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2005 ULSI Metrology

Session 7:  Microscopy
− 10:00 AM STEM w/ Monochromator
− 10:30 AM HR(A)TEM for Materials Research
− 11:00 AM Aberration corrected SEM
− 11:30 AM Aberration corrected STEM

I have a theory!



Things Natural Things Manmade

DNA
~2-1/2 nm diameter

MicroElectroMechanical Devices
10 -100 µm wide

Red blood cells
Pollen grain

Fly ash
~ 10-20 µm 

Atomic columns of silicon
spacing ~tenths of nm

Head of a pin
1-2 mm

Quantum corral of 48 iron atoms on copper surface
positioned one at a time with an STM tip

Corral diameter 14 nm

Human hair
~ 10-50 µm wide

Red blood cells
with white cell

~ 2-5 µm

Ant
~ 5 mm

The Scale of Things -- Nanometers and More

Dust mite
200 µm

ATP synthase

~10 nm diameter
Nanotube electrode

Carbon nanotube
~2 nm diameter

Nanotube transistor
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21st Century 
Challenge

Combine nanoscale 
building blocks to make 
functional devices, e.g., 
a photosynthetic 
reaction center with 
integral semiconductor 
storage
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Why HR(A)TEM?

High Resolution (Analytical) Transmission Electron Microscopy
– essential tool for investigators in nanoscale science and engineering
– nanostructure and chemistry of materials down to an atomic scale
– (3D information).

Image Resolution
– Atomic resolution structure imaging (coherent)
– Atomic resolution Z-contrast STEM imaging (incoherent)

Atomic Column-by-Column Spectroscopy
– Probe size
– Probe current
– Detection sensitivity
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Element σk (cm2 x 10-22) σb (cm2 x 10-22) MMF (at. %) MDN (atoms)

B 111 38 0.2 2

N 19 12 1.0 9

F 4.8 1.2 1.1 10

Ca 87 21 0.2 3

S 325 60 0.08 1

Minimum Mass Fraction (MMF) and Minimum Detectable Number of Atoms (MDN) within 
a 10-nm thick carbon matrix.  MDN values are for an incident-beam diameter of 0.2 nm.

10 nm

0.2 nm

“Electron Energy Loss Spectroscopy in the Electron Microscope,” R.F. Egerton, 1986.
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Advanced EM Facility

Instrumentation
Dual column FIB (FEI Nova NanoLab 200) with Zyvex nanomanipulator
High resolution Imaging FEG TEM (JEOL 2100F)
High resolution Analytical FEG TEM/STEM with remote microscopy
Comprehensive Sample Preparation Lab.
Computing/Visualization Lab.
Cryo, STM-TEM nanofactory, 3D tomography
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New NSM Research Facility

Dedicated EM facility
− Vibration 
− EM field
− Temperature
− Air flow & pressure
− Acoustic
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Under the Microscope?
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TEM Techniques – Now and Then

HREM

Simulation

MSA Bulletin

• Monochromator

• Cs corrector - STEM

• Cs corrector - HREM
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HR(A)TEM: Application to Nano-X Materials

Thermal stability of high-k gate dielectric films
− Current  SiO2 gate oxide
− ALCVD ZrO2-based
− HfSiO4-based
− HfSixOyNz-based

• Ultra low-k dielectric films
− Nanoscale structural damage by plasma ash/etch

• Ni-silicides
− Thin film morphology and phase identification

• Nanoscale lattice strain in Si CMOS Devices
– New method of measuring local nanoscale strains
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Current SiO2 gate dielectric

a b c

• Cross-sectional high resolution TEM images of poly-Si/SiO2/Si 
interfaces:  (a) as-deposited and (b) after rapid thermal annealing 
(RTA) at 1050ºC for 60 sec.  (c) Thick gate oxide after RTA at 
1050ºC for 60 sec.  The observed amorphous SiO2 gate oxides are 
thermally stable, as expected at this temperature.

“Only problem with SiO2 … low-k.”
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High Resolution EELS for Si-O

• Si-L edge of various silicon oxygen compounds.  Marked differences exist in the near 
edge fine structure, showing changes in bonding from covalent bonding in Si to nearly 
complete ionic bonding in SiO2.  The onset of the Si-L edge from SiOx is also reduced 
relative to SiO2. [Catalano, Kim, Carpenter, Das Chowdhury and Wong, J. Mater. Res. 8, 2893-2901 (1993)].

• Time-resolved O-K edge EELS 
plot for sub-stoichiometric
silicon oxide thin films. 
[“Quantitative Analysis of Silicon Oxide 
using EELS,” M.J. Kim, Proc. 52nd MSA, 
986-987 (1994)].

SiO0.2 SiO0.5

SiO SiO2
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Crystalline vs. Amorphous Gate Dielectric

• Robust, thermal SiO2 the benchmark
• Avoids orientation/grain size dependence of polarizibility
• Avoids enhanced leakage or diffusion through grain boundaries
• New single crystal dielectrics require Epitaxial approach

Poly-Si

Gate Dielectric

Poly-SiO2
interface

SiO2-Si 
interface

Si Substrate

Poly-crystalline Amorphous

Amorphous
Advantages
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ZrO2-based:  as-deposited

c

(a) High Resolution TEM, (b) 
high resolution annular dark 
field (ADF) images of as-
deposited ALCVD Zr-
O/SiOx/Si stack.  (c) A series 
of nanoprobe high spatial 
resolution electron energy 
loss spectra (EELS) of as-
deposited Zr-O/SiOx/Si stack 
shown in (a).  The spectra 
are displaced vertically for 
easy shape comparison.  
Note nanocrystalline nature 
of the as-deposited film.

[Dey, Wang, Tang, Kim, Carpenter, 
Werkhoven and Shero, J. Appl. Phys. 93, 
4144 (2003)]
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ZrO2-based:  as-deposited

• Nanostructure and nanochemistry of the as-deposited ALCVD Zr-O/SiOx/Si
stack.  The Zr-O layer is a compositionally graded ZrO2-rich Zr silicate glass 
with nanocrystalline precipitates, and the interlayer (IL) is an amorphous 
bilayer of SiOx and compositionally graded SiO2-rich Zr silicate.
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ZrO2-based:  annealed

a b

c

(a) HRTEM image of annealed Zr-
O/SiOx/Si stack.  (b) A series of 
nanoprobe EELS spectra of annealed 
Zr-O/SiOx/Si stack shown in (a).  (c) 
EELS spectra of standard single 
crystalline (stoichiometric) specimens.  
The spectra are displaced vertically for 
easy shape comparison.
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ZrO2/SiO2/Si

Wafer Bonded single crystal ZrO2 on SiO2/Si(100)
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• HREM image of the bonded ZrO2/SiO2 interface (center), together with high spatial 
resolution EELS spectra from the amorphous (left) and crystalline (right) regions adjacent 
to the interface.  The interface is sharp structurally and chemically down to atomic scale.  
[Kim and Carpenter, J. Electronic Mater. 32, 849-854 (2003)]
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ZrO2-based: annealed

• Nanostructure and nanochemistry of the annealed ALCVD Zr-O/SiOx/Si stack.  
The Zr-O layer is a heterogeneous glass nanoceramic.  The thick interlayer (IL) is 
partitioned into an upper SiO2-rich Zr silicate and the lower SiOx.  The latter is 
substoichiometric and the average oxidation state increased from Si0.86+ in SiO0.43
(as-deposited) to Si1.32+ in SiO0.66 (annealed). This high oxygen deficiency in SiOx
is indicative of the low mobility of oxidizing specie in the Zr-O layer.
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HfSixOy : as-deposited

5 nm

Poly-Si

Si

HfSixOy

SiOX

• As-deposited Hf-silicate film is amorphous.
• Silicate composition:  

− (HfO2)0.48(SiO2)0.52

• The ~5 nm dielectric film consists of:
– ~1 nm SiOx and ~4 nm HfSixOy

[Quevedo-Lopez, Cl-Bouanani, Kim, Gnade, Wallace, Visokay, LiFatou, Bevan and Colombo, Appl. Phys. Lett. 81, 1074 (2002)]
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B-doped HfSixOy : 1050°C / 60s RTA

Si

Crystalline regions

SiOX

Poly-Si

5 nm 1 s

Si

Crystalline regions

SiOX

Poly-Si

5 nm 60 s

• Nanocrystalline regions 
observed after 1s RTA anneal

• Crystalline regions appears to 
be tetragonal HfO2

• Consistent with Hf composition
– (HfO2)0.48(SiO2)0.52

• Longer annealing times
more crystallization
higher B penetration

[Quevedo-Lopez, Cl-Bouanani, Kim, Gnade, Wallace, Visokay, LiFatou, Bevan and Colombo, Appl. Phys. Lett. 81, 1074 (2002)]
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5 nm

P doped Polysilicon

As doped Polysilicon
H

fS
i xO

y
H

fS
i xO

y

SiOx

SiOx

• Both films show 
crystallization after 
annealing, consistent with 
the B doped films results

• No effect of the dopant on  
crystallization the HfSixOy
films

• No evident growth of the 
SiOx interfacial layer after 
annealing

P- and As-doped HfSixOy : 1050°C / 60s RTA

5 nm

[Quevedo-Lopez, Cl-Bouanani, Kim, Gnade, Wallace, Visokay, LiFatou, Bevan and Colombo, Appl. Phys. Lett. 81, 1609 (2002)]
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Nitrogen Incorporation in HfSixOy

Brown found that k  as N in the SiO2 film. 
→However, a major drawback in increasing the N content: 

decreases the band gap, decreasing the barrier height for 
electron and hole tunneling.*

Si-O-N film acts like the diffusion barrier to 
impurities (such as B, P and As) from the poly-Si 
gate.  Lesser diffusion in HfSixOyNz as compared to 
HfSixOy has been observed.
Better thermal stability.
Only small amount of N incorporation is needed.

[* D. M. Brown, P. V. Gray, F. K. Heumann, H. R. Philipp, and E. A. Taft, J. Electrochem. Soc. 115, 311 (1968)]
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HfSixOyNz : with ~5-6 at.% Hf and ~18 at.% N

a b c

Si

HfSixOyNz

SiOx

• Cross-sectional TEM images of the poly-Si capped HfSixOyNz thin 
films on Si(100):  (a) as-deposited (HREM), (b) as-deposited (ADF 
STEM),  and (c) 60 sec RTA at 1050ºC.  The total physical thickness is 
~ 2.5 nm with an intentional interfacial (SiOx) layer of ~ 1.1 nm.
• No detectible crystalline regions are observed. 

[Quevedo-Lopez, Cl-Bouanani, Kim, Gnade, Wallace, Visokay, LiFatou, Chambers and Colombo, Appl. Phys. Lett. 82, 4669 (2003)]
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HfSixOyNz : with higher Hf content

a b c

• Cross-sectional HRTEM images of the poly-Si capped HfSixOyNz thin 
films with higher Hf content on Si(100), compared with the previous 
ones:  (a) as-deposited, (b) 1 sec and (c) 60 sec RTA at 1050ºC.

• HfSixOyNz films with high Hf content are thermally stable after a 
“spike” anneal for 1 sec, but crystallization was observed after 60 sec.

• A slight thickening of the HfSixOyNz layer is also noticed, indicating a 
volume change associated with the crystallization as well as inter-
diffusion of Hf and Si upon extended annealing. 



© Kim, Wallace, Gnade 24The Erik Jonsson School of Engineering and Computer Science

HfSixOyNz : with thicker HfSixOyNz layer
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• Cross-sectional HRTEM 
images of the poly-Si
capped thick HfSixOyNz
thin films on Si(100):  (a)
as-deposited, (b) 60 sec 
RTA at 1050ºC and (c) N 
and O concentration 
profiles across the 
interface shown in (a).  
The profiles are displaced 
vertically for easy 
comparison.

• Note nanocrystals and 
diffuse interfaces in the 
annealed.

c



© Kim, Wallace, Gnade 25The Erik Jonsson School of Engineering and Computer Science

HR(A)TEM: Application to Nano-X Materials

• Thermal stability of high-k gate dielectric films
− Current  SiO2 gate oxide
− ALCVD ZrO2-based
− HfSiO4-based
− HfSixOyNz-based

Ultra low-k dielectric films
− Nanoscale structural damage by plasma ash/etch

• Ni-silicides
− Thin film morphology and phase identification

• Nanoscale lattice strain in Si CMOS Devices
– New method of measuring local nanoscale strains
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Ultra Low-K: Pore structure & Plasma damage
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[Dong, Gorman, Zhang, Orozo-Teran, Roepsch, Mueller, Kim and Reidy, J. Non-Cryst. Solids 350, 345 (2004)]
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HR(A)TEM: Application to Nano-X Materials

• Thermal stability of high-k gate dielectric films
− Current  SiO2 gate oxide
− ALCVD ZrO2-based
− HfSiO4-based
− HfSixOyNz-based

• Ultra low-k dielectric films
− Nanoscale structural damage by plasma ash/etch

Ni-silicides
− Thin film morphology and phase identification

• Nanoscale lattice strain in Si CMOS Devices
– New method of measuring local nanoscale strains
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Nano- Ni-Silicides
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HR(A)TEM: Application to Nano-X Materials

• Thermal stability of high-k gate dielectric films
− Current  SiO2 gate oxide
− ALCVD ZrO2-based
− HfSiO4-based
− HfSixOyNz-based

• Ultra low-k dielectric films
− Nanoscale structural damage by plasma ash/etch

• Ni-silicides
− Thin film morphology and phase identification

Nano-scale lattice strain in Si CMOS Devices
– New method of measuring local nanoscale strains
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Convergent Beam Electron Diffraction (CBED)

Selected Area Diffraction (SAD) CBED High Order Laue Zone (HOLZ)

Change of lattice parameter of an alloy or 
compound

directly related to its chemical composition
deduced from shifts in the HOLZ line positions

Strains
measured in an exactly equivalent fashion to 

the chemical changes
Spatial resolution

depends on the probe size and its broadening 
by the specimen

∆ ∆θ
θ

=
a

a
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2 100 keV
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Changes in the lattice parameter
shifts in the HOLZ lines

Limit to the accuracy
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MBE Grown Low Temperature InP

Lattice parameter increase of ~0.09 nm ± 0.01nm (~0.15%)
excess phosphorus content of about 3% (Vegard’s law)

Experimental

Simulation

Top of the LT layer Bottom of the LT layer
[Rajesh, Kim, Bow, Carpenter and Maracas, Proc. 51st MSA, pp. 810-811 (1993).]
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True (‘effective’) Electron Beam Energy

Silicon, unstrained, <230>, 200kV

199.5 kV 200 kV 200.5 kV 201 kV

• Simulated HOLZ line patterns in the central CBED disc taken in the <230> 
zone axis based on the kinematical approximation, illustrating the effect of 
electron beam energy on the HOLZ line position.
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Effect of Strains

Silicon, <230>, 200kV

0.5415 nm 0.5431 nm 0.5447 nm

• Simulated HOLZ line patterns in the central CBED disc taken in the <230> 
zone axis, showing the HOLZ line shifts due to changes in lattice parameter.
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Site-specific TEM Sample Preparation by FIB

FIB etching

TEM observation

t

Area of interest
Grid

Area of interest

T=~50µm
W=~2.5mm
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Nanoscale Strain in Advanced CMOS

Local uni-axial strain approach with SiGe at the drain extension

“35% Drive Current Improvement from Recessed-SiGe Drain Extensions on 37 nm Gate Length 
PMOS,” P.R. Chidambaram, B.A. Smith, L.H. Hall, H. Bu, S. Chakravarthi, Y. Kim, A.V. Samoilov, A.T. Kim, P.J. 
Jones, R.B. Irwin, M.J. Kim, A.L.P. Rotondaro, C.F. Machala and D.T. Grider, VLSI 2004, 48-49 (2004). 

http://www.intel.com/index.htm?iid=HPAGE+header_intellogo&
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Nanoscale Strain in Advanced CMOS

Cross-sectional TEM image 
(left) of 37 nm gate with 
SiGe layer in the DE region. 

Convergent Electron Beam 
Diffraciton (CBED) patterns 
taken from the indicated 
area shown as insets.  
Lattice spacing 
measurements show 
~0.3% peak compressive
strain on silicon channel 
under the gate, and 
~0.3% peak tensile strain 
below the drain.
[“Epitaxially strained SiGe process 
to improve mobility in the PMOS 
transistor,” P. Chidambaram, B. 
Smith, L. Hall, H. Bu, S. 
Chakravarthi, Y. Kim, A. Samoilov, 
A. Kim, P. Jones, R. Irwin, M.J. Kim, 
C. Machala and D. Grider, ECS 
Proc. 2004-07, 123-134 (2004).]
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Nanoscale Strain in Advanced CMOS

Experimental <230> CBED patterns, superimposed by 
the simulated ones, showing a compressive strain 
gradient that decays from the center channel region.

-0.276%

-0.203%

-0.129%
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Nanoscale Strain in Advanced CMOS

<560> CBED

<560> convergent 
beam shadow images. 

<110> Z.A.
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Conclusions

Resolution limits
– Aberration-corrected TEM/STEM

< 0.1 nm spatial resolution
< 0.1 eV energy resolution

– Practical 
Radiation effects

Mass loss
Displacement damage

Quality of TEM samples
Preparation methods
Contamination, Preferential milling

Probe/Specimen stability
Environment

Future
– Remote operation, in-situ
– Nano and Beyond 

1 nA

0.2 nm

3x106 A/cm2
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VNB Modification in TEM

As-received, unstained 
VNB with 5 nm Au 
particles attached

After 4 min e-beam 
exposure, increased 
Au “melting” 

After 2 min e-beam 
exposure.
Note contact between 
Au particles
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Direct Wafer Bonded Ge/Si

• HREM (a) image of the bonded Ge/Si
interface.  Their 4% lattice mismatch 
accommodated by misfit dislocations
along the interface (b).  (Left) Z-
contrast image shows the chemical 
width of the interface to be about 2 
monolayers.  (Right) Low voltage I-V 
curve of the bonded p-Si/n-Ge
heterojunction.

Si Ge
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