip Em/Sm assesment in 3D IC stack,” Microelectronic 
Engineering, vol. 120, pp. 99–105, May 2014.
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Black’s equation based MTTF

jaccel

jaccel

EM accelerated test: Taccel and jaccel
Different lines characterizing by different microstructures 
reveal different times to failure (TTF)

• TTF averaged with the accepted distribution
function provides mean time to failure (MTTF).

• A set of calculated MTTF obtained for different
Taccel and jaccel is used for extraction of the current
density exponent n and apparent activation energy
E used in the Black’s equation:

• Assuming an “universal” character of the extracted
n and E, the MTTF at the used conditions is:
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Experiments demonstrates that n and E by 
themselves are the functions of j and T

M. Hauschildt, C. Hennesthal, G. Talut, et al. (GF & Fraunhofer), 
2C.1.1, IRPS 2013

FCMN2015, Dresden



© 2010 Mentor Graphics Corp. 

www.mentor.com

EM Assessment – PROBLEM!

• Stress and temperature dependency of the current density exponent,
• Current density and temperature dependency of the activation energy
• Across-interconnect temperature and residual stress variation

ALL THESE FACTORS MAKE QUESTIONABLE USING BLACK EQUATION 
and BLECH LIMIT (CRITICAL PRODUCT) FOR ACCURATE EM ASSESSMENT!

( )

( )








=
kT

TjE

j

rA
t

resTn

res
nuc

,
exp

),(
,σ

σ
r

( ) ( )( )
ρ

σσ

eZ

Tr
Lj resEM

crit

,
r

±Ω
=×

σresid

σcrit

H
y
d
ro
st
a
ti
c 
st
re
ss
 

σ
E
M

Interconnect line, arc-length

FCMN2015, Dresden

EM assessment requires:

• Current density assessment
• Temperature assessment
• Residual stress assessment

V. Sukharev and E. Zschech, “Multi-scale simulation flow and multi-scale materials 
characterization for stress management in 3D through-silicon-via integration technologies –
Effect of stress on 3D IC interconnect reliability”, AIP Conference Proceedings 1601, 18 
(2014); DOI: 10.1063/1.4881339
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Chip-scale EM assessment

Interconnect functionality
• interconnectivity for signal propagation

-bidirectional pulsed currents

• voltage delivery
-unidirectional current
- power grids, more
susceptible to EM effect

Traditional segment-based EM assessment
• single segment based stress analysis

- assume individual segment is confined by diffusion barriers
- however, in power grids, atoms can diffuse in
the interconnect tree, stress redistribution

• EM induced failure rate of the individual segment

EM induced degradation in power grids
• high level of redundancy
• Failure: loss of performance, parametric failure

- cannot deliver needed voltage to any point of the circuitry

New methodology for EM assessment:
• IR drop based assessment
• physics based models for void initiation and evolution

Interconnect tree

FCMN2015, Dresden
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STRESS ASSESSMENT

FCMN2015, Dresden
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IC Problem

FCMN2015, Dresden

� Consumer demand is driving the need for thinned substrates, 
introduction of new connectivity structures (e.g. 3D stacking, TSVs, 
C4- and u-bumps) that cause unexpected device performance

� Mechanical stress caused by IC architecture and packaging impacting 
MOSFET characteristics/performance – Chip-Package-Interaction 
(CPI) 

IMEC
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What is 3D TSS (Through Si Stacking) Technology 

� Die Integration Technology 

— using Through Si Vias

— electrical connection from 

front to back (on die or 

interposer)

� Value Proposition

— Small form factor (in X-Y &Z)

— Improved Performance

— Heterogeneous Integration 

� Typical Implementation
— e.g. WIO Memory-on-Logic 

– stacking orientation: F2B
– TSV via diameter ~ 5u
– wafer thickness  ~ 50

— e.g. Die on (Active) Interposer
– stacking orientation: F2F
– TSV via diameter ~ 10u
– wafer thickness  ~ 100u

~20 um

~100 um

~20 um

DIE 1 : Si Substrate
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R. Radojcic, E. Zschech, V. Sukharev, “Managing the Effects of Mechanical Stress on Performance of Modern SoCS”, iMAPS 2013, Hand-out for Tutorial T7.
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Multiscale methodology for calculation of device-to-
device variation of stress: Stress Exchange Format

Package-scale simulation (FEA)
Input: geometry; material properties;
smeared mechanical properties for RDLs,
Silicon/TSV bulk, interconnect.

Output: field of displacement
components on the die faces.

Die-scale simulation (FEA)
Input: geometry; field of
displacements on the die faces;
coordinate-dependent mechanical
properties for RDLs, Silicon/TSV bulk,
interconnect.

Output: Distribution of the strain
components across device layer.

Layout-scale with feature-
scale resolution :
Input: GDS. 
Output: distribution of the stress 
components across interconnect metal 
layer. 

Package scale

Die scale

Feature scale

Package simulations 

(FEA)

TSV induced stress 

(compact model)

Bump effect 

(compact model)

Design (GDSII, OASIS); 

Design tech file

Composite interconnect 

layers  (compact model)

Transistors layout effect 

(compact model)

CPI stress/strain 

(FEA)

Stress and strain 

components (per transistor); 

mobility shift

Package tech file 

FCMN2015, Dresden
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Effective mechanical properties of BEoL, 
BRDL interconnects and Si/TSV bulk layer

� Theory of the mechanical properties of anisotropic composites is employed. 

� Required input: (a) Thermo-mechanical properties of each material – metal, dielectric: 
CTE, Young’s moduli, Poisson factors; (b) fraction of dispersed phase; (c) routing 
direction of the metal layer.

� For each bin of each layer of interconnect, depending on routing direction: for example 
the Young’s modulus:
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100nm (right), TSV 6nm, spacing 40nm.
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V. Sukharev et al., “Multi-scale simulation methodology for stress assessment in 3D IC: effect of die stacking on 
device performance,” J. Electron. Test. 28(1), 63–72 (2012).
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Supported Compact Models

FCMN2015, Dresden

Stress component 
distributions obtained 
with: “smeared” 
(dashed line) and 
non-uniform (solid 
line) interconnects.

1. Package-scale: Warpage-Induced 
Stress

2. Compact Model for Bump-Induced 
Displacements  

3. Effect of Non-Uniform Interconnect 

4. Compact Model for TSV-Induced Stress: 
Based on: S. Ryu, K. Lu, X., et Al., , “Impact of Near-Surface Thermal 
Stresses on Interfacial Reliability of Through-Silicon Vias for 3-D 
Interconnects”, IEEE TDMR, VOL. 11, NO. 1, (2011) pp. 35-43
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A. Kteyan, et al. “Stress assessment for device performance in three-dimensional IC: linked package-scale/die-
scale/feature-scale simulation flow”, J. Micro/Nanolith. MEMS MOEMS 13(1), 011203 (Jan–Mar 2014)
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Residual stress in on-chip interconnect

Interconnect face warpage

Residual (hydrostatic) 
stress distribution 
across M1 layer with 
the overlaid C4 
bumps, (left) and u-
bumps (right). 

Hydrostatic stress in M1 layer
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Interconnect tree is a elemental EM reliability unit representing a continuously connected, highly conductive metal (Cu) lines within one layer of 
metallization, terminated by diffusion barriers.
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TEMPERATURE ASSESSMENT

FCMN2015, Dresden
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Major components

kx

ρρρρM

ky
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Effective thermal 
properties of a die

� MGC’s effective thermal properties extractor.
- Each interconnect layer is considered as a composite: a mixture of metal fibers 

included in a dielectric matrix.
- Calculates the effective thermal conductivity (ki, i=x,y,z), specific heat of each 
interconnect layer as a function of local metal density (ρM).

• Lateral components Kx,y inside each metal layer are determined by a routing direction:

- Parallel to the routing direction:

- Normal to the routing direction:

- A vertical component: 

� Thermal Netlist Builder.
- A die is represented by a 3D array of cuboidal thermal cells. Each cell contains a 

thermal node, and is characterized by local effective thermal properties(Rth, Cth).
- The array transforms into a thermal netlist.

� SPICE simulator.
- Calculates transistor power consumption. 

- Solves for temperature for each thermal node.
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From effective thermal props to thermal 
netlist

� Construct an array of cuboidal cells of dimension, LxLxt : 
“L” is user-supplied binSize.

� For each cell, MGC’s engine uses Calibre to extract local 
metal density, and calculates effective thermal properties. 

� Thermal netlist builder transforms effective thermal  
properties into Rth and Cth.

� The array transforms into a thermal netlist.

� Consideration on boundaries
- Fixed T with V source & R=0; Insulation with large R.
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INTERCONNECT SCALE EM 
MODELING

FCMN2015, Dresden
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Chip-scale EM assessment

Interconnect functionality
• interconnectivity for signal propagation

-bidirectional pulsed currents

• voltage delivery
-unidirectional current
- power grids, more
susceptible to EM effect

Traditional segment-based EM assessment
• single segment based stress analysis

- assume individual segment is confined by diffusion barriers
- however, in power grids, atoms can diffuse in
the interconnect tree, stress redistribution

• EM induced failure rate of the individual segment

EM induced degradation in power grids
• high level of redundancy
• Failure: loss of performance, parametric failure

- cannot deliver needed voltage to any point of the circuitry

New methodology for EM assessment:
• IR drop based assessment
• physics based models for void initiation and evolution

Interconnect tree

FCMN2015, Dresden
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Interconnect segment vs. wire

Current density                    Hydrostatic stress 

FCMN2015, Dresden

P. Gibson, M. Hogan, and V. Sukharev, “Electromigration analysis
of full-chip integrated circuits with hydrostatic stress,” in 2014 IEEE
International Reliability Physics Symposium, 2, pp. 2.1–2.7, 2014.
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Closed-form analytical solution for stress 
evolution in the multi-branched interconnect tree

T-shaped interconnect tree 
with shown directions of 
the electron flows.

Evolution of the stress distribution along the segment of the shown T-shaped tree; (a) 
line 1, (b) line 2, and (c) line 3.

(a)                                                                (b)                                                       (c)

If we disassemble these brunches a standard stress evolution will 
take place in each of them: 

FCMN2015, Dresden

V. Sukharev, X. Huang, H.-B. Chen, and S. X.-D. Tan, “IR-Drop 
Based Electromigration Assessment: Parametric Failure Chip-
Scale Analysis” in Computer-Aided Design (ICCAD), 2014 
IEEE/ACM International Conference on, pp. 428–434, 2014.
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• Assume (just for a moment) that the void less steady state 
was achieved in the tree. 

• Consider the redistribution of the atoms between 
sub-segments due to unblocked sub-segment ends:
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Example of an interconnect tree

jmn is the density of electron flow 

(opposite to the current direction).

criti σσ ≥

Distribution of the steady state hydrostatic stress
along the considered tree  

• Previously, we use uniform temperature 
distribution:
The shortest void nucleation time is characterized  
by the biggest steady state stress , 
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• With temperature variation: Void nucleation time is 
affected by both T and hydrostatic stress. Consider both 
factors to find the first nucleated void (min{tnuc

i})

σ m j1, j2,..., jn( )

Steady state distribution of the hydrostatic stress 
inside interconnect tree in void-less regime

FCMN2015, Dresden

X. Huang, T. Yu, V. Sukharev, and S. X.-D. Tan, “Physics-based
electromigration assessment for power grid networks,” in Design
Automation Conference (DAC), 2014, 51th ACM/EDAC/IEEE, 2014.
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Voiding

When void is nucleated the stress at the void surface is zero. The solution of the stress 
kinetics equation with the zero-flux condition at the downstream (anode) end of the line is
[J. He and Z. Suo, AIP Conf. Proceedings, vol. 741, 2004]:  
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Once the stress field is solved, the void 
volume is calculated from the volume of 
atoms drifted into the line:
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There are two limiting cases for volume void:
1. Short time; stress in the line is small, so
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Void

Atoms from area occupied by voidJe electron flow
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Once V(t) is known the kinetics of line resistance can 
be easily calculated.
For a void volume at an instance in time t we have:

Or, when current density depends on time:  
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Void nucleation time and void growth time as the 
functions of the current density and test temperature
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X. Huang, T. Yu, V. Sukharev, and S. X.-D. Tan, “Physics-based
electromigration assessment for power grid networks,” in Design
Automation Conference (DAC), 2014, 51th ACM/EDAC/IEEE, 2014.
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� EM effect is sensitive to temperature

- TTF exponentially relates to temperature

(the same as Black’s equation)

� Reducing chip temperature/ temperature gradient could extend TTF

EM Assessment Results in IBM 
Benchmarks
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� Current source values are modified to ensure initial IR drop of any node is smaller than the threshold value 

TABLE: COMPARISON OF POWER GRID MTTF 
USING BLACK’S EQUATION AND PROPOSED MODEL 

� Both Black’s equation based series and Mesh models
lead to pessimistic predictions

Voltage at the first failed node over time

� In this work, the first failure is most likely to happen at 
the nodes where the initial hydrostatic stress is large 
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EXAMPLE OF IR-DROP EM 
ASSESSMENT

CHIP-SCALE EM ASSESSMENT CONSIDERING THE IMPACT OF 
TEMPERATURE AND CPI STRESS VARIATIONS

FCMN2015, Dresden
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Layout

� Design: 
� 7-metal layer
� 32nm
� Dimension:184um ×184um 
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power net

Initial current density and initial IR-drop
-power net, M1 layer

power net
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suspicious to EM failure

σcrit = 500Mpa

Initial hydrostatic stress 
-power net, M1 layer
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Temperature distribution
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M. Chew, A. Aslyan, J.-H. Choy, X. Huang, “Accurate Full-Chip Estimation of Power Map, Current Densities and 
Temperature for EM Assessment”, in Computer-Aided Design (ICCAD), 2014 IEEE/ACM International 
Conference on, pp. 440–445, 2014.
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EM induced IR drop change
- power net

Initial IR drop distribution

Final IR drop distribution (at lifetimeth)  

� Significant IR drop changes in M1 layer
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EM induced IR drop change
- power net

Voids mainly locate in M1 layer, some voids locate 
in M3 layer

Branches with voids
- power net

EM induced IR drop change
- power net

Chip fails when the maximum IR drop > 
threshold level
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CALIBRATION/VALIDATION
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How to calibrate/validate verification tools?

• Both types of tools predicting the effect of CPI on chip 
performance and chip reliability need as inputs:
� Measured foundry and process dependent thermal-mechanical properties of 

the involved materials.
� Calibrated compact models employed for calculation of the stresses and 

temperature across a device layer and across the whole chip.
� Calibrated models for calculating effective thermal-mechanical properties of all 

composite layers (BEoL and RDL interconnects, underfill with C4 and u-bumps, 
silicon bulk with TSVs, etc.).

• Both types of tools need to be validated by a direct 
comparison between the predicted characteristics and 
measured:
� Comparing the measured characteristics of individual transistors and predicted 

by verification tools is a validation of the CPI effect on chip performance.
� What kind of test-structures should be used to validate the effect of 

CPI on chip reliability (EM as an example)?

FCMN2015, Dresden



© 2010 Mentor Graphics Corp. 

www.mentor.com

Calibration of the models for effective 
thermal-mechanical properties

� New approach to determine CTE for Cu/ULK for a 
partially de-processed 3DIC, by combination of FIB 
cutting and SEM (heating stage holder).
• isolate a bar
• separate into two bars of same length, and 
measure the gap in the middle as a function of  
temperature up to 250°C

� Layout file (GDSII & Oasis) allows to calculate all 
three components of the effective CTE for different 
bin sizes.

� Following FEA simulation could allow to calibrate the 
effective CTE model.

� Similar approach can be employed for calibration of 
the models for effective Young’s modulus and Poisson 
factor.

� There is a need in experimental 
methodology for calibrating the 
models for thermal properties of 
on-chip interconnects and other 
composite layers.

FCMN2015, Dresden

R. Radojcic, E. Zschech, V. Sukharev, “Managing the Effects of 
Mechanical Stress on Performance of Modern SoCS”, iMAPS 2013, 
Hand-out for Tutorial T7.
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Proof Electrical vs. Mechanical

FCMN2015, Dresden
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Good fit between simulated and measured
electrical characteristics of transistors
located at different distances from TSV
allows to calibrate the developed tool with
relatively easy accessible electrical data.

R. Radojcic, E. Zschech, V. Sukharev, “Managing the Effects of Mechanical Stress 
on Performance of Modern SoCS”, iMAPS 2013, Hand-out for Tutorial T7.
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Validation with the Foundry calibrated Model

Test-chip segment
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Calibration was performed on ~100 gates
Prediction was made for all (~4000) gates
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V. Sukharev et al., “Multi-scale simulation methodology for 
stress assessment in 3D IC: effect of die stacking on device 
performance,” J. Electron. Test. 28(1), 63–72 (2012).
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Die Corner Array: Test-chip 28nm node

41

Schematics of the test structures used for 
model calibration: die corner
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R. Radojcic, E. Zschech, V. Sukharev, “Managing the Effects of Mechanical Stress on Performance of 
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Validation related tasks

• How can we validate the predicted stress 
distribution inside the interconnect metal of the die 
stacked by 3D IC technology?

• How can we validate the distribution of the EM- or 
SM-induced voids inside BEoL interconnect?

• How can we monitor the accelerated kinetics of IR-
drop degradation? What kind of test-structures 
should be developed?

• Test-chips with the temperature sensors?

• Itc., etc.

FCMN2015, Dresden
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CONCLUSIONS
A NOVEL METHODOLOGY FOR FULL-CHIP POWER/GROUND NETS 

REDUNDANCY-AWARE EM ASSESSMENT BASED ON IR-DROP ANALYSIS 
WAS DEVELOPED.

PHYSICS-BASED MODEL FOR TEMPERATURE- AND RESIDUAL STRESS-
AWARE VOID NUCLEATION AND GROWTH WAS DEVELOPED AND 

IMPLEMENTED IN THE FLOW.
A DEVELOPED TECHNIQUE FOR CALCULATING THE HYDROSTATIC STRESS 
DISTRIBUTION INSIDE A MULTI BRANCH INTERCONNECT TREE ALLOWS TO 
AVOID OVER OPTIMISTIC PREDICTION OF THE TIME TO FAILURE MADE 

WITH THE BLECH-BLACK ANALYSIS OF INDIVIDUAL BRANCHES OF 
INTERCONNECT SEGMENT.
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