
Towards Repeatable, Reproducible, and Efficient Biometric Technology
Evaluations

Gregory Fiumara
gregory.fiumara@nist.gov

Wayne Salamon
wayne.salamon@nist.gov

Craig Watson
craig.watson@nist.gov

National Institute of Standards and Technology
100 Bureau Drive, Gaithersburg, MD 20899-8940

Abstract

With the proliferation of biometric-based identity man-
agement solutions, biometric algorithms need to be tested
now more than ever. Independent biometric technology
evaluations are needed to perform this testing, but are not
trivial to run, as demonstrated by only a handful of organi-
zations attempting to perform such a feat. Worse, many soft-
ware development packages designed for running biomet-
ric technology evaluations available today shy away from
techniques that enable automation, a concept that supports
reproducible research. The evaluation software used for
testing biometric recognition algorithms needs to efficiently
scale as the sample datasets employed by researchers grow
increasingly large. With better software, additional entities
with their own biometric data collection repositories could
easily administer a reproducible biometric technology eval-
uation. Existing evaluation software is available, but these
packages do not always follow best practices and they are
lacking several important features. This paper identifies the
necessary requirements and ideal characteristics of a robust
biometric evaluation toolkit and introduces our implemen-
tation thereof, which has been used in several large-scale
biometric technology evaluations by multiple organizations.

1. Introduction
Independent biometric technology evaluations are an im-

portant task, given the widespread applications of biomet-
ric technologies. Evaluations of core accuracy and func-
tionality of biometric recognition algorithms help to iden-
tify limitations and reveal the current state of the art. True
one-to-many evaluations can prove to be especially chal-
lenging, as this increases the central processing unit (CPU),
storage, and analysis demands on the host, as compared to
one-to-one evaluations. More demand means more cost.
Many researchers have insisted on large-scale biometric

technology evaluations, employing datasets with sample
counts in the multi-millions, adding to the already steep
requirements. Recently, only a handful of organizations
have undertaken public biometric technology evaluations,
such as the University of Bologna (FVC) [2], the National
Institute of Standards and Technology (NIST) (FpVTE,
FRVT, IREX) [18, 3, 4], and the Idiap Research Institute
(BEAT) [5].

Unfortunately, none of the evaluation software behind
these biometric technology evaluations has been made
available. In a controlled scientific evaluation, recognition
algorithms serve as the software under test, or independent
variables, while the evaluation software serves as the un-
changing experiment procedure. Without a reproducible
procedure, all the public is presented with are irreproducible
and non-comparable results. Even when recreating a pub-
lished evaluation using identical data (e.g., public datasets),
a technology experiment cannot be truly reproduced unless
the evaluation software driving the data consumption is also
public [6]. Evaluation software errors as obvious as the in-
correct coding of a published analysis equation or as sub-
tle as the premature truncation of a biometric template will
cause vast differences in the reported accuracy of a recog-
nition algorithm, yet these errors are untraceable without
published source code. Much existing free and open source
evaluation software lacks functionality to enable repeata-
bility or relies on unscalable and inefficient programming
techniques that are better suited for small-scale proof-of-
concept experimentation. They have major limitations that
prevent use in running a large-scale evaluation.

The purpose of this paper is to identify evaluation soft-
ware as a significant gap in biometric testing, and propose
a free and open source framework for aiding and enabling
biometric technology evaluations, regardless of biometric
data format, modality, size, or application (i.e., verification
or identification). The proposed software, the NIST Biomet-
ric Evaluation framework, has been integrated with several
biometric technology evaluations and other projects at var-



Data

Experiment
Design

Biometric
Toolkit

(and toolkit API
applications)

Logs

Templates

Scores

Analysis

Figure 1. A biometric toolkit is a piece of the biometric technol-
ogy evaluation puzzle that focuses on driving the experiment and
providing reliable, repeatable, and efficient outputs. Many other
systems focus on experiment design or data organization.

ious organizations, improving on existing methods outlined
in Section 2. It does not aim to be a replacement for design-
ing and controlling experiments. There are many existing
solutions for these complex problems and tackling them is
beyond the scope of this paper. Instead, a framework, or
“toolkit,” should simply be a collection of building-blocks
used by an application to drive an experiment, which may in
turn import any number of experiment organizational strate-
gies (Figure 1). A toolkit need not require low-level sys-
tems administration or advanced development knowledge.
Any significant aspects that may be required in writing a
biometric evaluation application, such as image decompres-
sion and biometric file format parsing, should be included
in the toolkit, so that a researcher does not need to main-
tain a collection of third-party dependencies and learn their
associated syntaxes. It should be compatible with the best
practices of the industry, simple for new research and devel-
opment collaborators to comprehend, and difficult to misuse
during implementation. Preferably, it should be written in
a portable programming language for use on multiple op-
erating systems, lack complex dependency chains, and be
compiled to machine code for speed and efficiency. Finally,
it should be as fool-proof as possible. Let the toolkit han-
dle the intricacies of maintaining the infrastructure, so that
the researcher can get to running an experiment and ana-
lyzing its results without spending time debugging software
issues. The job of the biometric researcher is to research
biometrics, not to write evaluation applications, so biomet-
ric toolkits make the evaluation application writing process
simple. Not needing to remember specific evaluation steps
and techniques leads to complete automation, which en-
ables consistency and reproducibility.

The remainder of this paper is organized as follows.
Some existing biometric evaluation systems are detailed in
Section 2. The importance of creating CPU-bound evalu-
ation applications and ideas on efficiently distributing data
are outlined in Section 3. Commonly missing evaluation
pieces are listed in Section 4. Application Programming In-
terface (API) design is addressed in Section 5. Source code
consistency and simplicity is discussed in Section 6. Our
implementation of a biometric toolkit along with some of
our future work is revealed in Section 7. Finally, the fea-

tures of a biometric toolkit are summarized in Section 8.

2. Existing Work
Several organizations have developed software to help

evaluate biometric algorithms. A system employed to
power biometric research at a large organization was exam-
ined. The organization connects hundreds of campus com-
puters together, forming a compute grid and storage cluster,
both of which are, by definition, highly scalable. However,
this system has deep dependencies on copying files around a
distributed file system, whose limitations in biometric tech-
nology evaluations are described in Section 3.2. Other sys-
tems provide a highly-generic plugin architecture for adding
new algorithms, along with a grammar for stringing those
plugins together. This modular system’s API is closer to
a viable solution, but lacks many of the building-blocks
that prove helpful in running a large-scale biometric tech-
nology evaluation. Some organizations sponsor web-based
biometric technology evaluations. The toolkits powering
their evaluations run biometric algorithms in an automated
fashion, but the server-side code is not necessarily available
to the public, and therefore lacks the ability to create truly
reproducible research. Similarly, at least one U.S. Govern-
ment research organization has created their own evalua-
tion software, but has only delivered subsets of the code to
participants of their evaluations for use in implementing an
evaluation’s API.

3. Always Be Computing
3.1. Keep RAM Reliable

A biometric toolkit should provide some sort of smart
memory object to circumvent frustrations of low-level
memory allocation. In lower-level languages like C and
C++, manually managing memory and passing around point-
ers and references to memory locations is commonplace.
By passing memory locations to other functions instead of
copying and duplicating data, applications eliminate unnec-
essary data swapping and become more efficient. A com-
mon complaint is the complexity of code created to enable
this efficiency, as seen in Figure 2 [11]. It’s quite easy to
leak memory over the course of an evaluation or even cor-
rupt memory through invalid pointer math. A smart mem-
ory object used throughout a biometric toolkit would help
alleviate many of these problems, removing a large area of
complication for both researchers and algorithm developers.

3.2. Intelligent I/O

A biometric toolkit should provide an abstraction for all
input/output (I/O) operations (e.g., reads/writes to files on
disk). Possibly the single greatest bottleneck in a biometric
technology evaluation (or any other computing task) is I/O.
Even with the proliferation of solid state media, persisting



/∗ Stop doing this ... ∗/
struct stat sb;
if (stat("img00001.png", &sb) != 0)

return;
uint64_t bufferSize = (uint64_t)sb.st_size;
uint8_t *buffer = (uint8_t *)malloc(sizeof(uint8_t) *

bufferSize);
if (buffer == NULL)

return;
FILE *fp = fopen("img00001.png", "rb");
if (fp == NULL) {

free(buffer);
return;

}
if (fread(buffer, 1, bufferSize, fp) != bufferSize) {

free(buffer);
return;

}
free(buffer);

/∗ ... and start doing this . ∗/
auto buffer = IO::Utility::read("img00001.png");

Figure 2. Efficient but verbose C code, and equally efficient but
more concise C++ 2011 code using an object to manage memory.
A biometric toolkit provides a memory object that encapsulates all
the complexities of memory management and presents an effort-
less API to the developer.

data to disk is much slower than to RAM. As such, it be-
hooves one to minimize the amount of interaction with a file
system and maximize the amount of data passing in mem-
ory (Section 3.1). When files must be utilized, a biometric
toolkit should use optimal structures and techniques for per-
manent data storage. Biometric toolkits must make every
effort to keep their applications CPU-bound and not I/O-
bound for the sake of the overall evaluation runtime. Fig-
ure 3 demonstrates how dramatically the runtime of an oper-
ation can differ based solely on the operation’s I/O strategy.

Relational databases are a common alternative to indi-
vidual files for storing biometric data. It is easy to issue
queries to select subsets of data, but hosting blobs of data
in a relational database can prove inefficient and database
maintenance can be complex [16]. Systems have tradition-
ally chosen a hybrid approach, where metadata is stored in a
relational database, along with a file path to the actual data.
This hybrid compromise is useful, but hosting individual
small files on disk is a pain point for many file systems. In
addition to the large number of input files, biometric tech-
nology evaluations generate millions of small files in the
form of processed images and biometric templates. In most
file systems, managing an extremely large number of files
is inefficient, leads to longer application runtimes, and adds
complexity to storage archival [20]. As seen in Figure 3,
performance observed while reading and writing individual
files is abysmal, even when compared to simple key/data
flat file formats like BerkeleyDB.

To counteract these issues, all reads and writes should
occur from a convenient high-level API. Whatever the most
optimal I/O technique is, the I/O API handles it in the most

6.95

0.020.02

7.06

0.060.03

4.84

0.010

8.15

0.030.01

7.56

0.10.02
0.0

2.5

5.0

7.5

Insert Random
Replace

Sequential
Read

Random
Read

Remove

Operation

E
la

p
s
e

d
 T

im
e

 (
m

in
u

te
s
)

Type Archive BerkeleyDB Files

Figure 3. Summary of I/O performance of various file formats on
an NFS-mounted EMC Isilon Network Attached Storage device
(lower is better). Each operation was performed with 110 503
records of 1 153 bytes each. These prime values were chosen
to prevent any potential optimization. While other file systems
and devices will certainly produce different results, the values pre-
sented here are crucial for understanding decisions made in choos-
ing I/O abstractions for evaluations running on this hardware.

efficient manner, acting as a self-contained entity, managing
data on the application’s behalf. If the storage backend ever
changes, the evaluation code written by the researcher does
not need to change. This abstraction allows an application
to use the same code that reads and writes from samples
on a researcher’s laptop hard drive to run identically on a
multi-petabyte fibre-connected storage area network.

When utilizing multiprocessing techniques in a biomet-
ric technology evaluation (Section 3.3), a shared file sys-
tem should be used to avoid excessive copying. Consider
Hadoop, a popular distributed computing software pack-
age [1]. In the Hadoop Distributed File System (HDFS),
input data is broken down into blocks that are stored lo-
cally on a number of compute nodes. The Reduce function
of the Hadoop job is performed, and the derivative data is
written to HDFS. In a biometric technology evaluation, this
derivative data (i.e., biometric templates, logs, etc.) persists
via a large number of small writes, but eventually needs
to coalesce for processing into a larger enrollment set or
for analysis. While Hadoop is a great solution for many
large-scale projects, HDFS may prove inefficient in some
environments, as hundreds of gigabytes of data will be con-
stantly swapped around compute nodes, and the many small
writes create a huge performance penalty on the file sys-
tem [12]. In these cases, it is better to set up a shared file
system to deal with data persistence.

3.3. Multiprocessing

A biometric toolkit should provide a simple abstraction
for parallelizing a biometric operation (e.g., feature extrac-
tion and template matching) across one or more heteroge-
neous compute nodes. In order to complete a large-scale
biometric technology evaluation in a reasonable amount of



time, it becomes absolutely critical to utilize parallelization
techniques. At a basic level, applications must be able to
support batch processing, either through an API or by ac-
cepting a series of inputs. When evaluating a large number
of samples, it is inefficient to spin up an application, process
a single operation, and shut it down, as has been done in pre-
vious biometric technology evaluations. While this ensures
that no learning techniques are used, it extends the runtime,
forces crude scripting loops, and prevents any possibility of
automated parallelism.

In a large-scale biometric technology evaluation like
NIST’s FpVTE, up to 5 million subjects needed to have
templates generated to form an enrollment set, over which
hundreds of thousands of searches were performed. Us-
ing a single process on a single machine would have added
dozens of years to the evaluation’s runtime. Instead, NIST
used Message Passing Interface (MPI) [17] to control the
runtime and manage data flow, enabling parallelization.

Writing MPI code is not an easy task, and biomet-
ric researchers would rightly balk at doing so. There are
other multiprocessing techniques, but not without their own
faults. Hadoop was previously mentioned, but is arguably
equally as complex and its file system is largely inefficient
for a biometric technology evaluation. POSIX threads are
more easily written, but only allow for parallelization on a
single compute node and have the additional requirement
that the biometric algorithm be thread-safe. Cluster com-
puting software could certainly be used, but only by organi-
zations with large quantities of hardware.

A biometric toolkit can simplify enabling parallelism
by abstracting parallelization techniques. Given a list of
compute nodes, the toolkit can create a software distribu-
tor process that figures out how many worker processes to
spawn, given the available RAM and CPU cores. To pre-
vent idle cycles, the distributor would segment the work to
be performed into small pieces and let individual worker
processes ask for more when their data segment has been
exhausted. The biometric toolkit’s parallelization abstrac-
tion must execute one process on a single compute node
in the exact manner that it executes p processes on n com-
pute nodes. That is, there should be no change in develop-
ment from a small experiment on a laptop to an automated
biometric identification system deployment in a data center.
The evaluation’s results must be identical regardless of the
environment.

The evaluation administrator needs a way to interact with
the large collection of processes that have been created by
the biometric toolkit’s parallelization facilities. The biomet-
ric toolkit should enable establishing a remote connection
to the distribution center of a parallel job. The distributor
would listen for commands, such as, “count remaining sam-
ples,” “pause for 30 minutes,” or “checkpoint and stop.”

4. Necessary Components
4.1. Logging

A biometric toolkit should have a reliable method for
logging. After running a large-scale biometric technology
evaluation, a researcher must analyze the results. While
many evaluation systems focus on the reproducibility of the
experiment design (i.e., BEE), none place emphasis on the
persistence of the outcome. Analysis reproducibility is ex-
ceptionally important, but it is far from the only records that
must be kept from a biometric technology evaluation. Just
like I/O processing (Section 3.2), logging is another toolkit
aspect that utilizes an abstract strategy and familiar coding
conventions in its API. The same code that prints to the con-
sole on a researcher’s laptop during development will need
to run transactional INSERTs to a relational database when
running in production.

Logging needs to take place in a consistent manner,
which will require limited standardization among biomet-
ric technology evaluation APIs (Section 6.1). Method re-
turn codes should mean the same thing in every application.
Timing information should be recorded in consistent units.
Failures to enroll and other biometric errors must be han-
dled in the same way. Consistency in the logs amounts to
an easier time performing analysis, additional opportunities
for automation, and a more uniform reporting of accuracy
across evaluations.

A toolkit must implement its logging methods in such
a way that confirms the integrity of the commit. If an en-
try fails to be written, the application may need to cease
operation, as there is no point in wasting compute cycles
evaluating an algorithm if the output cannot be recorded.

Log files are not just processed by analysis scripts, they
must also be human-readable. The toolkit may prefer to
write delimited text logs so that the logs are parsable by the
researcher during development and easily sequenced over
during analysis. Consider an algorithm that is failing to en-
roll every image in a 5 million image batch processing job.
A human could open this log file, see the errors (thanks to
consistent return code values), and stop the job. Better still,
if a syslog logging strategy were being utilized, a rule
could be set to trigger an alert to the researcher to stop the
job after a customizable error threshold had been achieved.

4.2. Data Access Abstractions

A biometric toolkit should encapsulate processing of
biometric file formats without the need for third-party de-
pendencies. Websites like GitHub have popularized the
availability of open source materials for a seemingly end-
less genre of disciplines, with biometrics being no excep-
tion [10]. The increasing number of small projects have
taken a toll on the configurations of software build sys-
tems and made way for language-specific dependency man-



agers. In a biometric toolkit, the many trivial pieces of code
needed to perform basic tasks in a biometric system should
be integrated into a shared framework, written in a common
and cohesive style.

There are a number of standardized biometric data in-
terchange formats [13, 8], and many options for parsing
them, available in both open source and commercial prod-
ucts [19, 14]. These products often do more than just simply
parse biometric files, and so an extremely large codebase
that may be complex to configure and build now accompa-
nies the evaluation software. The same is true for image for-
mats. Nearly every biometric system needs to decompress
both standard and biometric-specific image formats, but no
single third-party distribution supports all formats with the
speed and ability for fine-grained control that is needed in
order to satisfy industry best practices [15].

The only external dependencies for a toolkit should be
those provided by the operating system. It is not enough to
simply incorporate properly licensed and attributed source
code. It’s also necessary to provide a cohesive style to the
code, promoting software development best practices. The
same code that retrieves fingerprint minutia from an ISO
19794-2 template should also retrieve minutia from an AN-
SI/NIST ITL Type 9 record and an INCITS 378 record. The
same code that decompresses a Portable Network Graphics
(PNG) file should decompress a Wavelet Scalar Quantiza-
tion (WSQ) file.

A biometric toolkit should provide a common represen-
tation of encapsulated data. This includes enumerations for
some data (e.g., finger position, impression type, etc.) that
are translated between file formats when necessary. The in-
tricacies of dealing with third-party distributions should be
abstracted away behind the dramatically simplified API pro-
vided by the biometric toolkit, returning data that interoper-
ates effortlessly with other toolkit packages (Section 6.1).

4.3. Error Handling

Developers make plenty of mistakes, and a biometric
toolkit should ship with utilities to detect, catch, and han-
dle errors to prevent them from halting a compute node. In
FpVTE, NIST reported on 36 total algorithms from 18 par-
ticipants. Before the evaluation could be completed, partic-
ipants were required to submit validation packages to en-
sure that algorithms were free of major errors (e.g., crashes,
memory leaks, time constraints, etc.) and that score genera-
tion was repeatable on NIST’s systems. NIST reported that
in order to get these 36 final submissions, they accepted 733
validation submissions. While error avoidance seems obvi-
ous, the extremely high error rate in FpVTE tells a different
story that must be considered during an evaluation’s tech-
nical design. A single troublesome image in a dataset of
millions is enough to elicit errors from many algorithms.

When an application process executes in a POSIX envi-

ronment, the operating system can generate signals to the
process. In many cases, if the signal is not handled by
the process, execution terminates (i.e., “crashes”). Because
many biometric technology evaluations are designed to be
used with “black-box” software (e.g., software for which
no source code is available), the crashing code cannot be
examined or changed by evaluation administrators.

A biometric toolkit provides smart memory management
(Section 3.1), but cannot enforce its usage in “black-box”
software to prevent memory leaks. On a large-memory sys-
tem, detrimental effects of a slow leak, including crashes,
may take days or even weeks to manifest, at which point, an
enormous amount of compute cycles have been wasted.

A biometric toolkit can do many things to prevent an
evaluation process from terminating due to “black-box” er-
rors. Signal handling is a low-level task that should be ab-
stracted away by a biometric toolkit, which can then be eas-
ily installed in an evaluation application. To catch memory
leaks, memory usage can be monitored in a separate thread.
This information can be used to report memory statistics of
an algorithm in analysis, as well as to find a baseline mem-
ory consumption value and alert evaluation administrators
if that value is greatly exceeded or on an incline.

4.4. Time Tracking

Timing facilities should be provided by a biometric
toolkit. In their FpVTE biometric technology evaluation,
NIST allowed participants to spend 90 seconds on average
performing searches over the enrollment set. Participants
likely wanted to get as close to 90 seconds as possible to
have the highest accuracy, but NIST needed to limit the run-
time of the evaluation. In addition to enforcing time limits,
some algorithms can enter deep loops when extracting fea-
tures that may not return for a very long time, if ever (in
error conditions).

In both of these scenarios, a watchdog timer could be
used to force an evaluation application to jump out of any
block of code and return control to a specified function. A
generous grace period would need to be used if time limits
imposed are supposed to be averages, as opposed to maxi-
mums. The toolkit would need to provide abstractions for
timing, as the low-level syntax for precise clock measure-
ment is not standardized between operating systems. Theo-
retically, signal handling, watchdog timing, as well as func-
tion timing could all be performed in a closure (i.e., an
anonymous function object), as seen in Figure 4. Writing
code like this lets the researcher focus on the batch process-
ing that is taking place, while the biometric toolkit takes
care of the messy enforcement of rules.

5. Uncommon Core
A biometric toolkit strives for simplicity—not only

for the evaluation administrator, but perhaps more impor-



auto images = database->getImages();
auto e = EvaluationAPI::getFeatureExtractor();

/∗ For each input image ... ∗/
std::for_each(images.begin(), images.end(),

[&e](const Image &image) {
/∗ Call extraction function wrapped in signal handler , ∗/
/∗ watchdog timer, function timer ... ∗/
auto result = callAPIMethodSafely(30 /∗ sec ∗/,

[&e, &image]() -> Result {
return (e->getFeatures(image));

});

/∗ Check for errors from the closure . ∗/
if (result.errors.signalHandled())

/∗ ... ∗/
else if (result.errors.timeExceeded())

/∗ ... ∗/
else

database->write(result);
}

);

Figure 4. Calls to a biometric API should be wrapped with code
that performs error handling and timing. In this example, every im-
age in a database is passed to a feature extraction function wrapped
in a closure that times the function call, catches signals, and en-
sures that the function call returns within a specified amount of
time.

tantly for the evaluation participant. The BioAPI standard
introduced a high-level generic biometric authentication
model [7]. Primitive functions like Enroll and Verify
are expected to fit every modality and type of algorithm.
BioAPI and plugin-based systems are worthy pursuits, but
not always practical. It would be impossible to satisfy the
constraints of every participant’s algorithm in an API, but a
consensus must be achieved, which likely involves a differ-
ent evaluation API for each evaluation type and modality.

Consider again NIST’s FpVTE, which imposed a two-
stage matching protocol. Modifying a plugin API to add
two-stage matching would render existing plugins inopera-
ble until they are updated, which might not be trivial. Like-
wise, changing the API layer of BioAPI would require the
consensus of a standards body. In addition to differing pro-
tocols, it’s useful for an evaluation API to make use of spe-
cific datatypes, as opposed to packing and parsing infor-
mation as raw bytes. For instance, if attempting to pass
pose information to a face algorithm, it’s easier to pass an
object containing yaw and pitch than it is to pack and un-
pack this information from a system-specific binary format.
While some form of commonality is appropriate in evalu-
ation APIs (Sections 4.1 and 6.1), a wholesale generic ap-
proach does not prove as useful.

The goal for any successful large-scale biometric tech-
nology evaluation is to have many participants. For com-
mercial entities to participate, it must be simple to take an
existing product and adapt it to the evaluation protocol. In
the generic API case, this could be incredibly difficult, but
the more the evaluation API maps into a commercial prod-

uct’s implementation, the easier it is for commercial entities
to participate. Individuals, universities, and startups can
benefit greatly by participating with a revolutionary algo-
rithm, so evaluation APIs must be flexible enough to allow
participation from these resource-limited organizations.

6. Predictability
With the goal of providing the easiest possible way to

create an evaluation application with collaboration from
others, a biometric toolkit should strive for consistency,
even in trivial tasks. Even with many major concepts cov-
ered by the biometric toolkit (e.g., error handling, multipro-
cessing, file formats, etc.), there are still many conveniences
the researcher will need during the day-to-day writing of
an evaluation application. In a compiled language such as
C++, many tasks trivial in other modern languages (e.g., to-
kenizing a string on a delimiter, reading a file, etc.) can
be extremely arduous and consume many lines of code. A
biometric toolkit should provide utility methods for many
common tasks that need to be performed in an evaluation
application.

There are several popular third-party C++ frameworks that
provide such utilities. One goal of a biometric toolkit is to
make evaluation writing easier for the researcher. While
third-party frameworks like Qt and Boost provide some
useful utility methods, they also provide a host of other
methods that are not useful to the researcher. The re-
searcher must then scour documentation (if available) to
find beneficial content. This creates an additional exter-
nal dependency, but more importantly, distracts outsiders
from reading and comprehending the code. Consider Fig-
ure 5. Nearly any developer (C++ or Java, novice or expert)
will understand a biometric toolkit’s method for tokenizing
a string, but the methods from Qt and Boost are more ob-
scure and could cause confusion.

6.1. Internal Consistency

A biometric toolkit should be consistent within its own
API, in order to make it simple to use and difficult to mis-
use. In Section 3.1, the concept of a smart memory object
was presented. To be consistent, anywhere in the toolkit’s
API that a memory buffer is needed, the smart memory ob-
ject proposed in Section 3.1 should be used. When dealing
with durations of time, all API methods should use identical
units. The result of a timing operation in one method should
not need to be converted into different units in order to be
correctly used in another method. If an error occurs within
an API method, a common set of toolkit errors or excep-
tions should be used to report it. This all seems like com-
mon sense, but remaining consistent can be challenging as a
codebase grows and outside collaborators commit changes.
The toolkit should always appear as a well-designed API
created by a single developer.



Section 5 proposed that a separate API be created specif-
ically for each biometric technology evaluation. This API
conforms to the same consistency measures of a biometric
toolkit. Doing so allows an evaluation developer to inter-
act with a “black-box” algorithm in the same manner that
they would interact with their own toolkit code. This helps
eliminate errors due to misuse of the software under test and
implicitly enable efficiency gains on the evaluation admin-
istrator’s hardware.

std::string str{"foo,bar,baz"};

/∗ Obvious to all developers ∗/
auto tokens = Text::Utility::split(str, ’,’);

/∗ Qt−specific ∗/
QString qstr(str);
QStringList qtokens = qstr.split(QRegExp("\\,"));
auto tokens = qtokens.toVector().toStdVector();

/∗ Boost−specific ∗/
std::vector<std::string> tokens;
boost:split(tokens, str, boost::is_any_of(","));

Figure 5. Simple utility functions should be encapsulated into a
biometric toolkit. This eliminates dependencies and creates a co-
hesive codebase that is easy for all developers to read, regardless
of what (if any) frameworks they are familiar with. In this exam-
ple, a C++ std::string is split on a comma delimiter in an ideal
way, as well as with third-party frameworks.

7. The NIST Biometric Evaluation Framework
The NIST Biometric Evaluation framework, freely

available from https://github.com/usnistgov/
BiometricEvaluation, is a stable work-in-progress
implementation of the proposed biometric toolkit. Even
though the framework was written to support biometric
evaluations, much of it is useful for general applications.

The framework is divided into several discrete packages,
each providing a set of related functionality. The CORE
package provides memory objects (Section 3.1), timing fa-
cilities (Section 4.4), and error handling (Section 4.3) across
the entire framework. The IMAGE and VIDEO packages pro-
vide an abstract way to read many image and video formats,
while the FACE, FINGER, and IRIS packages do the same for
biometric data interchange formats (Section 4.2). Multipro-
cessing complexity is greatly reduced by conforming to the
APIs provided by the MPI and PROCESS packages, and sim-
ple communication between processes is enabled with the
MESSAGE package (Section 3.3). The IO package provides
many I/O facilities, most notably for key/data persistence
(Section 3.2) and logging (Section 4.1) abstractions. All of
these packages adhere to a familiar calling structure and use
CORE package objects (Section 6.1) for the ease and speed
of implementation into applications.

NIST has used packages of the framework to power
many substantial biometric technology evaluations, includ-

ing FIVE, FpVTE, FRVT 2013, IREX III, MINEX, and
PFT-II. Evaluations like FpVTE would not have been fea-
sible without multiprocessing techniques, which were eas-
ily enabled with the framework. In other cases, rewrites of
evaluation applications to use framework packages resulted
in a vast reduction of code and dramatic performance in-
creases, shaving off weeks of processing time per submis-
sion in the case of MINEX. Use of the framework is not
limited to evaluations. It has been used for internal applica-
tions at NIST and other organizations.

7.1. Future Work

Many improvements can be made that enable even better
usability in biometric technology evaluations. Section 3.1
describes the need for a smart memory object, which solves
many, but not all, memory programming issues. Adding
“guard bits” to this object would increase the usability of the
toolkit, allowing it to automatically detect possible memory
corruption before all work is lost in a crash.

Figure 1 shows that scores are an output of a biomet-
ric toolkit application. Since the toolkit is already logging
these scores, it makes sense to have the toolkit bootstrap
the analysis on these scores as well. A common set of ba-
sic analysis tools to generate consistent reporting across all
modalities will enable faster publication of research while
ensuring repeatable report generation.

ISO/IEC 19795-2 [9] provides standard guidance on bio-
metric technology evaluations. While the toolkit merely
powers a biometric technology evaluation application, safe-
guards and techniques can be added to the toolkit to steer
applications toward 19795-2 conformance.

8. Summary
Running a reproducible large-scale biometric technology

evaluation is no easy feat, but by using efficient software
and techniques, some of the burden can be lifted. Unfor-
tunately, existing public biometric evaluation system soft-
ware does not completely satisfy the need of the evalua-
tion administrator. RAM should be utilized as much as
possible, to help keep evaluations CPU-bound instead of
I/O-bound. Parallelization and multiprocessing techniques
must be employed in order to churn through large quanti-
ties of data. Logging facilities must be consistent and re-
liable, while the output must be easily parseable for both
automated systems and humans. Images, biometric file for-
mats, and other common file structures need to be directly
supported by the toolkit API when writing evaluation appli-
cations. Errors must be handled as soon as possible in an
evaluation’s validation submission cycle to prevent wasting
resources. Evaluation- and modality-specific APIs should
be used to allow for the largest number of interested par-
ties to participate in the shortest amount of time. Code in a
biometric toolkit must be as consistent as possible, from the



most complex to the most trivial piece of functionality. All
of these pieces must scale from a low-powered laptop to a
multinode datacenter with ease. With all of these building-
blocks in one place, it will become simpler for more in-
dividuals and organizations to run reproducible biometric
technology evaluations.

Disclaimer: Certain commercial equipment, instruments, or
materials are identified in this paper in order to specify the exper-
imental procedure adequately. Such identification is not intended
to imply recommendation or endorsement by the National Institute
of Standards and Technology, nor is it intended to imply that the
materials or equipment identified are necessarily the best available
for the purpose.

References
[1] Apache. Hadoop. http://hadoop.apache.org/.

[Accessed: Apr 06, 2015]. 3
[2] B. Dorizzi, R. Cappelli, M. Ferrara, D. Maio, D. Maltoni,

N. Houmani, S. Garcia-Salicetti, and A. Mayoue. Finger-
print and On-Line Signature Verification Competitions at
ICB 2009. In Proceedings International Conference on Bio-
metrics (ICB), Alghero, Italy, pages 725–732, June 2009. 1

[3] P. Grother and M. Ngan. Face Recognition Vendor Test
(FRVT): Performance of Face Identification Algorithms.
NIST Interagency Report 8009, 2014. 1

[4] P. Grother, G. W. Quinn, J. R. Matey, M. Ngan, W. Salamon,
G. Fiumara, and C. Watson. IREX III: Performance of Iris
Identification Algorithms. NIST Interagency Report 7836,
2014. 1

[5] Idiap Research Institute. Biometrics Evaluation and Testing
(BEAT). https://www.beat-eu.org/. [Accessed:
Apr 06, 2015]. 1

[6] D. C. Ince, L. Hatton, and J. Graham-Cumming. The case for
open computer programs. Nature, 482:485–488, Feb 2012.
1

[7] ISO/IEC JTC 1/SC 37. ISO/IEC 19784-1:2006: Information
technology – Biometric application programming interface –
Part 1: BioAPI specification, 2006. 6

[8] ISO/IEC JTC 1/SC 37. ISO/IEC 19794: Information tech-
nology – Biometric data interchange formats – Parts 1–14,
2006. 5

[9] ISO/IEC JTC 1/SC 37. ISO/IEC 19795-2:2007: Information
technology – Biometric performance testing and reporting –
Part 2: Testing methodologies for technology and scenario
evaluation, 2007. 7

[10] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M.
German, and D. Damian. The Promises and Perils of Min-
ing GitHub. In Proceedings of the 11th Working Conference
on Mining Software Repositories, MSR 2014, pages 92–101,
New York, NY, USA, 2014. ACM. 4

[11] B. W. Kernighan and D. M. Ritchie. The C Programming
Language, chapter 5. Prentice-Hall software series. Prentice
Hall, 1988. 2

[12] X. Liu, J. Han, Y. Zhong, C. Han, and X. He. Implement-
ing WebGIS on Hadoop: A case study of improving small
file I/O performance on HDFS. In Cluster Computing and

Workshops, 2009. CLUSTER ’09. IEEE International Con-
ference on, pages 1–8, Aug 2009. 3

[13] R. McCabe and E. M. Newton. NIST SP 500-271: Data
Format for the Interchange of Fingerprint, Facial, & Other
Biometric Information (ANSI/NIST-ITL 1-2007), 2007. 5

[14] Neurotechnology. Fingerprint BSS (Biometric Standards
Support). http://www.neurotechnology.com/
fingerprint-components.html#bss. [Accessed:
Apr 06, 2015]. 5

[15] S. Orandi, J. Libert, J. Grantham, K. Ko, S. Wood, F. Byers,
B. Bandini, S. Harvey, and M. Garris. Compression Guid-
ance for 1000 ppi Friction Ridge Imagery, 2014. 5

[16] R. Sears, C. V. Ingen, and J. Gray. To BLOB or Not To
BLOB: Large Object Storage in a Database or a Filesys-
tem. Technical Report MSR-TR-2006-45, Microsoft Re-
search, April 2006. 3

[17] The Open MPI Project. Open MPI: Open Source High Per-
formance Computing. http://open-mpi.org. [Ac-
cessed: Apr 06, 2015]. 4

[18] C. Watson, G. Fiumara, E. Tabassi, S. L. Cheng, P. Flana-
gan, and W. Salamon. Fingerprint Vendor Technology Eval-
uation. NIST Interagency Report 8034, 2014. 1

[19] C. Watson, M. D. Garris, E. Tabassi, C. L. Wilson, R. M. Mc-
Cabe, S. Janet, and K. Ko. User’s Guide to Export Controlled
Distribution of NIST Biometric Image Software (NBIS-EC).
NIST Interagency Report 7391, 2007. 5

[20] R. Wheeler. One Billion Files: Pushing Scalability Limits of
Linux. In Red Hat Summit and JBoss World, 2011. 3


