Applying Semiconductor Technologies and Metrology Tools to Biomedical Research:

Manipulation and Detection of Single Molecules

Andrew A. Berlin, Ph.D. Director, Biotechnology Research Intel Corporation

March, 2005

Talk Overview

- Introduction
- Focused ion beams → Microfluidics
 - Transport of ultra-low concentration mixtures
 - 3-D Hydrodynamic Focusing
- Ultra-sensitive Detection via Raman spectroscopy

What Does Molecular Diagnostics Need to Succeed?

- Ability to distinguish diseased organisms from healthy organisms
- Diagnose disease and select best treatment at early stages
- Ability to make sense of 100,000+ biomolecules in a complex mixture

Technology Trajectory Moore's Law

Extending and Expanding Moore's Law

Current Status of Silicon

50 nm transistor dimension is ~2000x smaller than diameter of human hair

Transistor for 90nm Process

Source: Intel

Influenza virus

100nm

Source: CDC

Gate dielectric thickness = 1.2nm Nanotechnology in High Volume Production

Intel's Transistor Research Down to 10nm

Experimental transistors for future process generations

65nm process

45nm process

32nm process

22nm process

We are investigating several options at <10nm

Source: Intel

Talk Overview

- Introduction
- Focused ion beams → Transport of ultra-low concentration mixtures
 - 3-D Hydrodynamic focusing
- Ultra-sensitive Detection via Raman spectroscopy

Raman spectrometer with a chip: Microfluidic Transport

 Complex micro-fluidic structures made with Focused Ion Beam (FIB) tools

- Rapid prototyping enables quick design & fabrication of bio-chips
- FIB technology for chip diagnostics now being also used for MEMS prototyping:
 - Excellent synergy between MEMS research and other technology labs in Intel

Manipulating at the Nanoscale

Laser used to manipulate DNA attached to beads

'DNA sling shot'

Advanced Microfluidics 3-D 'Hydrodynamic Focusing'

Applications: Study and sort small cells and biological molecules, single molecule detection, protein isolation

Advantages:

- Precision positioning of molecules for optical detection
- Absolute isolation of the sample from the channel wall surface
- Control of the focused stream over the third (z-direction) dimension
- Reduced sample volume that is comparable and adjustable to the detection volume

Two-dimensional Hydrodynamic Focusing

Two-dimensional Hydrodynamic Focusing Results

Top-view

Cross-section

Effect of varying sample flow rates on the focusing width

Advanced Microfluidics 3-D 'Hydrodynamic Focusing'

Fabrication of 3-D Hydrodynamic Focusing Chip*

Advanced Microfluidics 3-D 'Hydrodynamic Focusing'

* N. Sundararajan et al., Nanotech 2002.

Single Molecule Isolation & Manipulation: Our Approach

- High throughput multiple single molecules isolated simultaneously
- Specific target molecules isolated by tailoring the anchor DNA and end-modification (multiplexity)
- Controlled release through electrical heating
- Selectivity of release achieved through selection of melting point of anchor DNA sequence

Video of Single Molecule Dispenser

1st molecule release

2nd molecule release

Talk Overview

- Introduction
- Transport of ultra-low concentration mixtures
 3-D Hydrodynamic Focusing
- Ultra-sensitive Detection via Raman spectroscopy
 - Label-free detection of single molecules
 - Label-based detection
 - New type of Raman-coded probe

Raman Spectroscopy

Surface Enhanced Raman Scattering (SERS)

EM: enhanced optical fields due to excitation of electromagnetic resonances in the metal ("global effect").

CE: electron-mediated resonance Raman effect via a charge transfer intermediate state ("local effect").

J. A. Creighton et al. *J. Chem. Soc. Faraday Trans.* 2 1979, 75, 790-798
A. Otto, in *Light Scattering in Solids*, edited by M. Cardona and G. Guentherodt (Springer, Berlin, 1984), p. 289.
M. Moskovits, Rev. Mod. Phys. **57**, 783 (1985).
Kneipp, K.; et al *Phys. Rev. Lett.* 1997, 78, 1667-1670.
Nie, S.; Emory, S. R. *Science* 1997, 275, 1102-1106.
Xu, H.; Bjerneld, E. J.; Käll, M.; Börjesson, L. *Phys. Rev. Lett.* 1999, 83, 4357–4360.

Metallic Nanoparticle Substrates for SERS

Excitation Laser

Raman Scattered Light

Target Molecule

Silver Nanoparticles

Chemical Enhancer

Koo, T-W. et al, *Applied Spectroscopy* **2004, 58, in press.**

Height of 1510 cm⁻¹ peak of Rhodamine 6G

Single Molecule Detection

Statistical fluctuation and quantized peak intensity indicates detection of single adenine molecule

Single Nucleotide Detection by Multi-Photon Spectroscopy

- Unique signals observed from single molecule concentration of dAMP and dGMP nucleotides
- Signal "blinking" was observed due to molecular diffusion into and out of collection volume → quantized intensity observed

Talk Overview

- Introduction
- Transport of ultra-low concentration mixtures
 3-D Hydrodynamic Focusing
- Ultra-sensitive Detection via Raman spectroscopy
 - Label-free detection of single molecules
 - Label-based detection
 - New type of Raman-coded probe

Multiplex Detection Systems

Physical-size encoded identifiers

Micro-arrays X-Y coordinators

Feature size: > 1 micron

Quantum dots

fluorescence wavelengths

1nm to 100 nm

Sub-microns

Metal bars

positions of different metals

Composite Organic-Inorganic Nanoparticles (COINS)

COINs have the ideal features

- Label "glue" silver particles
- Nanoparticles protect Raman labels

Key issues

- Size control
- Structure stabilization

COINs Are Metal Clusters

COINs Have Intrinsic and SERS-like Signals

	SERS of Raman label A	COIN of Raman label A
Salt-induced Aggregation	Yes	Νο
Spectra	Complex	Simple

Examples of COIN Signatures

Raman-shift (cm⁻¹)

Likely Single Binding Event Detection

Raman shift (cm⁻¹)

COINs Offer High Detection Sensitivity

Sandwich binding assays

	COIN	ELISA
Detection range	5 Logs	2-3 logs
Lower detection limit	0.1 pg/ml	100 pg/ml

Precision Biology Goals

To create fundamental advances in sensor technology, and to work together with the medical community to make it possible to use chips to diagnose disease and improve people's health

RECENT NEWS:

Intel establishes collaboration with the Fred Hutchinson Cancer Research Center

"Advancing Knowledge, Saving Lives"