National Construction Safety Team Investigation

The Station Nightclub Fire: Testing and Validation Experiments to Support Simulation

NCST Advisory Committee June 23, 2004

Nelson Bryner
Building and Fire Research Laboratory
National Institute of Standards and Technology
U.S. Department of Commerce nelson.bryner@nist.gov

The Need for Testing and Experiments

- Computer fire simulations require input data such as

Building Geometry - floor and ceiling dimensions
Ventilation - location and dimensions of windows and doors
Material Properties - Ignition temperature, thermal conductivity, heat capacity, density, heat/energy release rate

- Data for common materials available in reference libraries; for less common materials additional testing required:
Cone Calorimeter lab test used to collect data on polyurethane foam, and ceiling tiles
Large Fire Facility experiments used to collect data on pyrotechnics (Gerbs) and fire spread at real-scale
- NIST tested no materials removed from The Station

Objectives:

To assess material burning behavior to determine a correlation to the materials in the nightclub and develop source term data for modeling from

- Cone calorimeter data

Polyurethane foams
Ceiling tiles

- Pyrotechnics

Gerbs
Use full-scale experiment to verify ability of model to predict fire conditions
Compare experimental results to model predictions of flame spread, layer development, and gas concentrations (oxygen and carbon dioxide)

Cone Calorimeter Testing of PU Foam* Heat Release Rate:

Incident Heat Flux: $\mathbf{3 5}$ and $70 \mathrm{~kW} / \mathbf{m}^{\mathbf{2}}$

[^0]
Pyrotechnics - Gerbs*

(White color, 15 second duration, 15 foot throw)

- Video recordings, multiple geometries
- Thermal Radiation- heat flux to surface
- Temperature - gas temps of "plume"

* Gerbs purchased from a commercial supplier, Luna Tech, Inc.

NLT

Temperature and heat flux: 45° Perpendicular Orientation

Stage Area Fire Experiments

Ceiling heat flux and gas temperatures near room center -

Gas volume fraction measurements near room center, 1.4 m above floor

Summary

- Real-scale fire experiments were conducted to collect temperature, concentration, fire spread and heat release rate data over a room with polyurethane foam-covered walls.
- Non-sprinklered experiment led to flashover conditions within alcove in approximately 60 s .
- Resulting high temperatures, low oxygen, high carbon monoxide, and high hydrogen cyanide concentrations suggest conditions in the unsprinklered test became untenable in less than $\mathbf{9 0} \mathbf{s}$.
- With sprinklers, near-ambient temperature and oxygen levels were maintained 1.4 m above floor.

Status of Technical Investigation

6/22/04

- Overview - W. Grosshandler

6/23/04

- Egress study, and review of model building and fire codes W. Grosshandler
- Documentation of emergency response - K. Kuntz
- Testing and validation experiments to support simulation - N. Bryner
- Simulation of fire and smoke movement in laboratory reconstruction - D. Madrzykowski

[^0]: * PU foam purchased from a commercial supplier, American Micro Industries, Inc.

