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Abstract 
This paper identifies important factors for face recognition algorithm performance in video. The goal of 

this study is to understand key factors that affect algorithm performance and to characterize the algorithm 
performance. We evaluate four factor metrics for a single video as well as two comparative metrics for pairs 
of videos. This study carried out an investigation of the effect of nine factors on three algorithms using the 
Point-and-Shoot Challenge (PaSC) video dataset. These factors can be categorized into three groups: 1) 
image/video (pose yaw, pose roll, face size, and face detection confidence); 2) environment (environmental 
condition with person’s activity and sensor model); and 3) subject (subject ID, gender, and race). For video-
based face recognition, the analysis shows that the distribution-based methods were generally more 
effective in quantifying factor values. For predicting face recognition performance in a video, we observed 
that face detection confidence and face size serve as potentially useful quality measure metrics. We also find 
that male faces are easier to identify than female faces, and Asians are easier than Caucasians. Further, on 
the PaSC video dataset, the performance of face recognition algorithms are primarily driven by environment 
and sensor factors.  

 
Keywords: face recognition, sensitivity analysis, factor analysis, biometrics, forensics, video surveillance 

1. Introduction 

As a discipline, face recognition from video has grown due to the broad range of videos now being taken “anytime 
and anywhere” (e.g., webcam, CCTV, and mobile devices including cell phone.) Recognizing a person’s face from a 
wide spectrum of video domains presents significant challenges. Unlike static face images, a sequence of video 
contains multiple frames of the same face and it can acquire a face from multiple angles, illuminations, and 
expressions [1]. There are also numerous factors that can affect the performance of video-based face recognition 
algorithms. Beyond facial characteristics, such factors include camera types, location/background, illumination, 
subject action (e.g., pose and expression), distance, body-visible, algorithmic parameters, etc.  

Factor effect analysis (sensitivity analysis) is the study of how the output of an algorithm is affected by different 
inputs. A number of studies on factors that affect algorithm performance have been conducted [2][3][4][5]. In face 
recognition from still images, it is well understood how to assess the impact of factors on algorithm performance. 
However, generalizing factors from still images to video sequences has not been studied. For example, stating the 
pose or size of a face in a still image is straightforward, but what is the pose or size of a face in a video sequence? 

One major contribution of our study is that while these prior studies focused on the factor effects of face 
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recognition in still-based face images, our study generalizes factor value measures to video sequences. The 
generalization is based on the distribution of factors estimated from each frame. We conduct a sensitivity analysis 
based on our new methodology. We demonstrate the analysis methodology with nine factors on three algorithms 
using the Point-and-Shoot Challenge (PaSC) video dataset [6]. The three algorithms are: the open-source Local 
Region PCA (LRPCA) [7], the commercial algorithm PittPatt [8], and the Principal Angle (PA) algorithm [9][10] 
developed by Colorado State University (CSU), respectively. This study provides a comparative characterization of 
the algorithms themselves, and delivers a ranking (and understanding) of key factors that affect algorithm 
performance. 

Specifically, this work addresses the following questions: (i) What is the best manner to extend factor measures 
from still to video imagery? (ii) How do we quantify factors for video? (iii) Are such video factors suitable for 
sensitivity analysis? What are the relative important factors that affect the performance of face recognition 
algorithm in video? (iv) Are conclusions about factors robustly true over multiple algorithms? (v) Can our analysis 
methods be used to derive quality measure metrics for predicting general performance of face recognition 
algorithms?  

The impacts/contributions of this paper are as follows: 
- A determination of the most important factors (and interactions) for face recognition in video; 
- A baseline methodology framework for quantifying/generalizing factor measures for video; 
- A characterization of current face recognition technology that provides guidance on how in the real-world we 

can improve existing algorithms and develop new algorithms; 
- A leveraging of the existing factor studies on stills to the more challenging videos; and 
- A useful methodology for forming quality measure metrics for predicting algorithm performance—which 

improves on existing image quality measures by rigorously investigating and identifying key factors that 
affect algorithm performance.  

The examination of the effects of factors on the performance of biometric algorithms in the video domain is a 
relatively new research approach, and it extends the important preexisting factor studies on stills [2][3][5]. We 
believe that the methodology demonstrated herein can be applied to other video-based biometric systems (e.g., gait, 
body, iris). The methods could also be utilized in related law enforcement applications, for example, in providing a 
means to assess the relative importance of facial features (using a systematic statistical analysis), which would be an 
invaluable tool for security and forensics.  

2. Overview of Methodology and Results 

This section provides a brief overview of our methodology and results. The nine factors used in our experiment 
can be categorized into three groups: 1) image/video (pose yaw, pose roll, face size, and face detection confidence); 
2) environment (environmental condition with person’s activity and sensor/camera model); and 3) subject (subject 
identify, gender, and race). We first examine the factor measures within the image group. Figure 1 shows a summary 
of the approach and key findings for generalizing/quantifying factor values for video. 

We also investigate the cross-environment and cross-sensor analysis for factors of the environment group. For 
subject group factors, we use graphical analyses to characterize the factor effects on algorithm performance. Finally, 
for the nine factors, we carry out a sensitivity analysis and provide a ranked list of factors based on their relative 
importance to the performance of face recognition algorithms in video. A summary of the sensitivity analysis is 
illustrated in Figure 2. 
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Figure 1. Summary of factor generalization for video 

 

Figure 2. Summary of the sensitivity analysis for the nine factors; the x-axis is the factor name and its level settings, and the y-
axis is the mean response (VR at FAR=0.01); the number marked in circle indicates the ranking of the factor effects 
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In the Main Effects plot of Figure 2 (PittPatt algorithm case), the x-axis lists the factor name and its discretized 

level settings, and the y-axis is the mean response (verification rate at a false accept rate = 0.01) for a given factor 
and level. The number marked in circle indicates the ranking of the factor effects on algorithm performance. Over 
the nine factors, Environment with person’s activity had the most effect on performance in video, followed by Sensor 
and SubjectID—these conclusions were true for each of the three algorithms. We thus observe that scene/action 
actually matters for face (human) recognition—this implies the importance of isolating a subject from the 
background and of characterizing a subject’s action. 

3. Dataset 

Face images taken in controlled environments (e.g., mugshot) have a high verification rate [11]. These days, 
however, face images are often taken via mobile devices (including cell phones), which presents a number of 
challenges in terms of individual identification.  

To address these issues, the Point-and-Shoot Challenge (PaSC) dataset was recently introduced by Beveridge et al. 
[6]. Although the dataset includes both still and video imagery, our study focuses on the video sequences to 
demonstrate the analysis methodology and results.  

PaSC contains videos that were captured by six different sensors, in six different environmental conditions, with 
subject movement at a distance. Figure 3 shows an example of video frames with their corresponding environment 
with person’s activity. The sensor type is either a handheld or a tripod-mounted camera (namely, a control camera). 
Unfortunately, the five sensors (“handheld”) are indistinguishably confounded with the six environments, which 
means that sensor and environment effects are inextricably mixed. On the other hand, one of the sensors (“control”) 
has collected videos over all six environments which allows us to have a narrower conclusion of environment effect.  

The number of videos for handheld (1401) and control (1401) are evenly distributed. The environment factor in 
this study includes the subject’s different activities at different locations, indoor/outdoor, different illuminations, 
etc. The details regarding environment and sensor factors and their settings are discussed in Section 4.2. 

 

 

Figure 3. Video frame examples from the PaSC video dataset 
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Figure 4 shows example images from the FVRT2006 dataset [12] and the PaSC dataset—note the image quality 

differences between (a) traditional still-based face images, and (b) near real-world environment video-based face 
images. These differences show the challenge of recognizing a face in less-than-optimal environments, while coping 
with low video quality. Our work thus extrapolates still-based face recognition to more challenging video-based face 
recognition. 

4. Method 

Measuring characteristics of an algorithm assist in the understanding and improvement of already-developed 
algorithms as well as future algorithms [13]. In this section, we introduce examples of factor measures for 
characterizing face recognition algorithms in a video. The main goal of the analysis is to provide researchers insight 
into which factors are more important and less important to the performance of video-based face recognition. In 
addition, a systematic statistical analysis provides insight on where scientists could focus their near-term and long-
term research efforts [14], i.e. what to consider when developing future algorithms to overcome even further 
challenges.  

4.1 Algorithm and Performance 

To demonstrate the analysis methodology and its robustness, we used three face recognition algorithms: Local 
Region PCA (LRPCA) [7], Pittsburgh Pattern Recognition (PittPatt) [6], and Principal Angle (PA) [9][10]. LRPCA is an 
open source algorithm developed as a baseline for face recognition; PittPatt is a black-box commercial system; and 
PA is an image-set to image-set matching algorithm.  

Algorithm performance is normally assessed by the comparison of video pairs, which we call the query (input) 
and the target (reference) video. The first step in video-based face recognition is to detect/extract a face within each 
frame. The PittPatt detection algorithm was utilized throughout to extract face sub-images within each frame in a 
video. A face was not detected in every frame; therefore, not every frame in a video contributed a face sub-image. For 
some videos, no face was detected; we thus omitted 42 out of 1401 control videos and 20 out of 1401 handheld 
videos in this study. Our analysis is based on the 2740 videos where a face was detected in at least one frame. On 
average, a face was detected in ≈100 frames in each video.  

For LRPCA- and PittPatt-based face recognition algorithm for video, the first step is to compare all face-present 
frames within a query video to all frames in a target video. After ranking all frame pairs based on the scores, the 

        
(a) FVRT2006                                

     
(b) Sub-images from the PaSC video dataset 

Figure 4. Comparison of (a) traditional face image and (b) challenging face images from PaSC 
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frame pair with the highest similarity score [6] is then selected. In PA, all face sub-images from a video are 
preprocessed (1) by normalizing them to 32x42 pixels, and (2) by aligning the different face angles via flipping the 
non-frontal face images to face the same direction. To compute a similarity score for PA, a random subset of frames 
from each query and target video is selected, and then the principle angle is calculated between the two images sets. 
The image set consists of the normalized face regions randomly selected.  

The major difference between the (LRPCA, PittPatt) algorithms and the PA algorithm is that LRPCA and PittPatt 
ultimately use information from one frame pair to assess similarity between two videos, while the PA algorithm uses 
information of sets of images extracted from randomly sampled frames from a video. 

The total number of similarity scores calculated for all possible pairs is approximately 1.87M (= 0.92M+0.95M) for 
both control (1359) and handheld (1381) videos. Figure 5 shows the performance of the three algorithms with the 
PaSC data for control (left) and handheld (right) videos. For the control data, the PittPatt algorithm has 48 % 
verification rate (VR) at a false accept rate (FAR) = 0.01, 23 % for PA, and 10 % for LRPCA. For the handheld sensor 
data, the VR at a FAR =0.01 is 38 % for PittPatt, 19 % for PA, and 8 % for LRPCA. For both control and handheld 
videos, PittPatt has the highest performance followed by PA and LRPCA. 

4.2 Factors 

While there are many factors that can affect algorithm performance on face recognition in a video, our study 
focuses on nine: 1) face pose yaw, 2) face pose roll, 3) face size, 4) face detection confidence, 5) environment, 6) 
sensor (camera) model, 7) subject ID (individual), 8) gender, and 9) race. These factors can be categorized into local 
and global. A local factor is a measurable (typically continuous and ordinal) quantity which describes some 
particular feature, attribute, or characteristics of the image/video, and which can possibly be predictive of the 
performance of recognition algorithms. A global factor is a non-measurable (typically discrete and categorical) 
variable which describes some aspect of the image/video. For video, local factor values can change frame-by-frame, 
whereas global variables normally remain constant over the set of frames.  

In our case, the four factors yaw, roll, size, and confidence (as estimated by PittPatt SDK) are local, while the 
remaining five factors (environment, sensor, subjectID, gender, and race) are global.  

We choose these nine factors because they have greater immediate research interest (among the authors), and 

 

Figure 5. Performance of three algorithms on PaSC for control and handheld videos 
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because they serve as a useful subset to demonstrate our analysis methodology. The nine factors are described in 
detail as follows: 

1) Face pose yaw (Yaw) 
The pose yaw is the horizontal face rotational angle in degrees to the left and right. The range of the angles is 
approximately [-40⁰ to 40⁰]. 

2) Face pose roll (Roll) 
The pose roll is the angle of rolling/tilting the head to the shoulder. The PaSC video dataset has a range of [-
30⁰ to 30⁰]—outliers exist for this factor (less than 0.001 %), which we omitted from our study. 

3) Face size (Size) 
The face size is an approximation of face size (resolution) as reported by the PittPatt SDK [8]. The raw units 
for this factor range are 0 to 16 on a logarithmic scale.  

4) Face detection confidence (Confidence) 
The face detection confidence is the PittPatt SDK’s self-assessment of correct face detection [8] with a range of 
0 to 10—where larger values indicate a higher confidence for correct face detection.  

5) Environment with Activity (Environment) 
The PaSC video dataset has six different environment settings as shown in Table 1.  

Table 1. Environment information 

Code Location 
Ball Indoor 

Phone Indoor 
Paper Indoor 
Easel Indoor 

Canopy Outdoor 
Bubble Outdoor 

 
This factor is associated with multiple factors. Four key contributing factors are subject activity, background, 
indoor/outdoor, and lighting condition. Since it is difficult to separate these variables as individual factors, we 
combine these variables into a single environment factor. For example, in videos taken of the scene Ball, a 
person walks and bounces a ball indoors in front of a complex background. In the Phone scene, a person walks 
towards a phone and picks it up. For the Paper scene, a person walks while reading a paper. For the Easel 
scene, a person walks toward an easel, touches it, and leaves the scene. For the Canopy scene, a person enters 
a canopy from the outside towards the camera. Lastly, for the Bubble scene, a person walks towards a table, 
blows bubbles outside, and finally leaves the scene.   

6) Sensor 
The PaSC video dataset was collected by six different cameras as shown in Table 2.  

Table 2. Sensor (camera) information 

Code Type Sensor Model Size Env. Code 
C Control Panasonic HD700 1920x1080 All 

H1 Handheld Flip Mino F360B 640x480 Canopy 
H2 Handheld Kodak Zi8 1280x720 Phone, Canopy 
H3 Handheld Samsung M. CAM 1280x720 Paper 
H4 Handheld Sanyo Xacti 1280x720 Easel, Bubble 
H5 Handheld Nexus Phone 720x480 Ball 

 
The Panasonic HD HS 700 (coded as C) is the only stationary control camera, while the remaining entries are a 
handheld camera. The control camera was used in all six environments. The PaSC data was collected with five 
handheld cameras labeled H1 through H5. The labels were chosen to focus attention on the effects of different 
sensor and not on the make of the cameras. For the handheld cameras (H2 and H4), data was collected in two 
different environments, and for the remaining handheld cameras (H1, H3, H5), data was collected in only one 
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environment. Note that the PaSC dataset has the property that the Environment and Sensor factors are 
confounded and unbalanced. For example, one cannot separate the environment Ball effect from the sensor 
H5 effect, because the sensor H5 was the only sensor used for the environment Ball. The use of the control 
sensor C for each environment helps in this regard, but a more balanced design/dataset would have 
considerably enhanced the estimation/separation of the effects and the robustness of the environment and 
sensor factor conclusions.  

7) SubjectID (Individual) 
The PaSC data are from 265 individuals. The average number of videos per person is approximately 22. 

8) Gender 
Out of 265 subjects, the gender is fairly balanced between males (55 %) and females (45 %). 

9) Race 
The PaSC videos contain five different races: Caucasian, Asian-Pacific, Black-American, Hispanic, and 
Unknown. The population is mainly driven by Caucasians (81 %) followed by Asian-Pacific (12 %). Black-
Americans account for 2 % of the subjects, and Hispanics account for 1 %. The remaining 5 % are of unknown 
race. Some races don’t have a sufficient number of subjects for evaluation; we thus include only Caucasian 
(White) and Asian-pacific (Asian) in our race study.    

The nine factors can be divided by three groups; 1) image/video, 2) environment, and 3) subject. The four factors 
(Yaw, Roll, Size, and Confidence) are the image/video group which contains local variables. The environment group 
consists of two factors (Environment and Sensor) and the subject group consists of the three factors (SubjectID, 
Gender, and Race). These five factors are global variables. 

4.3 Factor Measures 

For the given nine factors, in this study, we have constructed metrics based on only those factors which are 
continuous, ordinal, and can change on a frame-by-frame basis, namely, Yaw, Roll, Size, and Confidence. These 
factors can potentially serve as predictors for biometric algorithm performance. We first describe how these factor 
metrics apply to still images and then discuss their extension to video. 

A. Still image 
Let 𝑞 (query) and 𝑡 (target) be two still face images. Given 𝑞 and 𝑡, an algorithm 𝐴 returns a similarity 

score 𝑆𝐴(𝑞, 𝑡), where a high score indicates that the subjects from the two face images are likely the same person. 
Let 𝑋𝑘  denote factor 𝑘 from a set of factors under consideration. For our study, 𝑋𝑘  is Yaw, Roll, Size, and 

Confidence. 𝑋𝑘(𝑞) and 𝑋𝑘(𝑡) are factor 𝑘 values from images 𝑞 and 𝑡, respectively. A goal of this study is to 
characterize and predict algorithm performance 𝑆𝐴(𝑞, 𝑡) by 𝑋𝑘(𝑞) and 𝑋𝑘(𝑡).  

Since a similarity score 𝑆𝐴(𝑞, 𝑡) is based on a pair of images, the similarity score not only is related to 𝑋𝑘(𝑞) 
and 𝑋𝑘(𝑡) individually, but also to 𝑋𝑘(𝑞) and 𝑋𝑘(𝑡) jointly. To measure such behavior of a pair of 𝑋𝑘(𝑞) and 
𝑋𝑘(𝑡), we construct a comparative metric. The comparative metric is a function of image factors that produces a 
quantitative evaluation of the similarity of the two images with respect to that factor. We denote the comparative 
metric as:  

𝑀𝑘(𝑞, 𝑡) = 𝑔(𝑋𝑘(𝑞),𝑋𝑘(𝑡)) 
To return a comparative score 𝑀𝑘(𝑞, 𝑡), we use examples of 𝑔 as follows: 
1) absolute difference (∆): |𝑋𝑘(𝑞) − 𝑋𝑘(𝑡)| 
2) extremum (𝑚𝑎𝑚/𝑚𝑝𝑚): |𝑚𝑎𝑚�𝑋𝑘(𝑞),𝑋𝑘(𝑡)� | or 𝑚𝑝𝑚(𝑋𝑘(𝑞),𝑋𝑘(𝑡)) 
For absolute difference (∆), a near-zero comparative score of ∆ indicates that factor 𝑘 values are near-identical 

between images 𝑞 and 𝑡. This absolute difference is used for all four factors. For example, for Yaw, a face pose 
direction from images 𝑞 and 𝑡 is near equivalent if ∆ is near zero.  

Before discussing the extremum approach, note that two images are considered “ideal” for comparison if 1) both 
Yaw values are near-frontal (near-zero angle), 2) both Roll values are near-frontal, 3) both Size values are large 
(higher resolution is better than smaller resolution), and 4) both Confidence values are large (higher face detection 
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confidence is better than smaller confidence). In this light, the extremum (𝑚𝑎𝑚/𝑚𝑝𝑚) approach provides the poorer 
value out of the two images. The choice of 𝑚𝑎𝑚 and 𝑚𝑝𝑚 depends on the factor; 𝑚𝑎𝑚 is used for factors Yaw 
and Roll, and 𝑚𝑝𝑚 for factors Size and Confidence. A small 𝑚𝑎𝑚 and a large 𝑚𝑝𝑚 indicate that factor 𝑘 between 
images 𝑞 and 𝑡 has the ideal factor characteristics.  

B. Extension to video 
This section describes how we extend still-based algorithms to video and encompass 𝑋𝑘  from still to video.  
The straightforward method for video is that the input to an algorithm are two videos 𝑞 and 𝑡, and the output is 

a similarity score SA(q, t). Let 𝑞 = {𝑞1, 𝑞2, … , 𝑞𝑄) frames and 𝑡 = {𝑡1, 𝑡2, … , 𝑡𝑇} frames be a set of face extracted 
images from the query and target video, respectively. To extend still-based algorithms to video, all frame-to-frame 
pairs (𝑞𝑖 , 𝑡𝑗) provide a similarity score: 

𝑆𝐴(𝑞, 𝑡) = 𝑓(𝑆𝐴(𝑞𝑖 , 𝑡𝑖)) 
Usual 𝑓 approaches are max, medium, mean, and 90th percentile. Let frame 𝑞∗ and 𝑡∗ be the best frame pair 
such that: 

𝑆𝐴(𝑞, 𝑡) = 𝑆𝐴(𝑞∗, 𝑡∗) 
For a specific A algorithm, the similarity score SA(q, t) is thus provided by that particular frame pair (q∗, t∗), 

where the similarity score was obtained by the 𝑓 function. For example, LRPCA and PittPatt are still-based face 
recognition algorithms. To return a similarity score for videos 𝑞 and 𝑡, LRPCA uses the max rule and PittPatt uses 
the 90th percentile rule [6]. 

To demonstrate extending 𝑋𝑘  from still to video for face recognition, we look at four different metrics (namely, 
single-video factor metric); 1) LRPCA best frame pair, 2) PittPatt best frame pair, 3) mean, and 4) sum of mean and 
standard deviation. The LRPCA and Pittpatt best frame pair are algorithm-dependent metrics, while the other two 
(mean and sum of mean and standard deviation) are distribution-attribute metrics.  

1) Algorithm-dependent 
For a single video, the algorithm-dependent metrics provide a factor value from one frame pair out of all 
frame-to-frame pairs (query video and target video) used by a specific algorithm.   
To extend 𝑋𝑘  from still to video, the factor values 𝑋𝑘(𝑞) and 𝑋𝑘(𝑡) are computed from corresponding 
frame 𝑞∗ for the query video and 𝑡∗ for the target video. The best frame pair method is: 

𝑋𝑘(𝑞) = 𝑋𝑘,𝐴(𝑞∗) and 𝑋𝑘(𝑡) = 𝑋𝑘,𝐴(𝑡∗) 
where 𝐴 is an algorithm for face recognition, 𝑞∗ and 𝑡∗ are particular frame pair provided by 𝐴 
algorithm. For example, the best frame pair for the LRPCA algorithm, we denote the factor Yaw values as 
𝑌𝑎𝑤𝑙𝑙𝑙𝑙𝑙(𝑞∗) and 𝑌𝑎𝑤𝑙𝑙𝑙𝑙𝑙(𝑡∗) and for the PittPatt algorithm as 𝑌𝑎𝑤𝑙𝑖𝑏𝑏(𝑞∗) and 𝑌𝑎𝑤𝑙𝑖𝑏𝑏(𝑡∗).  

 
2) Distribution-attribute 

The distribution-attribute provides a factor value that is derived from the distribution of all frames within a 
video and we thus define as: 

𝑋𝑘(𝑞) = ℎ(𝑞1, 𝑞2, … ,𝑞𝑄) and 𝑋𝑘(𝑡) = ℎ(𝑡1, 𝑡2, … , 𝑡𝑇) 
Examples of ℎ are mean (𝜇) and sum of mean and standard deviation (𝜇 + 𝜎). 𝜇 is location-based metric 
and 𝜇 + 𝜎 combines the location-based metric and the spread-sensitive metric.    
The comparative metric for videos 𝑞 and 𝑡 is defined as: 

𝑀𝑘(𝑞, 𝑡) = 𝑔(ℎ�𝑞1, 𝑞2, … , 𝑞𝑄�, ℎ(𝑡1, 𝑡2, … , 𝑡𝑇)) 
where the 𝑔 function for videos is the same as the still cases. 

For each of these four metrics, we shall consider two functions 𝑔 (∆ and 𝑚𝑎𝑚/𝑚𝑝𝑚 )—this thus leads to a total of 
eight metrics for each factor (See Table 3 for further details.) 
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5. Analyses and Results 

This section discusses the analysis methods and results for the nine factors for each of the three algorithms 
(PittPatt, PA, and LRPCA). We first examine the eight factor metrics (four single-video times two comparative 
metrics) for factors Yaw, Roll, Size, and Confidence within the image/video group. Second, we investigate the cross-
domain analysis for the environment group factors (Environment and Sensor). Third, we present results for the 
subject group factors (SubjectID, Gender, and Race). Finally, for the nine factors, we carry out a sensitivity analysis 
and provide a ranked list of factors based on their relative importance to the performance of face recognition 
algorithms in video. 

5.1 Yaw, Roll, Size, and Confidence Analysis 

The factor metrics introduced in Section 4.3 can be applied to only the local factors since these factor values are 
measurable and change on a frame-by-frame basis. We choose the four single-video metrics (𝑙𝑙𝑙𝑙𝑎𝑏𝑏𝑏𝑏 , 𝑙𝑝𝑡𝑡𝑙𝑎𝑡𝑡𝑏𝑏𝑏𝑏 , 
𝜇, and 𝜇 + 𝜎) and the two comparative metrics (∆ and 𝑚𝑝𝑚/𝑚𝑎𝑚) for our experiment. For each of the four local 
factors, Table 3 summarizes the 8 (4 x 2) metrics. 

Table 3. Summary of factor metrics for each of the four factors (Yaw, Roll, Size, and Confidence) 

Factors 𝑀𝑘(𝑞, 𝑡) 

Algorithm-dependent Distribution-attribute 

LRPCA Best Frame 
Pair (𝑙𝑙𝑙𝑙𝑎𝑏𝑏𝑏𝑏) 

PittPatt Best Frame 
Pair (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑏𝑏𝑏𝑏) 

Mean 
(𝜇) 

Mean+SD  
(𝜇 + 𝜎) 

Yaw 
∆𝑌 ∆𝑌𝑙𝑙𝑙𝑙𝑙 ∆𝑌𝑝𝑝𝑝𝑝 ∆𝑌𝜇 ∆𝑌𝜇+𝜎 

𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑌𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝑌𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑌𝜇 𝑚𝑚𝑚𝑌𝜇+𝜎  

Roll ∆𝑅 ∆𝑅𝑙𝑙𝑙𝑙𝑙 ∆𝑅𝑝𝑝𝑝𝑝 ∆𝑅𝜇 ∆𝑅𝜇+𝜎 
𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑅𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝑅𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑅𝜇 𝑚𝑚𝑚𝑅𝜇+𝜎  

Size 
∆𝑆 ∆𝑆𝑙𝑙𝑙𝑙𝑙 ∆𝑆𝑝𝑝𝑝𝑝 ∆𝑆𝜇 ∆𝑆𝜇+𝜎 
𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑆𝑙𝑙𝑙𝑙𝑙  𝑚𝑚𝑚𝑆𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑆𝜇 𝑚𝑚𝑚𝑆𝜇+𝜎 

Confidence 
∆𝐶 ∆𝐶𝑙𝑙𝑙𝑙𝑙 ∆𝐶𝑝𝑝𝑝𝑝 ∆𝐶𝜇 ∆𝐶𝜇+𝜎 
𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝐶𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝐶𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝐶𝜇 𝑚𝑚𝑚𝐶𝜇+𝜎 

 
In this section, we analyze how these four factors affect algorithm performance. We are primarily interested in 

answering the following questions; 
1) How do the suggested eight metrics relate to algorithm performance? 
2) How do the “algorithm-dependent” metrics and the “distribution-attribute” metrics affect algorithm 

matching scores? 
3) Are these conclusions robustly true for all three algorithms? 
4) Do these metrics serve as quality measure metrics for predicting the performance of face recognition for the 

PaSC videos? 
We first examine the histogram-scatter plots shown in Figure 6. The first set of plots depicts the relationship 

between the PittPatt matching scores and the factor values calculated by PittPatt best frame pair metric. The second 
set depicts the relationship between the PA matching score and mean metric. The third set depicts the relationship 
between the LRPCA matching scores and the LRPCA best frame pair metric. The horizontal axis shows the eight 
cases with comparative metrics “difference (∆)” and “extremum (𝑚𝑎𝑚/𝑚𝑝𝑚)” for each of the four factors—see the 
different shape of histogram distributions between the “difference” and “extremum” metric. The vertical axis for the 
scatter plot is similarity (matching) scores in a total of 5986 genuine video pairs. The third row shows correlation 
coefficients (%) between factor metrics and matching scores. It is known from the iris-based biometrics study [12] 
that classification accuracy is primarily driven by matching scores, not non-matching scores. We observed the same 
for video-based face recognition in our analysis (not shown)—that is, the shape and location of the non-matching 
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score distribution are more steady (contribute less to classification) across different image quality conditions. Note 
that the histogram distribution shapes for each separate control and handheld dataset are relatively similar to the 
shapes for the combined (control+handheld) video data; hence we chose to show the results for all 
(control+handheld) videos only.  

Figure 6 (a) shows that, for the eight metrics for the PittPatt algorithm, 𝑚𝑝𝑚𝐶𝑙𝑖𝑏𝑏 has the highest correlation (43 
%) for all (control+handheld) videos--this observation is consistent for control-only (59 %) and handheld-only (41 
%).  

Figure 6 also shows that the Confidence factor with the comparative metric 𝑚𝑝𝑚 (namely, 𝑚𝑝𝑚𝐶) has the 
highest correlation with matching scores for all three algorithms (PittPatt: 43 %, PA: 49 %, LRPCA: 53 %). This 
indicates the important result that the selection of the poorer value for the Confidence factor between the query and 
target video has higher correlation with algorithm performance than do the other comparative metrics.  

 

   

 

 
Figure 6. Correlations of the factor metrics and matching scores for factors Yaw, Roll, Size, and Confidence on the PaSC 

(control+handheld) video dataset; (a) PittPatt, (b) PA, and (c) LRPCA  

Table 4 is a summary of the correlations for each of the three algorithms for all metrics and all data 
(control+handheld). Note that Figure 6 depicts a subset of the (metric, matching score) correlations for each of the 
three algorithms. The shaded regions within Table 4 correspond to correlations in Figure 6. For the eight metrics, 
the correlation coefficients marked in bold (Table 4) are the highest. The bold items reaffirm that 𝑚𝑝𝑚𝐶 has the 
highest correlation for all single-video factor metrics across all three algorithms.  
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Table 4. Correlation (%) of each of the four factors and eight metrics over the three algorithms (control+handheld) 

Algs Factors 𝑀𝑘 Algorithm-dependent Distribution-attribute 
𝑙𝑙𝑙𝑙𝑎𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑏𝑏𝑏𝑏 𝜇 𝜇 + 𝜎 

PittPatt 

Yaw ∆𝑌 -31 -10 -26 -26 
𝑚𝑚𝑚𝑚 0 5 8 8 

Roll ∆𝑅 -8 -8 -15 -13 
𝑚𝑚𝑚𝑚 -5 -8 -9 -8 

Size ∆𝑆 -3 -5 -17 -18 
𝑚𝑚𝑚𝑚 29 19 35 40 

Confidence ∆𝐶 -20 -19 -30 -27 
𝑚𝑚𝑚𝑚 42 43 50 46 

PA 

Yaw ∆𝑌 -30 -4 -27 -30 
𝑚𝑚𝑚𝑚 3 7 8 9 

Roll ∆𝑅 -4 -2 -12 -10 
𝑚𝑚𝑚𝑚 0 0 1 2 

Size ∆𝑆 5 1 -6 -8 
𝑚𝑚𝑚𝑚 16 12 23 30 

Confidence ∆𝐶 -20 -17 -30 -29 
𝑚𝑚𝑚𝑚 41 40 49 49 

LRPCA 

Yaw ∆𝑌 -38 -8 -35 -37 
𝑚𝑚𝑚𝑚 7 12 13 13 

Roll ∆𝑅 -10 -4 -15 -14 
𝑚𝑚𝑚𝑚 -5 -3 -6 -6 

Size ∆𝑆 -5 -2 -14 -16 
𝑚𝑚𝑚𝑚 18 8 19 25 

Confidence ∆𝐶 -21 -17 -30 -27 
𝑚𝑚𝑚𝑚 54 51 62 60 

 

Figure 7. Ranking of the 32 (factor, metric) combinations based on |correlation| (%) of PittPatt’s matching scores and metrics for 
the four factors (Yaw, Roll, Size, and Confidence)  
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To further assess the relative importance of the various (factor, metric) combinations, we sort and plot the 
|correlation coefficients| (%) based on Table 4; Figure 7 shows the ranks for all data for the PittPatt algorithm. 

The x-axis is the 32 (factor, metric) combinations ordered by |correlation| (%) and the y-axis is the absolute 
correlation given as percentage (%). The legend shows only the top five and bottom five rankings. Figure 7 shows 
that the PittPatt matching score is most highly correlated (50 %) with 𝑚𝑝𝑚𝐶𝜇, and is least correlated (0 %) with 
𝑚𝑎𝑚𝑌𝑙𝑙𝑙𝑙𝑙 . For PittPatt, 𝑚𝑝𝑚𝐶 is present in the top four rankings. 

For all data (control+handheld), we investigate the rank number for the 32 (factor, metric) combinations for the 
PittPatt case only. For the comparative metrics, the results show that ∆ is the best for Yaw and Roll, while the 
extreme (𝑚𝑝𝑚) is the best for Size and Confidence. 

To further highlight the ranking of the PittPatt case in Table 4, we extracted the best comparative metric for each 
of the four factors and reordered the rows by the row average and the columns by the column average—note that 
PittPatt’s best value (“50”) in Table 4 leads to the best ranking (“1”) in Table 5. 

Table 5. Ranking (1=best) of the chosen comparative metrics with the four single-video metrics for PittPatt (control+handheld) 

Factors 𝑀𝑘 𝜇 𝜇 + 𝜎 𝑙𝑙𝑙𝑙𝑎𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑏𝑏𝑏𝑏 Average 

Confidence 𝑚𝑚𝑚𝑚 1 2 4 3 2.5 
Size 𝑚𝑚𝑚𝑚 6 5 9 14 8.5 
Yaw ∆𝑌 11 11 7 20 12.3 
Roll ∆𝑅 18 19 22 22 20.3 

Average 9.0 9.3 10.5 14.8  
 
Table 5 indicates that Confidence/𝑚𝑝𝑚𝐶 has the highest correlation with algorithm performance (the average 

rank of 2.5) followed by Size/𝑚𝑝𝑚𝑆 (8.5), Yaw/∆𝑌 (12.3), and Roll/∆𝑅 (20.3). For single-video metrics, the 
distribution-based metric 𝜇 has the highest rank (9.0) and 𝜇 + 𝜎 the second highest (9.3). On the other hand, the 
algorithm-dependent metric 𝑃𝑝𝑡𝑡𝑃𝑎𝑡𝑡𝑏𝑏𝑏𝑏  has the lowest average rank (14.8), even for the PittPatt algorithm.  

To assess the robustness of our conclusions, Figure 8 illustrates the ranked (factor, metric) combinations for all 
three algorithms. 

 
Figure 8. Ranking of the 32 (factor, metric) combinations for all three algorithms—ordered by the PittPatt results 
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The red dotted line is the ranking for PittPatt, green for PA, and blue for LRPCA. The (factor, metric) combinations 
are ordered by the PittPatt results. Figure 8 indicates that the best two metrics (𝑚𝑝𝑚𝐶𝜇  and 𝑚𝑝𝑚𝐶𝜇+𝜎) are the best 
for all three algorithms. With obvious exceptions, the general trend of all three algorithms is similarly decreasing. 
Although algorithm-dependent metrics were yielded from the LRPCA or PittPatt algorithms, these algorithm 
matching scores still have a higher correlation with either 𝑚𝑝𝑚𝐶𝜇 and 𝑚𝑝𝑚𝐶𝜇+𝜎 , which emanate from distribution-
attribute type. 

 

  

 

 

Figure 9. Comparison of the algorithm-dependent (alg-dep) and distribution-attribute (dis-att) approach for all three 
algorithms for each of the control and handheld; (top) Control, (bottom) Handheld 
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From the PittPatt results in Table 5, we see that the distribution-attribute metrics (𝜇 and 𝜇 + 𝜎) are most highly 

correlated with the matching scores. We now reaffirm/extend these conclusions of robustness to the other 
algorithms (PA and LRPCA) for both the control-only and handheld-only data. We are primarily interested in the 
following two questions:  

1) Which of the four metrics (1: 𝑙𝑙𝑙𝑙𝑎𝑏𝑏𝑏𝑏 , 2: 𝑙𝑝𝑡𝑡𝑙𝑎𝑡𝑡𝑏𝑏𝑏𝑏 , 3: 𝜇, and 4: 𝜇 + 𝜎) is most highly correlated with 
algorithm matching scores for the three algorithms and for each of the control and handheld data?  

2) Which of the two approaches (algorithm-dependent vs. distribution-attribute) is most correlated with the 
matching scores for the three algorithms and for each of the control and handheld data?  

To this end, we use the block plot shown in Figure 9; the top plot is based on the control data ordered by 
Confidence (𝑚𝑝𝑚𝐶), Size (𝑚𝑝𝑚𝑆), Yaw (∆𝑌), and Roll (∆𝑅); the botton plot is based on the handheld data. The four 
items within each block are the four metrics, with blue indicating algorithm-dependent and red indicating 
distribution-attribute. 

For Figure 9 (top), the x-axis consists of the three algorithms (PittPatt, PA, and LRPCA) for each of the four factors. 
The y-axis is the |correlation| (%) of the four metrics with the matching scores.  

Across all three algorithms over the control and handheld data (except the Yaw (∆𝑌) for the handheld case), 
overall, the distribution-attribute metrics (𝜇 and 𝜇 + 𝜎) perform better than the algorithm-dependent metrics 
(𝐿𝑅𝑃𝐶𝐴𝑏𝑏𝑏𝑏 , 𝑃𝑝𝑡𝑡𝑃𝑎𝑡𝑡𝑏𝑏𝑏𝑏).   

In summary, for video-based face recognition, the distribution-attribute approach can be more effective than the 
algorithm-dependent approach for measuring factor values. We also observe that the face detection confidence 
followed by face size may serve as a quality measure metric for predicting video-based face recognition 
performance. 

5.2 Cross-Domain Environment and Sensor Analysis 

In this section, we conduct a cross-domain analysis by including the Environment and Sensor factors. The cross-
domain analysis here indicates examining the effects of cross-environment or cross-sensor on the performance of 
algorithms. This analysis addresses the following questions: 

1) What is the ranking of algorithm performance across all (query and target) combinations of environments or 
sensor types? 

2) Are the environment and sensor conclusions robustly true for all three algorithms (PittPatt, PA, LRPCA)? 
3) Can we characterize algorithm performance based on environment or sensor type (e.g. indoor/ outdoor or 

control/handheld effects)? 
Since the environment factor is confounded by different sensor models, we examine a cross-environment effect 

for control and handheld video data separately. 
Figure 10 shows the results of the environment analysis for control (top) and handheld (bottom)—note that the 

control camera was used in all six environments, while other handheld cameras were used in only one or two 
environments, with obvious confounding implications. Considering query and target pairs, the PaSC video dataset 
yielded a total of 16 environment combinations (out of 36 possible). 

The x-axis illustrates these16 combinations, and the y-axis is the VR at FAR=0.01. The red line is the results for 
PittPatt, green for PA, and blue for LRPCA—VR results are ordered by PittPatt’s verification rate. For example, in the 
control case, the VR of the far-right pair {Phone, Paper} is 93 % verification rate for PittPatt, 57 % for PA, and 38 % 
for LRPCA. 

For both control and handheld cases, in general, the performance follows a similar pattern for all three 
algorithms—the pair {Canopy, Canopy} has the lowest VR for PittPatt and LRPCA, and {Ball, Canopy} for PA. For the 
control case, the pair {Phone, Paper} has the highest performance for PittPatt (93 %), {Ball, Paper} for PA (65 %), 
and {Phone, Easel} for LRPCA (55 %). For the handheld case, {Phone, Easel} has the highest performance for both 
PittPatt (92 %) and LRPCA (49 %) and {Phone, Paper} for PA (62 %). For all three algorithms, the results from the 
control data have generally higher performance than the handheld data.  
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Figure 10. Performance ranking by environment combinations (16 pairs of query and target) for PittPatt, PA, and LRPCA —

performance are ordered by PittPatt; (top) Control (bottom) Handheld  

 
We also observe that all Canopy or Bubble pairs have a lower performance, while Ball, Phone, Paper, and Easel 

have a higher performance. This observation is robustly true for all three algorithms for both control and handheld 
data. Interestingly, both Canopy and Bubble scenes were taken outdoors while the others (Ball, Phone, Paper, and 
Easel) were taken indoors.  

Next, we investigate how a cross-sensor type affects performance for all three algorithms.  
Figure 11 shows the results of the six different sensor models. The x-axis represents all query and target 

combinations (13) across sensor models; note that the pair {C, C} is only from the control camera and the rest are 
pairs from the handheld camera.  
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Figure 11. Performance ranking by the sensor (query and target) combinations (13 pairs) for all three algorithms—performance 
is ordered by PittPatt 

 
The performance ranking for sensor pairs has a relatively similar pattern for all three algorithms. The results 

show that pair {H4, H4} has the lowest performance for both PittPatt (16 %) and LRPCA (0 %), and {H2, H2} for PA 
(2 %). On the other hand, {H2, H3} has the highest for both PittPatt (69 %) and PA (38 %), and {H2, H4} for LRPCA 
(25 %).  

Although the pair {C, C} marked in circle is from the control camera, their verification rates are not best for all 
three algorithms—note that “C” is the only sensor that was used by all six different environments (see Table 1 and 
Table 2). This result indicates that the Environment and Sensor factors may have an interaction effect (due to 
environment and sensor confounding in the PaSC video dataset).  

5.3 Subject ID, Gender and Race Analysis 

In this section, we address the following questions for subjectID, Gender, and Race factors.  
1) How do the three algorithms perform by subject? 
2) Is algorithm performance robust over male vs. female? 
3) Is algorithm performance robust over race? 

To address the first question, Figure 12 provides the ranks of the matching scores by subject for all three 
algorithms for both datasets (control+handeld).  

The x-axis is the subject ID of 265 individuals with the total number of videos for each person. For example, 
6082/20 indicates that a total of 20 videos were taken from the subject ID 6082. The y-axis is the median value of 
the similarity (matching) scores out of the total number of videos per person—the scores for the three algorithms 
are normalized to the interval (0, 1), and a higher score implies a better similarity for all three algorithms. The red 
line represents the results for PittPatt, green for PA, and blue for LRPCA—265 subjects are ordered by the PittPatt’s 
similarity scores.  
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Figure 12. The three algorithms performance by 265 subjects (control+handheld); the x-axis is the subject ID with the total 
number of videos for each subject; the y-axis is the median value (out of a total videos) of the matching scores per subject.  

Our results show that the pattern of algorithm performance by subject is markedly different amongst the three 
algorithms—the best subjects for PittPatt may not be the best subjects for PA and LRPCA. This conclusion is 
consistent across all (control+handheld), control-only, and handheld-only datasets.  

Next, we investigate how gender affects algorithms performance. Out of 265 subjects, the PaSC video data 
contains 146 males and 119 females. Figure 13 shows algorithm performance by gender. The x-axis illustrates the 
three algorithms for control and handheld separately and the y-axis is the VR at a FAR=0.01. Across all six cases, we 
observe that males have higher verification rate than females. 

Lastly, we examine the three algorithms performance by race. Out of 265 subjects, 214 people are Caucasians 
(White) and 33 people are Asian-Pacific (Asian). Due to a small number of subjects for Black-American (5), Hispanic 
(1) and Unknown (12), we omit these races in our evaluation. Figure 14 shows that, for both control and handheld 
data, Asians have higher verification rate than Whites, and the conclusion is robustly consistent across all three 
algorithms. For video-based face recognition, we thus observe that Asians are easier than Caucasians for 
verification. 

Though independence issues are a consideration for the gender and race analysis, the sample sizes are markedly 
large, which yield negligibly small confidence limits. 

  
 

ID: 
Total Videos: 
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Figure 13. The three algorithms performance by gender 

 

 

Figure 14. The three algorithms performance by race 

5.4 Sensitivity Analysis for the Nine Factors  

This section discusses the ranked list of important factors on algorithm performance. We investigate each factor 
effect and compare its relative effect on three algorithm’s performance. Figure 15 shows main effects plots for the 
nine factors for the combined control and handheld video data; the first plot (a) is the results for PittPatt, the second 
plot (b) for PA, and the last plot (c) for LRPCA.  

Note that the results from control-only and handheld-only data are relatively similar to the results from all 
(control+handheld) data; we thus illustrate the main effect plot for all (control+handheld) only.  



20 
 
 
 
 
 

 

 

 

Figure 15. Summary of the nine factors effect for (a) PittPatt, (b) PA, and (c) LRPCA from all video data 

 
In Figure 15 (a), the x-axis lists the factor name and its (selected) discretized level settings, and the y-axis is the 

response (VR at FAR=0.01). A steeper sloped line (large magnitude) indicates that a factor has a greater effect on the 
performance while a flatter line indicates that the factor has a lesser effect.  

Based on the results of Section 5.1, the four factors within the image group are computed from the single-video 
factor metric “mean” with the comparative metric ∆ for Yaw and Roll, 𝑚𝑝𝑚 for Size and Confidence. The choice of 
the level settings was done as follows: for each of the four factors, we marginally divided the settings into three 
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levels: S (small), M (middle), L (large). For the two factors from the environment group, we select VRs of the lowest, 
medium, and highest out of all combinations. In the PittPatt case, for the Environment factor, the lowest pair is 
{Canopy, Canopy}, the medium {Paper, Canopy}, and the highest {Phone, Easel}. For Sensor, the lowest of the pair is 
{H4, H4}, the median {C, C}, and the highest {H2, H3}—see details in Section 5.2. Out of three factors within the 
subject group, the SubjectID settings were divided into the three levels (S: Small, M: Middle, L: Large) based on the 
ordered individual performance. The gender factor has two levels (M: male, F: female), and the race with the two 
levels (W: White, A: Asian)—see details in Section 5.3. 

Within the image group, for PittPatt, Confidence and Size have the highest effect on algorithm performance 
followed by Yaw. For PA, these four factors have less effect on performance and the most important factor is 
Confidence and Size. For LRPCA, these four factors have little effect on algorithm performance. Within the 
environment group, the Environment with Activity factor has slightly higher effect than Sensor. For the subject 
group, SubjectID (individual) has the highest impact on performance for PittPatt but a lesser effect for PA and 
LRPCA. For each of the three groups, the environment group has the highest effect on performance across all three 
algorithms. These conclusions are robustly consistent over all three algorithms. Though independence issues are a 
consideration, the pair (query and target) sample sizes are markedly large, which yield negligibly small confidence 
limits and corresponding statistical significance. 

For all (control+handheld) videos, the ranked list of the relative importance of the nine factors for each of the 
three algorithms is as follows. 

For PittPatt: 
1) Environment with Activity  
2) SubjectID 
3) Sensor 
4) Confidence, Size, Yaw 
5) Gender, Race, Roll 
For PA: 
1) Environment with Activity 
2) Sensor 
3) SubjectID 
4) Confidence, Size, Yaw 
5) Gender, Race, Roll 
For LRPCA: 
1) Environment with Activity 
2) Sensor 
3) Race, SubjectID, Confidence, Yaw, Size, Gender, Roll  

In summary, the ranked lists are relatively similar across all three algorithms. Out of the nine factors, 
Environment with Activity is the most important and {Gender, Race, and Roll} are the least important factors—this 
conclusion is robustly true across all three algorithms for both control and handheld. 

6. Discussions and Conclusions 

We presented an analysis method to examine factor effects on face recognition algorithms in a video. Using the 
PaSC video dataset, nine factors from three groups (image/video, environment, and subject) were investigated to 
examine their impacts on the performance of three algorithms (PittPatt, PA, and LRPCA). We also introduced and 
studied four single-video and two comparative factor metrics for characterizing face recognition algorithms in a 
video.  

For the comparative metrics, and for the four factors (Yaw, Roll, Size, and Confidence) within the image group, we 
found that the “extremum” approach performed better for Confidence (𝑚𝑝𝑚𝐶) and Size (𝑚𝑝𝑚𝑆), while the 
“difference” approach performed better for Yaw (∆𝑌) and Roll (∆𝑅). For single-video metrics, the distribution-
attribute metrics (𝜇 and 𝜇 + 𝜎) performed better than the algorithm-dependent (frame-to-frame) metrics—thus, 
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the distributional approach is generally more effective to quantify factor values for video-based face recognition. 
These conclusions were robustly consistent over all three algorithms and for each of control and handheld videos.  

We also observed that the face detection confidence followed by face size can potentially serve as a quality 
measure metric for predicting face recognition performance in video. 

We next conducted a cross-domain analysis for the two factors (Environment and Sensor) within the environment 
group. For this environment factor, we reaffirmed that videos taken outdoors are indeed more challenging than 
indoors for recognizing a person using the face—this conclusion agreed with a previous study on the FRVT2006 
dataset done by Beverage et al. [4]. For the Sensor factor, the pair of the control video data performed no better than 
other handheld data—thus, we found that the environment and sensor factors have an interaction effect due to 
these two factors being confounded in the PaSC dataset. 

For the subject group, the trend of algorithm performance by the SubjectID factor is markedly different over the 
three algorithms. For gender, we also found that male had a higher verification rate than female, and for race, Asian 
had a higher verification rate than White. These gender and race conclusions were robustly consistent across all 
three algorithms, and for each of the control and handheld datasets.  

In summary, over the nine factors, Environment with person’s activity had the most effect on algorithm perfor-
mance in a video, followed by Sensor and SubjectID—these conclusions were true for each of the three algorithms, 
and for both control and handheld. We thus conclude that scene/action actually matters for face (human) 
recognition—this implies reinforcing the importance of isolating a subject from the background, or characterizing a 
subject’s action.  
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