2005 International Conference on Characterization and Metrology for ULSI Technology Dallas, TX March 15, 2005

MOSFET Scaling Trends, Challenges, and Potential Solutions Through the End of the Roadmap: A 2005 Perspective

Peter M. Zeitzoff Howard R. Huff

Accelerating the next technology revolution.

Outline

> Introduction

- MOSFET scaling and its impact
- Front-end approaches and solutions
- Non-classical CMOS
- Summary

Introduction

- IC Logic technology: following Moore's Law by rapidly scaling into deep submicron regime
 - Increased speed and function density
 - Lower power dissipation and cost per function
- But the scaling results in major MOSFET and process integration issues, including
 - Simultaneously maintaining satisfactory I_{on} (drive current) and I_{leak}
 - High gate leakage current for very thin gate dielectrics
 - Control of short channel effects for very small transistors
 - Etc.
- Potential solutions & approaches
 - Material and process (front end): high-k gate dielectric, metal gate electrodes, strained Si, ...
 - Structural: non-classical CMOS device structures
- This talk gives an updated perspective from the 2003 International Technology Roadmap for Semiconductors (ITRS)

Accelerating the next technology revolution.

Metrology and Characterization Issues

- Dimensional scaling: meeting metrology requirements for accuracy and precision becomes increasingly challenging
 - Example: electrical and physical measurement of Tox < 1.2 nm
 - Another example: CD measurement
 - Line edge (and width) roughness is increasingly critical

 Potential solutions (high-k, metal gate electrodes, strained Si, non-classical CMOS) raise significant metrology and characterization challenges

Key Overall Chip Parameters for High-Performance Logic, from 2003 ITRS

Year of Production MPU Physical Gate Length (nm) On-chip local clock	2003 45 2,976	37		28	25	2008 22 10,972	2009 20 12,369	2010 18 15,079	14	13	2015 10 33,403	2016 9 39,683	2018 7 53,207
Allowable Maximum Power													
High- performance with heatsink (W)	149	158	167	180	189	200	210	218	240	251	270	288	300
Cost- performance (W)	80	84	91	98	104	109	114	120	131	138	148	158	168
Functions per chip at production (million transistors [Mtransisto rs])	153	193	243	307	386	487	614	773	1,227	1,546	2,454	3,092	4,908

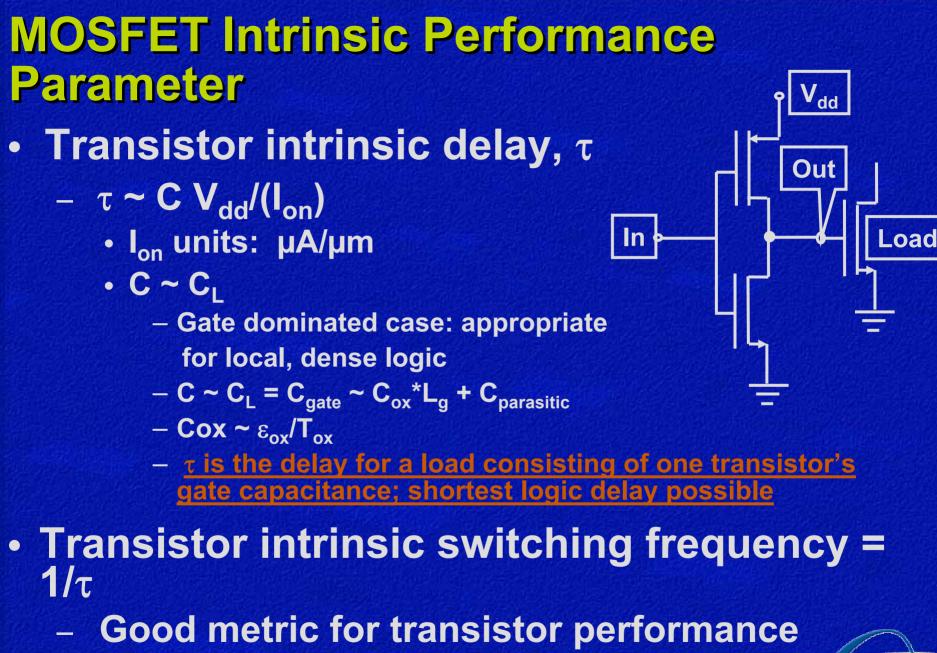
- -Rapid scaling of L_g is driven by need to improve transistor speed
- Clock frequency, functions per chip (density) scale rapidly, but allowable power dissipation rises slowly with scaling

Accelerating the next ischnology revolution.

Outline

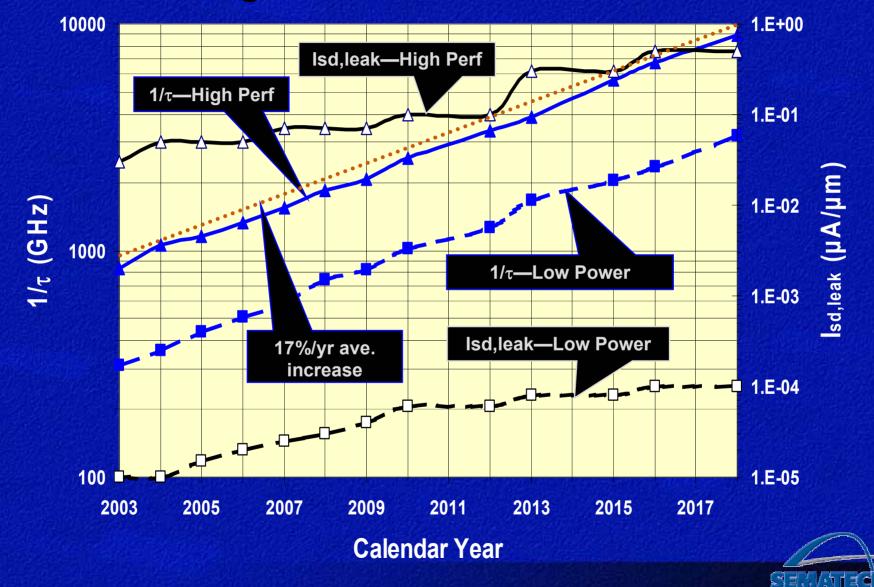
Introduction

> MOSFET scaling and its impact


- Front-end approaches and solutions
- Non-classical CMOS
- Summary

Device Scaling Approach: 2003 ITRS

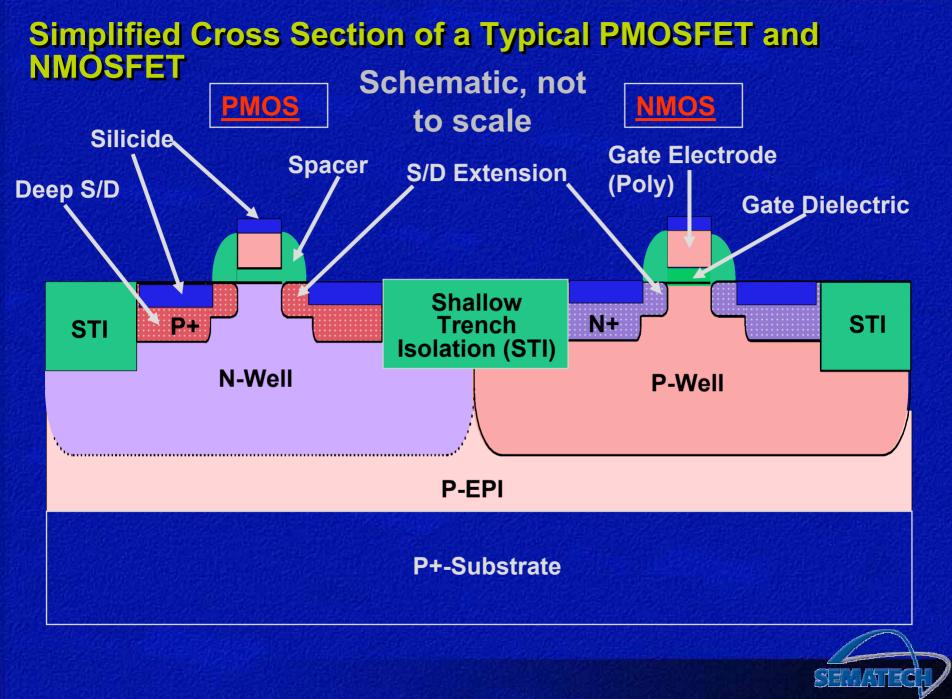
- Simple models capturing essential MOSFET physics
 → embedded in a spreadsheet
 - Room T, nominal devices assumed
 - Key parameters include: L_g, T_{ox}, V_{dd}, V_t, series parasitic resistance, drive current, leakage current, gate capacitance, subthreshold slope, etc.
- Using spreadsheet, MOSFET parameters are iteratively varied to meet ITRS targets for either
 Scaling of transistor speed OR
 Scaling for specific, low levels of leakage current


<u>To maximize 1/τ, maximize I_{or}</u>

Different Applications -> Different ITRS Drivers

- High-performance chips (MPU, for example)
 - Driver: maximize chip speed → maximize transistor performance
 - Goal of ITRS scaling: 1/τ increases at ~ 17% per year, historical rate
 - Must maximize I_{on}
 - Consequently, I_{leak} is relatively high
- Low-power chips (mobile applications)
 - Driver: minimize chip power (to maximize battery life) → minimize I_{leak}
 - Goal of ITRS scaling: specific, low level of I_{leak}
 - Consequently, $1/\tau$ is considerably less than for high-performance logic

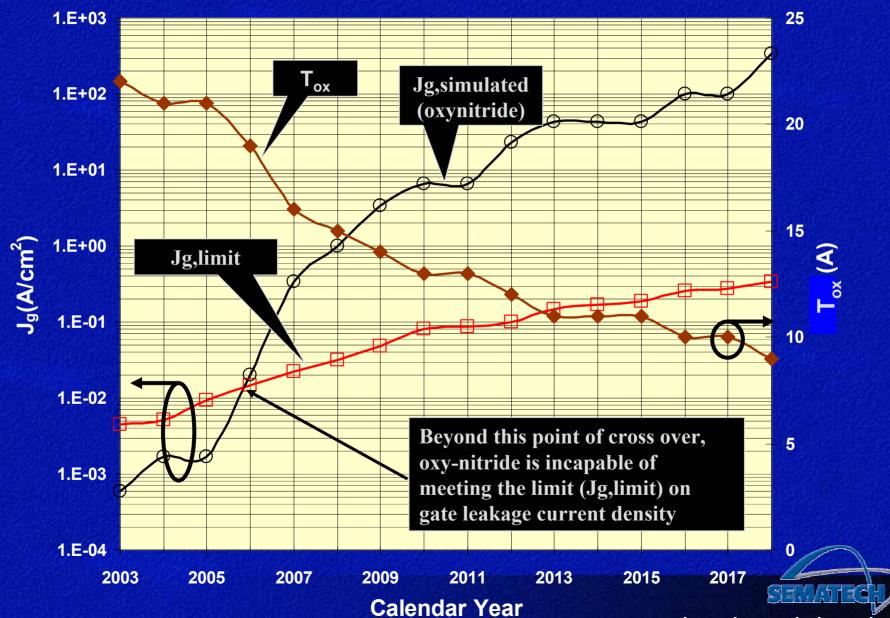
1/τ and Isd,leak scaling for High-Performance and Low-Power Logic. Data from 2003 ITRS.



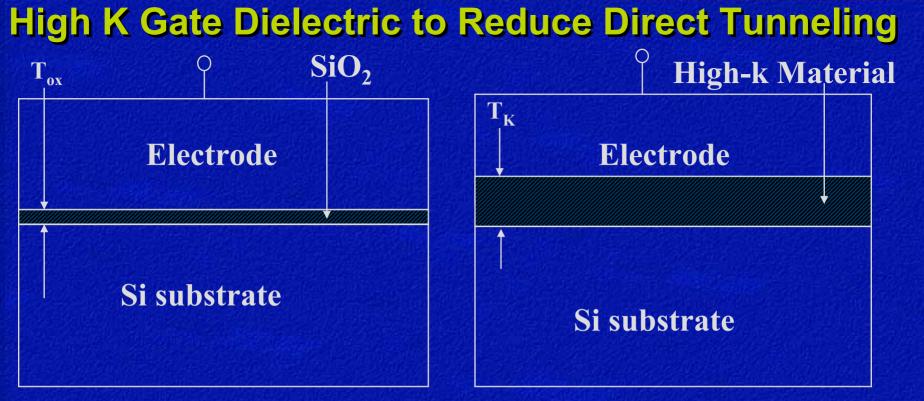
Accelerating the next technology resolution.

Outline

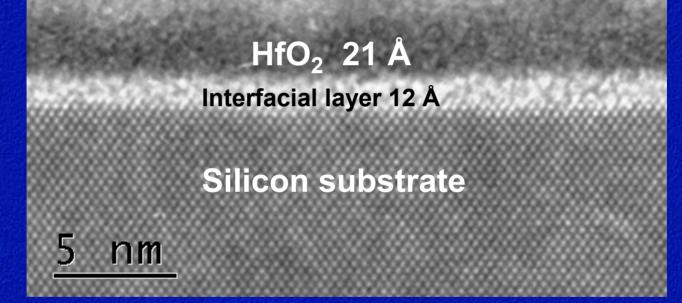
- Introduction
- MOSFET scaling and its impact
- > Front-end material and processing approaches and solutions
- Non-classical CMOS
- Summary



Difficult Transistor Scaling Issues


- Previously discussed scaling results involve determining the required transistor characteristics and performance to meet key scaling targets
 - Assumption: highly scaled MOSFETs with required characteristics can be successfully fabricated
- With scaling, increasing difficulty in meeting transistor requirements without significant technology innovations
 - High gate leakage
 - Direct tunneling increases rapidly as T_{ox} is reduced
 - Potential solution: high-k gate dielectric
 - Polysilicon depletion in gate electrode → increased effective T_{ox} , reduced I_{on}
 - Need for enhanced channel mobility
 - Etc.

For Low-Power Logic, Gate Leakage Current Density Limit Versus Simulated Gate Leakage due to Direct Tunneling. Data from 2003 ITRS.


Asselerating the next technology revolution.

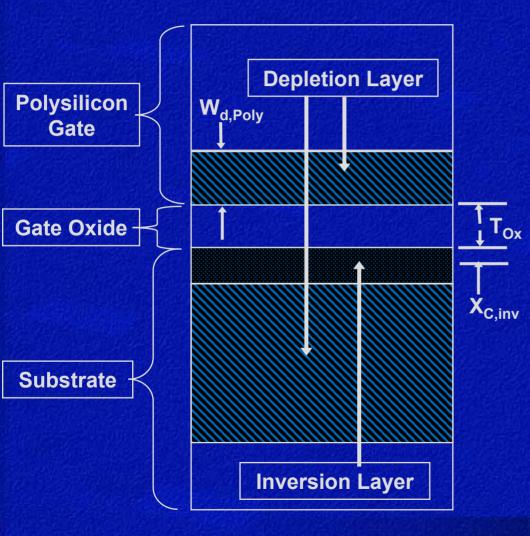
- Equivalent Oxide Thickness = EOT = $T_{ex} = T_{K} * (3.9/K)$, where 3.9 is relative dielectric constant of SiO₂ and K is relative dielectric constant of high K material
 - $C = Cox = \varepsilon_{ox}/T_{ox}$
 - To first order, MOSFET characteristics with high-k are same as for SiO2
- Because $T_K > T_{ox}$, direct tunneling leakage much reduced with high K
 - If energy barrier is high enough
- Candidate materials: LaO₂/HfO₂/ZrO₂(K~15 30); Hf, Zr-SiO₄ (K~12 16); others
 - Major materials, process, integration issues to solve

MOCVD HfO2 TEM (EOT = 0.95 nm) (HfO2 on HF-last, N2O-750°C Pre-Deposition Anneal)

• Effective k for above dielectric stack \approx 13.5

 k for interfacial layer could be significantly greater than SiO₂ indicating reaction or intermixing of HfO₂ film with interfacial SiO₂

Avinash Agarwal et al., Alternatives to SiO₂ as Gate Dielectrics for Future Si-Based Microelectronics, 2001 MRS Workshop Series (2001) p.16

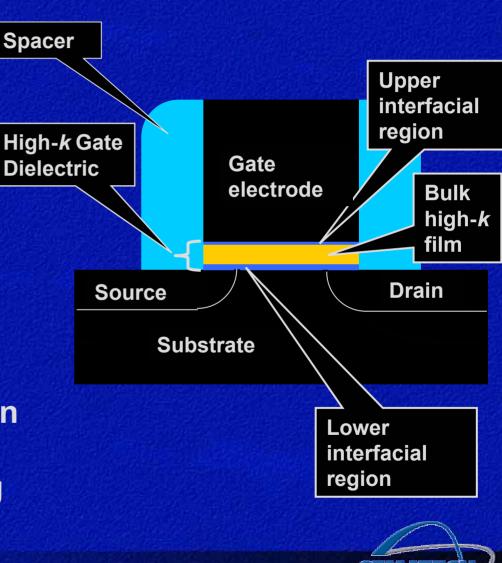

Accelerating the next technology revolution.

Difficult Transistor Scaling Issues

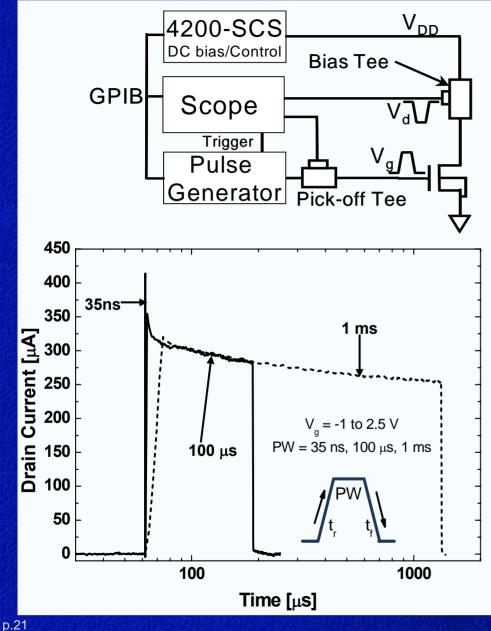
- With scaling, increasing difficulty in meeting transistor requirements without significant technology innovations
 - High gate leakage
 - Direct tunneling increases rapidly as T_{ox} is reduced
 - Polysilicon depletion in gate electrode → increased effective electrical T_{ox}, reduced I_{on}
 - Potential solution: metal gate electrodes
 - Need for enhanced channel mobility
 - Etc.

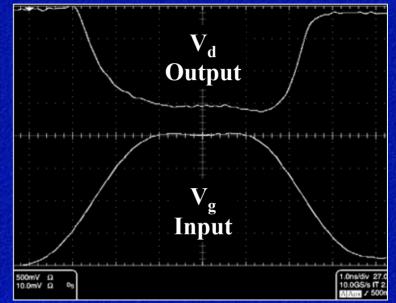
Polysilicon Depletion and SubstrateQuantum Effects•Tox,electric = Tox + (Kox/Ksi)*

(W_{d,Polv}+X_{C,inv}) $-K_{ox} = 3.9$ $-K_{ei} = 11.9$ • $T_{ox,electric} = T_{ox} + (0.33)^* (W_{d,Poly})$ +X_{C,inv}) -W_{d,Poly}~1/(poly doping)^{0.5} →increase poly doping to reduce W_{d.Poly} with scaling -But max. poly doping is limited→can't reduce W_{d.Polv} too much -Fermi Level pinning with highk •Poly depletion and X_{C.inv} become more critical with Tox scaling -Eventually, poly will reach its limit of effectiveness


Metal Gate Electrodes

- Metal gate electrodes are a potential solution when poly "runs out of steam": probably implemented at 65 nm tech. generation (2007) or beyond
 - No depletion, very low resistance gate, no boron penetration, compatibility with high-k
 - Issues
 - Different work functions needed for PMOS and NMOS==>2 different metals may be needed
 - Process complexity, process integration problems, cost
 - Etching of metal electrodes
 - New materials: major challenge


Advanced Gate Stack: Key Metrology and Characterization Challenges


- Transient charge trapping
 in high-k bulk
 - Characterizing charge trapping
 - Extracting mobility: μ_{eff}=(LI_d)/(WQ_{inv}V_d)
 - Determining V_t, V_{FB} from C-V
 - Fast pulse measurements help
- Charge in high-k & Interaction between metal gate and high-k: unambiguous determination of ϕ_m
- Gate leakage → determining EOT from C-V

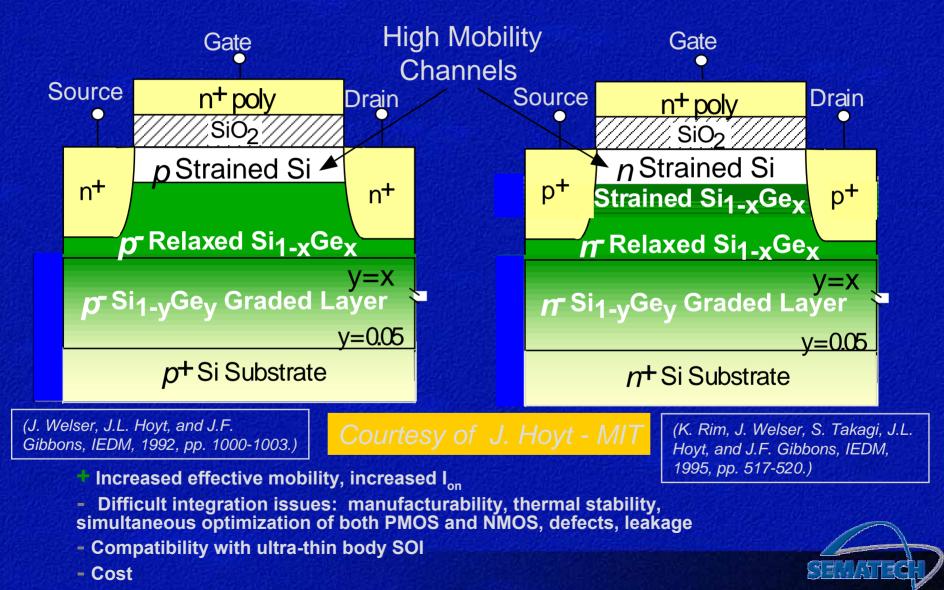
Accelerations the next technology rest

Example: Fast Transient Electron Trapping with Pulse Measurements on High-k Gate Dielectric

Significant trapping occurs within few µsec

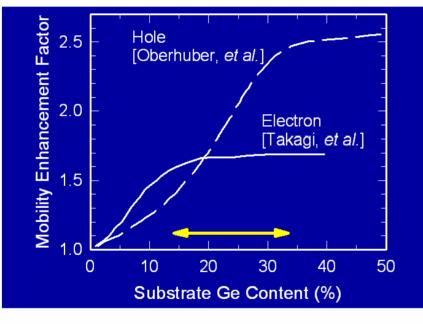
C. Young, SSDM 2004

Accelerating the next technology revolution


Difficult Transistor Scaling Issues

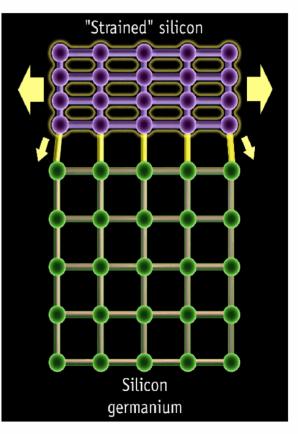
- With scaling, increasing difficulty in meeting transistor requirements
 - High gate leakage
 - Direct tunneling increases rapidly as T_{ox} is reduced
 - Polysilicon depletion in gate electrode → increased effective T_{ox} , reduced I_{on}
 - Need for enhanced channel mobility
 - Potential solution: strained Si channels

Band Engineered MOSFETs: Strained MOSFET Structures



Accelerating the next technology resolution.

Strained Si Device Structures


Courtesy of Patricia Mooney (IBM Corp.) From P. M. Mooney et al., presented at the American Physics Society Meeting, Austin, TX, March 3-7, 2003.

modified band structure of Si under biaxial tensile strain ==> enhanced mobility

need relaxed $Si_{1-x}Ge_x$ with 0.15<x<0.35

Strained Si on SiGe

Accelerating the next technology revolution.

Alternate Approach: Uniaxial Process Induced Stress

NMOS: uniaxial tensile stress from stressed SiN film

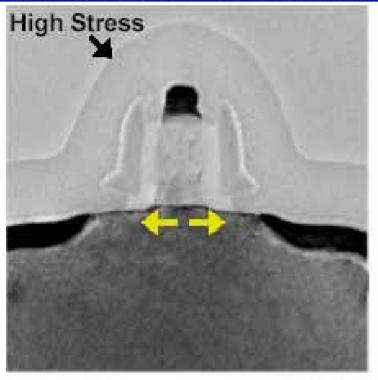


Fig. 3 TEM of NMOS transistor showing high tensile stress nitride overlayer. PMOS: uniaxial compressive stress from sel. SiGe in S/D

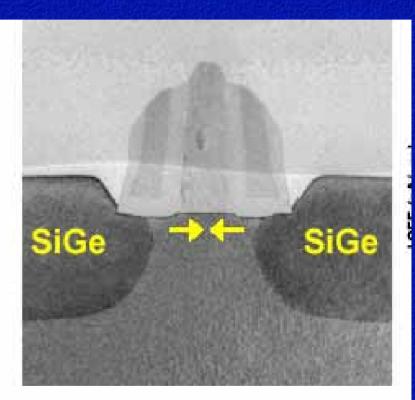


Fig. 4 TEM of PMOS showing SiGe heteroepitaxial S/D inducing uniaxial strain.

From K. Mistry et al., "Delaying Forever: Uniaxial Strained Silicon Transistors in a 90nm CMOS Technology," 2004 VLSI Technology Symposium, pp. 50-51.

p.25

Strained Si: Metrology and Characterization Challenges

- Measuring strain distribution with high spatial resolution in deep sub-micron structures
 - Possible approaches
 - X-ray diffraction (XRD)
 - Raman spectroscopy
 - Convergence Beam Electron Diffraction (CBED)
 - Electron Diffraction Contrast (EDC)

Outline

- Introduction
- Scaling and its impact
- Front end approaches and solutions
- > Non-classical CMOS
- Summary

Limits of Scaling Planar, Bulk MOSFETs

- 65 nm tech. generation (2007, $L_g = 25nm$) and beyond: increased difficulty in meeting all device requirements with classical planar, bulk CMOS (even with material and process solutions: high K, metal electrodes,)
 - Control of SCE
 - Impact of quantum effects and statistical variation
 - Impact of high substrate doping
 - Control of series S/D resistance (R_{series.s/d})
 - Others

 Alternative device structures (<u>non-classical CMOS</u>) may be utilized

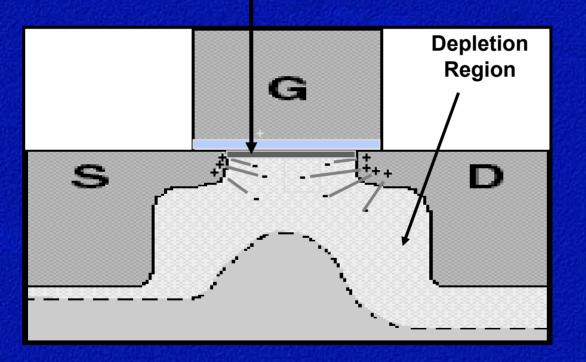
 Ultra thin body, fully depleted: single-gate SOI and multiple-gate transistors

Transistor Structures

Planar Bulk **Partially Depleted** SOI G G D S D **Buried Oxide (BOX) Depletion Region Substrate Substrate** + Current solution + Lower junction cap + Wafer cost / availability + F.B. performance - SCE scaling difficult boost - High doping effects and - F.B. history effect **Statistical variation** - SCE scaling difficult - Parasitic junction - Wafer cost/availability capacitance

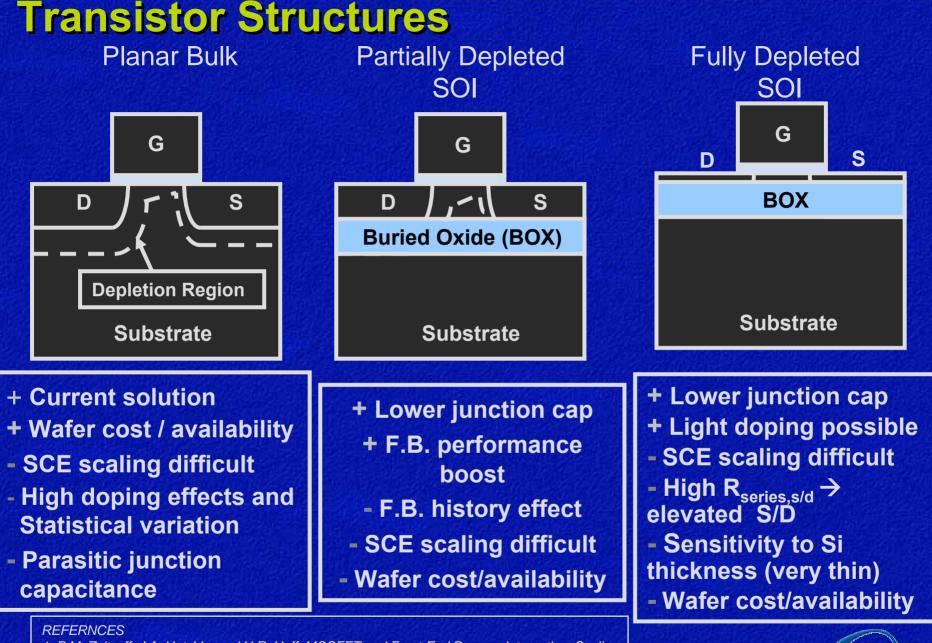
REFERNCES

1. P.M. Zeitzoff, J.A. Hutchby and H.R. Huff, MOSFET and Front-End Process Integration: Scaling Trends, Challenges, and Potential Solutions Through The End of The Roadmap, International Journal of High-Speed Electronics and Systems, 12, 267-293 (2002). 2. Mark Bohr, ECS Meeting PV 2001-2, Spring, 2001.



Accelerating the next technology rate

S


Schematic cross section of planar bulk, UTB SOI, and DG SOI MOSFET

Inversion Layer

Bulk MOSFET

1. P.M. Zeitzoff, J.A. Hutchby and H.R. Huff, MOSFET and Front-End Process Integration: Scaling Trends, Challenges, and Potential Solutions Through The End of The Roadmap, International Journal of High-Speed Electronics and Systems, **12**, 267-293 (2002).

2. Mark Bohr, ECS Meeting PV 2001-2, Spring, 2001.

Field Lines for Single and Double-Gate MOSFETs E-Field lines

D

To reduce SCE's, aggressively reduce Si layer thickness

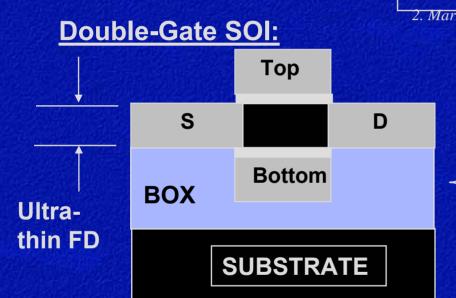
S

Single-Gate SOI

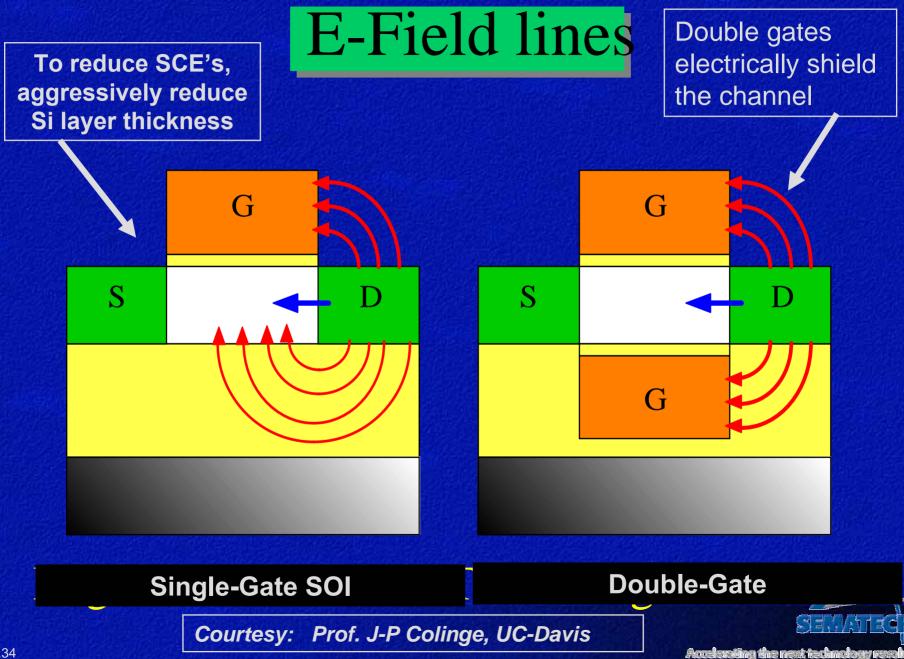
G

Courtesy: Prof. J-P Colinge, UC-Davis

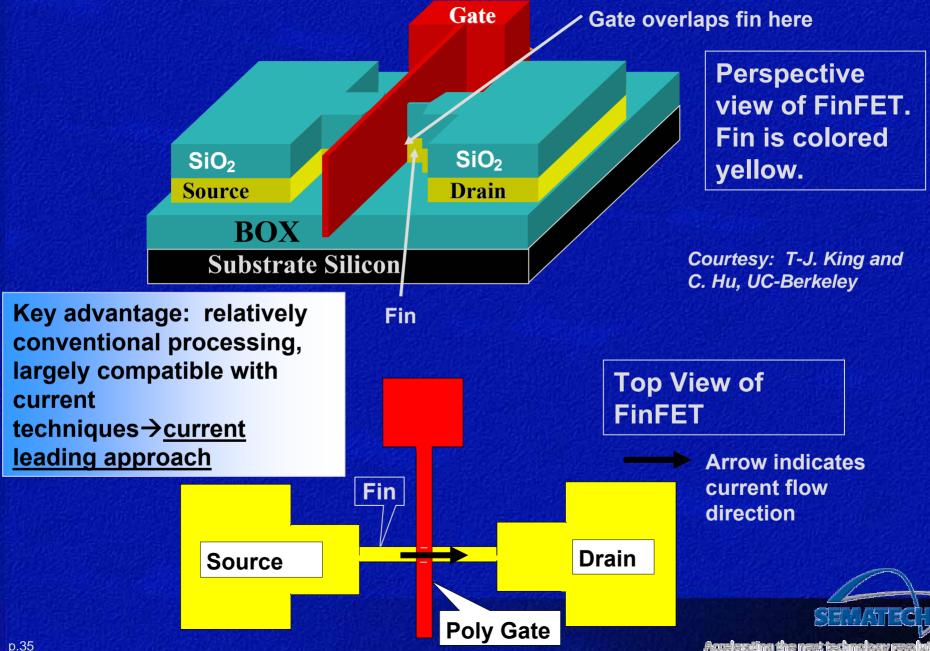
Double Gate Transistors

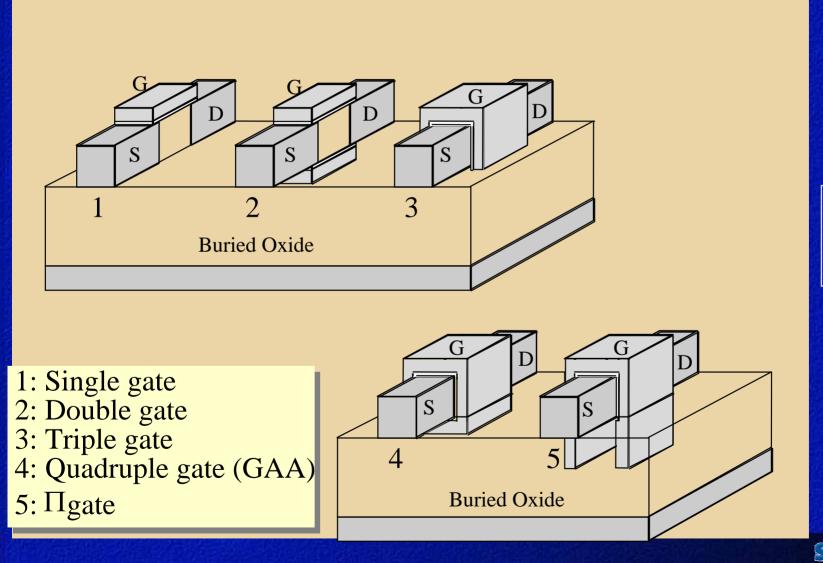


1. P.M. Zeitzoff, J.A. Hutchby and H.R. Huff, MOSFET and Front-End Process Integration: Scaling Trends, Challenges, and Potential Solutions Through The End of The Roadmap, International Journal of High-Speed Electronics and Systems, **12**, 267-293 (2002).



- (+ Enhanced scalability
 - + Lower junction capacitance
 - + Light doping possible, with near-midgap metal gate
 - + ~2x drive current
 - ~2x gate capacitance
 - High R_{series,s/d}→raised S/D _- Complex process


Summary: more advanced, optimal device structure, but difficult to fabricate, particularly in this SOI configuration


Field Lines for Single and Double-Gate MOSFETs

Other Double-Gate Transistor Structures (FinFET)

Types of Multiple-Gate Devices

Courtesy: Prof. J-P Colinge, UC-Davis

Metrology and Characterization Challenges for Non-Classical CMOS

- C-V measurements for thin, fully-depleted Si
- Single-gate SOI: measurement of very thin body thickness, 10 nm and less
- Multiple-gate
 - Measurement of fin height and width, high AR
 - Measuring roughness of vertical fin edges
 - Measuring high- k film thickness on vertical fin edges
 - Measuring 2D and 3D doping profiles in thin fins

Outline

- Introduction
- Scaling and its impact
- Front end approaches and solutions
- Non-classical CMOS
- > Summary

Summary

- Rapid transistor scaling will continue through the end of the Roadmap
 - Transistor performance will improve rapidly, but leakage will be hard to control
 - Many technology innovations will be needed in relatively short time to enable this rapid scaling
 - Front-end potential solutions include high-k gate dielectric, metal gate electrodes, and enhanced mobility through strained silicon
 - High-k needed first for low-power (mobile) chips in ~ 2006
 - Structural potential solutions: non-classical CMOS
 - The technology innovations will raise significant challenges for metrology and characterization
- Non-classical CMOS and front-end solutions being pursued in parallel, and will likely be combined in the ultimate, end-of-Roadmap device
 - L_g < 10nm MOSFETs expected by the end of the Roadmap in 2018

Potential Solutions for Power Dissipation Problems, High-Performance Logic

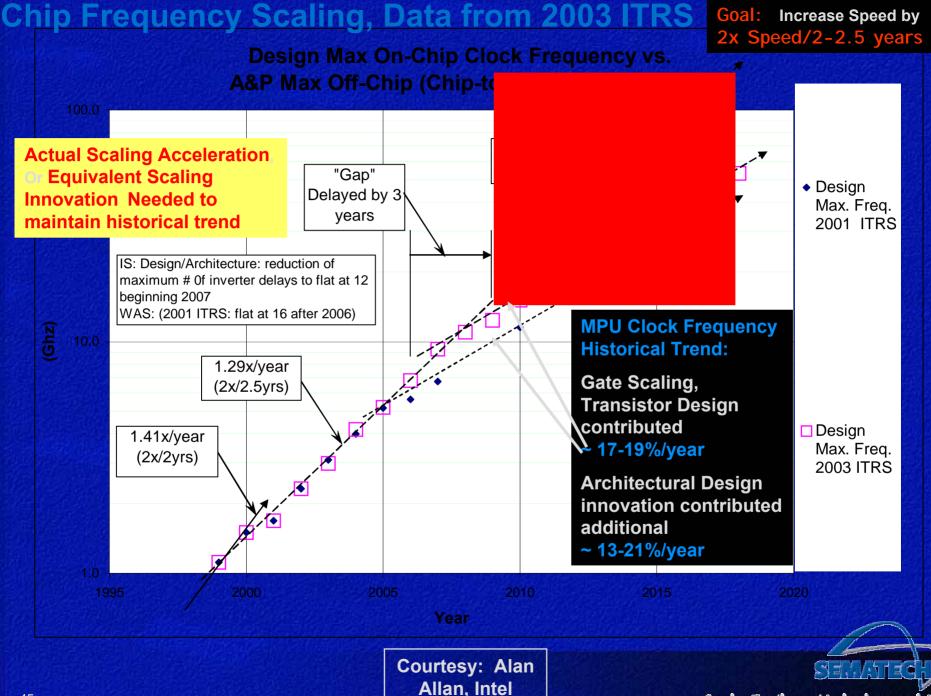
- Due to high leakage, static power dissipation is a special challenge
- Increasingly common approach: multiple transistor types on a chip→multi-Vt, multi-Tox, etc.
 - Only utilize high-performance, high-leakage transistors in critical paths—lower leakage transistors everywhere else
 - Improves flexibility for SOC
- Electrical or dynamically adjustable V_t devices (future possibility)
- Circuit and architectural techniques: pass gates, power down circuit blocks, etc.
- Improved heat removal, electro-thermal modeling and design

Timeline of Projected Key Technology Innovations from '03 ITRS, PIDS Section This timeline is from PIDS evaluation for the 2003 ITRS

						10000					07.2015	1.775772	0.570			
	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Strained SiHP		Pro	duction												2-117-15	
1221月第三次第三次第三次第三次		82 323	D BAY		12.70	S11-75	(INSTRACT	11372	U PES		32534		STRATE:	125.75		AL GEL
High-k (Low Power)				Pro	duction	Constant of			10001010						-70-5-02	
Elevated S/D						Product	ion									
High-k (HP)		141002) 2081 (Jer			Pro	oduction		100 A 190		2003111		4896770		MICRU/AS		
Metal Gate (HP, dual	gate)				Pro	duction					2.340	11.57				
Metal Gate (Low Pow	ver, du <u>al</u>	gate)				Pro	oduction	4433		·新福州			+		12.94-22	
Strengen A Martin			Signal		2-34-2		$02/2$ $\lambda_{\rm ex}$							a des se		
Ultra-thin Body	<u>y (UTE</u>	<u>8) SOI</u>	<u>, sing</u>	le gat	te (HP) Pro	oduction	21.775	69560		100 febre			11125778		22311-2
Metal gate (ne	ar mid	lgap f	or UT	BSOI)	Pro	oduction									
Strained Si (Low Pov	ver)					Pr	oduction		<u>iedie</u>	NUR S						
					347 0	States - 1				(1)	Entit	2.20	22180	E de la		
Multiple Gate (<u>HP)</u>							Pr	oductior	1						
Ultra-thin Body (UTB) SOI, single gate					te (Lo	Low power) Production										
				語いば									Da			
Multiple Gate (LOWF	ower					174537270 175555 11	Constant Maria		2357-291 321-2410			Pr	oduction	17.1X-71	
Quasi-ballistic	trans	port (HP)			O ^B					Pro	duction		and and a		
Quasi-ballistic	trans	port (LOP)										Pro	oduction		

Accelerating the next technology result

International Technology Roadmap for Semiconductors (ITRS)


- Industry-wide, fully international effort to map IC technology generations for the next 15 years
 - For each technology generation
 - Projects targets for technology characteristics and requirements
 - Assesses key needs and gaps
 - Lists potential solutions
 - Provides common reference for semiconductor industry: device manufacturers, equipment and materials vendors, researchers
 - Useful for planning
 - Focus: stimulating needed R&D, not intended to restrict research
 - Enabling factor in continuing to follow Moore's Law
 - Much of this talk is based on the 2003 ITRS (formally presented in Dec., 2003)

Typical Technology Requirements Table: High-Performance Logic. Data from 2003 ITRS.

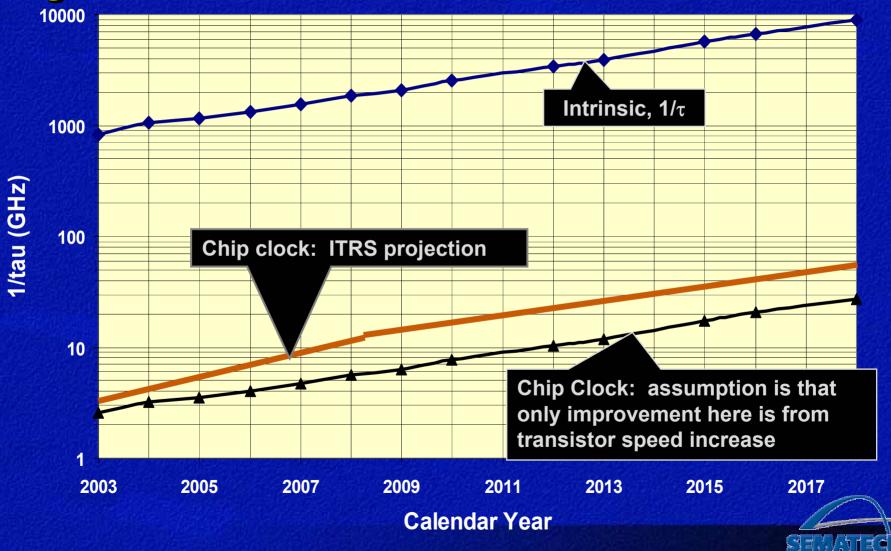
Year in Production	Units	2003	2004	2005	2006	2
Physical Lgate (High Performance)	nm	45	37	32	28	
EOT (Equivalent Oxide Thickness)	А	13	12	11	10	1023
Gate Poly Depletion & Inversion-Layer Thickness	А	8	8	7	7	
Inversion Gate Dielectric Thickness Value	А	21	20	18	17	
Maximum Gate Leakage Limit	A/cm^2	2.2E+02	4.5E+02	5.2E+02	6.0E+02	9.3
Power Supply Voltage	V	1.2	1.2	1.1	1.1	cherry of
Saturation Threshold Voltage	V	0.21	0.20	0.20	0.21	(
Source/Drain Subthreshold Off-State Leakage Drain Current	uA/um	0.03	0.05	0.05	0.05	(
Effective NMOS Current Drive	uA/um	980	1110	1090	1170	1
Sub-threshold Slope Adjustment Factor (Full Depletion/Dual-Gate Effects)(0-1)		1	1	1	1	
Mobility Enhancement Factor		1	1.3	1.3	1.4	
Effective Saturation Carrier Velocity Enhancement Factor		1	1	1	1	
Effective Parasitic Rsd	ohm-um	180	180	180	171	
Ideal NMOS Device Gate Capacitance	F/um	7.4E-16	6.4E-16	6.1E-16	5.7E-16	6.0
Parasitic Fringe/Overlap Capacitance	F/um	2.4E-16	2.4E-16	2.4E-16	2.3E-16	2.2
NMOS Device Time Constant	ps	1.20	0.95	0.86	0.75	(
Relative Performance Improvement (compared to 2003)		1.00	1.26	1.39	1.60	
Nominal Gate Delay (NAND Gate)	ps	30.24	23.94	21.72	18.92	1
NMOS Device Static Power Dissipation due to Drain & Gate Leakage	Watts/um	3.96E-07	6.60E-07	6.05E-07	6.05E-07	8.4
NMOS Device Power Delay Product	Joules/um	1.41E-15	1.27E-15	1.03E-15	9.66E-16	

Asselerating the next technology revolution.

Accelerating the next technology revolution

ITRS Projections of V_{dd} and V_t Scaling. Data from 2003 ITRS.

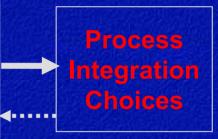
Accelerating the next technology resolution.


Key MOSFET Scaling Results, 2003 ITRS: Performance and Leakage

- High-performance logic
 - Average 17%/yr improvement in $1/\tau$ is attained
 - <u>I_{sd,leak} is high</u>, particularly for 2007 and beyond → <u>chip</u>
 static power dissipation scaling is an issue
- Low-power logic
 - Very low I_{sd,leak} target is met
 - I_{gate,leak} is also very low: difficult to meet this <u>>drives</u> need for high-k gate dielectric
 - $1/\tau$ is considerably lower than for high-performance, but close to 17%/yr improvement in $1/\tau$ is still attained
- ITRS MOSFET targets are chosen to drive the technology scaling → pretty aggressive

icelerating the next technology resolution.

Frequency scaling: Transistor Intrinsic, Fanout-3 NAND Gate, Chip Clock for High-Performance Logic. Data from 2003 ITRS.



Hierarchy of IC Requirements and Choices

Overall Circuit Requirements and Choices

Chip Power
Chip Speed
Functional Density
Chip Cost
Architecture
Etc.

•V_{dd} •MOSFET Leakage

•MOSFET Drive current

•Parasitic series resistance

•Transistor size

•V_t control

Reliability

•Etc.

 T_{ox}, L_g, x_j, R_s
 Channel engineering

•Oxynitride or High K gate dielec.

•Classical Planar Bulk or Nonclassical CMOS Structures

•Etc.

•Thermal processing

•Overall process flow

•Process modules

•Material properties

•Boron penetration

•Etc.

Key Overall Chip Parameters for High-Performance Logic, from 2001 ITRS

			Near Term								Long Term		
Calendar Year		2001	2002	2003	2004	2005	2006	2007	2010	2013	2016		
DRAM Half Pitch	nm	<u>130</u>	115	100	<u>90</u>	80	70	<u>65</u>	<u>45</u>	<u>35</u>	<u>22</u>		
Physical Gate Length, L _g	nm	65	53	45	37	32	28	25					
Nominal Power Supply Voltage (Vdd)	V	1.2	1.1	1.0	1.0	0.9	0.9	0.7	0.6	0.5	0.4		
Maximum on-chip local clock frequency	GHz	1.7	2.3	3.1	4.0	5.2	5.6	6.7	11.5	19.4	28.8		
Allowable maximum power dissipation, with heatsink	w	130	140	150	160	170	180	190	218	215	288		
Number of transistors per chip	Millions of transistors	276	348	439	553	697	878	1106	2212	4424	8848		

•The DRAM half pitch and L_g are drivers of IC technology scaling, including lithography

•Technology generations (in red) defined by DRAM half pitch

•This is a dense feature: drives functional density and Litho. and Etch

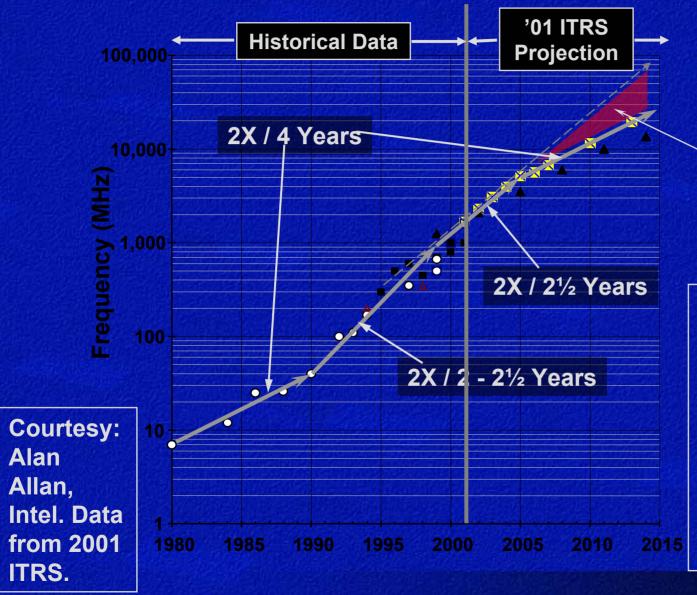
–Reduction factor of 0.7X ~ $1/\sqrt{2}$ between generations (130nm in 2001, 90nm in 2004, 65nm in 2007, etc.)

-Three years between generations

–Gate length (L_g) \leq 0.5 X DRAM half pitch

-These are isolated features

-Rapid scaling of L_q is driven by need to improve transistor speed


V_{dd} and V_t Device Scaling Issues

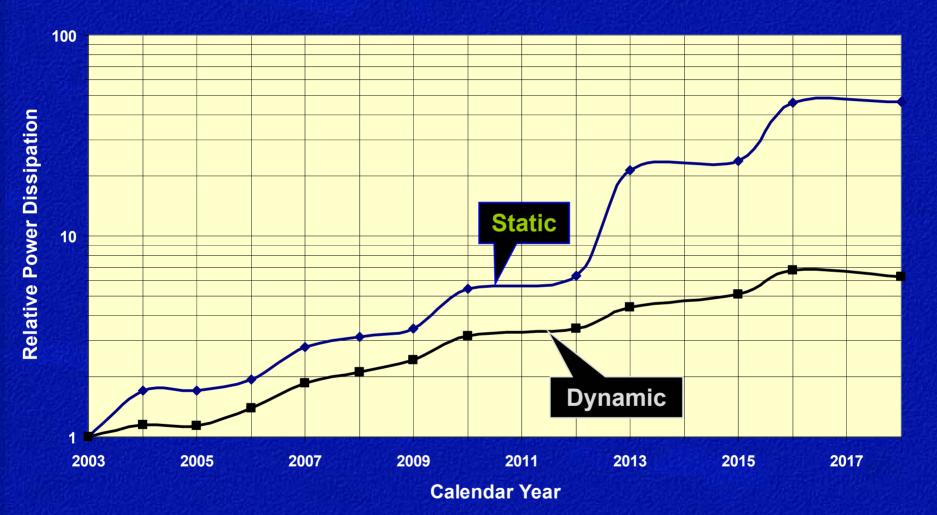
- We need to scale V_{dd} down rapidly with the technology generations
 - To keep dynamic power dissipation (~V_{dd}²) within acceptable bounds
 - For reliability, control of short channel effects (SCE), general device scaling
- 1/I_{sd,leak} exp. dependent on V_t
- I_{on} strongly dependent on gate overdrive, (V_{dd}-V_t)
- Also, $V_{dd} \ge 2 V_t$ for circuit functionality

Scaling requires key tradeoffs between I_{on} and I_{sd,leak}, V_{dd} and V_t

-Tradeoff choices driven by application needs

Historical Data and 2001 ITRS Projections for Chip Clock Frequency, High-Performance Logic

Actual Scaling Acceleration, Or Equivalent Innovation Needed to maintain historical trend

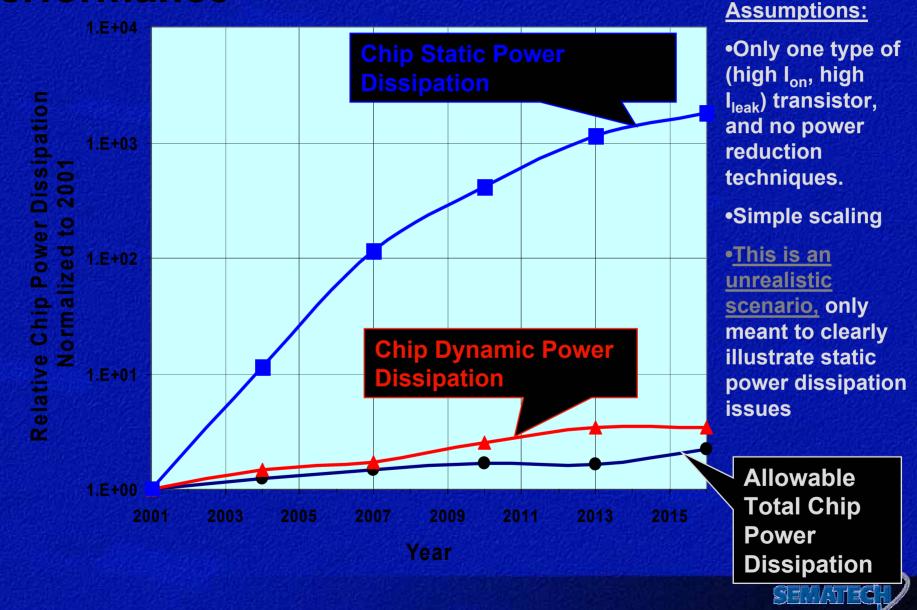

MPU Clock Frequency Historical Trend:

<u>Transistor</u> <u>scaling has</u> <u>contributed</u> <u>~ 17-19%/year</u>

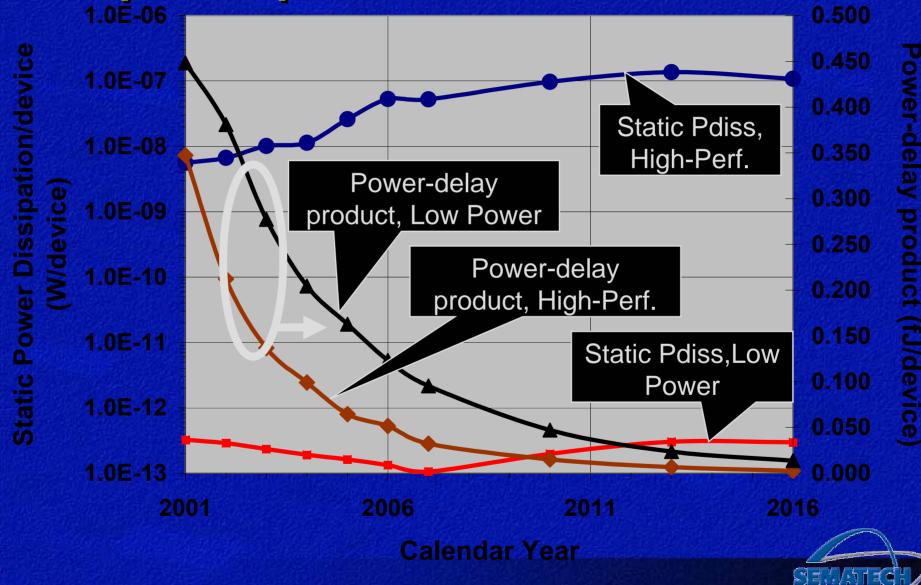
Architectural Design innovation contributed additional ~ 21-13%/year

Accelerating the next technology resolution.

Potential Problem with Static Power Dissipation Scaling: High-Performance Logic



Assumption, to make a point re P_{static}: all transistors are high performance, low V_t type


Accelerating the next technology resolution

Relative Chip Power Dissipation, High Performance

Accelerating the next technology resolution.

ITRS Projected Scaling of Power Dissipation per Device

fJ/device

Accelerating the next technology reso

Impact of Key MOSFET Parameters on Chip Power Dissipation

- $P_{total} = P_{dynamic} + P_{static}$
 - $-\mathbf{P}_{dynamic} = \mathbf{C}_{active} \, \mathbf{V}_{dd}^2 \, \mathbf{f}_{clock}$
 - With scaling, C_{active} and f_{clock} increase rapidly
 - <u>To keep P_{dynamic} within tolerable limits, reduce</u>
 <u>V_{dd} with scaling</u>
 - Reduce V_{dd} for reliability, SCE, general device scaling reasons, also
 - $-\mathbf{P}_{\text{static}} = \mathbf{N}_{\text{off}} \mathbf{W} \mathbf{I}_{\text{leak}} \mathbf{V}_{\text{dd}}$
 - With scaling, N_{off} increases rapidly, but V_{dd} and W scale down
 - <u>To keep P_{static} within tolerable limits</u>, <u>constrain increase of I_{leak} with scaling</u>

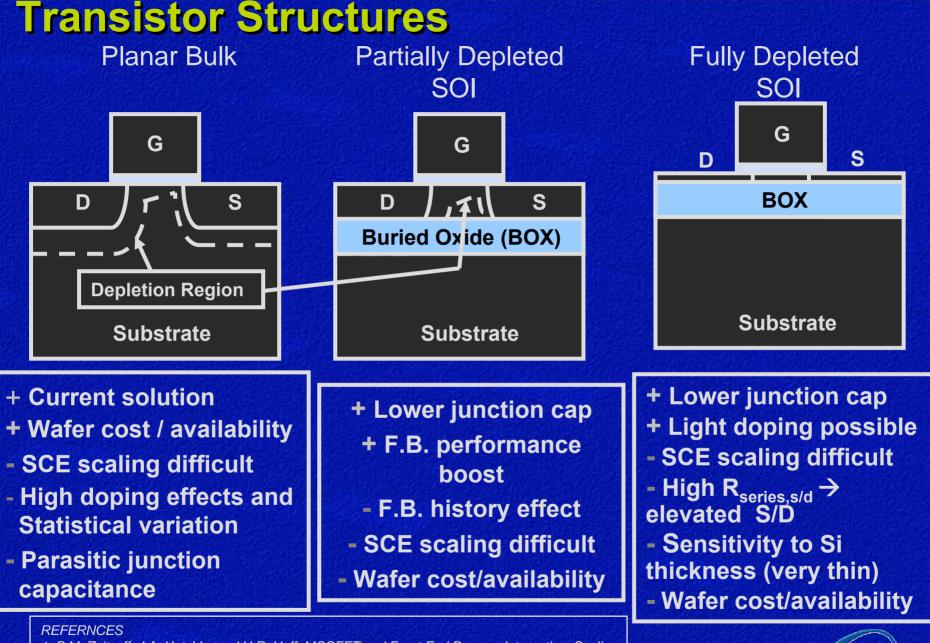
Solutions for Power Dissipation Problems, High-Performance Logic

- Increasingly common approach: multiple transistor types on a chip \rightarrow multi-V_t, multi-T_{ox}
 - Only utilize high-performance, high-leakage transistors in critical paths—lower leakage transistors everywhere else
 - Improves flexibility for SOC
- Electrical or dynamically adjustable V_t devices (future possibility)
- Circuit and architectural techniques: pass gates, power down circuit blocks, etc.

Summary: MOSFET Scaling MOSFET scaling is the "raw material" for designers to improve chip performance, control

- power dissipation
 - MOSFET scaling projected to scale at historical ~17% per year in "raw" speed improvement for highperformance logic
 - Design and architectural innovation has contributed about as much, but is expected to slow down in the future: continued MOSFET speed improvement is critically important
- MOSFET scaling goals are critically important
 - High-performance logic emphasizes speed at the expense of high leakage and static power dissipation
 - Low-power logic emphasizes low leakage at the expense of speed
- Static power dissipation is a growing problem for high-performance logic, and there are numerous approaches to dealing with it

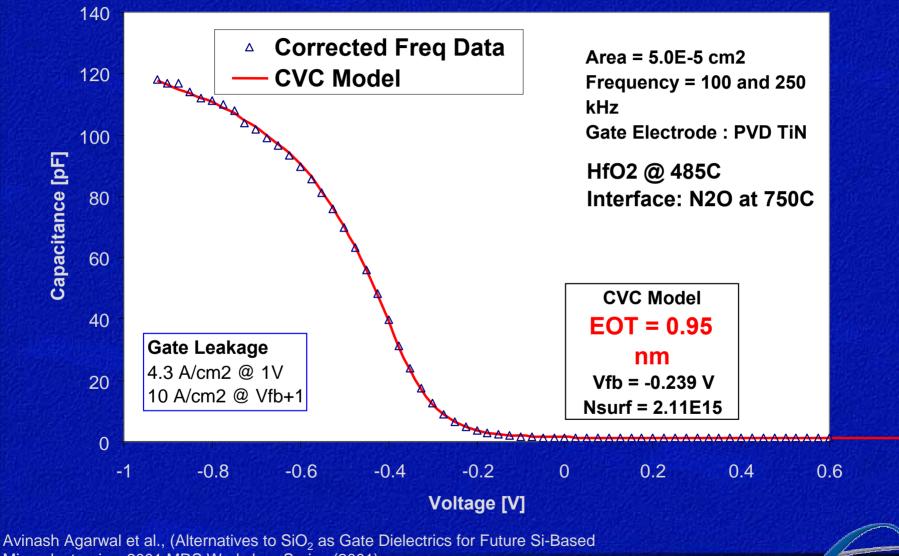
High-K Issues


- Process integration
 - Thermal stability of high-k material
 - Retain high-k performance with planar CMOS flow (S/D anneal, etc.,) challenge
 - Chemical, electrical compatibility with polysilicon
 - Boron penetration
 - PMOS V_t
 - Metal electrode may be required
 - Interface with Si substrate and gate electrode
 - Deposition / post process anneals \Rightarrow thin SiO₂-like layer
- Interface properties: D_{it}, Q_f, μ = μ(interfacial "SiO₂")
- Charges and charge trapping in high-k: V_t control and instability
- Mobility degradation
- Leakage, reliability
- •... New material: major challenge

Polysilicon Limitations

- Polysilicon depletion
 - Increases effective electrical T_{ox} → reduces inversion charge & I_{on}
 - More of a problem as T_{ox} is scaled → Poly doping must increase with scaling
- PMOSFETs: B penetration through very thin oxides
 - Oxy-nitrides & reduction of DT effective now
- Compatibility with high-k
- Gate resistance of very thin gates (even with silicide)

1. P.M. Zeitzoff, J.A. Hutchby and H.R. Huff, MOSFET and Front-End Process Integration: Scaling Trends, Challenges, and Potential Solutions Through The End of The Roadmap, International Journal of High-Speed Electronics and Systems, **12**, 267-293 (2002).


2. Mark Bohr, ECS Meeting PV 2001-2, Spring, 2001.

Non-Classical CMOS Summary

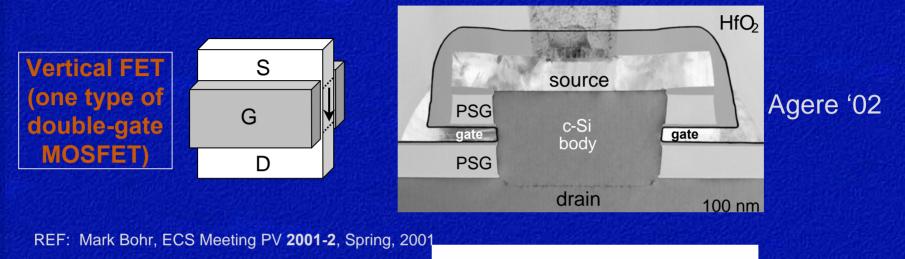
- Below L_g = 25nm or so, planar bulk CMOS may not scale effectively
 - Ultra-thin body, single-gate SOI and (eventually) multiple-gate, ultra-thin body MOSFETs are more optimal from a device point of view than planar bulk CMOS. Key issues:
 - Effectiveness of planar bulk CMOS scaling in this regime
 - Working but suboptimal 8nm devices reported in literature
 - Finding effective solutions to difficult processing issues for SOI and multiple-gate
 - Ultimate MOSFET (Lg < 10nm) likely to be multiple-gate with high-k, metal gate electrodes, strained Si, etc.
 - Such devices will require metal electrodes with nearmidgap work functions
 - Tuning of work function of single metal gate material may be feasible

High-k Gate Dielectric Candidates and Key Issues Modest k (<10) • Al₂O₃ Negative charge, complicated defect structure Medium k (10-25) • Group IV Oxides - ZrO₂, HfO₂ Low crystallization temperature • Group III Oxides - Y₂O₃, La₂O₃,... Charge • Silicates - (Zr, Hf, La, Y, ..) SiO₄ Lower k if too dilute • Aluminates - (Zr, Hf, La, Y, ..)•Al₂O₃ Charge issue, complicated defect structure High k (≥ 25) • Ta_2O_5 , TiO_2 Low-barrier height C. M. Osburn and H.R. Huff, Spring ECS abst. # 366

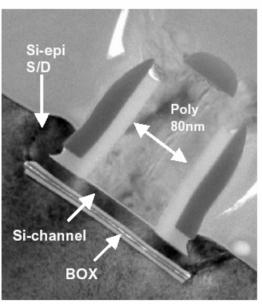
$MOCVD HfO_2 CV Curve (EOT = 0.95 nm)$

Microelectronics, 2001 MRS Workshop Series (2001)

Accelerating the next technology resolution.


Difficult Transistor Scaling Issues

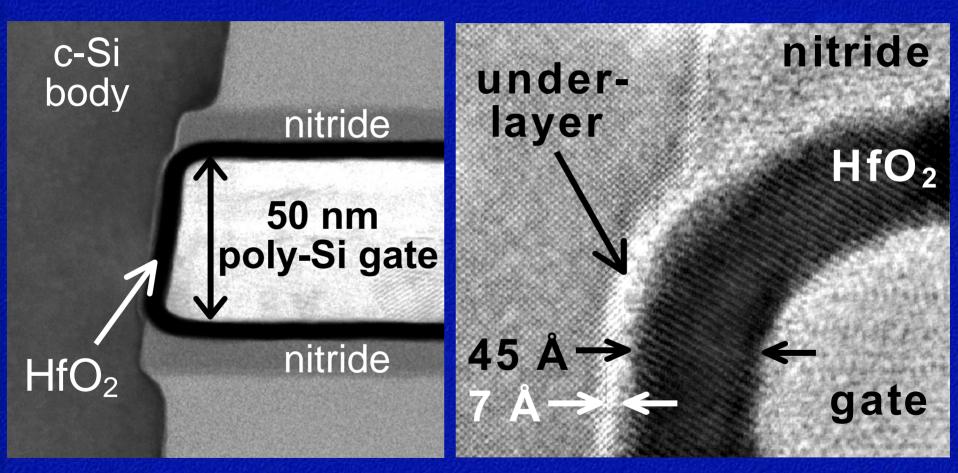
- With scaling, increasing difficulty in meeting transistor requirements
 - High gate leakage
 - Direct tunneling increases rapidly as T_{ox} is reduced
 - Potential solution: high-k gate dielectric
 - Poly depletion in gate electrode → increased effective T_{ox}, reduced I_{on}
 - Potential solution: metal gate electrode
 - Need for enhanced channel mobility
 - Potential solution: strained Si channels



Other Structures of Interest

Silicon on Nothing (SON): localized buried oxide (BOX)

REF: S. Monfray et al., '01 IEDM, p. 645.

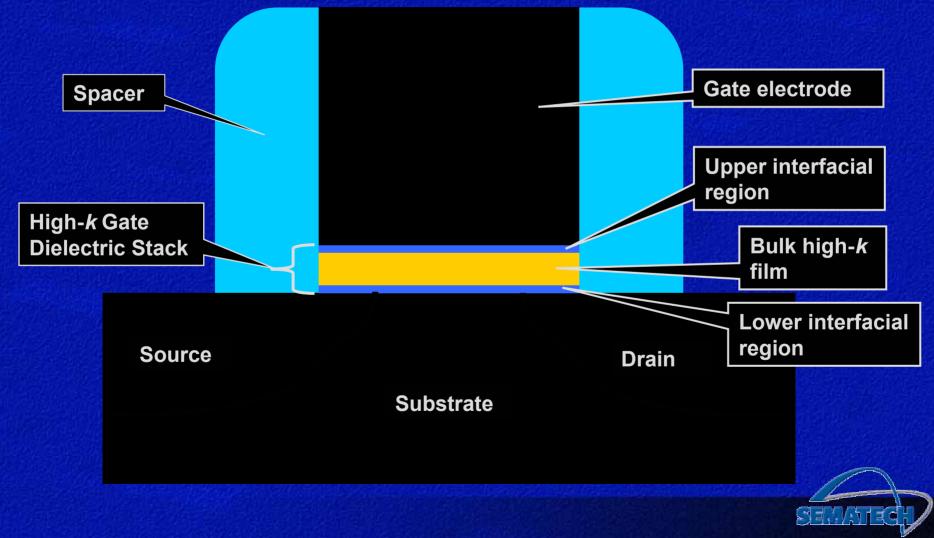


STM '01

Accelerating the next technology resolution.

Vertical Transistor Structure with High-k (Agere '02 IEDM)

Jack Hergenrother et. al., 50 nm Vertical Replacement-Gate (VRG) nMOSFETs with ALD HfO₂ Gate Dielectrics, *Semiconductor Silicon/2002*, ECS **PV 2002-2**, 929-942 (2002) Reproduced by permission of The Electrochemical Society, Inc.



Accelerating the next technology resolution.

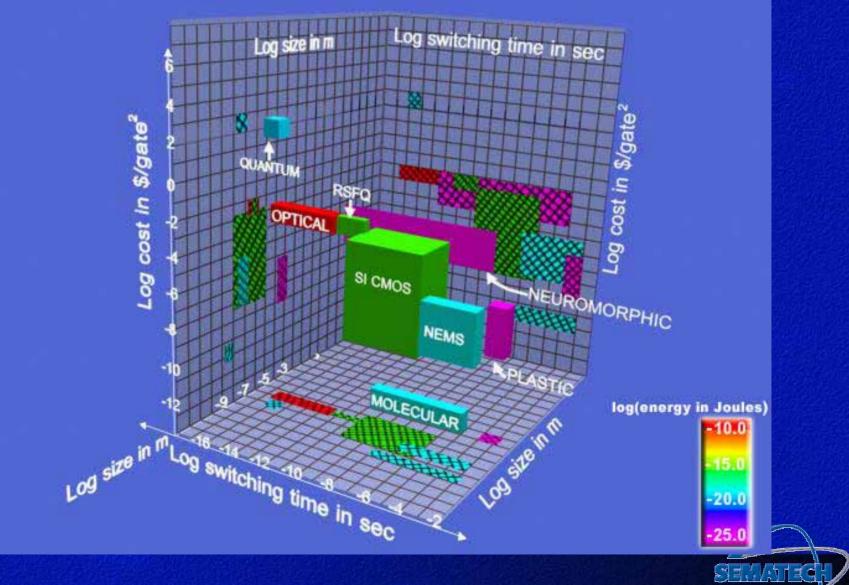
Assumptions for All Logic Types

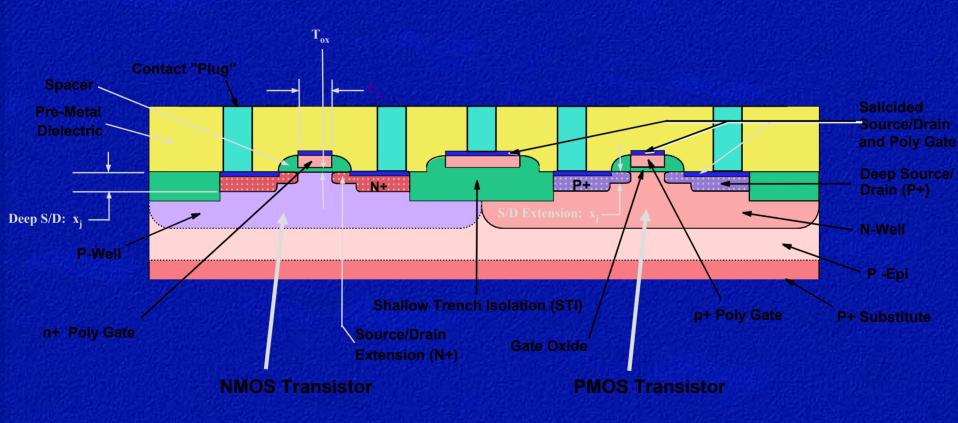
- All modeling is done for nominal devices, room T
- Models are simplified (spreadsheet-based), assume basic transistor functioning doesn't change
 - No dynamic Vt
 - S=85 mV/decade
 - EOT_{electrical} = EOT + 0.8 nm/0.4nm→0.8 nm for poly gate, 0.4 nm for metal gate (in 2007 or beyond)
 - Log(I_{sd,leak})~-Vt/S
 - Gate leakage and junction leakage are related to I_{sd,leak}
 - Id,sat~g_{m,eff} (Vdd-Vt)
 - Cideal = $\varepsilon ox/(EOT_{electrical})$; Cgate = Cideal + Cparasitic
 - <u>τ=(Cgate Vdd)/(Id,sat)= intrinsic transistor delay</u>
 - Parasitic Rs,d is included (20-30% of Vdd/ld,sat = Ron)
 - PMOS is like NMOS, except PMOS Id,sat is 40-50% of NMOS Id,sat
- **D**.68 S/D junction capacitance is ignored in calculating the second

Simplified Cross-Section of High K Gate Dielectric Stack

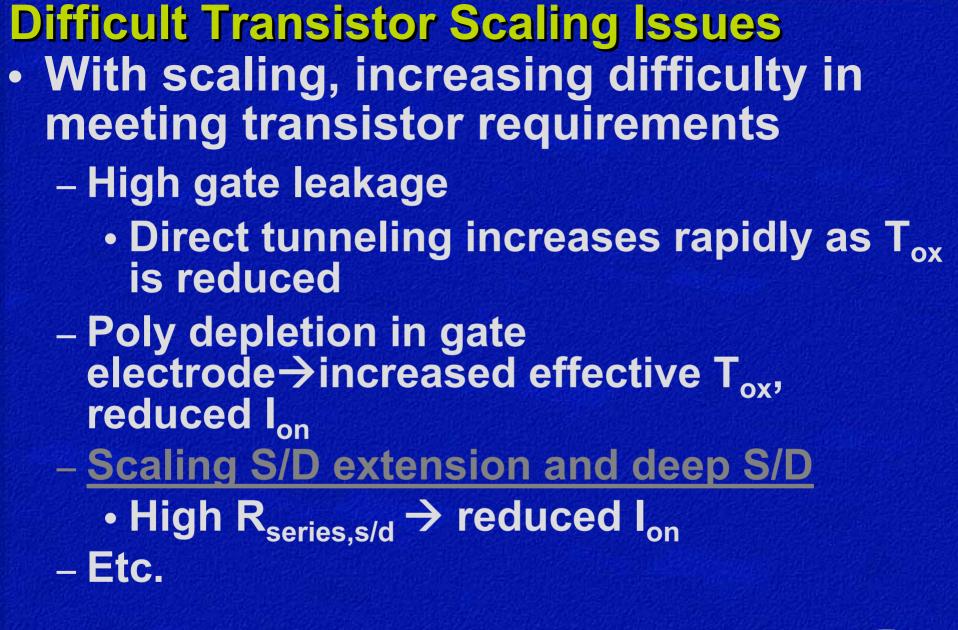
Asselerating the next technology revolution.

Process - Structure - Property Relation


- Crystallinity / polycrystallinity
 - Phase structure
 - Epitaxial alignment to substrate
 - Stoichiometry
 - Bond coordination
 - Morphology
 - Interfacial microroughness
- Retention of amorphicity by doping
- Mixed oxide phase separation
- Spatial inhomogeneity / periodicity in energy gap(s)

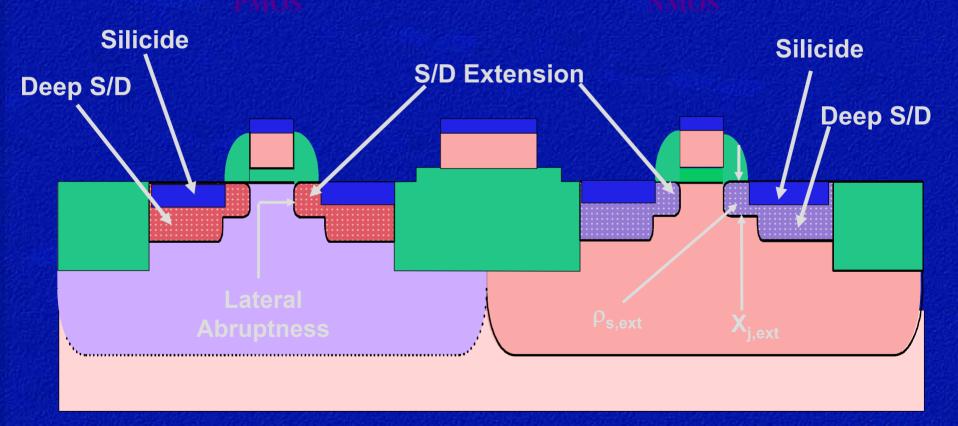

Why High-K (Dielectric Constant)?

- Direct tunneling current depends on film physical thickness and barrier height (φ)
 - $I_{DT} \propto [exp \sqrt{[(2m*q \phi / (h/2\pi)^2]}]$
- Transistor drive current depends on film electrical thickness
 - $I_{DSAT} = (w/2I) (3.9K_oA) (T_{EOT,INV})^{-1} \mu (V_G V_T)^2; V_G \Rightarrow V_{DD}$
 - $T_{EOT} = T_{phys} \times (k_{SiO_2}/k_{high k})$
 - $k_{SiO_2} = 3.92; k_{high k} \approx 15 25$
- Increasing k increases I_{dsat} without increasing I_{DT}
 - Transistor performance improves or thickness may be increased (with increased k) to reduce gate leakage (direct tunneling) current without loss of transistor performance
- High-k gate dielectric proposed to obviate IC power concern while still achieving required gate electrode capacitive coupling with silicon
 High-k introduces new set of design constraints



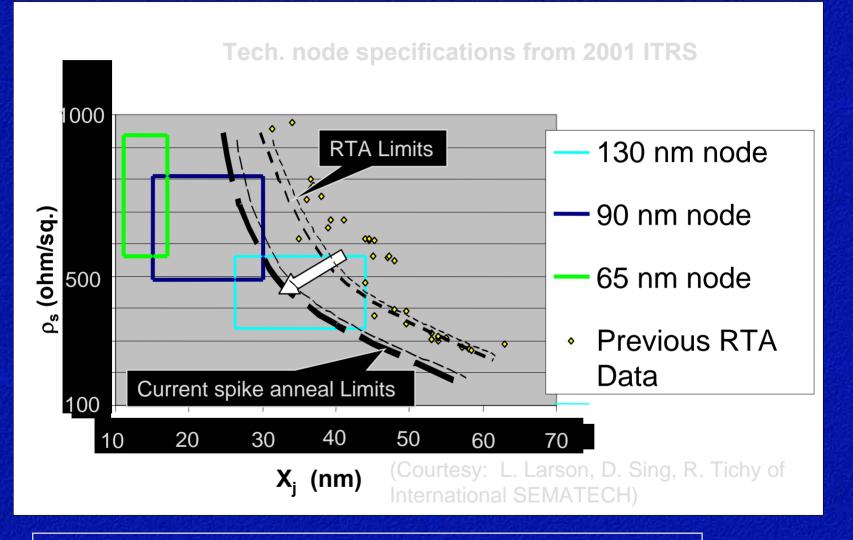
Simplified Cross Section of a Typical PMOSFET and NMOSFET

(Not to scale)



S/D Extension Issues

Schematic, not to scale

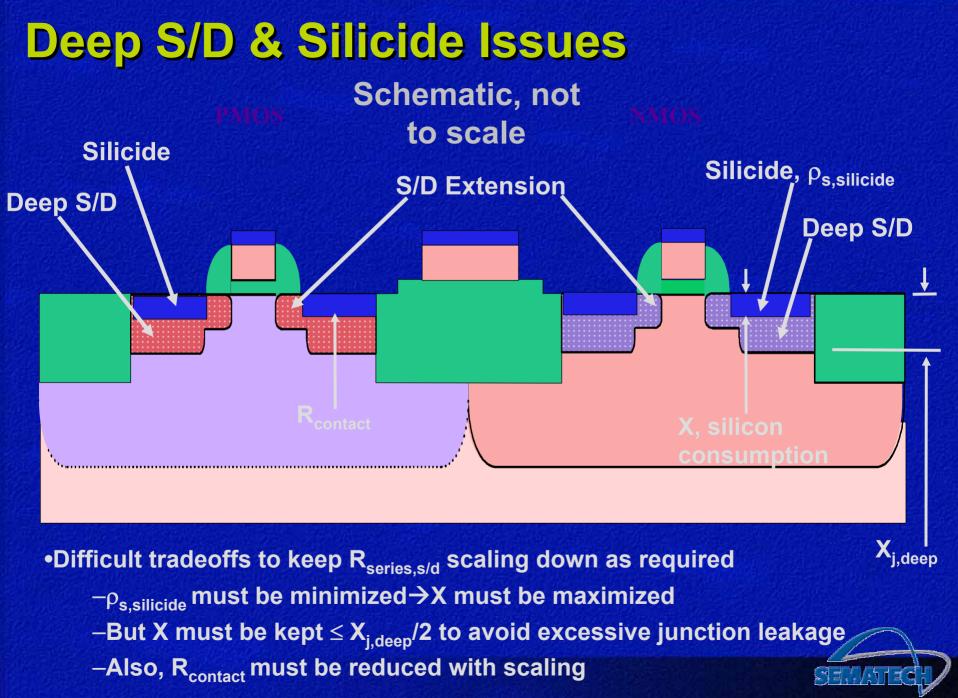


S/D Extension Issues

 Increasingly abrupt, shallow, heavily doped profiles required for successively scaled technologies - Needed for optimal devices, esp. to control short channel effects (SCE) – Difficult ρ_s-x_{j,ext} tradeoffs, esp. for PMOS (B)→ difficult to control R_{S/D,series}

S/D Extension Solutions

65 nm node and beyond: may require novel doping and annealing techniques



p.77

S/D Extension Potential Solutions

- Shorter range
 - Ultra-low energy implants (< 1 KeV, B)
 - Rapid Thermal Processing (RTP) and spike anneal: reduces DT & TED
 - Increase dose as much as possible==>reduced R_{series,s/d}
- Beyond 90 nm technology generation
 - Laser thermal annealing
 - Doped, selective epi
 - Co-implant
 - Others

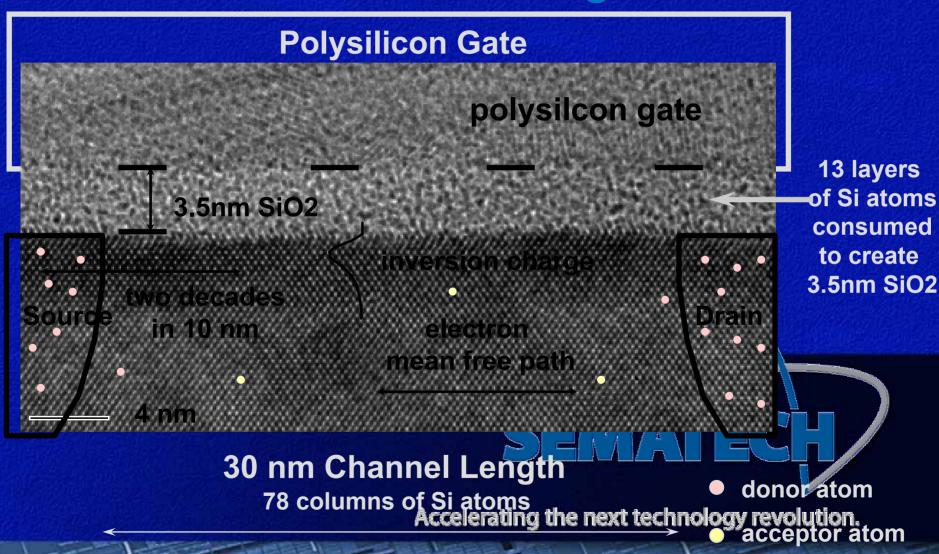
Accelerating the next isolatelogy resolution.

Deep S/D & Silicide Potential Solutions
Through 90 or 65 nm generation, tradeoffs to get acceptable R_{series,s/d} are possible

- Change silicide to get better ρ_{s,silicide}- X tradeoff: TiSi₂→CoSi₂→NiSi
- Potential long-range solutions
 - Elevated S/D: doped, selective epi
 - Reduced R_{contact}
 - Selective CVD silicide tailor Schottky energy barrier
 - Selective deposited metal

Elevated S/D

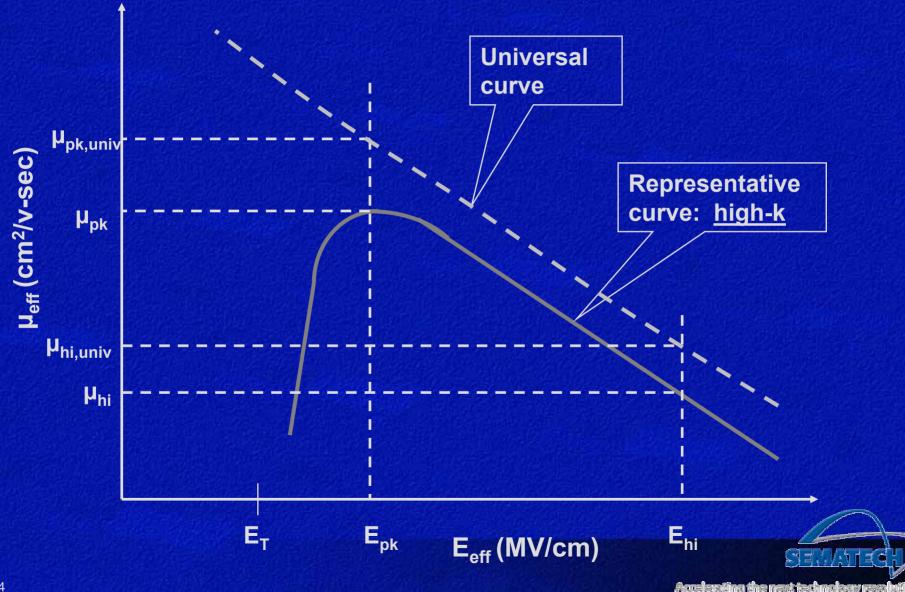
Elevated S/D with Selective (Epitaxial) Silicon and Post Implant


Device Metrics

Power

• $P_{dynamic} = f_{clock} C_{load} V_{DD}^2 and P_{static} = N_{tr} W I_{leak} V_{DD}$

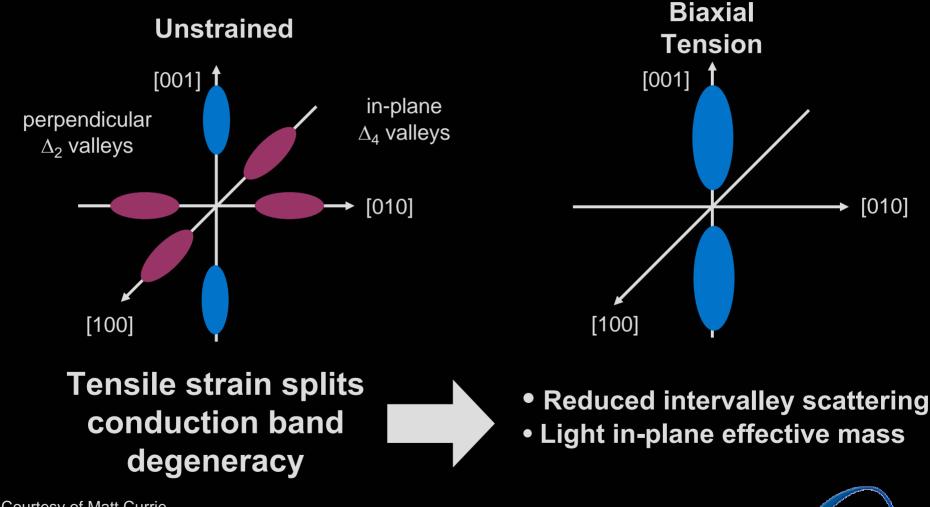
- Intrinsic transistor gate delay (speed)
 - $\tau = \mathbf{C}_{\mathsf{load}} \mathbf{V}_{\mathsf{DD}} / \mathbf{I}_{\mathsf{DSAT}}$
 - Maximum saturated drain current (I_{DSAT}): ideal, long-channel device
 - $I_{DSAT} = (W/2L_{phys}) (3.9K_oA) (T_{EOT,INV})^{-1} \mu_{eff} (V_G V_T)^2$
 - » W and L_{phys} device width and physical gate length
 - » T_{EOT,INV} = equivalent oxide thickness in inversion
 - » μ_{eff} = mobility, generally determined for a long-channel device (g_m)
 - » $V_G V_T =$ gate overdrive, where V_G is supply voltage (V_{DD}) applied to gate ($V_G \Rightarrow V_{DD}$) and V_T is threshold voltage
 - $C_{load} \sim (3.9K_oA) (T_{EOT,INV})^{-1} = \varepsilon_{ox} / T_{EOT,INV}$
 - Transconductance
 - $g_m = (W/L_{phys}) (3.9K_oA) (T_{EOT,INV})^{-1} \mu_{eff} V_{DD}$
 - $T_{EOT} = (k_{high k} / k_{SiO2}) T_{phys}$
 - S = Sub-threshold swing \Rightarrow Inverse slope of log I_D versus V


High Resolution TEM Showing 30 nm Channel Length

Courtesy of Yoshi Nishi / Dick Chapman

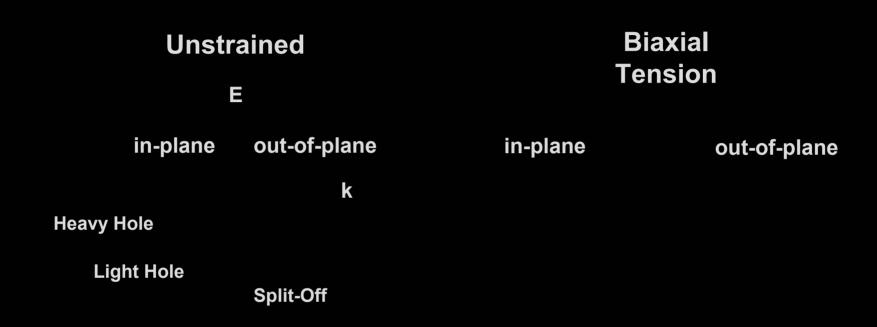
Mar 25, 2003 2003 International Conference on Characterization and Metrology for ULSI Technology

Representative Theoretical and Universal Mobility Curve



Mobility Considerations

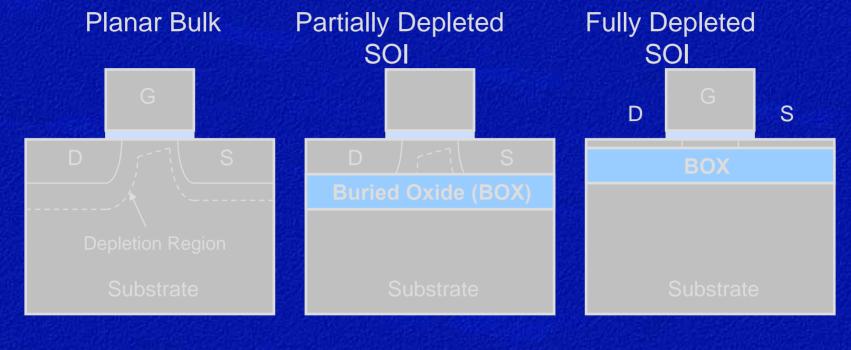
Theoretical


- Low electric field
 - Unscreened (by inversion layer free carriers) ionized dopant scattering centers in silicon
- High electric field
 - Acoustic phonons
 - Surface microroughness
 - H x L (where *H* is height of surface undulation and L is undulation correlation length)
 - Remote scattering due to high-k phonons
- Experimental adders (not presently theoretically **modeled**
 - Interfacial and high-k bulk traps
 - N, AI and other elemental scatterers
 - Crystalline inclusions in amorphous high k gate dielec
 - Remote scattering due to gate electrode
- Universal curve only considers high electric field • contributions (extends to low electric field)

Electron Transport in εMOS™

Courtesy of Matt Currie AmberWave Systems Corp. SEMATEGY Accelerating the next technology revolution.

Hole Transport in εMOS[™]


Tensile strain splits valence band degeneracy

Courtesy of Matt Currie AmberWave Systems Corp.

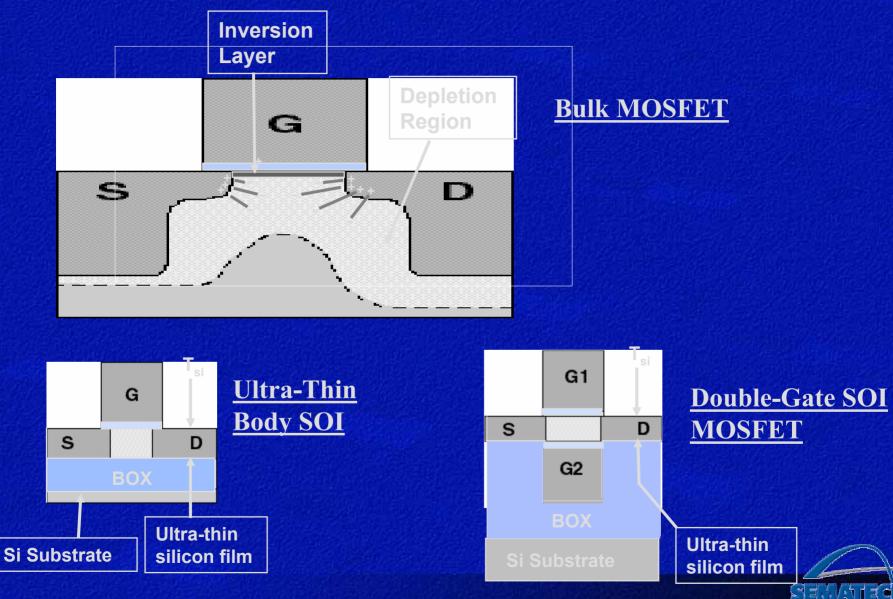
- Reduced intervalley scattering
- Light in-plane effective mass

Transistor Structures

- + Wafer cost / availability
- SCE scaling difficult
- High doping effects and Statistical variation
- Parasitic junction capacitance

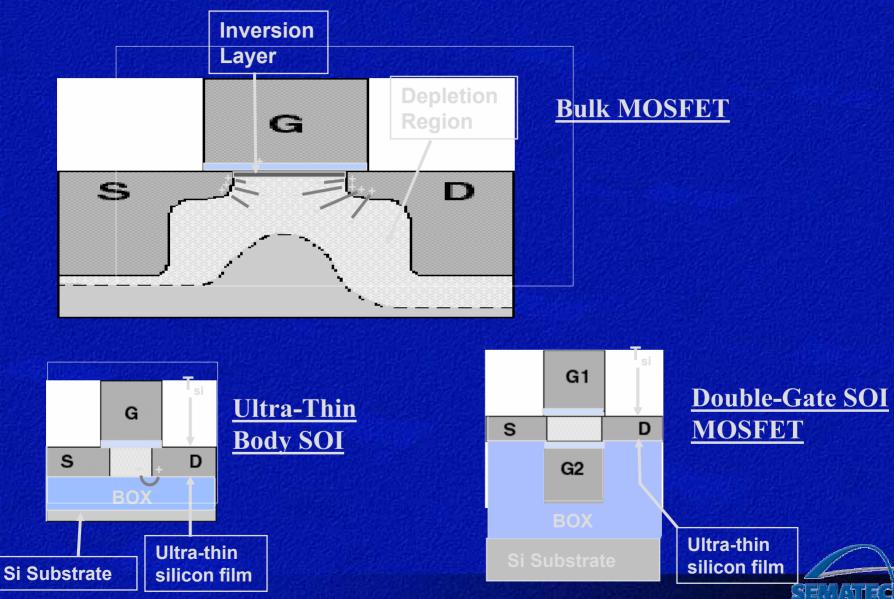
- + Lower junction cap
- + F.B. performance boost
- F.B. history effect
- SCE scaling difficult
- Wafer cost/availability

- + Lower junction cap
- SCE scaling difficult
- High R_{series,s/d}→raised S/D
- Sensitivity to Si thickness (very thin)

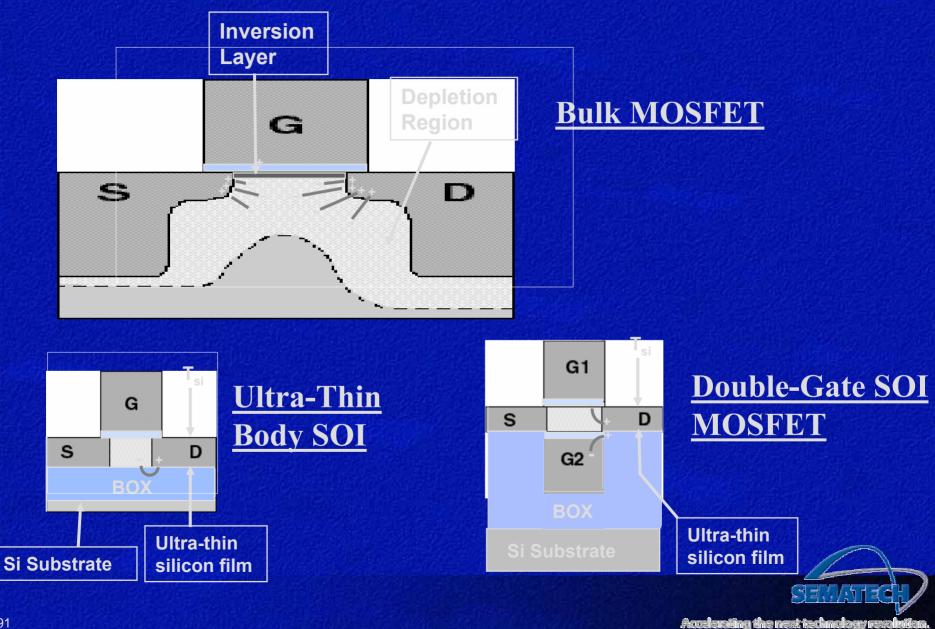

Wafer cost/availability

References:

1. P. Zeitzoff, J. Hutchby and H. Huff, to be pub. in Internat. Jour. Of High Speed Electronics and Systems

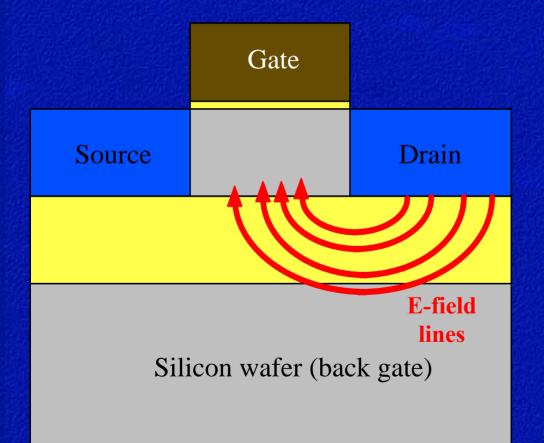

2. Mark Bohr, ECS Meeting PV 2001-2, Spring, 2001

Schematic cross section of planar bulk, UTB SOI, and DG SOI MOSFET

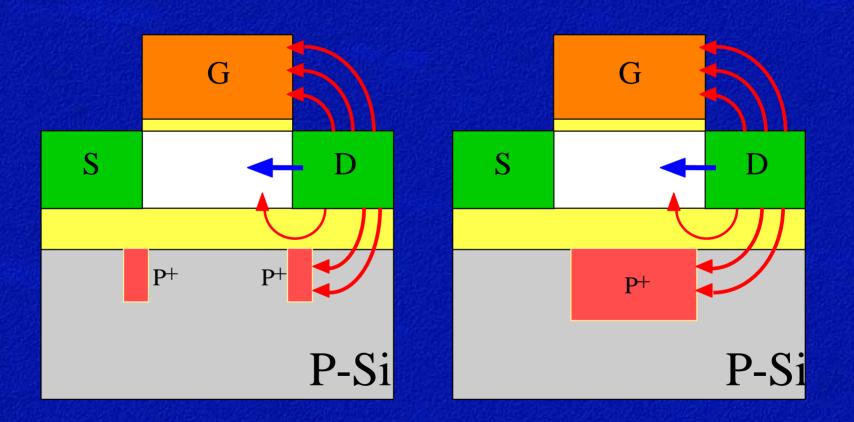


Asselscripting the next technology resolution

Schematic cross section of planar bulk, UTB SOI, and DG SOI MOSFET

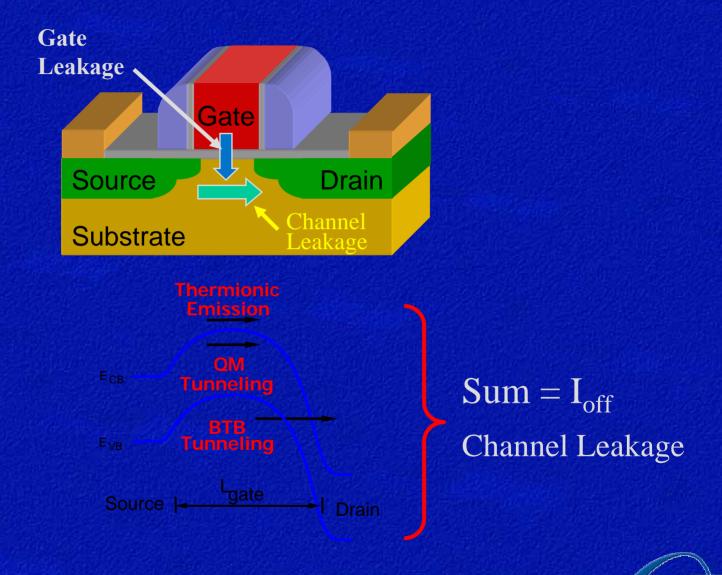


Schematic cross section of planar bulk, UTB SOI and DG SOI MOSFET


Short-channel MOSFET: DIBL

or: Drain-Induced Barrier Lowering

Electric field lines from the drain encroach on the channel region. Any increase of drain voltage decreases the threshold voltage (the "NPN" potential barrier between source and drain is low



Ground-plane SOI MOSFETs

Accelerating the next technology resolution.

SELVATES

Electrostatic Scaling - Channel Leakage (I_{off})

Jim Hutchby

Accelerating the next technology revolution.

ਿੰਸ ਤੋ