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Abstract 
 
The National Institute of Standards and Technology (NIST) conducts an ongoing series of Speaker 
Recognition Evaluations (SRE). Speaker detection performance is measured using a detection cost 
function defined as a weighted sum of the probabilities of type I error and of type II error. The 
sampling variability can result in measurement uncertainties. Thus, the uncertainties of the detection 
cost functions must be taken into consideration in SRE. In our prior study, the data independence 
was assumed while applying the nonparametric two-sample bootstrap methods based on our 
extensive bootstrap variability studies on large datasets to compute the standard errors (SE) of 
detection cost functions. In this article, the data dependency caused by multiple usages of the same 
subjects is taken into account. Hence, the data are grouped into target sets and non-target sets, and 
each set contains multiple scores. One-layer and two-layer bootstrap methods are proposed based on 
whether the two-sample bootstrap resampling takes place only on target sets and non-target sets, 
respectively, or subsequently on target scores and non-target scores within the sets. The SEs of the 
detection cost function using these two methods along with those with the assumption of data 
independency are compared. It is found that the data dependency increases both estimated SEs and 
the variations of SEs. Thus, in order to obtain more accurate measures in SRE, the data should be 
sampled randomly. Based on our research, some suggestions regarding the test design are provided. 
 
 
 
 
 
 
 
 
 
Keywords: Speaker recognition evaluation; Biometrics; Bootstrap; Data dependency; Resampling; 
Uncertainty; Standard error; Confidence interval. 
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1 Introduction 
 
The National Institute of Standards and Technology (NIST) conducts an ongoing series of Speaker 
Recognition Evaluations (SRE) [1]. The NIST SREs have made important contributions to the 
direction of research efforts and the calibration of technical capabilities of the research community 
working on the general problem of text independent speaker recognition. 
 
Each test in the NIST SRE has consisted of a sequence of trials, where each trial consists of a model 
speaker, based on the training data provided, and a test speech segment. For each trial, the speaker 
recognition system must decide whether the speech of the model speaker occurred in the test speech 
segment and generate a similarity score. Target (non-target) trials are those where the test speech 
segment contains (does not contain) speech of the model speaker defined in the training data. A 
higher similarity score indicates greater confidence that the speech of the model speaker occurs in 
the test speech segment. In the 2008 NIST SRE, each test generally included about 20,000 target 
scores and 80,000 non-target scores [1, 2]. 
 
In the NIST SRE, the speaker detection performance is measured using a detection cost function, 
which is defined as a weighted sum of the probabilities of type I error (miss) and of type II error 
(false alarm) [1]. As is well-known, the sampling variability results in uncertainties of any measures 
[3]. Even when samples are collected under the same circumstances, the measures in evaluation may 
fluctuate. Hence, while evaluating and comparing the performances of speaker recognition systems, 
the uncertainties of measures must be taken into account. A key issue is how to calculate the 
uncertainties of detection cost functions in terms of standard errors (SE). 
 
The probabilities of type I error and type II error represent a tradeoff. In other words, these two 
probabilities are negatively correlated. It is hard to compute analytically the covariance term (i.e., 
the cross term) of such two correlated probabilities, the linear combination of which forms the 
detection cost function in SRE. As a result, it is difficult to calculate the variance of such a detection 
cost function analytically. In our prior study of the SRE, the uncertainties of detection cost functions 
were computed using nonparametric two-sample bootstrap methods based on our extensive 
bootstrap variability studies on large datasets, using the assumption of data independence [3-9]. 
 
The two samples involved are the set of target scores and the set of non-target scores, and they 
constitute two distributions [3, 6]. A detection cost function is characterized by the relationship 
between these two distributions [10, 11]. These two distribution functions characterize the speaker 
recognition system that generates them. In other words, the performance of a system is determined 
by both target matching and non-target matching effectiveness. All statistics of interest in SRE are 
influenced by the combined impact of these two samples. 
 
Furthermore, it is known from previous biometric studies that these two distributions 1) usually do 
not have well defined parametric forms; 2) may be considerably different even for the same system; 
and 3) may vary substantially from system to system, which differentiates systems in terms of 
matching accuracy [10]. Similar variations of distributions were also observed in the speaker 
recognition data. An example can be found in Ref. [9]. This suggests that the nonparametric 
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statistical analysis is appropriate for evaluating speaker recognition data, and the empirical 
distribution is assumed for each of the observed scores. 
 
The bootstrap method assumes that an independent and identically distributed (i.i.d.) random sample 
of size n is drawn from a population with its own probability distribution. With the i.i.d. assumption, 
the bootstrap units are scores in the sample. However, the NIST speaker recognition data contains 
dependency. In this article, this data dependency is taken into account. 
 
The data dependency is caused by multiple usages of the same subject in order to create more target 
and non-target scores. The data dependency is complicated, due in part to the way the data was 
collected. There are several ways to interpret the dependencies of the data. How the sample is 
grouped into sets can impact the bootstrap results. 
 
In this article, data dependency is determined based purely upon whether the training speaker 
identification (id) number is used multiple times. Those target scores and non-target scores 
generated using the same training speaker id number are grouped into a target set and a non-target 
set, respectively. This recognizes the data dependency while the bootstrap resampling takes place. 
Thus, the speaker recognition data structure has two layers: The first layer consists of the target sets 
and non-target sets, and the second layer consists of the target scores and non-target scores within 
the sets. 
 
It should be noted that there are other forms of data dependency not taken into account by this 
procedure. Different non-target trials involving a specific training speaker may involve the same test 
segment speaker. Further, different trials involve the same or different recording channels (telephone 
or multiple types of room microphone) of the speakers involved. Also varying are the speech styles 
(including conversational telephone or face-to-face interview) of the speakers, and the extent of high 
or low or normal vocal effort encouraged. In some cases different trials involve the same speech of 
the training speaker, or of the test segment speaker (or both), but recorded over different 
microphones. Further work will be necessary to address these types of data dependency. 
 
In addition to a bootstrap method in which all data are assumed to be i.i.d., based on the data 
structure stated above, one-layer and two-layer bootstrap methods are proposed based on whether 
the nonparametric two-sample bootstrap resampling takes place only on the first layer of the data, 
i.e., the target sets and non-target sets, or subsequently on the second layer, i.e., the target scores and 
non-target scores within the sets. Resampling on the first layer indicates that the bootstrap units are 
sets, while resampling on the second layer means that the bootstrap units are the scores within a set, 
where the similarity scores are assumed to be conditionally independent. 
 
Different target (non-target) sets may have different numbers of target (non-target) scores. This 
would cause each target (non-target) score to not have the same probability of being selected while 
the bootstrap resampling is carried out using the above three bootstrap methods. In order to avoid 
this, the speaker recognition data was adjusted so that all target sets would contain the same number 
of scores and likewise for the non-target sets. In the meantime, the total numbers of target scores and 
non-target scores obtained should be kept as large as possible. 
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After data adjustment, the probability for each target (non-target) score being selected becomes the 
same for the above three bootstrap methods. Thus, the SEs of the detection cost functions computed 
using the three bootstrap methods may be compared. Further, the bootstrap method is a stochastic 
process. The results will vary for different runs, and thus constitute a probability distribution. Some 
results may be more probable and others less probable. Hence, the comparisons of SEs of the 
detection cost functions may involve the comparisons of the distributions of SEs. It is found that 
taking account of the data dependency increases the estimated SEs and the variations of SEs. Thus, 
in order to obtain more accurate measures in SRE, the data should be sampled randomly. 
 
The bootstrap method on datasets with dependencies was initially studied in the references [5, 12], 
and applied to other cases later [13, 14]. In this article, the nonparametric two-sample bootstrap, 
rather than the one-sample bootstrap is employed. The two-sample bootstrap can be used to compute 
uncertainties of much more complicated measures, such as the detection cost function that is defined 
as a weighted sum of the probabilities of type I error and of type II error. Further, the probability 
issues of similarity scores being selected are investigated while dealing with different resampling 
methods in bootstrap. 
 
All similarity scores of the speaker recognition systems are real numbers. While analyzing the data, 
all real numbers were converted into integers. Different systems employ different numbers of digits 
in the integer part. Hence, in order to obtain accurate results, five decimal places (i.e., multiplying by 
105) or up to seven decimal places (i.e., multiplying by 107) were preserved. Notice that if the largest 
integer score is excessively large, the computation can take an excessive amount of time. This is 
because it has to cover the range of the highest score down to the threshold provided by a vendor 
each time while computing thousands of bootstrap replications of the detection cost function. The 
probability distribution functions of similarity scores are all discrete [3, 10]. It is characteristic for 
the speaker data that only a few instances occur of different similarity scores taking exactly same 
matching values [3, 6]. 
 
Issues related to notations of sets and scores, the three resampling methods and the related 
probabilities, and the adjustment of the speaker recognition datasets are presented in Section 2. The 
formulas for computing the probabilities of type I error and of type II error, and the detection cost 
function in SRE, are shown in Section 3. The nonparametric two-sample bootstrap algorithms with 
i.i.d. assumption, with one-layer resampling, and with two-layer resampling are presented in Section 
4. A method of generating distributions of the SEs of the detection cost function is provided in 
Section 5. The resulting uncertainties of the detection cost functions employing the three bootstrap 
methods for four speaker recognition systems1, and comparisons among them are shown in Section 
6. The conclusions and discussion can be found in Section 7. Finally, the proof of the probability for 
one-layer resampling is presented in the Appendix. 
 
2 Adjust speaker recognition datasets 
 

                                                 
1 Specific hardware and software products identified in this paper were used in order to adequately support the 
development of technology to conduct the performance evaluations described in this document. In no case does such 
identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it 
imply that the products and equipment identified are necessarily the best available for the purpose. 
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2.1 The distributions of numbers of target and non-target scores within a set 
 
The speaker recognition data dependency is complicated. There are several ways to group data into 
sets according to different interpretations of data dependency. In this article, the speaker recognition 
data are grouped into sets purely based on whether or not the training speaker id number is multiply 
employed in order to generate more target scores and non-target scores. The target scores generated 
by the same id number of training speaker and test speaker are grouped into a target set, whereas the 
non-target scores created by the same id number of training speaker but different id numbers of test 
speakers are grouped into a non-target set, regardless of whether dependency exists implied by the 
training and test speech ids. 
 

Figure 1 The histograms of the numbers of target scores in sets (Left) and the numbers of non-target scores in 
sets (Right) of a speaker recognition system labeled as EL. 

 
Hence, 20,449 raw target scores were grouped into 1,093 target sets and 78,327 raw non-target 
scores were grouped into 1,336 non-target sets. Different sets contain quite different numbers of 
scores, and the numbers of sets that contain the same number of scores are also quite different. For 
instance, 218 target sets contain one score each, 193 target sets have two scores each, and so on; 
only one non-target set contains eight scores, two non-target sets have nine scores each, and so forth. 
The histograms of the numbers of target scores in sets and the numbers of non-target scores in sets 
of a speaker recognition system labeled as EL are shown in Figure 1. Such wide variations of 
numbers of scores in sets can have impact on the probability for a score to be selected. 
 
2.2 The notations of sets and scores 
 

target 
ST 

sets 1 TS  2 TS  …… 
Tm  TS  

scores 
1 1 T , 2 1 T , …, 

1 Tμ  1 T  
1 2 T , 2 2 T , …, 

2 Tμ  2 T  …… 
1  T Tm , 2  T Tm , …, 

T TT m  T μm  

Table 1 The target sets, the number of which is mT, and the target scores contained in each set. 
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non-
target 

SN 

sets 1 NS  2 NS  …… 
Nm  NS  

scores 
1 1 N , 2 1 N , …, 

1 Nμ  1 N  
1 2 N , 2 2 N , …, 

2 Nμ  2 N  
…… 

1  N Nm , 2  N Nm , 

…, 
N NN m  N μm  

Table 2 The non-target sets, the number of which is mN, and the non-target scores contained in each set. 

 
Assume that the target scores and non-target scores are grouped into target sets and non-target sets, 
respectively. Suppose that the number of the target sets is mT, and the number of the non-target sets 
is mN. Thus, the set ST of all target sets and the set SN of all non-target sets are expressed, 
respectively, as follows, 

Si = { Si j | j = 1, …, mi }, i  {T, N}, (1) 
where ST j are target sets and SN j are non-target sets. 
 
In terms of its scores, each set can be expressed as 

Si j = { αi j k | k = 1, …, μi j }, j = 1, …, mi and i  {T, N}, (2) 
where αT j k are target scores, αN j k are non-target scores, and μi j stands for the number of scores in 
the corresponding set. 
 
Hence, the set of all target scores and the set of all non-target scores can be denoted, respectively, as 

T  = { αT j k | k = 1, …, μT j and j = 1, …, mT }, (3) 
and 

N  = { αN j k | k = 1, …, μN j and j = 1, …, mN }. (4) 
The sets Si j, T, and N are all in the sense of multiset, in which members are allowed to appear more 
than once. Indeed score can occur multiple times within a set. Finally, the total number of target 
scores NT and the total number of non-target scores NN are, respectively, 

,



im

1  j
j ii μ N    where i  {T, N}. (5) 

 
The target and non-target sets and scores contained in each set are explicitly listed in Table 1 and 
Table 2, respectively. There are mT target sets and mN non-target sets. The target sets 1 TS , 2 TS , …, 

Tm  TS  contain 1 Tμ , 2 Tμ , …, 
Tmμ  T  target scores, respectively; and the non-target sets 1 NS , 2 NS , 

…, 
Nm  NS  have 1 Nμ , 2 Nμ , …, 

Nmμ  N  non-target scores, respectively. 

 
2.3 The three resampling methods and the related probabilities 
 
In this section, all similarity scores are treated as different objects in the sense that they were 
generated by different trials in the test, even though some of them have the same value. 
 
2.3.1 Resampling assuming the data is i.i.d. 
 
The first method is that the resampling is taken place on all similarity scores with the i.i.d. 
assumption for the speaker recognition datasets. In other words, the resampling units are all 
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similarity scores. With this assumption, the probability for a score being selected is 1 / NT equally 
for each target score and 1 / NN equally for each non-target score based on the empirical distribution 
for each of the observed similarity scores. 
 
2.3.2 One-layer resampling 
 
The second method is one-layer resampling which takes place randomly with replacement (WR) 
only on the first layer of the data, i.e., target sets and non-target sets, respectively. In other words, 
the resampling units are all score sets. It follows from the Law of Large Numbers that the probability 
for a score αi j k being selected is 

,
N

1
)α( P

i
k j ilayer-1     where k = 1, …, μi j, j = 1, …, mi and i  {T, N}. (6) 

The proof of Eq. (6) is presented in the Appendix. Hence, the probabilities for each target score and 
each non-target score being selected are 1 / N T and 1 / N N , respectively. They are the same as those 
in the scenario where the i.i.d assumption is made for the data as stated in Section 2.3.1. 
 
2.3.3 Two-layer resampling 
 
The third method is two-layer resampling that takes place randomly WR not only on the first layer 
of the data but also on the second layer of the data, i.e., target scores and non-target score in the sets, 
respectively, which are assumed to be conditionally independent. In other words, the resampling 
units for the first layer are sets and for the second layer are scores in the sets. 
 
Then, the probability for a score αi j k in a set Si j being selected is 

,
μ

1
x

m

1
) | α( P x )( P  )(α P

j ii
j ik j ij ik j ilayer-2  SS  

                                            where k = 1, …, μi j, j = 1, …, mi and i  {T, N}. 

(7) 

This probability is the same for all scores within a set, regardless of whether it is a target set or a 
non-target set. However, it is noticed that the probabilities for scores being selected are different 
from set to set due different score numbers in different sets indicated by µi j. This situation is quite 
different from those using the previous two methods. 
 
If all μT j, j = 1, …, mT, are set to be the same, then each target score can have equal probability to be 
selected. The probability for each target score being selected is 1 / NT. And so is each non-target 
score if all μN j, j = 1, …, mN, are set to be equal. The probability for each non-target score being 
selected is 1 / NN. 
 
2.4 The new data structure after adjustment 
 
It is absolutely not appropriate that target scores and/or non-target scores are selected with unequal 
probabilities for two-layer resampling. The impact of varied numbers of scores within a set on the 
probabilities for a score being selected must be eliminated. In other words, the numbers of scores in 
target sets must be equal and likewise for the numbers of scores in non-target sets. 
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Thereafter, the probabilities for each target score and each non-target score being selected will be the 
same, respectively, among the three resampling methods as stated in Section 2.3 while using the 
bootstrap to compute the measurement uncertainties of the detection cost function. As a result, the 
measurement uncertainties calculated using these three resampling methods can be compared on an 
equal footing. 
 
In the meantime, the new datasets should be restructured in such a way that the total numbers of 
target scores and non-target scores must be obtained as large as possible. As described in Section 1, 
the raw speaker recognition datasets contain about 20,000 target scores and 80,000 non-target 
scores. 
 
After adjustment based on the interpretation of data dependency implied in the raw datasets as 
discussed in Section 2.1, the new datasets have 132 target sets, each of which contains 96 target 
scores that are randomly selected without replacement from the raw target scores in the set if their 
number is greater than or equal to 96; and thus the total number of target scores is 12,672. 
 
The new datasets also contain 130 non-target sets, each of which has 244 non-target scores that are 
randomly selected without replacement from the raw target scores in the set if their number is 
greater than or equal to 244; and thus the total number of non-target scores is 31,720. 
 
Certainly, if the numbers of target scores and non-target scores in the sets are equal to 96 and 244, 
respectively, no random selection is needed and all scores are selected. On the other hand, the 
histograms of numbers of raw scores in sets depicted in Figure 1 show that most target sets and non-
target sets which contain less numbers of scores are discarded. 
 
3 The detection cost function in speaker recognition evaluation 
 
After converting to integer scores as mentioned in Section 1, without loss of generality, for a speaker 
recognition system, the scores are expressed inclusively using the integer score set {s} = {smin, 
smin+1, …, smax}, running consecutively from the lowest score smin to the highest score smax. Let Ci 
(s), i  {T, N} denote the cumulative probabilities of target scores and non-target scores from the 
highest score smax down to an integer score s, respectively. 
 
The probability of type I error at a threshold } s {  t  for target scores, denoted by PI (t), is cumulated 
from the lowest score smin. The probability of type II error at a threshold t for non-target scores, 
denoted by PII (t), is cumulated from the highest score smax. For discrete probability distribution, 
while computing PI (t) and PII (t) at a threshold t, the probabilities of target scores and non-target 
scores at this threshold t must be taken into account [15]. 
 
Hence, at a threshold value } s {  t , the estimators of the probabilities of type I error and type II 
error are expressed, respectively, as 

(t) PÎ  = 1 – CT (t + 1) 
for } s {  t  , (8) 

(t) PII
ˆ = CN (t) 
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where CT (smax + 1) = 0 is assumed [3]. Based on Eq. (8), in practice, the estimators (t) PÎ  and (t) PII
ˆ  

can be obtained by moving the score from the highest score smax down to the threshold t one score at 
a time to cumulate the probabilities of target scores and non-target scores, respectively. 
 
A number of metrics exist for measuring the performance of a speaker recognition system [1]. In this 
article, the detection cost function at a threshold for the primary evaluation of speaker detection 
performance is employed as the metric of interest. Certainly, the same method of computing the 
uncertainties of the detection cost functions can be used to compute uncertainties for other metrics in 
SRE. 
 
The detection cost function at a threshold t is defined as a weighted sum of the probabilities of type I 
error and of type II error at the threshold t [1] 
 

CDet (t) = CMiss × PI (t) × PTarget + CFalseAlarm × PII (t) × (1 – PTarget) . (9) 
 
Hence, it is a function of the threshold t. It was required that the thresholds be provided by speaker 
recognition systems in order to make an explicit speaker detection decision for each trial. The 
thresholds can also be determined in other ways. It is a challenging research problem to determine 
appropriate decision thresholds, which is out of the scope of this article. Therefore, the thresholds 
used in this article are those provided by the tested systems. 
 
The parameters CMiss and CFalseAlarm are the relative costs of detection errors, and the parameter PTarget 
is the a priori probability of the specified model speaker. For the primary evaluation of speaker 
recognition performance for all speaker detection tests, the parameters CMiss, CFalseAlarm, and PTarget 
were set to be 10, 1, and 0.01, respectively [1]. 
 
4 The nonparametric two-sample bootstrap using three resampling methods 
 
It is difficult to compute analytically the covariance term of the correlated probabilities of type I 
error PI (t) and type II error PII (t) at a threshold t in Eq. (9). Thus, the estimate of the uncertainty of 
the detection cost function at a threshold t in terms of SE is computed using three different 
resampling methods described in Section 2.3 in the nonparametric two-sample bootstrap based on 
our extensive studies of bootstrap variability on large datasets [3-8]. 
 
4.0 A function WR_Random_Sampling_Set 
 
First of all, here is a function WR_Random_Sampling_Set that will be frequently employed in the 
following algorithms, 
 
1: function WR_Random_Sampling_Set (N, S, Γ) 
2: for i = 1 to N do 
3: select randomly WR an index j   { 1, …, N } 
4: γi = sj 
5: end for 
6: end function 
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where S stands for a set of sets or a set of scores, N is the cardinality of the set S, Γ represents a new 
set of sets or scores accordingly with the same cardinality, and sj and γi are members of the sets S 
and Γ, respectively. Note that this function can be applied to either a set of sets or a set of scores. It 
runs N iterations as shown from Step 2 to Step 5. In the i-th iteration, a member of the set S is 
randomly selected WR to become a member of a new set Γ, as indicated in Steps 3 and 4. As a result 
of this function, N members (sets or scores) are randomly selected WR from the set S and constitute 
a new set Γ. 
 
4.1 An algorithm assuming the data is i.i.d. 
 
As shown in Eq. (3) through Eq. (5), T is the set of all NT target scores and N is the set of all NN 
non-target scores. Then, if the i.i.d. assumption is made for the data, the two-sample bootstrap 
resampling units are target scores and non-target scores, respectively. Hence, the algorithm of 
nonparametric two-sample bootstrap is as follows. 
 
Algorithm I (i.i.d. bootstrap) 
 
1: for i = 1 to B do 
2:     WR_Random_Sampling_Set (NT, T, Θi) 

3:     WR_Random_Sampling_Set (NN, N, Ξi) 

4:     Θi and Ξi => statistic iĈ  
5: end for 

6: ES  } B ..., 1,  i | C { i ˆˆ   
7: end 
 
where B is the number of two-sample bootstrap replications. In other words, this algorithm runs B 
times. As shown from Step 1 to 5, in the i-th iteration, by calling the function in Section 4.0 twice, 
NT target scores are randomly selected WR from the set T to form a new set Θi of NT target scores, 
NN non-target scores are randomly selected WR from the set N to constitute a new set Ξi of NN non-
target scores, and then all NT target scores in the new set Θi and all NN non-target scores in the new 

set Ξi generate the i-th bootstrap replication of the estimated statistic of interest, i.e., iĈ . Note that 
from here on in this article, the superscript indices are used for the numeration of the resampling 
iterations. As always, the subscript indices are employed to indicate target or non-target, and 
numerate sets and scores. 
 

In the SRE, the estimated statistic of interest iĈ  is the i-th estimator of the detection cost function at 
a given threshold. This estimator can be derived using Eq. (9). In this equation, the estimators of the 

probabilities of type I error and type II error, i.e., (t) PÎ  and (t) PII
ˆ , can be calculated from the two 

new sets of similarity scores using Eq. (8). Finally, as indicated in Step 6, from the set { iĈ  | i = 1, 
…, B }, the standard error SÊ of the detection cost function is estimated by the sample standard 
deviation of the B replications. 
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The remaining issue is to determine how many iterations this bootstrap algorithm needs to run in 
order to reduce the bootstrap variance and ensure the accuracy of the computation. In other words, 
what is an appropriate number B of the nonparametric two-sample bootstrap replications? In our 
applications, such as biometrics and the evaluation of speaker recognition, etc., the sizes of datasets 
are tens or hundreds of thousands of similarity scores, which are much larger than those in some 
other applications of bootstrap methods, such as medical decision making, etc.. Moreover, in our 
applications, the statistics of interest are mostly probabilities or a weighted sum of probabilities, etc. 
rather than a simple sample mean. And our data samples of similarity scores have no parametric 
model to fit. Therefore, the bootstrap variability was re-studied empirically, and the appropriate 
number of bootstrap replications B for our applications was determined to be 2,000 [3, 6, 7]. 
 
4.2 An algorithm for one-layer nonparametric two-sample bootstrap 
 
As discussed in Section 2, the one-layer resampling takes place only on the first layer of the new 
data structure, namely, the nonparametric two-sample bootstrap units are target sets and non-target 
sets, respectively. Thus, the algorithm for one-layer nonparametric two-sample bootstrap is as 
follows. 
 
Algorithm II (one-layer bootstrap) 
 
1: for i = 1 to B do 
2:     WR_Random_Sampling_Set (mT, ST, ST’ i = { ST j’

 i | j = 1, …, mT }) 

3:     WR_Random_Sampling_Set (mN, SN, SN’ i = { SN j’
 i | j = 1, …, mN }) 

4:     ST’ i and SN’ i => statistic iĈ  
5: end for 

6: ES  } B ..., 1,  i | C { i ˆˆ   
7: end 
 
where B is the number of two-sample bootstrap replications, the set ST of all target sets and the set 
SN of all non-target sets are expressed in Eq. (1), and mT and mN are the cardinalities of the sets ST 
and SN, respectively. In the i-th iteration, as indicated in Step 2 and Step 3, the function in Section 
4.0 is applied twice to sets rather than scores. That is, mT target sets are randomly selected WR from 
the set ST to form a new set ST’ i = { ST j’

 i | j = 1, …, mT }, and mN non-target sets are randomly 
selected WR from the set SN to constitute a new set SN’ i = { SN j’

 i | j = 1, …, mN }. As noted in Step 
4, all target scores in the new set ST’ i and all non-target scores in the new set SN’ i generate the i-th 

bootstrap replication of the estimated statistic of interest, i.e., iĈ  using Eq. (9). Everything else in 
this algorithm is the same as those in the algorithm shown in Section 4.1. 
 
It is worth mentioning that with the new data structure as shown in Section 2.4, in each i-th 
resampling of this one-layer nonparametric two-sample bootstrap, the same number of target scores 
and the same number of non-target scores are obtained to generate the i-th estimate of the statistic of 
interest. Otherwise, different numbers of similarity scores would be obtained during different 
iterations, which could cause more variance in the computation. 
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4.3 An algorithm for two-layer nonparametric two-sample bootstrap 
 
As described in Section 2, the two-layer resampling is carried on not only on the first layer of the 
new data structure in which the two-sample bootstrap units are target sets and non-target sets, but 
also on the second layer of the data in which the bootstrap units are target scores and non-target 
scores in sets. Hence, the algorithm for two-layer nonparametric two-sample bootstrap is as follows. 
 
Algorithm III (two-layer bootstrap) 
 
1: for i = 1 to B do 
2:     WR_Random_Sampling_Set (mT, ST, ST’ i = { ST j’

 i | j = 1, …, mT }) 
3:            for k = 1 to mT do 
4:                  WR_Random_Sampling_Set (μT k, ST k’

 i, ST k”
 i) 

 
5:     WR_Random_Sampling_Set (mN, SN, SN’ i = { SN j’

 i | j = 1, …, mN }) 
6:            for k = 1 to mN do 
7:                  WR_Random_Sampling_Set (μN k, SN k’

 i, SN k”
 i) 

 

8:     ST” i = { ST j”
 i | j = 1, …, mT } and SN” i = { SN j”

 i | j = 1, …, mN } => statistic iĈ  
9: end for 

10: ES  } B ..., 1,  i | C { i ˆˆ   
11: end 
 
where B is the number of two-sample bootstrap replications, the set ST of all target sets and the set 
SN of all non-target sets are expressed in Eq. (1), and mT and mN are the cardinalities of the set ST 
and the set SN, respectively. In the i-th iteration, as shown in Step 2 and Step 5 the function in 
Section 4.0 is applied twice to sets, which is the same as in the one-layer bootstrap Algorithm II in 
Section 4.2. Subsequently, the same function is applied to similarity scores in sets as well. 
 
As shown in Steps 3 and 4, mT iterations take place after the first-layer resampling of the target sets 
in Step 2. In the k-th iteration, μT k target scores are randomly selected WR from the target set ST k’

 i, 
which is the k-th new target set from the first-layer resampling, to form the k-th new target set ST k”

 i 
of the second-layer resampling. 
 
As indicated in Steps 6 and 7, mN iterations take place after the first-layer resampling of the non-
target sets in Step 5. In the k-th iteration, μN k non-target scores are randomly selected WR from the 
non-target set SN k’

 i, which is the k-th new non-target set from the first-layer resampling, to 
constitute the k-th new non-target set SN k”

 i of the second-layer resampling. 
 
As shown in Step 8, all target scores in the new set ST” i = { ST j”

 i | j = 1, …, mT } and all non-target 
scores in the new set SN” i = { SN j”

 i | j = 1, …, mN } generate the i-th bootstrap replication of the 

estimated statistic of interest, i.e., iĈ  using Eq. (9). Everything else in this algorithm is the same as 
in the algorithm shown in Section 4.1. 
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With the new data structure described in Section 2.4, the same numbers of similarity scores are 
selected during different iterations of the two-layer nonparametric two-sample bootstrap. It can 
reduce the variance of the computation. This is the same as in the one-layer bootstrap as stated in 
Section 4.2.  
 
5 A method of generating distributions of SEs of the detection cost function 
 
If SEs obtained by using different bootstrap algorithms need to be compared, one SE is far less 
enough, due to the stochastic nature of the bootstrap method as discussed in Section 1. In other 
words, a distribution of SEs generated by using an algorithm needs to be investigated. 
 
All three algorithms shown in Section 4 can only create one estimated SÊ of the detection cost 
function, respectively. However, if such an algorithm runs multiple times, it can generate a 
distribution of estimated SÊs. Based on our previous studies, in order to create a stable distribution, 
it is enough that the algorithm be executed 500 times [3, 6-8]. 
 
Hence, the algorithms shown in Section 4.1, 4.2, and 4.3 are executed 500 times each to generate a 
distribution { SÊ i | i = 1, …, 500 }. Thereafter, the estimated mean and 95% confidence interval (CI) 
of such a distribution can be calculated. While computing the estimated 95% CI of a distribution, the 
Definition 2 of quantile in Ref. [16] is adopted. That is, the sample quantile is obtained by inverting 
the empirical distribution function with averaging at discontinuities. 
 
6 Results 
 
Four speaker recognition systems, labeled as EL, LZ, PB, and CH, are employed as examples2. They 
have different matching accuracies as indicated by the values of their detection cost functions – the 
smaller the detection cost functions, the more accurate the speaker recognition systems. The 
estimated detection cost functions of the four systems, and the estimated means, SÊs and 95 % CÎs 
of the distributions of SEs of their detection cost functions generated using three different bootstrap 
methods, namely, the i.i.d. bootstrap, the one-layer bootstrap, and the two-layer bootstrap, are all 
shown in Table 3, where the speaker recognition systems are listed in the ascending order of the 
value of the cost function. It shows in Table 3 that generally the smaller the detection cost functions, 
the smaller the uncertainties. The corresponding distributions of SEs of the detection cost functions 
along with the estimated means represented by black circles are depicted in Figure 2. 
 
The distributions of SEs shown in Table 3 and Figure 2 have two important features. The first 
feature is that the variance of the distribution of SEs generated using the i.i.d. bootstrap is less than 
the variances of other two distributions of SEs for each speaker recognition system, as shown in 
Table 3. This feature is reflected by the widths of the histograms depicted in Figure 2. As is known, 
the bootstrap method is a stochastic process, namely, different runs of bootstrap method should 
produce different results of SEs. Hence, this feature indicates that the bootstrap method applied on 
the i.i.d. datasets can create less variation of SEs than the bootstrap method conducted on the 
datasets with dependency does. 

                                                 
2 The speaker recognition systems are proprietary. Hence, they cannot be disclosed. 
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Systems 
Cost 

Function 
Mean, SE and 95% CI of distribution of SEs of cost function 

i.i.d. Bootstrap One-Layer Bootstrap Two-Layer Bootstrap 

EL 0.022199 
0.000687 

0.105594 x 10-4 
(0.000666, 0.000706) 

0.001859 
0.292555 x 10-4 

(0.001806, 0.001920) 

0.001975 
0.329929 x 10-4 

(0.001916, 0.002043) 

LZ 0.040098 
0.000888 

0.133725 x 10-4 
(0.000863, 0.000917) 

0.002730 
0.446791 x 10-4 

(0.002646, 0.002817) 

0.002870 
0.460217 x 10-4 

(0.002781, 0.002956) 

PB 0.098744 
0.001119 

0.182849 x 10-4 
(0.001084, 0.001155) 

0.004150 
0.677488 x 10-4 

(0.004012, 0.004286) 

0.004288 
0.675055 x 10-4 

(0.004149, 0.004420) 

CH 0.236771 
0.002294 

0.367097 x 10-4 
(0.002224, 0.002367) 

0.004646 
0.759175 x 10-4 

(0.004509, 0.004790) 

0.005172 
0.819121 x 10-4 

(0.005020, 0.005345) 

Table 3 The estimated detection cost functions, the means, SÊs and 95 % CÎs of distributions of SEs of the 
detection cost functions generated using the i.i.d. bootstrap, the one-layer bootstrap, and the two-layer bootstrap, 
respectively, for four speaker recognition systems labeled as EL, LZ, PB, and CH. 

 

Figure 2 The histograms of SEs of the detection cost functions generated using the i.i.d. bootstrap (left - blue), the 
one-layer bootstrap (middle - red), and the two-layer bootstrap (right - green), respectively, for four speaker 
recognition systems EL, LZ, PB, and CH. The black circle stands for the estimated mean of the distribution. 
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The second feature is regarding the relationship among the positions of three distributions of SEs. 
The two distributions of SEs created using the one-layer bootstrap and the two-layer bootstrap are 
well separated, towards larger SEs, from the distribution of SEs generated using the i.i.d. bootstrap 
for each of four systems. Now the question is: What is the relationship between the former two 
distributions on the right side for each system shown in Figure 2? 
 
First, some preliminary observations regarding estimated means and variances of distributions are 
made. These two distributions overlap to some extent. The estimated 95% CÎ of one distribution 
overlaps the estimated 95% CÎ of the other distribution for each system except System CH, as shown 
in Table 3. However, the estimated mean of one distribution is at the outside or just at the border of 
the estimated 95% CÎ of the other distribution. In addition, the ratio of the variance of the 
distribution of SEs computed using the one-layer bootstrap method to the variance of the distribution 
of SEs calculated using the two-layer bootstrap method is between 0.79 and 1.01 for all four 
systems, which can be obtained by the estimated SÊs of the distributions presented in Table 3. 
 
Second, the hypothesis testing is conducted on both estimated means and variances of distributions. 
As stated in Section 5, the estimated 95% CÎs shown in Table 3 were all calculated using the 
quantile method. They do match up to the fourth to fifth decimal place the estimated 95% CÎs 
computed by assuming the distribution of SEs of the detection cost function is normal, i.e., 
multiplying 1.96 by the estimated SÊ of such a distribution. For instance, for System EL using the 
two-layer bootstrap method, the estimated 95% CÎs computed using the quantile method is 
(0.001916, 0.002043) as shown in Table 3 and the one calculated using the normality assumption is 
(0.001911, 0.002040). Moreover, the Shapiro-Wilk normality test [17] was conducted on the 12 
distributions of SEs (three resampling methods for each of the four systems), and it was observed 
that nine p-values were between 14% and 88% which were much greater than 5% and three p-values 
were 1.7%, 0.5%, and 0.5%, respectively. These analyses suggest that the estimated SÊs of the 
detection cost function calculated using three different resampling methods in bootstrap may be 
regarded as normally distributed. 
 
Hence, the Z-test for comparing the means and the F-test for comparing the variances can be carried 
out on the distribution of SEs of the detection cost function computed using the one-layer bootstrap 
method and the distribution of SEs calculated using the two-layer bootstrap method for each speaker 
recognition system [3, 15, 17, 18]. It indicates in Table 3 and Figure 2 that the mean of the former 
distribution is less than the mean of the latter distribution. Hence, the one-tailed Z-test is applied. All 
p-values for the four systems are close to one, which strongly suggests the null hypothesis is 
accepted. In other words, the mean of the distribution created by the one-layer bootstrap is 
significantly below the mean of the distribution generated by the two-layer bootstrap regardless of 
the speaker recognition systems. Further, the p-values of the two-tailed F-test are all greater than 5% 
except for System EL, which is 0.73%. It suggests that the null hypothesis, i.e., the ratio of the 
variances of these two distributions is equal to one, cannot be rejected. 
 
Combining the results from these two hypothesis tests plus the preliminary observations, it can be 
concluded that the distribution of SEs of the cost function computed using the two-layer bootstrap 
method for the datasets with inherent data dependencies is significantly on the right side of the 
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distribution of SEs calculated using the one-layer bootstrap method, whereas the latter is well 
separated, towards larger SEs, from the distribution of SEs computed using the bootstrap method 
assuming the data are i.i.d.. 
 
Therefore, the data dependency increases the measurement uncertainties. The two-layer bootstrap 
method more conservatively estimates the impact of the data dependency on the measurement 
uncertainties than the one-layer bootstrap method does, since the second-layer resampling increases 
the variations of the measure. Both methods can increase the variations of SEs with respect to the 
method with the i.i.d. assumption. If the dependencies do exist in the datasets, the bootstrap method 
with the i.i.d. assumption can underestimate the measurement uncertainties. In order to obtain more 
accurate measures and less variation of SEs, the best way is to randomly select i.i.d. data samples. If 
the data dependency is inevitable for increasing the size of datasets due to limited resources, then the 
i.i.d. assumption cannot be made and the two-layer bootstrap method is recommended while using 
the bootstrap methods to compute the measurement uncertainties. 
 
7 Conclusions and discussion 
 
In many applications, it is hard to compute the SE of a measure analytically. This happens in the 
speaker recognition evaluation, in which the statistic of interest is a detection cost function, which is 
defined as a weighted sum of the probabilities of type I error and of type II error. These two 
probabilities are traded off each other and thus negatively correlated. Indeed, it is difficult to 
compute such a correlation coefficient analytically. 
 
In order to calculate the uncertainties of such a measure, the alternative way is to employ the 
nonparametric two-sample bootstrap method in our applications. The premise of using the bootstrap 
method is that the datasets must be i.i.d.. If the datasets are i.i.d., the nonparametric two-sample 
bootstrap method based on our extensive bootstrap variability studies on large datasets can be 
employed in our applications without any modification. 
 
In this article, the impact of the data dependency on the uncertainties of measures in speaker 
recognition evaluation by using the nonparametric two-sample bootstrap was studied. If the datasets 
contain data dependencies due to multiple usages of the same subject in order to increase the size of 
datasets due to limited resources, the bootstrap method with i.i.d. assumption, i.e., the bootstrap units 
are scores without grouping them into sets, can underestimate the uncertainties of measures. 
 
To compute the uncertainties of measures on the datasets with dependencies, the two-layer bootstrap 
method rather than the one-layer bootstrap method is recommended, since the former can more 
conservatively estimate the impact of the data dependency on the measurement uncertainties than 
the latter. In order to properly employ the two-layer bootstrap method, after grouping the data into 
sets, the numbers of target scores in target sets must be the same and likewise for the numbers of 
non-target scores in non-target sets. In such a way, the probability for each target score being 
selected will be equal, and so is the probability for each non-target score being selected. 
 
The data dependency involved in the datasets, acting like “noise” behind “signal”, can increase the 
estimated measurement uncertainties as well as the variations of SEs, and thus the accurate measure 
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cannot be achieved. Hence, in order to obtain more accurate measures, the data dependency must be 
avoided. Indeed, from the statistical point of view, the sample should be collected randomly in test 
design. Further, the data dependency may be interpreted in different ways because of the 
complications of multiple usages of the same subject. Different interpretations of data dependencies 
can cause different ways of grouping similarity scores into sets and subsequently will have impact 
on the bootstrap results. 
 
It seems that the large size of datasets cannot reduce the impact of data dependency on the 
measurement uncertainties. The reason why the SEs of the area under ROC curve computed using 
the bootstrap method for the large size of datasets containing data dependency but with the i.i.d. 
assumption are very close to those calculated analytically using the Mann-Whitney statistics is that 
the methods are blind to the data dependency implied in the datasets [9]. Nonetheless, on the other 
side, running on the i.i.d. datasets, the fact that these two types of results are very close validates the 
nonparametric two-sample bootstrap methods in our applications [8]. 
 
 
 

Appendix – the Probability for One-Layer Resampling 
 
The proof of the probability for one-layer resampling holds good for both target sets and non-target 
sets. Suppose that ܰ scores are grouped into m score sets and the i-th set contains ߤ௜ scores, i = 1, 
…, m, where  ∑ ௜ߤ ൌ ܰ௠

௜ୀଵ . Suppose that n selections take place and the i-th set is selected ݊௜ times, 
i = 1, …, m, where  ∑ ݊௜ ൌ ݊௠

௜ୀଵ . Thus, the relative frequency f of occurrence of a score in the i-th 
set is 
 

݂ ൌ  
݊௜

∑ ௝݊ ൈ ௝ߤ
௠
௝ୀଵ

ൌ

݊௜
݊

∑ ௝݊

݊
ൈ ௝ߤ

௠
௝ୀଵ

. (A.1) 

 
In the meantime, because the sets are equally likely to be selected for the one-layer resampling, 
 

lim
௡ → ஶ

 
݊௜
݊
 ൌ

1

݉
, ݅ ൌ 1,… ,݉ . (A.2) 

 
Therefore, due to the Law of Large Numbers, as the number of selections n goes to infinity, the 
relative frequency in Eq. (A.1) approaches to the probability for a score being selected, that is, 
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1
݉

∑
1
݉
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௠
௝ୀଵ

ൌ
1
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