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X-ray Metrology - Volume Speaks for Itself

6-Invited Talks

• The Opportunities and Challenges of Bringing New Metrology Equipment to Market
• Metrology (Including Materials Characterization) for Nanoelectronics
• Metrology Challenges for 45 nm Strained-Si Devices
• Recent Advances in Semiconductor X-ray Metrology
• X-ray Photoelectron Spectroscopy of High-k Dielectrics
• Small Angle X-ray Scattering Metrology for Sidewall Angle and Cross Section of Nanometer Scale Line Gratings

About 20 Posters
•TU-02: In-line Compositional and Thickness Metrology Using XPS for Ultra-thin Dielectric Films
•TU-03: A New NIST Database for the Simulation of Electron Spectra … : Application to Angle-Resolved XPS ….
•TU-05: The Use of Model Data to Characterise Depth Profile Generation from Angle Resolved XPS
•TU-06: Dopant Dose Metrology for Ultra-Shallow Implanted Wafers Using Electron-Induced X-ray Spectrometry….
•TU-07: Depth Resolved Composition and Chemistry of Ultra-thin Films by ARXPS
•TU-13: Simultaneous Analysis of Thickness and Composition of Ultra-thin Films and Multilayers Using XRF
•TU-14: On-product Thin Film Characterization Using XRF
•TU-28: Characterization of Atomic Layer Deposition Using XRR
•TU-29: Limits of Optical and X-ray Metrology Applied to Thin Gate Dielectrics
•WE-07: Practical Applications of XRR-XRF Metrology Tool
•WE-09: Combined XRR and Rs Measurements of Cobalt and Nickel Silicide Films
•WE-17: Calculation of Pore Size Distributions in Low-k Films
•WE-20: Optical and X-ray Metrology of Low-k Materials: Porosity Evaluation
•WE-21: X-ray Porosimetry as a Recommended Metrology to Characterize the Pore Structure of Low-k Dielectric Films
•TH-16: Quantitative Analysis by Low Energy X-ray Emission Spectroscopy (LEXES) of Metallic and Dielectric Thin Films
•TH-20: Accuracy and Repeatability of X-ray Metrology
•TH-23: In-line Monitoring of Fab Processing Using X-ray Diffraction
•
•
•
•
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What’s  out there?

X-ray Methods for Film Measurements

XRR XRF XRD XPSSAXS e-XRF

• Thickness (First 
Principle Method)

• Density / Porosity

• Surface and Interface 
Roughness

• Single or Multi-layers

• Thickness (calibrated)

• Single or Multi-layers 
for non-repeating 
materials

• Composition

• Phase

• Texture

• Strain/Stress (Hi-res. 
XRD)

• Thickness (rocking 
curves)

• Low-k Pore Size and its 
Distribution

Ultra-thin films < 3nm

•Thickness 

• Composition

• Thickness (calibrated)

• Composition

• Limited capabilities due to 
film damage from e-beam 
(only low energy excitation are 
safe, limiting the thickness and 
material range)

2004 Semiconductor bookings for thin film x-ray metrology* tools 
>$50M and growing at over 50% year over year
* Not including TXRF (contamination) and back-end x-ray inspection tools
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XRR – X-ray Reflectivity

• Thickness (few Å - 1µ; application dependent)

• Density (ρ) (<2% accuracy) 

• Surface and Interface Roughness

Substrate (Si, Glass, Al, GaAs, etc.)

Film 1

Film 2

Film 3 . . . n

Single, multi-layer or Periodic multi-layer Stacks
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θ

Substrate

Incident
Reflected

θ
Total Reflection

Transmitted

XRR – X-ray Reflectivity from a Substrate

• The refractive index n ~ 1 

• For most materials n only varies 
by <10-5

• Below certain angles of incidence, 
all x-rays  are reflected.

• At certain angle, θc , reflectivity 
begin to decays exponentially

• For X-rays, θc ranges from 0.1° to 
0.6° for most materials.
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XRR – X-ray Reflectivity from a Thin Film
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Reflected from Interface

θ

Reflected from Surface
Phase shift = [2 d . Sin θ ]/λ

Total Reflection

Transmitted

Reflectivity (rs) from any 
interface is calculated using 
Fresnel’s equations 
employing continuity 
conditions for incident, 
reflected and transmitted 
waves.

The exponential term 
accounts for the reflectivity 
from a rough interface 
[Sinha et. al]

where r1 and r2 are the 
reflectivity of the two 
interfaces (air/film) and 
film/substrate).

For multi-layer, a recursive 
formula was developed by 
Parratt et. al. 
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150 Å PVD Ta

Si Substrate

600 Å PVD Cu

Si Substrate

150 Å PVD Ta

XRR – Reflectivity from Single and Bi-layer Stack

• Thicknesses of individual films in a multilayer stack are decoupled. 
• The high frequencies correspond to thick films while low frequencies correspond to thin films.
• Density is obtained from the critical angle and amplitude of the fringes.
• Fringe pattern is a fingerprint of layer order with in a stack with top layers contributing at low 

angles and bottom layers contribution at higher angles. 
• For simple stacks, the spectra is very easy to interpret.

θc (Cu, Ta)
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XRR – Surface and Interface Roughness

• Top surface roughness causes scatter of the incident flux =>  impacting the decay 
(exponential) of the reflectivity pattern. 

• The interface roughness causes scatter of the reflected flux with in the film => 
dampening of fringe amplitude.

• Graded films also produce an effect similar to interface roughness.

• XRR is very sensitive to roughness <30-40A. For higher roughness, XRR signal 
detoriates quickly.
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Recent Advances: Classical vs. Fast XRRRecent Advances: Classical vs. Fast XRR
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Limitations of Goniometer Based Systems

• Scans theta in small steps using Goniometer
• Long measurement times ~ Typical 

30min-1hr.
• Uses parallel beam optics leading to large 

spot
• Typical spot size ~ 5mmx5mm @ θ =10

using a 50µm x5mm slit.
• Slits define spot size at the cost of flux.
• No pattern wafer capability 
• Large edge exclusions.

• Moving Goniometer, Detector, Optics,  and 
Source 

• Requires frequent calibrations
• Increased maintenance

• Uses high power x-ray sources (2kW-15kW)
• Limited source life
• Film damage concerns

Fast XRR with focused beam optics
Hardware:
• X-ray source + optics producing focused beam 
• High dynamic range array detector (107) for simultaneous 

measurements of data at various angles.
• Small spot size  ~60µm x 1mm @ θ =10

• Allows product wafer measurements.
• Very small edge exclusion ~ 1mm
• Rapid data collection - Typical measurement 1-10 sec.
• Fewer moving parts (stage only): less wear-tear, low 

maintenance, MTBF > 3months
• Uses low power x-ray source.  ~30-50 watts
• Excellent source life
• No risk of material damage

Software:
• 300mm SECS/GEM automation ready.
• Fully automated real time analysis.
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XRR Accuracy -ONO Gate Stack

TEM
SiO2 (55 Å)

Si3N4 (50 Å)

Si Subs

SiO2 (37 Å)

XRR
Film T [Å] D [g/cc] R [Å]
SiO2 57.6 2.29 5.9
Si3N4 53.4 2.93 2.5
SiO2 37.7 2.14 6.1
Si Subs. 2.33 2.0

XRR vs. TEM
• Angstrom level accuracy.
• Multi-layer characterization in a single measurement.
• Negligible correlation between film thicknesses.
• Optical film measurement techniques have high correlation between 

top and bottom oxide layers
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XRR- Typical Multi-layer Analysis
Typical Multi-layer Analysis for XRR

Layer T(Å)  D(g/cc)    R(Å)
1   SiCxNy (bulk low k) 450 2.0 10
2   SiCxNy (interface) 50 2.5 10
3   Cu(Seed or ECD)        900/2500 8.9 10   
4   Ta 150 16.6 5
5   TaN 100 15.00 5
6   TaSix (interface) 15 12.0 5
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140140ÅÅ W / 2x70W / 2x70ÅÅ TiN TiN / 210/ 210ÅÅ Ti / 5000Ti / 5000ÅÅ SiOSiO2 2 /Si/Si

Reveals the interface created by partial plasma treatment of TiN films.
No other known non-destructive/non-contacting technique can characterize 
this stack simultaneously .
10s data is sufficient for full characterization

T[Å] D[g/cc] R[Å]

WO3 26.9 7.1 9.0

W 168.4 16.2 6.5

TiN 38.4 4.5 8.0

TiN 29.3 2.4 7.5

TiN 33.0 3.0 5.0

TiN 33.2 2.0 5.5

Ti 218.0 4.2 1.5

1x70Å TiN1x70Å TiN

1x70Å TiN1x70Å TiN
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Typical Fab Applications of Fast XRRTypical Fab Applications of Fast XRR

BEOL Applications
Barrier Seed/Liner -

o Cu Seed  / Ta
o Cu Seed  / Ta /TaN

Top Barrier and Etch Stop Layers -
o SiCN/Cu/Ta
o SiOC/Cu/Ta

Low-k -
o Low-k
o Low-k/Cu/Ta

Al Processing -
o Wnuc on Ti/TiN
o W
o Ti / TiN

FEOL Applications 
SOI
Advanced Gate Dielectrics -

o SiON
o ONO
o High K

SiGe, SiGe on SOI
Metal Gate
Silicides -

o Co
o Ni

Organic ARC’s
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XX--Ray Ray FluorescenceFluorescence
13

αKEE LK ⇒−

22
αKEE LK ⇒−

13 βKEE MK ⇒−

153
αLEE ML ⇒−

M

L

K

• Incident x-ray via photoelectric interaction knock out electrons from innermost atomic shells.
• Vacancy is filled by electrons from the outer shells causing emission of characteristic X-rays 

labelled as K, L, or M (denoting the shells they originated from) 
• Additional designations of  α, β, or γ, are used for transition from various atomic shells.
• Transitions from sub-shells to a shell are further designated as α1 ,α2 or β1 , β2 , etc.

• XRF is measured using either WD (Wavelength Dispersive) or ED (Energy Dispersive) methods.
• ED-XRF uses detectors capable of energy discrimination. This method provides higher XRF flux. 

Low-power x-ray sources work quite well. Typical energy resolution ~ 150-200eV. 
• WD-XRF combines counting detectors and diffraction based crystals for energy selection. This 

method provides excellent energy resolution, however at cost of flux (requires high power x-ray 
sources). Typical resolution ~  10-20eV.
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XX--Ray Ray FluorescenceFluorescence

Wafer #3
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Unknown

XRF Intensity is calibrated using 
known standards -

• Linear (<0.5µm)
• Polynomial (0.5µm<2µm)
• Exponential (> 2 µm)
• Standard-less methods are also used

IA
IB

Layer A

Layer B

X-Ray 
Source

IB
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# 

Ph
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XRF yield depends on –
• XRF source energy
• Number of atoms available for 

excitation.
• Detection Efficiency.
• Absorption Effects.
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Typical Fab Applications of Typical Fab Applications of µµ--XRFXRF

BEOL Applications
Cu Processing 

o Cu Plating Thickness
o Post CMP Thickness
o Dishing and Erosion

Al Processing -
o W Plating and Polish
o W Dishing and Erosion
o Al Thickness

FEOL Applications 
SiGe, SiGe on SOI – Composition
Sidewall thickness measurements
Silicidation Process – Composition 
Anneal, Strip, Post Strip, etc.

o Co
o Ni
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Pre and Post Polish Characterization Pre and Post Polish Characterization 
Across Cu Trenches Across Cu Trenches –– Single RecipeSingle Recipe

0

2000

4000

6000

8000

10000

12000

14000

14.35 14.55 14.75 14.95 15.15 15.35 15.55

X scan (mm)

Th
ic

kn
es

s 
(A

)

•13K Cu Pre

•8K Cu Post
•6K Cu Post

•Clear to 
Barrier
•Clear to 
Oxide



2005 International Conference for Characterization and Metrology for ULSI Technology 3/17/2005

CMP Study using XRF

Cu Thickness

Ta Thickness                           

Sheet-ρ depends 
on combined 
barrier and Cu 
thickness
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11µµm Cu Characterization: XRF Datam Cu Characterization: XRF Data
Edge Profile: Measurement steps of 100 µm

0

2000

4000

6000

8000

10000

12000

80.0 82.0 84.0 86.0 88.0 90.0 92.0 94.0 96.0 98.0 100.0

Y coordinate; X=0
C

u 
T

hi
ck

ne
ss

 [Å
]

Cu film reaches maximum 
thickness at X = 96.7

Cu film begins at X = 97.7

0

2000

4000

6000

8000

10000

12000

-100.0 -98.0 -96.0 -94.0 -92.0 -90.0 -88.0 -86.0 -84.0 -82.0 -80.0

X coordinate; Y=0

C
u 

T
hi

ck
ne

ss
 [Å

]

Cu film reaches maximum 
thickness at X = -96.4

Cu film begins at X = -98.0



2005 International Conference for Characterization and Metrology for ULSI Technology 3/17/2005

Post Cu Polish Dishing and ErosionPost Cu Polish Dishing and Erosion

Cu

ILDCu

Cu
ILD DishingErosion

Center Mid-Radius Edge

Center Mid Radius Edge

Dishing, % 4.4 6.9 4.4

Slope, % -1.2 -1.9 -3.6

X-ray
X-ray
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‘X’ Calculation using XRR and XRF Data
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Full SiGe Process Control
500 Å Si / 500 Å Si.875Ge.125 / 20 Å Si / 500 Å SiO2 / Si

Thickness of SiGe Layer

Density of  SiGe Layer

Thickness of  Si

X-Value
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X-Ray Diffraction

• Texture (non-random or 
preferred orientation of 
crystallites)

• Phase
• Grain Size
• % Crystallinity

Conventional XRD Hi-Resolution XRD
• Rocking Curves

– Single Crystals
– SiGex Epitaxial films

Recent Developments
• Packaging of Conventional Diffraction Systems for in-line Fab use. 
• Hi-power x-ray sources to reduce measurement times.
• Small-spot focusing optics (low-res. XRD).
• Large Area Detectors to accomplish rapid scans (low-res. XRD).
• Recipe based data collection and automated analysis.
• SECS/GEM compliant systems

•Raw data

Phase

Texture

Grain size
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Various Flavors of Hi-Resolution XRD

• Hi-resolution XRD requires highly parallel x-ray beam to accomplish high resolution 
angular scan (typical anywhere between 0.001-0.0005 degree steps)

• These systems can achieve very low divergence ~ 10-30 Arc-seconds.
• Requires precision channel cut high quality crystals.

• Applications include –
- Study of imperfections in single crystals
- Study of thickness, composition, and strain in Epitaxial films (SiGex)
- Study of Super-lattices (Repeated multi-layer structure)

sample

X-ray
source

Detector

Detector

Parabolic Graded 
Multilayer Mirror

2-Bounce Si or Ge
Channel Cut Crystals

Soller Slits Slits

Goniometer
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Hi-resolution XRD - SiGex
In

te
ns

ity

Strain and lattice parameter, 
and grading

Ge Concentration

Si Crystal 
Properties

– Study of imperfections in single crystals
– Study of thickness, composition, and strain 

in Epitaxial films (e.g.. SiGex)
– Study of Super-lattices (Repeated multi-

layer structures

C.W. Liu et.al.

J. Appl. Phys. Vol 85 No.4, p2124
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Low-resolution XRD –Phases of NiSix

• XRD is used to study silicidation of Ni.
• Anneal temperatures directly impacts formation of a given phase.
• The resistivity of NiSi film is strongly correlates with NiSi thickness.
• Generally, Ni2Si and NiSi phases are formed during silicidation. 
• The small Ni2Si (020) peak accounts for the presence of a thin Ni2Si layer, 
• Most peaks correspond to the strongest reflections in the orthorhombic structures of the 

Ni2Si and NiSi phases. 
• A typical phase diagram shown in left figure can be generated using XRD measurements.
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Low-resolution XRD – Cu/Ta/TaN

Courtesy- HyperNex

•Raw data
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Cu Texture, i.e., non-random or preferred orientation 
of crystallites analysis of post-polish Cu establishes 
correlation of yield loss.
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Small Angle X-ray Scattering (SAXS)

• For randomly distributed pores, the scattering intensity as a function of Bragg size “d” or 
“r” is proportional to the number of scattering elements in the irradiated volume and its 
atomic scattering factor. 

– I(q) = Np(1/q) . ne
2(1/q), q= magnitude of scattering vector - 4π.sin(θ)/λ and r=1/q

• Typical scattering patterns display power-law decays in intensity which begin and end at 
exponential regimes that appear as knees in a log-log plot. These exponential knees 
reflect a preferred pore size r=1/q

Specular
Scattering

Off-Specular
Scattering

θ

Si

• SAXS is used for characterization of pore 
size and their distribution in a film. 

• Either transmission or reflection geometry is 
used during SAXS data collection. 

• Non-specular scattering is produced by the 
pores due to presence of regions of differing 
electron density.
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R=25Å
R=10Å

R=10Å

R=25Å

Pore Size Distributions

SAXS signal for two 
different pore sizes.

References
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Small Angle X-ray Scattering (SAXS)
Data Analysis Methodology

• Assume a pore-size distribution function 
(sphere, rod, or Disk)

• Fit Data to determine mean pore-size and 
its distribution using a fitting simulation 
incorporating Guinier approximations
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