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Executive Summary
Background
Tattoos have been used for many years to assist law enforcement in investigations leading to the identification of both
criminals and victims. A tattoo is an elective biometric trait that contains discriminative information to support person
identification and investigation in addition to traditional soft biometrics such as age, gender and race. While some research
has been done in the area of image-based tattoo detection and retrieval [9, 10, 13, 16, 19, 20], it is not a mature domain.
Prior to this study, there were no common datasets to evaluate and develop operationally-relevant tattoo recognition
applications. To address this, NIST conducted the Tattoo Recognition Technology - Challenge (Tatt-C) as an initial research
challenge that provided operational data (provided by the FBI) and use cases to engage the research community into
advancing research and development into automated image-based tattoo technologies and to assess the state-of-the-art
to determine what methods are effective and viable for pertinent operational scenarios. Tatt-C builds upon earlier NIST
efforts in biometric challenge problems [15] [14] which have helped promote development, advance the state-of-the-art,
and benchmark progress in different areas of biometrics.

Tatt-C Test Activity
The Tatt-C activity ran from September 23, 2014 to May 4, 2015, with participation from six organizations, namely Compass
Technical Consulting (US), Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (DE), French
Alternative Energies and Atomic Energy Commission (FR), MITRE (US), MorphoTrak (US), and Purdue University (US).
Tatt-C was conducted as an ”open-book” test, where participants were provided with the dataset and ground-truth data,
ran their algorithm(s) on the data following a specified protocol on their own hardware, and provided their system output
to NIST for uniform scoring and analysis. Accuracy was measured for the five Tatt-C use cases, including the impact of
gallery size for certain scenarios. Detailed descriptions and image examples of the use cases can be found in Section 2.2 of
this report.

Key Results
Key results for the five use cases studied are:

• Tattoo Identification evaluated matching different instances of the same tattoo image from the same subject over
time. On a gallery size of 4 375, the top performing algorithm (MorphoTrak) reported a rank 10 hit rate⇤ of 99.4%
and mean average precision (MAP)⇤ of 99.4%. Section 3.1

• Region of Interest evaluated matching a subregion of interest that is contained in a larger image canvas. On a
gallery size of 4 363, the top performing algorithm (MorphoTrak) reported a rank 10 hit rate of 97% and MAP of
95.4%. Section 3.2

• Mixed Media evaluated matching visually similar or related tattoos using different types of non-tattoo imagery (i.e.
sketches, scanned print, computer graphics, and graffiti). On a gallery size of 55, the top performing algorithm
(MITRE) reported a rank 10 hit rate of 36.5% and MAP of 15.1%. Section 3.3

• Tattoo Similarity evaluated matching visually similar or related tattoos from different subjects. On a gallery size of
272, the top performing algorithm (MITRE) achieves a rank 10 accuracy of 14.9% and MAP of 5.2%. Section 3.4

• Tattoo Detection evaluated detecting whether an image contains a tattoo or not. On a mixed dataset of 1 349 tattoo
images and 1 000 face images, the top performing algorithm (MorphoTrak) reported an overall detection accuracy⇤

of 96.3%. Section 3.5

Factors that influenced accuracy included:

• Algorithms: Tattoo detection and matching accuracy depends strongly on the implementation of the core technology
as algorithm performance varied substantially. Sections 3.1, 3.2, 3.3, 3.4, and 3.5

⇤For the definition of hit rate, MAP, and overall detection accuracy, see Section 2.3. Generally speaking, the higher the hit rate, MAP, and detection
accuracy value, the more accurate the algorithm.
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• Gallery size: Gallery size has an impact on accuracy. A decrease in accuracy is observed across all algorithms when
the gallery size is increased. Sections 3.1.2 and 3.2.2

• Image quality: Algorithm failure to find the correct match is often related to quality of the images. Inconsistencies in
tattoo image angle, orientation, size of tattoo relative to the entire image, and poor collection characteristics including
low illumination, low contrast, blur/out of focus, and the existence of clothing and background clutter contributed
to algorithm failure for tattoo detection and matching. Sections 3.1.3, 3.2.3, 3.3.1, 3.4.1, and 3.5.1

• Definition of ”tattoo similarity”: Definitional inconsistencies in ”visual similarity” observed in the Tattoo Similarity
ground-truth data could be a cause for deflated results for that use case. Section 3.4

Recommendations
Based on the outcomes of the Tatt-C activity and the discussions and suggestions from the tattoo recognition developer
and user community at the Tatt-C Workshop [8], we propose the following recommendations for future work.

Improve Tattoo Image Capture: Algorithm failure to find the correct match is often related to the consistency and quality
of image capture. Notably, inconsistencies in image angle, orientation, size of tattoo relative to the entire image and poor
collection characteristics such as low illumination, low contrast, blur/out of focus, and existence of clothing and back-
ground clutter caused failures for tattoo detection and matching algorithms. As such, recommendations for improving
the quality of tattoo images to support image-based tattoo recognition include:

• Best Practices: Develop best practice guidelines for the capture of a tattoo image including photography guidelines
and image quality definitions and standards for tattoos. Similar guidelines for the capture of face [1], iris [25], and
fingerprints [24] have been developed and successfully employed by law enforcement.

• Training Material: Develop and distribute simple reference/training material such as a poster with examples of
good quality, well-captured tattoos versus bad quality, poorly-captured tattoos, similar to those that have been de-
veloped and successfully utilized for other modalities [3].

• Software: During photo capture, use software that makes image quality assessments (e.g., illumination, contrast,
focus, existence of distractors around tattoo image) and determines whether to accept or reject the image. Such a
software concept is similar to NIST’s Fingerprint Image Quality (NFIQ) [26] software, but applicable to tattoos.

Build Larger Tattoo Datasets for Researchers: Nineteen organizations requested and received the Tatt-C dataset (eight
commercial, six academic, and five research entities). This is a good indicator of industry and research interest in this area.
Following the closing of the Tatt-C submission deadline, NIST continues to receive participation interest and requests for
the Tatt-C dataset. As an outcome from the Tatt-C workshop, the community identified a need to provide researchers with
larger, ground-truthed tattoo datasets with larger gallery sizes (>100K) closer to operations, and more search images per
use case, ideally covering the categories of ”challenging images” identified in this report. Larger image sets will impose
a level of software and computational robustness on algorithm developers and can support advancing the technology
further.

Conduct Sequestered Evaluation: Tatt-C was conducted as an ”open-book” test based on the honor system where par-
ticipants were only required to submit their system output to NIST for uniform scoring and analysis. Such an evaluation
protocol does not preclude gaming such as algorithm training on test data, candidate list manipulation, etc. For the Tatt-C
use cases that resulted in high accuracy - Tattoo Identification, Region of Interest, and Tattoo Detection, we recommend
running a ”closed-book” evaluation of tattoo recognition algorithms, where participants send software to NIST to be
tested with sequestered data. This will allow consistent assessment of run-time performance (enrollment/search time and
memory usage) on a uniform hardware infrastructure, which is important as specific operational applications will have
specific run-time requirements. Sequestered evaluations can leverage much larger, operationally-realistic gallery sizes of
data that cannot be freely distributed.
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Evaluate Tattoo Localization: The presence of clutter and occlusions such as clothing, background, furniture, hair, and
other body parts in the operationally-collected data makes tattoo localization an important aspect of the recognition pro-
cess. Localization and matching are generally two distinct tasks, and matching is critically dependent on correct localiza-
tion. We recommend evaluation of tattoo localization as a separate use case in future evaluations.

Refine Definition of Tattoo Similarity Specific to Law Enforcement Applications: A common trend in the ground-truth
for Tattoo Similarity included images that were semantically relevant, but lacked commonality in visual features, which
is likely a result related to the ”semantic gap”. Human beings are able to interpret images at different levels, both in low-
level features (color, shape, texture) and high-level semantics (abstract object, concept, event). Computers are only able
to interpret images based on low level-image features. This introduces an interpretation inconsistency between image de-
scriptors and high-level semantics that is known as the semantic gap [28]. While some research has been done in bridging
the semantic gap for image retrieval, it remains a challenging, unsolved problem [18]. A set of well-defined criteria for tat-
too similarity or relevance specific to law enforcement applications needs to be developed for consistent ground-truthing
of data that enables research and development. The feasibility of such an endeavor has yet to be determined. An initial
step could be to focus on specific law enforcement application, which will likely have observable commonalities in the
dominant tattoo content.
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Disclaimer
The results in this report are not to be construed, or represented as endorsements of any participant’s system
or commercial product, or as official findings on the part of NIST or the U.S. Government. Note that the results
submitted by developers of commercial products were generally from research prototypes, not commercially
available products. Since Tatt-C was an evaluation of research algorithms, the test design required local imple-
mentation by each participant. As such, participants were only required to submit their system output to NIST
for uniform scoring and analysis. The systems themselves were not independently evaluated by NIST.

The data, protocols, and metrics employed in this evaluation were chosen to support tattoo detection and
recognition research and should not be construed as indicating how well these systems would perform in
fielded operations. Changes in the data domain, or changes in the amount of data used to train a system,
can greatly influence system performance; changing task protocols could result in performance strengths and
weaknesses for these same systems.

In summary, this report should not be interpreted as a product testing exercise, and the results should not be
used to make conclusions regarding which commercial products are best for a particular application.
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1 Introduction

1.1 Background

Tattoos have been used for many years to assist law enforcement in the identification of criminals and victims and for
investigative research purposes. Historically, law enforcement agencies have followed the ANSI/NIST [1] standard to
collect and assign keyword labels to tattoos. This keyword labeling approach comes with drawbacks: the finiteness of
standard class labels to describe the increasing variety of new tattoo designs, the need for multiple keywords to sufficiently
describe some tattoos, difficulty assigning any label to abstract tattoos, and subjectivity in human annotation as the same
tattoo can be labeled differently by different examiners. As such, the shortcomings of keyword-based tattoo image retrieval
have driven the need for automated image-based tattoo recognition capabilities.

1.2 Scope

The Tattoo Recognition Technology - Challenge (Tatt-C) was designed to challenge the commercial and academic com-
munity in advancing research and development into automated image-based tattoo matching technology. The activity
provided a preliminary assessment of the capability of image-based tattoo recognition algorithms to perform detection
and retrieval of tattoos, with the goals to determine which methods are most effective and whether any are viable for the
following five operational use cases:

- Tattoo Identification: matching different instances of the same tattoo image from the same subject over time

- Region of Interest: matching a subregion of interest that is contained in a larger tattoo image

- Mixed Media: matching visually similar or related tattoos using different types of images (i.e., sketches, scanned
print, computer graphics, and graffiti)

- Tattoo Similarity: matching visually similar or related tattoos from different subjects

- Tattoo Detection: detecting whether an image contains a tattoo or not

1.3 Application Scenarios

With the increase in prevalence of tattoos in the the United States [2], automated image-based tattoo recognition has po-
tential to support a number of applications. In events where primary biometric data such as face or fingerprints are not
available, tattoos visible on the body have been used to help narrow the identity of both suspects and victims. In some
cases, a tattoo can contain more discriminative characteristics and features for identification of victims of mass disaster,
than traditional soft biometrics such as age, gender, race, height, and weight [11]. Tattoos can also support border con-
trol operations and investigations for identifying and rescuing victims of child exploitation and missing children [8]. The
processes used by law enforcement personnel today to search tattoos is manual, time-consuming, and in many cases, re-
quires ”tribal” knowledge of what has been encountered before. Automated image-based tattoo recognition has potential
to provide more effective and consistent mechanisms for searching tattoos.

2 Methodology

Tatt-C was conducted as an ”open-book” test, where participants were provided with the dataset, ran their algorithm(s)
on the data with their own hardware, and provided their algorithm output to NIST. There have been a number of datasets
with an ”open-book” test protocol similar to Tatt-C: The NIST Multiple Biometric Grand Challenge (MBGC) [15] for face
and iris recognition, Labeled Faces in the Wild (LFW) [17] for unconstrained face recognition, and NIST i-vector Machine
Learning Challenge [14] for machine learning for use in speaker recognition. These datasets along with Tatt-C help pro-
mote development, advance the state-of-the-art, and benchmark progress in computer vision applied to different areas of
biometrics.
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The format of results submissions to NIST was described in the Tatt-C Dataset, Concept, and Evaluation Plan docu-
ment [23]. The Tatt-C program was free and open to participation worldwide. The participation window opened on
September 23, 2014 and submission to the final phase closed on May 4, 2015.

Protocol: Within each use case, the data was partitioned into five mutually exclusive subsets and participants produced
performance results using a 5-fold cross-validation scheme [22]. For each search probe, there are one or more matching
images in the gallery, i.e., closed set test.

External Training Data: The use of data outside of the Tatt-C dataset for training purposes was allowed, and partici-
pants were asked to disclose the use of external training data upon results submission to Tatt-C.

2.1 Algorithms

Tatt-C had two phases where participants could submit results to NIST. This report documents the results of all submis-
sions across both phases of the Tatt-C activity.

Table 1 lists the Tatt-C participants who submitted algorithm outputs for one or more use cases specified in the Tatt-C
Dataset, Concept, and Evaluation Plan [23], and Table 2 summarizes the use cases that each participant submitted to.

Participant Short Name Submissions External Training Data
Phase 1 Phase 2 Phase 1 Phase 2

French Alternative Energies
and Atomic Energy Commission

CEA yes

Compass Technical Consulting Compass no
Fraunhofer Institute of Optronics,
System Technologies and Image Exploitation

FraunhoferIOSB yes no

MITRE Corporation MITRE no no
Morpho/MorphoTrak MorphoTrak yes yes
Purdue University Purdue no no

Table 1: Summary of Tatt-C participation

Participant Tattoo
Identification

Region of
Interest

Mixed
Media

Tattoo
Similarity

Tattoo
Detection

French Alternative Energies
and Atomic Energy Commission
Compass Technical Consulting
Fraunhofer Institute of Optronics,
System Technologies and Image Exploitation
MITRE Corporation
Morpho/MorphoTrak
Purdue University

Table 2: Summary of Tatt-C submissions by use case
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2.2 Dataset

The Tatt-C dataset contains a total of 16 716 tattoo images collected operationally by law enforcement. The dataset is par-
titioned into five use cases derived from operational scenarios with some partitions containing both original and cropped
versions of the images, along with a set of background images used for padding the enrollment gallery for some of the
experiments. Table 3 and Figure 1 provides a summary of the dataset and examples of images representative of each Tatt-C
use case, respectively.

Use Case Tattoo Identification Region of Interest Mixed Media Tattoo Similarity Tattoo Detection
Description Match different

instances of the
same tattoo from
the same subject
over time

Match small
region of interest
contained in a
larger tattoo

Match visually
similar or related
tattoos across
different
mediums

Match visually
similar or related
tattoos from
different subjects

Detect whether
an image contains
a tattoo

Utility
Example

Person
identification

Person
identification

Intelligence
gathering

Gang
Affiliation [6]

Database
construction and
maintenance

Task One-to-many search One-to-many
search

One-to-many
search

One-to-many
search

Classification

Types of
images

Tattoos Tattoos Tattoos, sketches,
graffiti, computer
graphics

Tattoos Tattoos, faces

# probes 157 297 181 851 1 349 tattoos,
1 000 non-tattoos

# mates 215 157 272 1 361
Average
gallery
sizes
reported
(per fold)

43 and 4 375 31 and 4 363 55 272

# back-
ground
images

4 332
(Used in larger gallery experiments)

Table 3: Summary of Tatt-C dataset. Gallery sizes reported were calculated as an average across all 5 test folds.
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(a) Tattoo Identification (b) Region of Interest (c) Mixed Media

(d) Tattoo Similarity (e) Tattoo Detection

Figure 1: Examples representative of images for each Tatt-C use case [5]

2.3 Metrics

The following performance measures are reported in the assessment of tattoo detection and matching accuracy:

2.3.1 Detection Accuracy

Overall Accuracy
Tattoo accuracy is defined as the number of correctly classified tattoo images, TT , divided by the total number of tattoo
images, N

tattoo

. i.e.,

Tattoo accuracy =

TT

N
tattoo

(1)

Non-tattoo accuracy is defined as the number of correctly classified non-tattoo images, NT , divided by the total number
of non-tattoo images, N

non�tattoo

. i.e.,

Non-tattoo accuracy =

NT

N
non�tattoo

(2)

Overall accuracy is defined as the sum of correctly classified tattoo and non-tattoo images divided by the total number of
images. i.e.,

Overall accuracy =

TT +NT

N
tattoo

+N
non�tattoo

(3)

Detection Error Trade-off
Participants were required to produce confidence values on [0, 1] for each image describing their algorithm’s certainty
about whether the image contains a tattoo. Higher values indicate greater confidence that the image contains a tattoo. A
reasonable approach to the detection problem is to classify an image as either a tattoo or non-tattoo by thresholding on its
confidence value. Accuracy can also be measured using detection error trade-off (DET) plots [21].

For the detection problem, DET plots show the trade-off between the False Negative Rate (FNR) and the False Positive
Rate (FPR) as a decision threshold is adjusted. A false negative occurs when a tattoo is misclassified as a non-tattoo and a
false positive occurs when a non-tattoo is misclassified as a tattoo. Let x

i

represent the confidence score for the ith tattoo
image (i = 1, ..., X), and y

j

the confidence score for the jth non-tattoo image (j = 1, ..., Y ). Then the error rates at any
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particular decision threshold, ⌧ , are

FNR(⌧) =
1

X

XP
i=1

H(x
i

< ⌧), (4)

FPR(⌧) =
1

Y

YP
j=1

H(y
j

� ⌧). (5)

where H(n) is the heaveside step function [12]:

H(n) =

(
0, n � 0,

1, n < 0.
(6)

A high decision threshold should correspond to higher false negative rates but lower false positive rates.

2.3.2 Match Accuracy

In contrast to most biometric modalities, tattoo recognition will never be a ”lights-out” operation, meaning there will
always be human examination of the candidate list. Given this scenario, rank-based metrics are relevant and can be lever-
aged to support workload assessment.

Cumulative Match Characteristic
The Cumulative Match Characteristic (CMC) is used to show core accuracy, which is the fraction of searches that return
the relevant images as a function of the candidate list length. The longer the candidate list, the greater the probability that
relevant images are on the list. For searches that have multiple relevant matches in the gallery, the cumulative accuracy or
hit rate at any particular rank is calculated with the best-ranked match and represents a ”best-case” scenario.

Precision and Recall
In the case where a search may return multiple relevant tattoos, precision recall plots [27] are a standard way of measuring
accuracy. For the tattoo test cases, precision recall plots show the relationship between two performance metrics as the
length of the candidate list is adjusted. The first metric relates to precision, which, for a given search, is the fraction of
candidates on the list that are classified as relevant to the searched tattoo. The second metric, recall, is the fraction of
relevant candidates in the gallery that are on the candidate list.

Precision =

Num relevant documents on candidate list
Length of candidate list

(7)

Recall =
Num relevant documents on candidate list

Num relevant documents in gallery
(8)

Both metrics are functions of the candidate list length. Precision is typically interpolated at arbitrary recalls (r 2 [0, 1]) as
the maximum precision attainable when the recall is greater-than-or-equal-to the targeted recall:

Precisioninterp(r) = max

ŕ�r

Precision(ŕ) (9)

The commonly used 11-point Interpolated Average Precision [7] is created by averaging interpolated precisions across all
searches at 11 equally spaced recalls. These curves tend to show a trade-off, where increasing the length of the candidate
list increases the recall but decreases average precision.

Mean Average Precision (MAP) is a single-value metric related to precision and recall that describes the discriminating
power of an algorithm. It is computationally equivalent to taking the mean of the average area under the precision recall
curve across all searches. Generally speaking, the higher the MAP value, the more accurate the algorithm. Average
Precision is defined as the average of the (un-interpolated) precision value obtained after each relevant image is retrieved.
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The Mean Average Precision across the total number of probes is computed by taking the mean of the average precisions
for each probe in the run.

Miss Rate vs. Average Candidate List Length
In addition to CMC and Precision-Recall plots, matching accuracy for the Tattoo Identification and Region of Interest use
cases is presented in the form of Miss Rate vs. Average Candidate List Length plots. Unlike the other plots presented
in this report, this type of plot relies on threshold-based, rather than rank-based, metrics. Instead of fixing the length of
the candidate list, it allows the length of the candidate list to vary from one search to the next depending on how many
candidates return a score greater-than-or-equal-to a decision threshold.

For the identification problem, this type of plot shows the trade-off between two performance metrics: 1) the miss rate,
and 2) the average length of the candidate list, as a decision threshold is adjusted. The average candidate list length could
be considered a measure of human workload (if we assume each candidate must be manually inspected by an examiner).

Formally, let x
i

(i = 1, ..., X) be the ith mated score and y
j

(j = 1, ..., Y ) the jth non-mated score, irrespective of which
search each comparison score is associated with. Furthermore, let S represent the number of searches performed to pop-
ulate x

i

and y
j

. Then

Miss Rate(⌧) =
1

X

XP
i=1

H(x
i

� ⌧) (10)

Average Candidate List Length(⌧) =
1

S

� XP
i=1

H(x
i

� ⌧) +
YP

j=1
H(y

i

� ⌧)
�

(11)

where ⌧ is the decision threshold. When the decision threshold is relaxed (i.e., lowered in value) more candidates will be
returned for some searches, increasing the average candidate list length but decreasing the miss rate. Note that the length
of the candidate lists are computed by considering all mates and non-mates that return a similarity score at or above the
decision threshold. All searches are mated (i.e. a mate is always present in the gallery). In the few cases where more than
one mate was enrolled in the gallery, only the highest ranking mate was considered.

3 Results

3.1 Tattoo Identification

This section details the performance of algorithms tasked with matching different instances of the same tattoo from the
same subject in galleries of different sizes. This use case has application in investigation supporting identification of an
individual, for example, in the case of a crime where the suspect is wearing a mask and gloves, video surveillance may
be able to record a tattoo exposed on the neck or the arm from the suspect. The test data for this use case is composed of
images of the same tattoo from the same subject collected during different encounters. For each probe image, there could
be one or more correctly matching tattoo image(s) in the database.
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3.1.1 Accuracy
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(a) CMC plot. Accuracy was calculated with the best-ranked match.
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(b) Interpolated Average Precision Recall plot.

Figure 2: Tattoo Identification use case results. Number of probes: 157, Average gallery size: 4 375. Accuracy was averaged over 5

folds. Note: Some algorithm results may not be visible on the plots given range cut-offs.

Algorithm

CEA_1

CEA_2

Compass

FraunhoferIOSB

FraunhoferIOSB

MITRE

MorphoTrak

MorphoTrak

Purdue

Purdue

Submission

phase1

phase1

phase2

phase1

phase2

phase2

phase1

phase2

phase1

phase2

Rank 1
Accuracy

0.898

0.962

0.089

0.854

0.968

0.529

0.987

0.994

0.968

0.962

Rank 10
Accuracy

0.898

0.962

0.140

0.854

0.968

0.879

0.987

0.994

0.981

0.987

Rank 100
Accuracy

0.904

0.962

0.586

NA

0.968

0.943

0.994

1.000

0.994

0.994

Rank 300
Accuracy

0.924

0.975

0.650

NA

0.975

0.975

0.994

1.000

0.994

0.994

MAP

0.874

0.937

0.121

0.842

0.954

0.676

0.988

0.994

0.967

0.964

Table 4: CMC and MAP statistics for Tattoo Identification use case. Number of probes: 157, Average gallery size: 4 375.
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Figure 3: Miss rate vs. Average candidate list length based on score threshold for the Tattoo Identification use case. Number of

searches: 157, average gallery size: 4 375. This curve presents a threshold-based trade-off between miss rate and the average number

of images returned on the candidate list at or above a certain score threshold. This type of analysis can support workload assessment in

cases where the amount of human labor available is constrained to reviewing an average number of candidates per search. The graph

evaluates the average miss rate for any given mated search where the threshold is varied to yield an average number of images expected

to show up on a candidate list (at or above threshold) for examination.

Results and notable observations:

• Six out of ten algorithms achieve a rank 1 hit rate above 90% and rank 10 hit rate above 96%, with the top performing
algorithm (MorphoTrak) achieving both rank 10 hit rate and MAP of 99.4%.

• For many of the algorithms, no substantial accuracy improvements are observed past rank 100, which may be at-
tributed to the law of diminishing returns for this particular use case.

• Per Figure 3, at a threshold set to yield an average of 10 candidates to be returned for any given mated search, the
top performing algorithm (MorphoTrak) achieves an expected miss rate of .63%.

3.1.2 Effect of Gallery Size

As more tattoo data is collected in operations, scalability related to match performance against larger database sizes be-
comes important. Figure 4 presents the rank 10 hit rate across two different gallery sizes.
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Figure 4: Plot comparing rank 10 hit rate across two different gallery sizes for Tattoo Identification. Number of probes: 157.

Results and notable observations:

• With an increase in gallery size, a decrease in performance is observed across all algorithms, demonstrating that
gallery size has an impact on search accuracy. The decrease in rank 10 hit rate between a small gallery (43) versus
larger gallery (4 375) ranged from .6% to 41% depending on the algorithm.

• Further studies with much larger gallery sizes (>100K) to reflect operations is warranted.

3.1.3 Failure Analysis

Image characteristics associated with match failure included:

• Major additions made to the original tattoo image over time, altering the overall content of the tattoo; hair in this
particular image also causes distractions to the primary tattoo content.

• Very simple and small tattoos which may lack distinctive features for matching.

• Major orientation differences between the probe and gallery tattoo image, along with patterned clothing in the
background which causes distractions during feature extraction.

• Low contrast and blurry tattoos.

• Images that contain background clutter (image zoomed in for emphasis) that can cause false matching on the back-
ground instead of the actual tattoo content.

3.2 Region of Interest

This section details the performance of algorithms when given a subregion from an image of a tattoo, the ability to match
a larger tattoo image (collected at a different time) from which the subregion is contained in galleries of different sizes.
This use case has application in investigation supporting identification of an individual, for example, in the case where a
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suspect’s face is occluded but video surveillance contains a portion of a tattoo that is exposed on the arm. The test data
for this use case is derived from images from the Tattoo Identification use case and is composed of multiple tattoo sections
(probes) that belong to a larger tattoo canvas (gallery image) from the same subject collected during different encounters.
In the experiment with the small gallery, there exists one correctly matching tattoo image in the database for each probe.
In the larger gallery experiment, there were a small number of probes which had more than one or more matching gallery
image.

3.2.1 Accuracy

Algorithm
MorphoTrak
MorphoTrak

Purdue
MITRE
CEA_2
CEA_1

Compass

Rank 10 Acc.
0.970
0.949
0.943
0.902
0.785
0.737
0.250

Submission
phase2
phase1
phase2
phase2
phase1
phase1
phase2

0.80

0.85

0.90

0.95

1.00

0 100 200 300
Rank

C
um

ul
at

ive
 A

cc
ur

ac
y

CEA_1 CEA_2 Compass MITRE MorphoTrak Purdue

phase2 phase1

(a) CMC plot. Accuracy was calculated with the best-ranked match.
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(b) Interpolated Average Precision Recall plot.

Figure 5: Region of Interest use case results. Number of probes: 297, Average gallery size: 4 363. Accuracy was averaged over 5 folds.

Note: Some algorithm results may not be visible on the plots given range cut-offs.

Algorithm

CEA_1

CEA_2

Compass

MITRE

MorphoTrak

MorphoTrak

Purdue

Submission

phase1

phase1

phase2

phase2

phase1

phase2

phase2

Rank 1
Accuracy

0.731

0.781

0.175

0.771

0.936

0.946

0.916

Rank 10
Accuracy

0.737

0.785

0.250

0.902

0.949

0.970

0.943

Rank 100
Accuracy

0.771

0.818

0.325

0.956

0.960

0.976

0.953

Rank 300
Accuracy

0.811

0.845

0.475

0.970

0.966

0.980

0.970

MAP

0.733

0.783

0.028

0.825

0.940

0.954

0.924

Table 5: CMC and MAP statistics for Region of Interest use case. Number of probes: 297, Average gallery size: 4 363.
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Figure 6: Miss rate vs. Average candidate list length based on score threshold for the Region of Interest use case. Number of searches:

297, average gallery size: 4 363. This curve presents a threshold-based trade-off between miss rate and the average number of images

returned on the candidate list at or above a certain score threshold. This type of analysis can support workload assessment in cases

where the amount of human labor available is constrained to reviewing an average number of candidates per search. The graph

evaluates the average miss rate for any given mated search where the threshold is varied to yield an average number of images expected

to show up on a candidate list (at or above threshold) for examination.

Results and notable observations:

• Three out of seven algorithms achieve a CMC rank 1 hit rate above 90%, and one out of seven achieve rank 10 hit rate
above 96%, with the top performing algorithm (MorphoTrak) achieving rank 10 hit rate of 97% and MAP of 95.4%.

• Per Figure 6, at a threshold set to yield an average of 10 candidates returned for any given mated search, the top
performing algorithm (MorphoTrak) achieves an expected miss rate of 5.7%. For the same algorithm, if the threshold
is relaxed to yield an average candidate list length of 100, the miss rate is decreased by approximately a factor of
two.

• Accuracy for this use case is lower across all algorithms than that observed from the Tattoo Identification results,
which could be due to less information or features available in the probes (tattoo sections) used for matching.

3.2.2 Effect of Gallery Size

As more tattoo data is collected in operations, scalability related to match performance against larger database sizes be-
comes important. Figure 7 presents the rank 10 hit rate across two different gallery sizes.
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Figure 7: Plot comparing rank 10 hit rate across two different gallery sizes for Region of Interest. Number of probes: 297.

Results and notable observations:

• With an increase in gallery size, a decrease in performance is observed across all algorithms, demonstrating that
gallery size has an impact on search accuracy. The decrease in rank 10 hit rate between a small gallery (31) versus
larger gallery (4 363) ranged from 1.7% to 52% depending on the algorithm.

• Further studies with much larger gallery sizes (>100K) to reflect operations is warranted.

3.2.3 Failure Analysis

Image characteristics associated with match failure included:

• Large distortion between the probe and gallery images.

• Major viewpoint and perspective differences between the probe and gallery images.

• Very small probe images relative to the larger canvas, along with low contrast and body hair distractions.

3.3 Mixed Media

This section details the performance of algorithms on matching non-tattoo types of images, (e.g., sketches, scanned print,
computer graphics, and graffiti) to visually similar or related tattoo images. This use case has application in investigative
intelligence gathering. In cases where the image of the tattoo is not captured on a camera, but an individual witnessed
someone with a tattoo involved in criminal activity, a description of the tattoo can be provided to a forensic artist, and the
sketch can be searched against a database for potential matches. The test data for this use case is composed of groups of
visually similar mixed media images and tattoos. For any given mixed media probe image, there are one or more correctly
matching tattoo image(s) in the database.
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(a) CMC plot. Accuracy was calculated with the best-ranked match.
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(b) Interpolated Average Precision Recall plot.

Figure 8: Mixed Media use case results. Number of probes: 181, Average gallery size: 55.

Algorithm

Compass

MITRE

Submission

phase2

phase2

Rank 1
Accuracy

0.055

0.077

Rank 10
Accuracy

0.271

0.365

Rank 20
Accuracy

0.525

0.613

Rank 30
Accuracy

0.713

0.746

MAP

0.125

0.151

Table 6: CMC and MAP statistics for Mixed Media use case. Number of probes: 181, Average gallery size: 55.

Results and notable observations:

• The top performing algorithm (MITRE) achieves a CMC rank 10 accuracy of 36.5% and MAP of 15.1%.

3.3.1 Failure Analysis

Image characteristics associated with match failure included:

• The existence of clothing and other body parts, and in this case, also the small size of the tattoo relative to the entire
image.

• Embellishments such as text and shadows around the primary tattoo content.

• Major variations in the composition of the tattoo. While the dominant content between the probe and gallery images
are consistent, there are differences in the overall composition of the images. While such differences are easy to
overcome for humans, it remains a challenge to computer vision algorithms.
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3.4 Tattoo Similarity

This section details the performance of algorithms tasked with matching a tattoo image to visually similar or related tattoo
images. This use case has application in gang affiliation [6], for example, in cases of identifying individuals in a criminal
gang that could lead to other individuals with very similar tattoos that are very likely in the same gang. The test data for
this use case is composed of groups of visually similar tattoos from different subjects collected on different occasions. The
images for this experiment were cropped around the primary tattoo content. For any given probe image, there are one or
more correctly matching gallery image(s) in the database.
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(a) CMC plot. Accuracy was calculated with the best-ranked match.
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(b) Interpolated Average Precision Recall plot.

Figure 9: Tattoo Similarity use case results. Number of probes: 851, Average gallery size: 272.
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Rank 1
Accuracy

0.005

0.035

Rank 10
Accuracy

0.074

0.149

Rank 20
Accuracy

0.147

0.239

Rank 30
Accuracy

0.199

0.309

MAP

0.027

0.052

Table 7: CMC and MAP statistics for Tattoo Similarity use case. Number of probes: 851, Average gallery size: 272.

Results and notable observations:

• The top performing algorithm (MITRE) achieves a rank 10 accuracy of 14.9% and MAP of 5.2%.

3.4.1 Failure Analysis

Image characteristics associated with match failure included:

• The existence of clothing and other body parts is seen in many of the images, which can cause issues during tattoo
segmentation. This is a common trend across the use cases.
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• Embellishments such as text and shadows around the primary tattoo content.

• Tattoos that are semantically relevant, but lack commonality in visual composition and details. Human beings are
able to interpret images at different levels, both in low-level features (color, shape, texture) and high-level semantics
(abstract object, concept, event). However, computers are only able to interpret images based on low level-image
features. This introduces an interpretation inconsistency between image descriptors and high-level semantics that is
known as the semantic gap [28].

3.5 Tattoo Detection

This section details the performance of algorithms tasked with detecting whether an image contains a tattoo or not. This
use case has application in database construction and maintenance when large amounts of unlabeled data is comingled,
making automatic extraction of different types of images a challenge. An example is the ANSI/NIST Type 10 record where
facial mugshot images and scar, mark, tattoo (SMT) images are stored in the same record type, and with a percentage of the
data mislabeled or not labeled at all, it presents a challenge to automated extraction of the data based on image content. The
test data for this use case is composed of tattoo images and face images extracted from the Multiple Encounter Database 2
(MEDS- II) [4].
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Figure 10: Distribution of tattoo detection confidence scores for the Tattoo Detection use case. Number of tattoos: 1 349, Number of

non-tattoos: 1 000. Accuracy was averaged over 5 folds.
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Figure 11: Tattoo Detection (DET-1) results. Number of tattoos: 1 349, number of non-tattoos: 1 000. Accuracy was averaged over 5

folds.

Results and notable observations:

• Three out of five algorithms achieve overall tattoo detection accuracy of above 93%, with the top performing algo-
rithm (MorphoTrak) achieving 96.3% in overall accuracy.

• Per the confidence score density plot in Figure 10, the more accurate algorithms show a larger separation between
tattoo and non-tattoo scores.

• Figure 11 presents a trade-off between false positive rate (classifying a non-tattoo as a tattoo) and false negative rate
(classifying a tattoo as non-tattoo). In a scenario where a system wanted to minimize the number of tattoos rejected
as being non-tattoos (i.e., false negative rate), one might reasonably set the false negative rate threshold to 1%, which
would yield a false positive rate of 15% for the top performing algorithm (MorphoTrak), meaning 15% of images
classified as tattoos are actually non-tattoos. Different thresholds can be set to support specific applications.

• Note the images in this dataset are biased given all non-tattoo images are faces, and some algorithms leveraged face
detection algorithms as an approach to classify ”non-tattoos”. Further studies with 1) additional types of non-tattoo
imagery and 2) a much larger number of test images to reflect operations is warranted.

3.5.1 Failure Analysis

Image characteristics associated with detection failure included:

• Tattoos of faces: some algorithms used face detection methods where if a face is detected, the image is classified as
being non-tattoo. Tattoos of faces are commonly seen in operations.

• Faded tattoos and cases where there is low contrast between the tattoo and skin color.
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4 Recommendations for Future Work

Based on the outcomes of the Tatt-C activity and the discussions and suggestions from the tattoo recognition developer
and user community at the Tatt-C Workshop [8], we propose the following recommendations for future work.

4.1 Improve Tattoo Image Capture

Algorithm failure to find the correct match is often related to the consistency and quality of image capture. Notably,
inconsistencies in image angle, orientation, size of tattoo relative to the entire image and poor collection characteristics
such as low illumination, low contrast, blurry/out of focus, and existence of clothing and background clutter caused
failures for tattoo detection and matching algorithms. As such, recommendations for improving the quality of tattoo
images to support image-based tattoo recognition include:

• Best Practices: Develop best practice guidelines for the capture of a tattoo image, including photography guidelines
and image quality definitions and standards for tattoos. Similar guidelines for the capture of face [1], iris [25], and
fingerprints [24] have been developed and successfully employed by law enforcement.

• Training Material: Develop and distribute simple reference/training material such as a poster with examples of
good quality, well-captured tattoos versus bad quality, poorly-captured tattoos, similar to those that have been de-
veloped and successfully utilized for other modalities [3].

• Software: During photo capture, use software that makes image quality assessments (e.g., illumination, contrast,
focus, existence of distractors around tattoo image) and determines whether to accept or reject the image. Such a
software concept is similar to NIST’s Fingerprint Image Quality (NFIQ) [26] software, but applicable to tattoos.

Build Larger Tattoo Datasets for Researchers: Nineteen organizations requested and received the Tatt-C dataset (eight
commercial, six academic, and five research entities). This is a good indicator of industry and research interest in this area.
Following the closing of the Tatt-C submission deadline, NIST continues to receive participation interest and requests for
the Tatt-C dataset. As an outcome from the Tatt-C workshop, the community identified a need to provide researchers with
larger, ground-truthed tattoo datasets with larger gallery sizes (>100K) closer to operations, and more search images per
use case, ideally covering the categories of ”challenging images” identified in this report. Larger image sets will impose
a level of software and computational robustness on algorithm developers and can support advancing the technology
further.

Conduct Sequestered Evaluation: Tatt-C was conducted as an ”open-book” test based on the honor system where par-
ticipants were only required to submit their system output to NIST for uniform scoring and analysis. Such an evaluation
protocol does not preclude gaming such as algorithm training on test data, candidate list manipulation, etc. For the Tatt-C
use cases that resulted in high accuracy - Tattoo Identification, Region of Interest, and Tattoo Detection, we recommend
running a ”closed-book” evaluation of tattoo recognition algorithms, where participants send software to NIST to be
tested with sequestered data. This will allow consistent assessment of run-time performance (enrollment/search time and
memory usage) on a uniform hardware infrastructure, which is important as specific operational applications will have
specific run-time requirements. Sequestered evaluations can leverage much larger, operationally-realistic gallery sizes of
data that cannot be freely distributed.

Evaluate Tattoo Localization: The presence of clutter and occlusions such as clothing, background, furniture, hair, and
other body parts in the operationally-collected data makes tattoo localization an important aspect of the recognition pro-
cess. Localization and matching are generally two distinct tasks, and matching is critically dependent on correct localiza-
tion. We recommend evaluation of tattoo localization as a separate use case in future evaluations.

Refine Definition of Tattoo Similarity Specific to Law Enforcement Applications: A common trend in the ground-truth
for Tattoo Similarity included images that were semantically relevant, but lacked commonality in visual features, which
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is likely a result related to the ”semantic gap”. Human beings are able to interpret images at different levels, both in low-
level features (color, shape, texture) and high-level semantics (abstract object, concept, event). Computers are only able
to interpret images based on low level-image features. This introduces an interpretation inconsistency between image de-
scriptors and high-level semantics that is known as the semantic gap [28]. While some research has been done in bridging
the semantic gap for image retrieval, it remains a challenging, unsolved problem [18]. A set of well-defined criteria for tat-
too similarity or relevance specific to law enforcement applications needs to be developed for consistent ground-truthing
of data that enables research and development. The feasibility of such an endeavor has yet to be determined. An initial
step could be to focus on specific law enforcement application, which will likely have observable commonalities in the
dominant tattoo content.
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