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Abstract 

 

Due to its distinctiveness, the human iris is a popular biometric feature used to identity a 

person with high accuracy. The “Grand Challenge” in iris recognition is to have an effective 

algorithm for subject verification or identification under a broad range of image and 

environmental conditions. This paper presents both baseline performance results and an 

enhanced version of VASIR (Video-based Automated System for Iris Recognition) as a 

response the challenge. We describe the details of the VASIR procedure and demonstrate its 

superiority over the IrisBEE algorithm. Finally, the image quality scores and how they relate 

to VASIR’s performance are examined. 

 

Keywords − biometrics, iris recognition, VASIR, baseline, benchmark, Hamming distance, 
                    image processing 



1. Introduction 
 
Human physiological or behavioral characteristics can be integrated into a system to identify a per

son; such a system is called a Biometric system. Specifically, the human iris is a highly distinctive fea
ture that can provide a promising security application which we call iris recognition.  

Current iris recognition, however, is often limited by significant input and environmental 
restrictions of the image acquisition. For example, an iris recognition system might perform well only 
for high quality images, which were captured with devices specially designed for the system. In the 
iris recognition community, the “Grand Challenge” is to create a robustly effective algorithm for 
subject identification that yields accurate results for a broad range of image and environmental 
conditions; e.g., a Near-Infrared (NIR) video-frame captured at a distance with an Iris On the Move 
(IOM) system which we call “distant-video-based” contrasted with a classical still-image acquisition 
system such as the LG 2200 EOU which we call “classical-still-based” iris recognition. 

Video-based iris recognition at a distance is a relatively new research subject which still needs to 
overcome a number of issues. The main purpose of this paper is to provide a performance reference 
for video-based iris recognition, to motivate other researchers to promote their iris technology and to 
address current problems.  

This paper also describes a particular iris recognition system VASIR (Video-based Automated 
System for Iris Recognition) which was developed to address such limitations that were shown in our 
existing works. A distinguishing part of VASIR is its ability to automatically detect the eye region 
and then to automatically select the best quality iris image from NIR face visible video captured at a 
distance. After such acquisition processing, VASIR carries out image comparison analysis to yield an 
individual verification [1].  

To establish additional robustness in the VASIR system, two significant updates have been 
implemented: 

1) Morphological preprocessing for improved accuracy of iris region segmentation, and 
2) Modified Hamming distance (HD) matching methodology for improved false reject rates (FRR) 
We also describe which performance metrics (e.g., false accept rate) are applied for the quantitativ

e comparison of an algorithm’s performance. In addition, this paper provides a detailed explanation of
 the test protocol that was utilized for our experiments.  

To assess VASIR’s performance, we address the following three specific questions:  
1)   Is VASIR robustly superior to IrisBEE?  
2)  Can VASIR’s results be used as a state-of-the-art baseline for both classical-still-based and 

distant-video-based iris recognition?  
3)  How does VASIR performance change with the image quality? 
The system was evaluated using ICE (Iris Challenge Evaluation) 2005 and MBGC (Multiple Biom

etrics Grand Challenge) image datasets (publicly available) provided by the National Institute of Stan
dards and Technology (NIST) [2][3]. 

Section 2 gives a brief overview of IrisBEE and VASIR. Section 2 describes the ICE and MBGC d
atasets.  Section 3 discusses a new approach of segmentation and matching methods. Section 5 describ
es in detail VASIR’s performance results vis-à-vis the three above-mentioned questions. 

 
 



2. Overview of IrisBEE and VASIR 
 
Most iris-based systems currently in existence are for controlled classical-still-based iris 

recognition. IrisBEE, based on Masek’s algorithm [2][4], was originally developed at NIST to be used 
as a reference implementation for such a classical-still-based iris recognition. 

IrisBEE – as shown in Figure 1 – is comprised of five distinct steps for iris recognition. In the first 
step, an image of the subject’s eye region is taken through classical image acquisition system (e.g., 
LG2200 EOU) – such an image is captured with careful image quality controls. The segmentation in 
the second step isolates the iris region from the rest of the acquired image. The isolated iris region is 
then normalized for comparison to another. Next, the features of the iris pattern are extracted from the 
normalized image and encoded to generate the iris template. Finally, the created iris template is 
compared with a template generated from an enrolled iris image.  

 

Figure 1 IrisBEE procedure 
 
In contrast to the IrisBEE’s algorithm, VASIR was developed with less constrained distant-video-

based iris recognition in mind. VASIR also robustly allows performing classical-still to classical-still 
(SvsS), distant-video to classical-still (VvsS), and distant-video to distant-video (VvsV) iris 
recognition. In SvsS matching, a classical still-image is matched against other classical still-images of 
the same person that were captured by the same device (LG2200 EOU system). VvsS means that the 
video-frame captured at a distance (IOM system) is compared to classical still-images, captured by a 
different camera. In VvsV matching, the extracted iris region of distant-video frames is matched to 
other frames either from the same video or different video sequences of the same person. 

 

 
Figure 2 VASIR procedure (a case of video-distant vs classical-still) 



Figure 2 illustrates the procedural components of VASIR. The VASIR image acquisition step 
includes a facial-visible NIR video captured while a person walks through a portal, in addition to a 
classical still iris image. Four additional steps are used to identify a person from less constrained 
video at a distance. First, VASIR detects the eye region within each frame. Second, the system 
automatically extracts an eye region sub-image. Then the algorithm measures the quality of the 
detected eye region sub-images by calculating the edge density within the images. Finally, VASIR 
selects the best quality image out of all frames – a procedure we call Automated Image Quality 
Measurement (AIQM).  

To facilitate comparing two iris images, Daugman’s polar coordinate-based system [5] is then 
employed to normalize the iris region. The 1D-Log-Gabor Filter is used to process the feature 
extracting and feature encoding of the normalized iris images, as introduced by Yao et al [6]. VASIR 
was developed with the normalization and feature extraction based on Masek’s algorithm [4].  

 
 

3. Datasets 

A. Iris Challenge Evaluation (ICE) 2005 

The ICE 2005 data was collected at the University of Notre Dame in cooperation with NIST. The 
near-infrared iris still images are 640x480 in resolution and were captured by a LG EOU 2200 
acquisition system. 

Table 1 ICE2005 dataset (NIR_Iris_Still) 

Position Num. of Images Num. of Subjects 

Left Eye 1,528 120 

Right Eye 1,425 124 

 
The total number of iris images is 2,953 and only 112 subjects exist for both right and left out of 

the total 132 subjects. In the original ICE2005 dataset, the image “246260.tiff” was mistakenly 
included in the left image set instead of in the right images, and consequently was set aside in our 
study [2]. 

B. MBGC (Multiple Biometrics Grand Challenge) 

Our VASIR performance study used two different data types included in the MBGC dataset.  
The near-infrared facial video (NIR_Face_Video or distant-video) were captured by an Iris On the 

Move (IOM) system; each frame is 2048x2048 pixels and the iris diameter is ~100 pixels. The near-
infrared iris still images (NIR_Iris_Still or classical-still) were collected by an LG2200 EOU and are 
640x480 in resolution and the iris diameter is ~200 pixels [12].  

 

Table 2  NIR_Face_Video  captured by IOM system 

NIR_Face_Video Version 1 Version 2 

Num. of the total video 149 628 

Num. of both eyes visible 130 598 

Total frames 2,534 11,341 

 



Table 3 NIR_Iris_Still captured by LG2200 EOU system 

NIR_Iris_Still Version 1 Version 2 

Left 834 4,025 

Right 834 4,013 

 
 

 
Figure 3 Illustration of differences between (a)−(b) NIR_Face_Video captured  

by a IOM and (c) − (d) NIR_Iris_Still captured by a LG2200 EOU;   

(a) and (c) are from a person A, (b) and (d) are from a person  

 
The detailed numbers for distant-video and classical-still iris images can be found in Table 2 and 

3. MBGC has two versions of datasets. MBGCv2 is the larger dataset that are included the MBGCv1. 
Figure 3 shows the differences between NIR_Face_Video and NIR_Iris_Still in the MBGC dataset. 

 



4. Segmentation and Matching 

A. Segmentation 

In earlier version of VASIR, the segmentation components first detected the pupil boundary by 
fitting an ellipse to the contour points. In order to reduce noise in an image, a Gaussian filter was 
applied to the image before getting the binary threshold image [7]. Even though this led to better pupil 
segmentation results compared to IrisBEE, this was still not an optimal solution for reducing noise in 
images caused by blurriness, eyelashes, eyelid, glasses, lens distortion, reflections, or shadows.  

 
Figure 4 Example of noise reduction 

VASIR now applies a Gaussian filter to the binary threshold image and uses morphological 
opening and closing later on. Opening of an image is an erosion followed by a dilation to remove 
small objects from a binary image while preserving the shape and size of larger objects within the 
image. Closing on the other hand consists of dilation followed by an erosion to eliminate small holes 
and fill gaps in the image [8]. However, the process of finding optimal threshold value is possibly 
slower than the previous method since the threshold is calculated differently depending on the amount 
of noise within an image. 

For the 254 (left and right) eye images that were selected by AIQM from distant video in 
MBGCv1, the previous segmentation rate of pupil boundary in VASIR was 91.9%. Using this new 
method, the segmentation rate improved to 93.3%. As shown in Figure 4, we found this method to be 
much more effective for reducing the noise.   

The iris boundary is segmented by using a circular Hough transform initially applied by Wildes et 
al [9]. We use the information of the detected pupil circle as a reference to detect the iris boundary. 
The eyelid curves are segmented by detecting four points and fitting two ellipses; we will refer to 
them as upper and lower eyelid points and left and right eyelid corners. The upper and lower eyelid 
points are detected by a linear Hough transform. For the left and right eyelid corners, our algorithm 
retrieves all contours that link horizontal segments. 

B. Matching 

The Hamming distance (HD) counts the number of positions (in two templates of the same size) 
for which the binary digits are different [10].  The HD can be used to decide whether or not two iris 
templates are of the same person. A noise mask [4] helps to exclude the insignificant bits of a 
template using the equation: 
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where t and q are two bit-wise templates and tm and qm are the corresponding noise masks. N is 

the total bits of a template.   



For rotational inconsistencies between two iris templates, one template is two bit-wise shifted left 
or right and the HD value is selected from successive shifts [11]. 

However, this method may lead to matching failure because the pupil and iris may not be 
segmented to the exact circle boundaries – especially when the image has significant noise from 
motion blur or inconsistent lighting conditions. In reality, the iris outer boundary is not uniquely-
defined due to its gradual gradient change from the iris to the sclera. Figure 5 illustrates a case of less-
than-optimal segmentation of the pupil (a) and (b) iris boundaries. 

 

 
Figure 5 Example of inaccurate segmentation (a) pupil and (b) iris 

 
We therefore propose a new matching method in which the template is shifted not only left and 

right (horizontal) bit-wise, but also upward and downward (vertical); the Hamming distance values 
for these X and Y shifts are indicated by HD_X and HD_Y, respectively. Figure 6 shows the detailed 
HD shifting method. 

Further, we select successive shift from the values of X or Y (HD_XorY). Finally, the template 
can also shift in two directions at the same time − HD_XandY. For instance, when one template shifts 
by one bit to the left, it can also shift one bit up. The new matching method can help to cover both the 
rotational inconsistency and the segmentation inaccuracy. 

 

 
Figure 6 VASIR matching method 

 
For all three matching cases –details are described in section V – of a) classical-still to classical-

still (SvsS) b) distant-video to classical-still (VvsS), and c) distant-video to distant-
video (VvsV) in Figure 7 illustrates the Hamming distance (HD) comparison of the X, Y, XorY, and 
XandY matching methods for both the left and right eye based on the MBGCv2 dataset. For SvsS, the
 matching scores are ordered by XorY, XandY, X, and then Y methods consequence to the results fro
m the ICE2005 dataset. XorY also leads with the best results followed by the Y, X, and XandY for Vv
sS. Interestingly, Y is better for VvsV, (opposite to the results of SvsS) and then XorY, X, XandY foll
ow in order. Overall, XorY is better because XorY is best or second best in all three cases. 



5. Experiments 
 
In this section, we describe which performance metrics are applied and how three different 

experiments are designed and executed to evaluate VASIR performance.  
Biometric systems are conventionally evaluated by the True Accept Rate (TAR) where two 

biometric samples are correctly decided to be the same person and the True Reject Rate (TRR) where 
the system correctly decided that two samples (genuine and imposter) are not the same person. The 
False Accept Rate (FAR) is defined as the rate where people are accepted as the same identity while 
in reality they are different and False Reject Rate (FRR) is where two samples from the same person 
are rejected. The TRR and FRR can be computed as FRR=1-TAR and TRR=1-FAR, respectively. The 
TAR and FAR are normally obtained by varying an acceptance decision threshold .  

The Error Equal Rate (EER) is defined as the rate where FAR( ) and FRR( ) are the same value 

(i.e., intersect on a FAR and FRR vs.  plot). The Detection Error Trade-off (DET) curve is a graph of 

FAR against FRR. The Receiver Operator Characteristic (ROC) curve is a plot of TAR against FAR. 
The DET and ROC curves are useful, but, neither of these plots provides the detailed threshold (e.g., 
HD) information needed to estimate the system performance. We therefore add two additional curves 
to evaluate VASIR performance: False Curves with Threshold distribution (FCT), and True Curves 
with Threshold distribution (TCT). FCT is the plot of FAR and FRR against  ; whereas TCT is the 

opposite; TAR and TRR against  . These curves allow us to analyze FAR and FRR with EER and to 

represent the discrepancy between matching and non-matching distribution at the same time.  
In terms of Verification (1:1), an image matches if its matching score has satisfied a certain 

threshold , whereas Identification (1:Many) indicates that an image matches if its score is the best. 

Our results are based on verification. 

A. Comparison of VASIR and IrisBEE 

Is VASIR robustly superior to IrisBEE? In order to answer this question, the ICE 2005 evaluation 
protocol [2] was applied to measure VASIR’s performance for comparison purposes. An algorithm 
compares a query image qi to a target image ti to produce the similarity scores for matching and non-
matching.  As mentioned in section four, only classical-still to classical-still matching is allowed for 
this dataset. It is of note that the images for the subjects were captured on different days. 

 

 
Figure 7 Comparison of four matching methods for each of three data types 

(a) classical-still to classical-still (SvsS)  (b) distant-video to classical-still (VvsS)  
(c) distant-video to distant-video (VvsV) 



The four types of matching methods (HD_X, HD_Y, HD_XorY and HD_XandY) - mentioned in 
section 3 – were evaluated with two criteria for the comparison; 1) TAR at FAR of 0.001 (for which 
higher is better) and 2) the EER value (for which smaller is deemed as better).  

The performance results from VASIR’s HD_XorY has the highest TAR at FAR of 0.001 and the 
smallest EER both for the left and right dataset in ICE2005; HD_XandY, HD_X and HD_Y follow in 
order. Figure 8 shows the comparison between IrisBee's and VASIR's results by plotting the ROC 
curve. The plot visualizes IrisBEE (HD_X) and VASIR (HD_XorY).   

For the left eye, at FAR of 0.001, VASIR has a TAR of 88.5% while IrisBEE is only 85.0%. For 
the right eye, VASIR’s TAR is 90.3% while IrisBEE’s TAR is 85.2%. Hence for both eyes, VASIR is 
an improvement over IrisBEE.  For the EER criterion – (not shown), VASIR’s EER is better with 
~4.4%, while IrisBEE’s EER is nearly twice larger. 

 

 
Figure 8 Comparison of VASIR and IrisBEE for the left and right eye 

(classical-still to classical-still iris images matching) 

    
The results show that even though VASIR was developed primarily as a tool for distant-video-

based iris recognition, the system is robust for classical-still-based iris recognition as well. 

B. Baseline for Benchmarking 

Can VASIR’s results be used as a state-of-the-art baseline for both classical-still-based and 
distant-video-based iris recognition?  We present the performance results based on the MBGCv2 
dataset using VASIR for the purpose of providing a baseline both under unconstrained distant-video-
based and constrained classical-still-based iris recognition. They can be used as a reference for 
subsequent evaluation or for comparison with custom algorithms. These results may also provide an 
opportunity for other researchers to advance their iris recognition algorithms and to promote their 
technology.  

For distant-video data, the eye region was detected in 598 videos out of the total 628 videos. In 30 
videos that were included either no eyes were visible in the video or the file was erroneous. The 
number of extracted iris images for the left and right eye was 9,592 out of the total 11,341 frames. No 



eye region could be detected in 41 images - out of the total 9,592 images (false detection rate: 0.43%). 
For classical-still dataset, 4,025 images for the left and 4,013 images for the right eye were evaluated.  

Furthermore, we provide a prototype of our experiment design showing how to evaluate performan
ce results. 

(a)                                            (b)                                               (c)

 
Figure 9 Three matching protocol 

(a) classical-still to classical-still (SvsS)  (b) distant-video to classical-still (VvsS) 
(c) distant-video to distant-video (VvsV) 

 
First, VASIR allows us to match 1) classical-still to classical-still (SvsS) 2) distant-

video to classical-still (VvsS), and 3) distant-video to distant-video (VvsV). For SvsS and VvsV (all-
frame to all−frame) matching scores, the query image qi matches the target images ti where i is the sa
me person, but a different image regardless of the captured date of video sequences or still images. In 
VvsS matching scores, the query matches all targets where the subject is the same person. An advanta
ge of this protocol is that the user does not have to repeatedly generate the mask for each dataset, the s
ystem is using the subject ID which is part of the file name. Figure 9 shows how matching scores were
 calculated for each procedure.  

 
Figure 10 Comparison of full non-matching (1,638,949 entries) and  

random non-matching (201,250 entries) out of 4,025 NIR_Iris_Still images; 

There are at least 6 images per person per eye 



For non-matching scores, the query qi compares against all targets ti where the target subject is a 
different person. This full matching (one to all others) can be time-consuming and is not necessary 
since the non-matching scores are sufficiently consistent for virtually all query subjects. We therefore 
suggest randomly selecting a subsample of targets, all of a different person for getting the non-
matching results; we found 50 targets to be a sufficient subsample. This not only reduces time cost but 
also allows us to characterize the performance for analysis purposes more easily. Figure 10 provides 
the DET curve obtained from all left eye images on MBGCv2 SvsS non-matching. The results show 
that in comparison full non-matching and random non-matching are nearly equivalent. 

In Figure 11 (four plots of the left and right ROC and FCT curves), we compare the performance r
esults of SvsS, VvsS, and VvsV matching using HD_XorY matching method based on the results as s
hown in Figure 7. The detailed error rates are described in Table 4. The results show that SvsS matchi
ng has the best performance; VvsS and VvsV follow next as expected. 

 
Table 4 VASIR’s Performance results 

Datasets 
TAR at FAR = 0.01 

EER 
LEFT RIGHT 

SvsS 89.5% 89.8% 6.7% 

VvsS 25.3% 33.5% 30.9% 

VvsV 24.5% 33.1% 32.6% 

 

 
Figure 11 Comparison of SvsS, VvsS, and VvsV for the left and right 



  

C. Image Quality Scores and Performance 

How does VASIR performance change with image quality? Although several metrics[13][14] were 
used to address one or another aspect of image quality metrics, the edge density – as defined by the 
Sobel operator – was our primary image quality metric of choices. After first using the edge density 
metric to determine focus, the metric was again applied to arrive at a final order categorization of the 
quality of specific images. 

The Sobel operator is designed to respond to edges running vertically and horizontally relative to t
he pixel grid. The Dx and Dy are applied separately to the input image to measure the gradient compo
nent in each orientation. The gradient magnitude, which a higher score is considered better image qual
ity in our evaluation, can be given by: 

 

22 DyDxQ   

 
The quality score from Flynn et al [15] is measured for a pair of samples q and t and is defined as, 
 

))(),(min(),( tQqQtqQ   

 
To calculate a quality measure Q(q,t) for a set of match scores M and a set of non-

match scores N, decision threshold  and image quality threshold   are given as parameters. Therefor

e, TAR( , ) and FAR( , ) are computed as defined, 
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M is the set of match similarity scores and S(q,t) is the similarity score where the two images q and

 t are of the same person. The TAR is the fraction of similarity score S(q,t) greater than or equal to a de
cision threshold , where the quality score Q(q,t) is greater than or equal to a threshold . 
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N is the set of non-match similarity scores and S(q,t) is the similarity score where the two images q 

and t are of the different persons. The FAR is the fraction of similarity score S(q,t) greater than or 
equal to a decision threshold  , where the quality score Q(q,t) is greater than or equal to a 

threshold . 

 



  

 
Figure 12 Distribution of quality score (edge desnity) and Hamming distance (XorY)  

on VvsV matching and non-matching 

 
Figure 12 shows the distribution of the quality scores and Hamming distances (XorY) based on 

left and right images for distant-video to distant-video (VvsV). The plot illiustrates that the VvsV 
dataset consists of poor quality images; the scatter points are primarily found on the left side. The 
Hamming distance of non-matching scores is mainly found in the top quarter of the plot. The results 
show that VASIR’s performance and image quality scores (edge density) are correlated with the 
coefficient value -0.52 on VvsV matching, while the non-matching has only -0.11. Figure 13 depicts 
actual examples of VvsV highest and lowest quality score.  

 

 
Figure 13 Samples ordered by quality score (edge density) 

(a) VvsV: Highest score image (341x200px) (b) VvsV: Lowest score image (506x301px) 



  

 
Figure 14 VASIR’s performance on the image quality for distant-video to distant-video matching 

 
Following, the False Reject Rate (FRR) is calculated by applying six levels of the image quality. 

In case of the left eye images, the quality score for VvsV is calculated with the edge density ranges 

approximately from 10 to 35. We define a set of six quality levels (0 to 5) with thresholds { 0 … 5 }; 

Quality level 0 (Q0) is all images; Quality level 1 (Q1) means all images with quality score 1 ; the 

remaining levels are Q2 2 , Q3 3 , Q4 4 , and Q5 5  (best). 

For each quality level, VASIR’s performance is evaluated with an FRR value of FAR at 0.01, 
using only samples of all quality levels above the current level. Figure 14 illustrates the VvsV 
performance results of the eye images with the matching method by applying HD_XorY.   

The plots in Figure 14 show that the FRR in VvsV performance is reduced for both left and right 
when low quality images are excluded. It is important to note that the image quality was measured 
from the datasets “as-is” without localizing the iris region in an image. The possible problem is that 
the quality score will be high if the image includes a lot of noise such as eyebrows and eyelashes.  

The positive side of these results is that the image quality (as measured via the edge density) may 
serve as a predictor of VASIR performance on VvsV matching. However, there is a need for 
analyzing quality metrics for good image quality datasets such as classical-still iris images. We are 
pursuing the investigation of this matter as well. 

 



  

6. Conclusion 
 
VASIR was evaluated using the ICE 2005 and MBGC datasets. Using the ICE 2005 dataset, at 

FAR of 0.001, VASIR has a TAR of 88.5% while IrisBEE is only 85.0% for the left eye. VASIR’s 
TAR is 90.3% while IrisBEE’s TAR is 85.2% for the right eye. For the EER criterion (where small is 
better), VASIR is ~4.4% for the left and right eyes while IrisBEE’s EER is considerably worse at 
twice the value. The results show that VASIR is superior to IrisBEE.  

The four matching methods in VASIR were evaluated using the MBGC dataset: For classical-still 
to classical-still (SvsS), the matching HD scores are ordered by XorY, XandY, X, and then Y. For 
distant-video to classical-still (VvsS), XorY also leads with results superior to Y, X, followed by 
XandY. Interestingly, for distant-video to distant-video (VvsV), Y is better (opposite to the results of 
SvsS) and then XorY, X, XandY in that order. Overall, XorY is better because XorY is best or second 
best in all three cases. 

We also provided a baseline of performance results on SvsS, VvsS, and VvsV iris recognition 
under a broad range of image and environmental conditions.  

Finally, our study shows that image quality is correlated with VASIR performance on VvsV 
matching. Hence, the quality score metrics may be served as a predictor of VASIR performance. 

Various quality metrics on VASIR performance are currently in progress. Upon approval of manag
ement, we plan to release the VASIR algorithm. 
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