Characterization and Metrology for ULSI Technology

Interconnects, an Overview and Critical Review

Kenneth A. Monnig Phd Associate Director, Interconnect

(03/26/03)

OUTLINE

Brief Overview of Interconnect Technology Today

Progress from 2 yrs ago

Interconnect Measurement Challenges

Restate The Challenge;

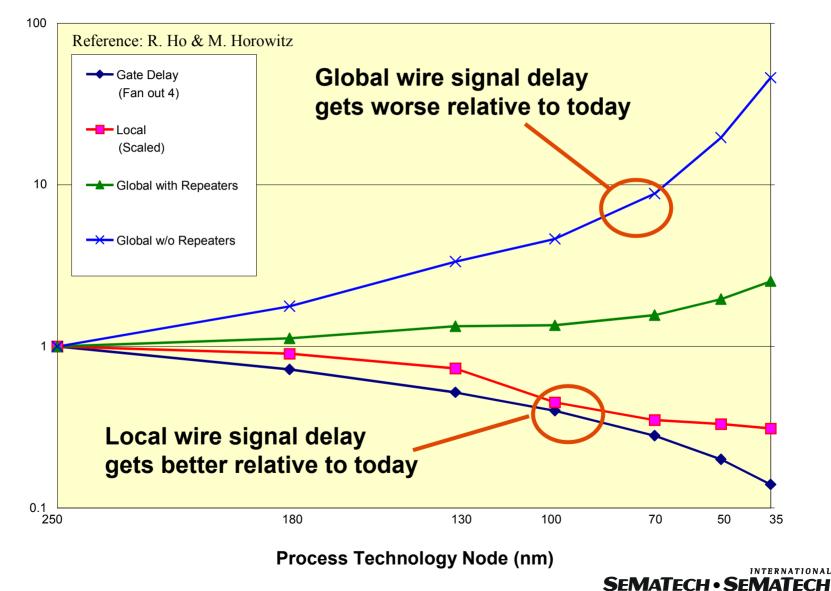
- •We need to measure Properties of the 'Sidewall'
- •Flat Film Properties Decreasingly Important
- •Destructive and/or Cross-section Test Increasingly Costly

The Coming Era of "Beyond Cu and Low-K"

2000 International Conference on Characterization and Metrology for ULSI Technology

The Coming & Ongoing Changes in IC Interconnect Fabrication

&


What This Has to do With Metrology

Kenneth A. Monnig Phd Associate Director, Interconnect

(06/27/00)

INTERCONNECT DELAY VS. DESIGN RULE

Relative Delay

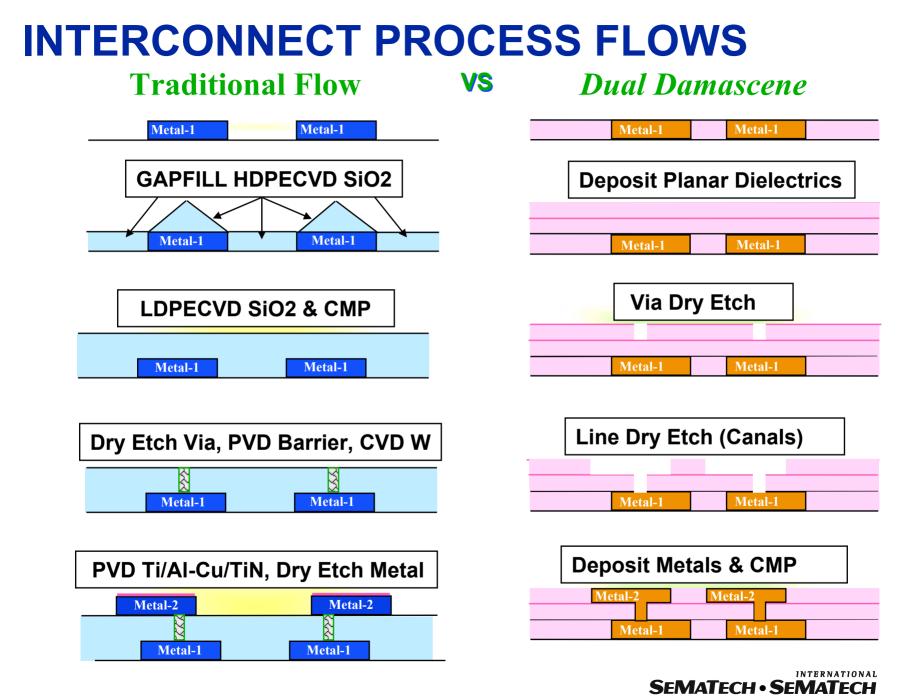
4/3/2003 13:29 KAMAVS10/99 - 4

2002 Condensed ITRS

Year of First Product Shipment	2003	2004	2005	2006	2007	2010	2013	
Technology Generation	100	90	80	70	65	45	32	
Number of metal levels—DRAM	4	4	4	4	K	4	₩	
Number of metal levels—logic	8	9	10	10	/10	10	10	
Jm ax (A/cm²)-w ire (at 105ºC)	1.3E6	1.5E6	1.7E6	1.9E6	2.1E6	2.7E6	3.3E6	
FITs/m legnth/cm ² x 10 ⁻³ excluding global levels								Process
Local wiring pitch—DRAM (nm) non-contacted	200	180	160	150	130	90	64	and Material
Local wiring pitch—logic (nm)	245	210	185	170	150	105	75	Solutions
Local wiring AR—logic (Cu)	1.6	1.7	1.7	1.7	1,7	1.8	1.9	
Cu local wiring thinning (nm)	20	18	16	14	13	5	4	Can't Meet
Intermediate wiring pitch—logic (nm)	320	275	240	215	195	135	95	Needs /
Intrmdt wiring h/w AR-logic (Cu DD via/line)	1.7/1.5	1.7/1.5	1.7/1.5	1.7/1.6	1.8/1.6	1.8/1.6	1.9/1.7	
Cu intrmdt wiring thinning (nm)	27	23	20	18	18	12	_9	
Global wiring pitch—logic (nm)	475	410	360	320	290	205	148	
Global wiring h/w AR-logic (Cu DD via/line)	2.1/1.9	2.1/1.9	2.2/2.0	2.2/2.0	2.2/2.0	2.3/2.1	2.4/2.2	
Cu global wiring thinning (nm)	168	193	176	158	172	155	148	
Contact aspect ratio-DRAM, stacked cap	9.3	11.4	13	13	14.1	16.1	23.1	
Conductor effective resistivity ($\mu\Omega$ -cm) Cu *	2.2	2.2	2.2	2.2	2.2	2.2	2.2	
Barrier/cladding thickness (nm)***	12	10	9	8	7	5	3.5	
Interlevel metal insulator effective dielectric constant (k) logic	3.0-3.6	2.6-3.1	2.6-3.1	2.6-3.1	2.3-2.7	2.1	1.9	/
Interlevel metal insulator (minimum expected) -bulk dielectric constant (k)	<2.7	<2.4	<2.4	<2.4	<2.1	<1.9	<1.7	
	-							-

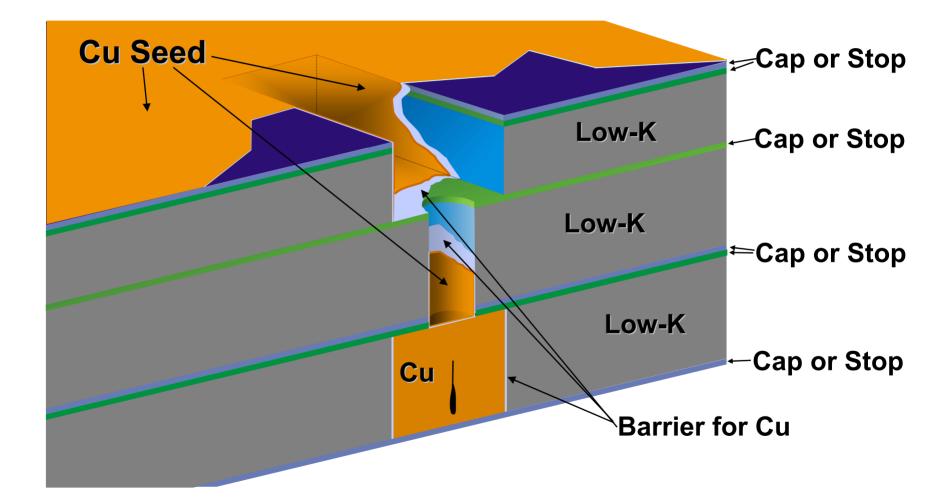
Assumes a conformal barrier/nucleation layer

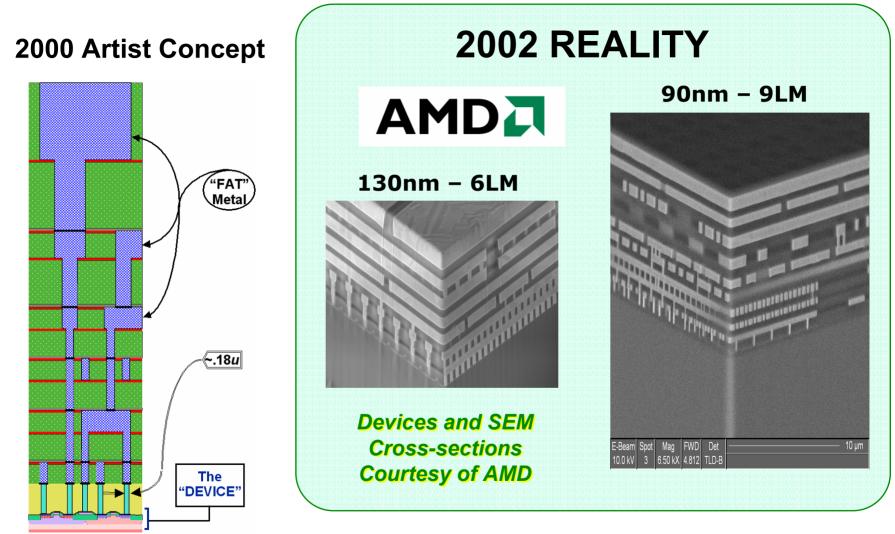
*** Calculated for a conformal layer in local wiring to meet effective conductor resistivity


*

ROADMAP 'CREEP'

Roadmap		Year of First Product Shipment	199 7	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
		Technology Node	250 nm	180 nm		150nm		130 nm			100 nm			70 nm			50 nm		
1997		Interlevel metal insulator—effective dielectric constant (I)	3.0 - 4.1	2.5 - 3.0		2.0-2.5		1.5 - 2.0			1.5 - 2.0			<u><</u> 1.5			<u><</u> 1.5		
		Technology <mark>Node</mark>	250 nm	180 nm			130 nm		. •	100 nm			70 nm			50 nm			35
1998 Update		Hinimum interlevel metal insulator—effective dielectric constant (I)	3.0 - 4.1	2.5 - 4.1			1.5 - 2.0			1.5 - 2.0].,		<u>≤</u> 1.5			<u><</u> 1.5			
				180 nm			130 nm			100 nm			70 nm	J		50			35
1 9	MPU	Interlevel metal insulator—effective dielectric constant (k)		3.5-4.0	3.5-4.0	2.7-3.5	2.7-3.5	2.2-2.7	2.2-2.7	1.6-2.2			1.5			<1.5			<1.5
9	soc	Interlevel metal insulator—effective dielectric constant (k)		3.5-4.0	3.5-4.0	2.7-3.5	2.7-3.5	2.2-2.7	2.2-2.7	1.6-2.2			1.5			<1.5			<1.5
9	DRAM	Interlevel metal insulator—effective dielectric constant (k)		4.1	4.1	4.1	3.0-4.1	3.0-4.1	3.0-4.1	2.5-3.0			2.5-3.0			2.0-2.5			2.0-2.3
				180 nm		130 nm			90 nm				60 nm	ſ		40			30
U 2 p	MPI	Interlevel metal insulator—effective dielectric constant (k)		3.5-4.0	3.5-4.0	2.9-3.5	2.9-3.5	2.2-2.9	2.2-2.9	1.6-2.2			1.6			<1.6			<1.3
0 d 0 a	IMPU	Interlevel metal insulator—BULK dielectric constant (I)		2.9	2.9	2.7	2.7	2	-2	1.3		*****	1.3 1.5			<1.3			1.1
0 t	SOC	Interlevel metal insulator—effective dielectric constant (k)		3.5-4.0	3.5-4.0	2.7-3.5	2.7-3.5		2.2-2.7	1.6-2.2			1.5			<1.5			<1.5
e	DRAM	Interlevel metal insulator—effective dielectric constant (A)		4.1	4.1	4.1	3.0-4.1	3.0-4.1	3.0-4.1	2.5-3.0	** .		2.5-3.0		1	2.0-2.5			2.0-2.3
				180 nm		130 nm	115 nm	100 nm	90 nm	80 nm	70 nm 🖣	65 nm			45 <i>vµ</i>	1.44		32 иµ	
2 0	MPL	Interlevel metal insulator—effective dielectric constant (k)				3.0-3.6	3.0-3.6	3.0-3.6	2.6-3.1	2.6-3.1	2.6–3.1	2.3-2.7			2.1			1.9	
0	MPU	Interlevel metal insulator (minimum expected) —bulk dielectric constant (k)				<2.7	<2.7	<2.7	<2.4	<2.4	<2.4	<2.1			<1.9			<1.7	
1	DRAM	Interlevel metal insulator—effective dielectric constant (k)				4.1	3.0-4.1	3.0-4.1	3.0–4.1	3.0–4.1	2.6-3.1	2.6–3.1			2.3–2.7			2.3–2.7	


Roadmap Year	K~2.5	K~2.0
1997	2000	~2003
1998 Update	2000+	~2002
1999	Early 2004	2006
2000 Update	~2007	2006+
2001	Early 2006	~2012

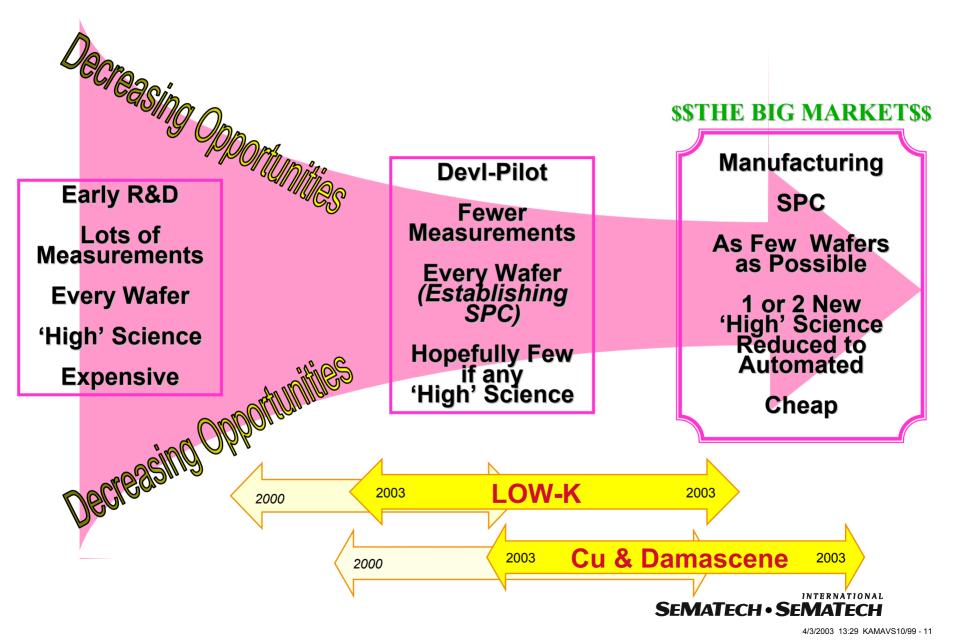


4/3/2003 13:29 KAMAVS10/99 - 7

A DUAL DAMASCENE 'UNIT' STRUCTURE

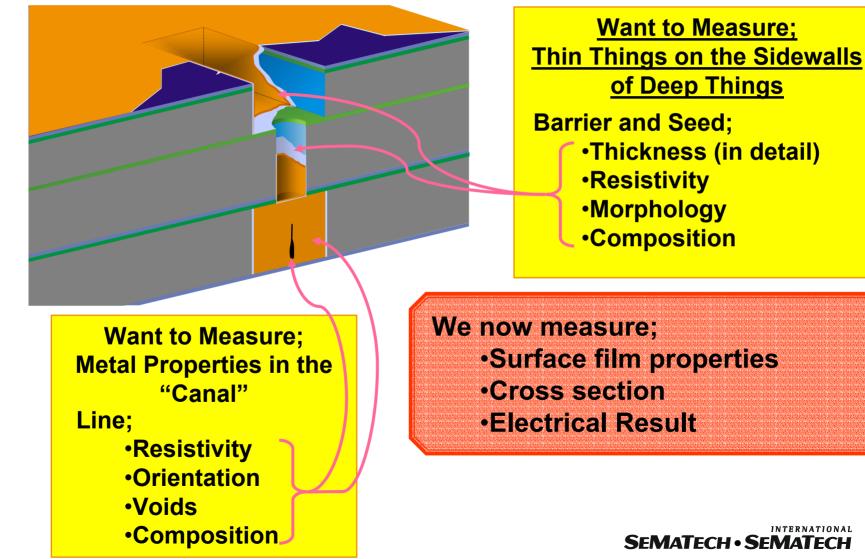
COMPLEXITY

Half of the Structure and Cost of an IC is Interconnects

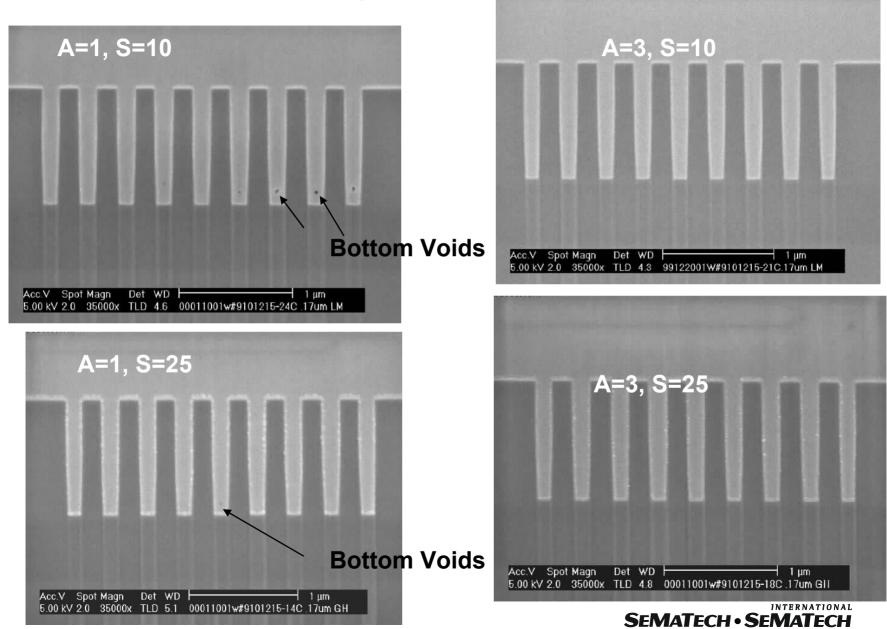

IMPACT OF CU, LOW-K, DAMASCENE

- All of the Interconnect Materials Are Being Changed
- Most of the Process Methods Are Being Changed, Therefore Most of the Equipment Set Is Impacted
- To Get a Dielectric Constant Below ~2.5 'Porosity' Must Be Added

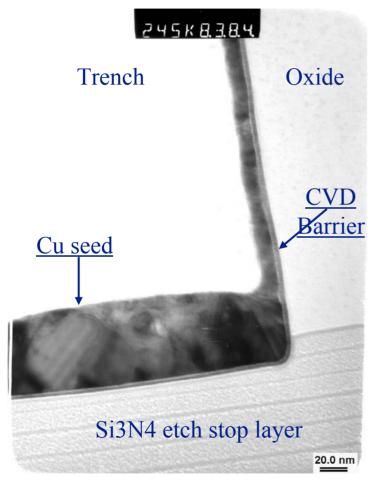
The Materials Become Increasingly 'Fragile'



A WORD ABOUT METROLOGY


Metrology Needs (2000)

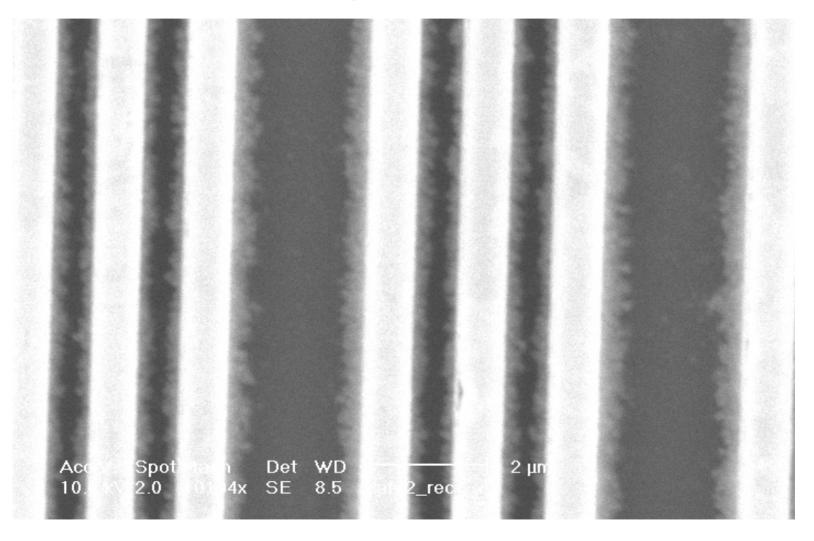
Metal Deposition



4/3/2003 13:29 KAMAVS10/99 - 12

Additive Experiment (25 ?? @@)

TEM IMAGE OF CVD CVD BARRIER (100Å CVD Barrier + 1000Å 'Enhanced PVD' Cu seed)


 $0.25 \mu m$ AR ~ 3.0:1 Right edge

- Image shows good conformality of barrier (step coverage is ~69.4% on sidewall & 59.2% at bottom).
- Cu seed should be sufficient for plating (step coverage is ~ 11.0% on sidewall & 55.9% at bottom).
- Issues with sample prep at SEMATECH and Accurel.

CU DIFFUSION

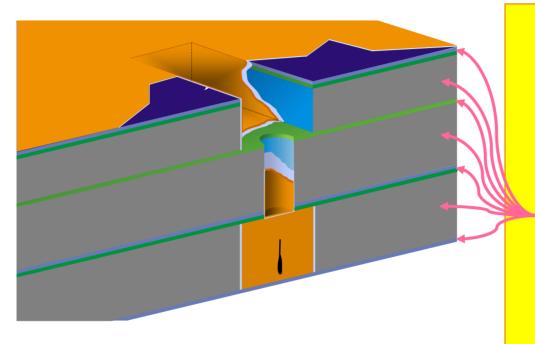
Cu diffuses into Low K through sidewall

2003 METALIZATION METROLOGY CAPABILITY

Some Progress on Nondestructive Measurements For

Film & Film Stack Thickness

Subsurface Voids, Broken Vias •Void Volume Still Too Large Grain Properties in Trenches


Little Progress in Other 'In Trench' Properties Barrier and/or Seed Properties Thickness Continuity/Density Texture/Orientation "Barrier-ness" Reliability

Have to TEM or Build a Complete Device and Life Test

Metrology Needs (2000)

Dielectric Deposition

We Can Measure Some Things Pretty Well in Multiple Layers:

Planar Film:

Thickness (Uniformity)

Refractive Index

Now Measure; <u>A Whole Host of Things</u>:

- •Dielectric Constant
- •CTE
- Modulus
- Adhesion
- •Fracture Toughness
- •Thermal "Stability"
- Moisture Uptake
- Morphology
- Composition
- •etc. etc.

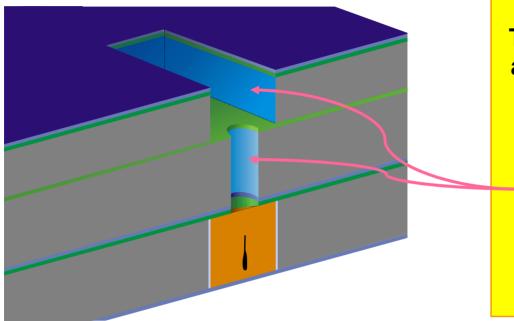
and as a Function of Time

Don't Know How Many Will Be Carried into Production

2003 DIELECTRIC METROLOGY CAPABILITY

Porosity, Lots of Progress

- •What Do the Porosity Measurements Mean •The Search for the 'Killer Pore'
- There Are ~10¹⁵ Pores/die (and Rising)
- iSMT Porosity Measurement Workshop


Adhesion

A Generic Problem in Semiconductor Manufacturing
More Problematic (now) For Dielectrics

Breaking Beams is Not a Manufacturing Solution

Metrology Needs (2000) Etch & Strip

Want to Measure; Thin Things on the Sidewalls and Bottoms of Deep Things

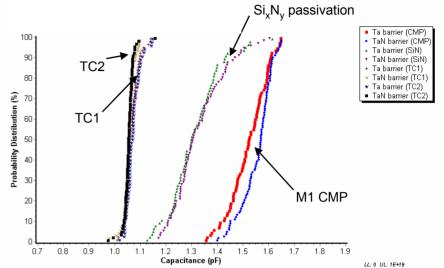
- •Feature Size (in detail)
- Profile
- Residues
- •Low-K 'Attack'
- Alignment
- •"Depth"
- -•Faceting

We now measure; •Cross section •Electrical Result Etch Development is Paced by SEM/TEM Time SEMATECH • SEMATECH

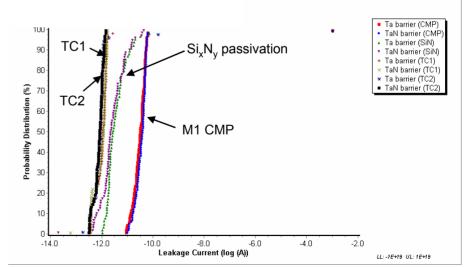
LOW-K DAMAGE

Conventional Bright Field TEM image of completed M1 test vehicle incorporating Low-K **after TC1** (400°C, 1 hr.) anneal.

Acknowledgement: B. Foran, D. Brazeau (SEMATECH)

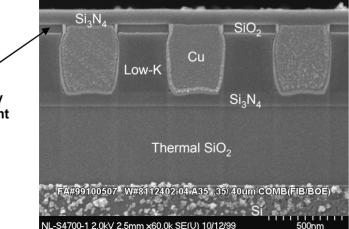


4/3/2003 13:29 KAMAVS10/99 - 20


ANOTHER LOW-K wi DAMAGE

Electrical data

- Capacitance and leakage current decrease (shown in probability plots at right for 4 sequential electrical test steps) upon passivation and continued thermal cycling
- Consistent with moisture desorption, at least through Si_xN_y passivation
- Mechanism for capacitance decrease upon TC1, TC2 unknown



Capacitance probability plot for 4 sequential etest steps.

Leakage current probability plot for 4 sequential etest steps.

XSEM image (FIB/BOE) of completed 0.35µmL/0.40µmS COMB structure **after TC2.**

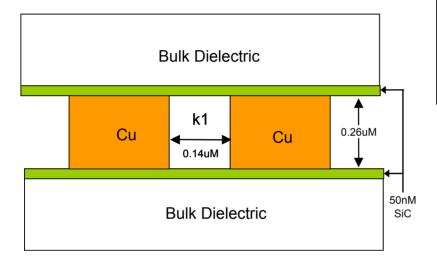
4/3/2003 13:29 KAMAVS10/99 - 21

2003 ETCH & STRIP METROLOGY CAPABILITY

Some Progress on Nondestructive Measurements For Profile

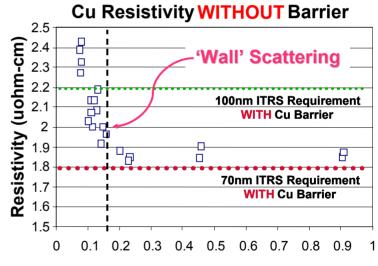
AFM, SEM

But Seems Most Users are Still Using Cross-sections


Little Progress on 'In Trench', Sidewall or Via Properties

- Polymer or 'Damage' Thickness
- Residues
- •K-Value
- •Texture
- Reliability

Have to TEM or Build a Complete Device and Electrically Test



'BEYOND Cu & LOW-K'

If bulk dielectric = 2.6	then	$k_{eff} = 2.94$
If bulk dielectric = 2.2	then	k _{eff} = 2.57
If bulk dielectric = 1.5	then	k _{eff} = 1.96
If bulk dielectric = 1.0(Air)	then	k _{eff} = 1.5

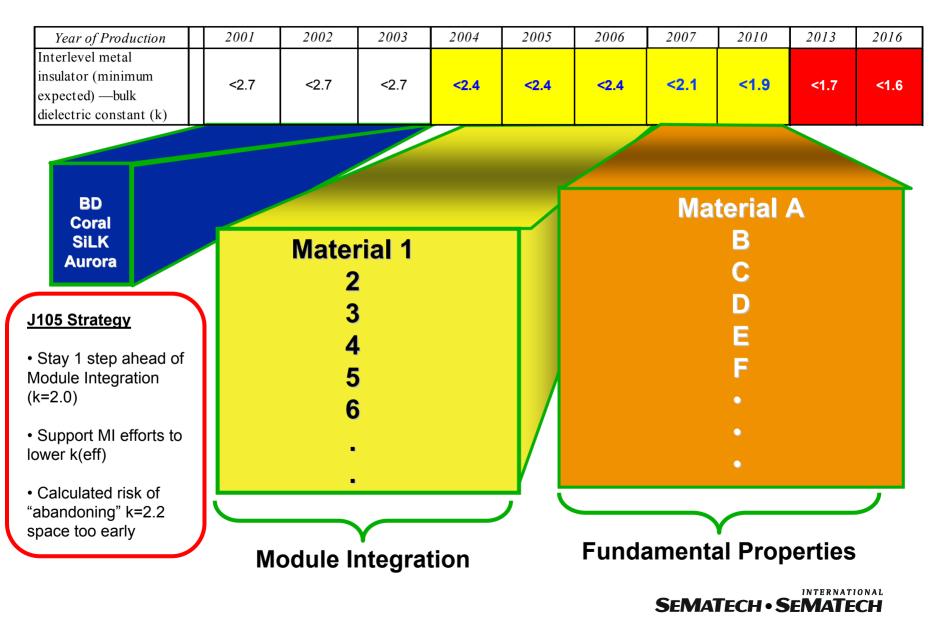
Properties of Metals Used in Electronic Applications								
	Resistivity @18-20C	MP						
	in Ohm-cm x 10-6	Celsius						
Al, Pure	2.87	659						
AI, 99.6%	2.83	660						
AI, 97%; Cu 3%	>3.4	640						
Au, Pure Drawn	2.44	1063						
Cu, Pure	1.69 -1.77	1082						
Ag, 99.98%	1.59 -1.63	960						
W	5.6	3370						

Line Width (um)

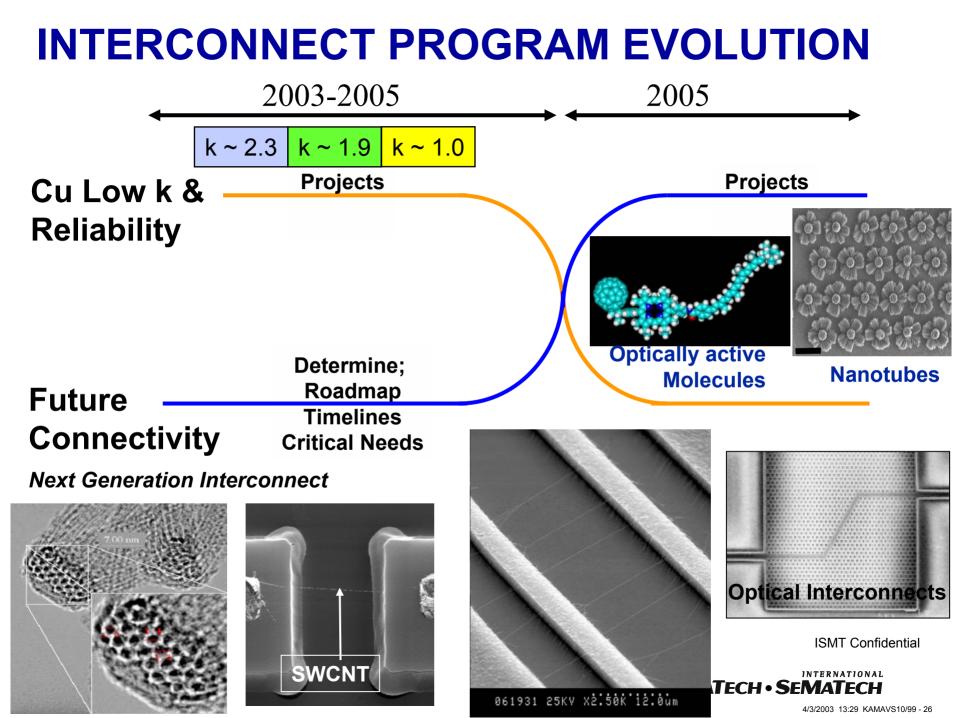
CONVENTIONAL MATERIAL SOLUTIONS NOT AVAILABLE!

2002 Condensed ITRS

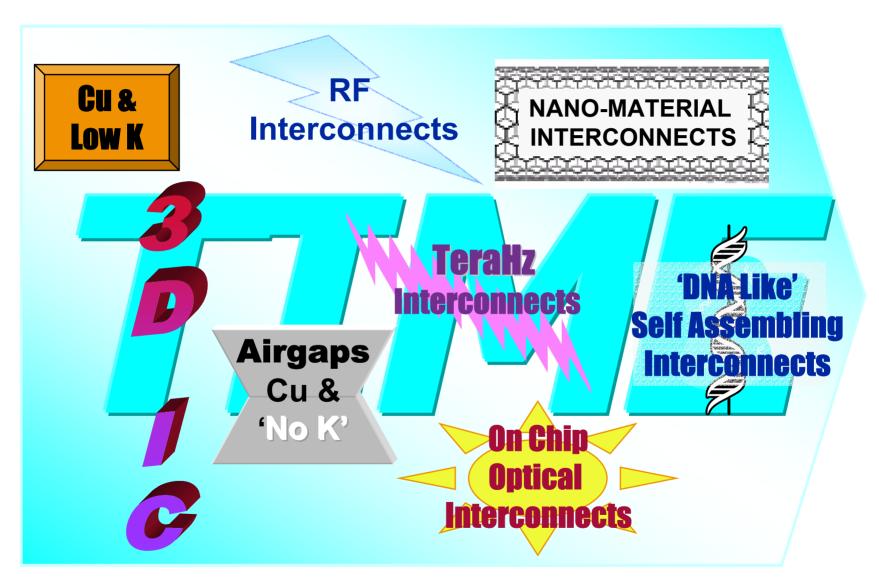
Year of First Product Shipment	2003	2004	2005	2006	2007	2010	2013	
Technology Generation	100	90	80	70	65	45	32	
Number of metal levels—DRAM	4	4	4	4	K	4	7	
Number of metal levels—logic	8	9	10	10	/10	10	10	
Jm ax (A/cm²)-w ire (at 105ºC)	1.3E6	1.5E6	1.7E6	1.9E6	2.1E6	2.7E6	3.3E6	
FITs/m legnth/cm ² x 10 ⁻³ excluding global levels								Process
Local wiring pitch—DRAM (nm) non-contacted	200	180	160	150	130	90	64	and Material
Local wiring pitch—logic (nm)	245	210	185	170	150	105	75	Solutions
Local wiring AR—logic (Cu)	1.6	1.7	1.7	1.7	1,7	1.8	1.9	
Cu local wiring thinning (nm)	20	18	16	14	13	5	4	Can't Meet
Intermediate wiring pitch—logic (nm)	320	275	240	215	195	135	95	Needs
Intrmdt wiring h/w AR-logic (Cu DD via/line)	1.7/1.5	1.7/1.5	1.7/1.5	1.7/1.6	1.8/1.6	1.8/1.6	1.9/1.7	
Cu intrmdt wiring thinning (nm)	27	23	20	18	18	12	9	
Global wiring pitch—logic (nm)	475	410	360	320	290	205	148	
Global wiring h/w AR-logic (Cu DD via/line)	2.1/1.9	2.1/1.9	2.2/2.0	2.2/2.0	2.2/2.0	2.3/2.1	2.4/2.2	
Cu global wiring thinning (nm)	168	193	176	158	172	155	148	
Contact aspect ratio-DRAM, stacked cap	9.3	11.4	13	13	14.1	16.1	23.1	
Conductor effective resistivity ($\mu\Omega$ -cm) Cu *	2.2	2.2	2.2	2.2	2.2	2.2	2.2	
Barrier/cladding thickness (nm)***	12	10	9	8	7	5	3.5	
Interlevel metal insulator effective dielectric constant (k) logic	3.0-3.6	2.6-3.1	2.6-3.1	2.6-3.1	2.3-2.7	2.1	1.9	/
Interlevel metal insulator (minimum expected) -bulk dielectric constant (k)	<2.7	<2.4	<2.4	<2.4	<2.1	<1.9	<1.7	
	-			-				-


Assumes a conformal barrier/nucleation layer

*** Calculated for a conformal layer in local wiring to meet effective conductor resistivity



*


LOW K MATERIAL EVALUATION ACTIVITY

^{4/3/2003 13:29} KAMAVS10/99 - 25

TECHNOLOGY 'AVAILABILITY' TIMELINE

3D IC APPROACHES

"Passive" Stacking

"Active"

Micro Spring

Ball Bond

Braze

Wire Bond

Wafer Micro Spring Polymer Glue Oxide Bond Braze Monolithically build active devices in the Interconnects

3D IC CHALLENGES

Stacked Chip or Wafer

- \$COST\$
 It's Hard to Beat
 Monolithic Fabrication
- Known Good Die after separation
- Through wafer vias
 ¤ Etch
 ¤ Fill
- Alignment
- Bonding Method
- Bonding Method
- Header Pitch
- Wafer Thinning
- Removal of Handle wafer
 - •
 - •

Active

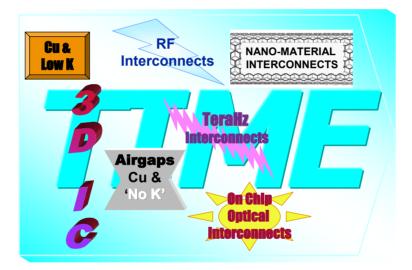
- \$COST\$
- Single Crystal Silicon on non Si Substrate
- All Low Temperature Transistor Fabrication Processes

3D IC BENEFITS

While 3D Is Viewed As a Problem for Interconnect, It Doesn't Do Much for the Interconnect Problem

Line Length Reduction $\sim \sqrt{N}$, the Number of Layers

Payback Is in Other Areas


- Mixed Process ICs
 - 1. RF, Bipolar, CMOS
 - 2. Si and Compound Semiconductor
- Shorter Time to Market

CHOOSING BEYOND CU & LOW K SOLUTIONS

Not as 'Universal as the Old Interconnect Systems

- 1. Everyone Used AI, SiO2, W, CMP
- 2. Eventually Everyone Will Use Cu & Low-K

Market Use of These Solutions Will Be More Tailored to End Product Needs

- 1. Smaller Markets for Suppliers
- 2. Smaller R&D 'Pool' for Development

QUESTIONS FOR A NEW TECHNOLOGY '10,000 METER'

•How does this work fit in the solution of the overall interconnect problem?

- •How much of the problem does it solve? (for which products?)
- •When is/will the technology be ready for implementation?

•How does the capability of this technology match needs at the projected time of implementation?

•How extendable, or for how many generations will it provide benefit?

•What other technologies will need to be developed to effectively implement the solution?

•What changes in software, hardware, manufacturing, applications, or business will need to be in place to effectively implement the solution?

•What technical problems need to be solved before implementation? and what is their current state?

•What needs to be done/added to provide the implementation on time?

•How is/will the technology transferred into the mainstream?

Any estimates on cost?

NANOTECHNOLOGY EXAMPLE QUESTIONS '1,000 METER'

•What defines something as a nano-technology? When does what I am doing already become nano-technology?

•What kind of resistivities are we talking about for nano-conductors?

•I have heard the I-V characteristics are quantized; true? If so how, and over what range of current (density?) or voltage?

•Most of what I hear about 'electrical' nano-technology centers around conductors or semiconductors; are there insulator opportunities as well?

•How closely could nano-conductors be spaced? Will fields in the adjacent lines affect the I-V characteristics? Are there any 'unusual' tunneling or coupling phenomena?

•In a similar vein, what about inductance? or the impact of magnetic fields?

•How do we 'scale' these things?

•Will cooling be required? How do the interconnect-relevant properties vary with temperature?

•How do the interconnect-relevant properties vary with strain?

•What would be (in general, if known) the types of reliability failure mechanisms we should be thinking about?

•What is the state of the art today? Can we fabricate with any degree of control? SeMatech • SeMatech

SUMMARY

The Transition to Cu and Low-k is Underway

- Still Many Core Technology Challenges
- Still Many Metrology Challenges

Many Talks and Posters on These Challenges Today

Compared to 2000 Much More Industry Focus

The Challenge of 'Measuring on the Sidewall' Still Largely Un-addressed

Cu and Low-K (Wires) Alone Will Not Sustain Moore's Law Beyond ~ 5 Generations

• If You Thought Cu and Low-K Was Tough.....

