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1. INTRODUCTION

Previous work has demonstrated that it is possible to use adaptive resonance
methods [1,2,3], such as ART-1 [4], for feature detection in image recognition
problems if the images involved have been appropriately preprocessed. In the
CORT-X method [1], these filters are formed to approximate known neural
sensitivity patterns. (In the neocognitron (5], like method [2], the image is
segmented into regional features, and in [3] Gabor filters [6] are used to approxi-
mate neural receptor profiles.)

All of these methods require multiple layers of neural processors and include a
priori assumptions about the nature of the filtering or segmentation required for
the pattern recognition problem. The addition of layers of processors decreases
recognition speed by lowering the degree of parallelism in the system. A priori
assumptions can cause the system to be specialized to a narrower range of
applications and decreases system flexibility.

1.1. Generalized Self-Qrganizing Structure

The generalized structure of a self-organizing pattermn recognition system is
shown in Figure 3.1. This structure is sufficiently general to provide a model for
ART-1, ART-2, CORT-X, and FAUST. In the ART-1, the filter does not couple
to the memory or o the leaming control. In ART-2, the filter is tightly coupled to
the memory and to the learning control. In CORT-X, an additional layer of
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Figure 3.1. General architecture for self-organizing pattem recognition sys-
tem.

filtering is placed in front of the ART-2 filter. In FAUST, the Niter is independent
of memory and leamming control, but drives both.

Neglecting the method of initialization until Section 3, all four methods work
by taking in input images, reconstructing them in the filter, and passing the
image to both the associative memories and the learning control. The associative
memories compare the filtered image to previously stored images using associa-
tion rules. The associative memory structure contains short-term memory, STM,
and long-termn memory, LTM, blocks for ART-1, ART-2, and CORT-X. The
FAUST associative memory structure can contain any number of blocks; in the
example presented here, two blocks are used: (1) pattern memory, and (2) rele-
vance memory. The associative memories generate two association strengths,
ane for each block, for each memory location.

The association strengths are used to gate image data from the filter to the
learning section. In the ART-based methods, resonance is used. Faust uses a
method called association space mapping, which is explained in Section 4. The
image data which passes through the leaming control is used in the leaming
block to store new data into the associative memory location which triggers
leamning. In FAUST, six different learning rules have been used. Classification of
patterns can be either by Bayesian statistics or by association space mapping.

Any recognition system must provide:

scale invariance,

rotational invariance,

edge position invariance, and
local shape invariance.
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These four requirements are difficult to achieve at reasonable cost on serial
machines. 1n [3] it was demonstrated that liems 3 and 4 could be implemented
elfectively on a massively parallel computer using Gabor filtering. In the present
work, Items | and 2 are implemented using massive parallelism.

The principal contrast between the present work and [1,3,4] is that the parti-
tioning of tasks between the filter section and the learned associations is differ-
ent. In [1) position invariance is achieved in the filter scction and shape
invariance is learned in a closely coupled nonlinear filter. In the present work,
shape invariance is achieved through filtering and edge position invariance is
learned.

1.2. FAUST Architecture

Previous work by Linsker {7) and Rubner [8] has shown that feed-forward
leaming rules are capable of generating layers of neural processors that have
sensitivity profiles similar to the sensitivity profiles found in the visual system
and the Gabor basis functions [6} used in [3]). This leads to the query: How can
these learning processes be combined directly into a self-organizing system
which allows the filter sensitivity to be leamed in parallel with pattern recogni-
tion features?

This chapter discusses one possible answer to this query. The answer pro-
posed here is that this can be achieved using a multimap procedure similar to
those known to exist in the mid-level visual cortex [9]. To be equivalent to
previous work [1,2,3] the method also must provide a parallel, multimap, self-
organizing, pattem classification procedure. In this chapter, this problem is
solved using a feed-forward architecture which allows multimap features stored
in associalive memories to be accessed in parallel and to trigger a symmetrically
controlled parallel learning process. This method allows features of different data
type, such as binary image patterns and eight-bit statistical correlations, to be
updated in parallel. This parallel updating process provides feature flexibility
similar to [10], but uses a resonance procedure [4] to initiate learning. The
architecture is described by the acronym FAUST (Feed-forward Association
Using Symmetrical Triggering). A diagram of the FAUST architecture is shown
in Figure 3.2. The three essential features of FAUST, shown in this figure, are:
(1) Different feature classes use individual association rules, (2) Different feature
classes use individual leamning rules, and (3) All feature classes contribute sym-
metrically to leamning. The number of feature classes is shown as two in Figure
3.2 for graphic clarity, but the architecture is not restricted to any number or type
of feature classes. The upper summation over the pattern memory in Figure 3.2 is
carried out using functions of the type given for binary data in Section 2 to
produce a pattern association strength, P. The lower summation over feature
relavance memory in Figure 3.2 is carried out using functions of the type given
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Figure 3.2. FAUST architecture as implemented on the Parallel processor array,

for eight-bit data in Section 2 to produce a relevance association strength, R. The
“Limit” shown on the two gates in Figure 3.2 is the learning threshold, p.

created using supervised learning. In FAUST, the type of features to be leamed
are contained in separate memory blocks similar to the “patches” used in [10].
All leaming in FAUST s self-organizing and no preclassification of data is used
during learning. In the character-recognition example presented here, five differ-

to the leaming rules of the method.
FAUST is a single layer, laterally parallel, resonance method. It divides

FAUST gains its pattern recognition capability from its self-organized learn-
ing capability, which is initiated by the ST mechanism. The symmerica) part
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comes from the use of identical triggering rules on every learning gate. These
gates maintain a fixed relationship between the feature types. This relationship is
also what maintains the linear character of the method and eliminates the need for
a double parameter search over all combinations of feature classes. This symme-
try derives from a logical relationship between the input and the information
retained in the associative memories, so that each address comprises an input
related, self-organized, feature set.

In the FAUST architecture, the learning trigger logic takes place in an n x
m-dimensional space when #-pattern and m-relevance feature classes are used. In
ART architecture the equivalent learning-logic space is one-dimensional and was
extended for parallel computation in [3] to two dimensions. The n-binary classes
can be regarded as existence classes or vigilance classes which allow, but do not
select learning. The m-multibit or analog-relevance classes cannot allow [eamn-
ing, but select what is learned when learning is allowed by the existence features.

1.3. Outline of Chapter

The organization of the chapter follows the parallel data flow shown in Figure
3.2. Incoming data is filtered and presented, in parallel, to each of the associative
memory maps. The filtering methods used are discussed in Section 2. The
methods of associative recall used to locate the best match are discussed in
Section 3. After the association strength has been determined for each memory
location of each memory map, learning is triggered by a set of paralle]l compari-
sons that gate input-image data to the learning modules. This symmetric trigger-
ing of leaming is discussed in Section 4. When leaming has been triggered, the
learning module for each memory map updates the selected memory locations.
The learning methods used are discussed in Section 5. Once the associative
learning has progressed to a point where a sufficient number of patterns are
retained in memory, pattern classification takes place using the same logic used
in symmetric triggering (o access the classification history of the learned pat-
terns. Pattern classification is discussed in Section 6. The stability of the system
which results from these steps is discussed in Section 7. As an example of the
ability of FAUST to perform self-organizing pattern recognition, a character-
recognition example is presented in Section 8.

2. IMAGE FILTERING

The input filtering module consists of eight sections, up to four of which can be
connected in cascade to provide a multilevel filtering capability. The signal flow
through the composite filter is in the order shown in Table 3.1. The data flow
through each filter is shown in Figure 3.3. The specific operations performed by
each functional module are discussed in order below.
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Table 3.1. Table of the Possible Filter Types
Used in the Cascade Filter Module

Function Parameters Exclusions
Nomnalize 32x 3¢ none
Shear internal none
Walsh-8 B8 basis all other Walsh
Walsh-10 10%10 basis all other Waish
Walsh-13 13x13 basis alt other Walsh
Walsh-16 16X 16 basis all other Walsh
Gabor-16 16 even functions other Gabor
Gabor-32 32 even-odd funct. other Gabor

2.1. Normalization

Normalization is used to provide limited scale invariance (o each character im-
age. Each image initially is represented by a picture area greater than 32 x 32
pixels. In the normalization process the active image area is scaled so that the
largest dimension of the image is 32 pixels and centered so that the image has
equal numbers of empty pixels on either side of the image in the other dimension.
This process either replicates pixels to enlarge the image or it deletes pixels to
reduce image size. The effects of the process on machine-printed characters is
shown in Figure 3.4. The change in the “A™ in the upper left is small. The “g,»
right of the “4,” is raised to move the distender into the 32 x 32 box. The «. "

right of the “g,” is magnified to resemble a crude-filled circle. The aspect ratio of
the image is maintained as accurately as possible. Normalization can destroy the
differences between characters; as an example the “O™ and “0" in Figure 3.4 are

no longer different. Typical normalization time is 730p. sec. per character,

2.2. Shear Transform

The shear transform maps a parallelogram-shaped region of the image into a
centered rectangular region of the image. The amount of shear js determined by

Qutput
Acnate® = FUNCTION [—

Paxallel Data
Figure 3.3. Parallel data flow through a single filter module.
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the edges of the parallelogram into vertical alignment. Typical results for four
hand-printed digits are shown in Figure 3.5. The effect of this transform for
machine print is usually negligible. Typical shear transform time is 90.1 ps per
character.
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Figure 3.5. Examples of the effect of a shear transform on four characters.
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2.3. Walsh Functions

Walsh functions in two dimensions are an orthogonal set of functions with
amplitudes of % 1; they can be used as the basis for a series cxpansion of a image
in a way quite similar to the sine and cosine functions in a Fourier transforms.
For the Walsh-function case the orthogonality condition is:

W, We, =580 (1)

where d; ; , ; = 0, unless i = kand j = /, when it equals one. This property allows
an image, q, to be expanded in the form:

] n

=22 AW e (2)
P
where
A;=q- W . 3)

The details of this process are covered in [11]. Images of the Walsh functions to
order 16 are shown in Figure 3.6. The black square in the upper left is the image
of the function W, ,. Each square of this size is a function of increasing order in
both the x and v directions. Wy, the fifth-image square in the top row.

For a given image of size 32 x 32, the full set of 1,024 Walsh functions will
reconstruct the image exactly. When only Walsh functions of order less than
some order n,. are used a low-pass Walsh filter of order A, results, Whenn,, is a
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Figure 3.6. The Walsh basis functions in two dimensions out to order 16.

power of two, these low-pass filters result in an averaged down sampling of the
image. If n,. = 8 for a 32 X 32 image, four-to-one down sampling results. The
effect of low-pass filters of order 16, 13, 10, and 8 are shown in Figure 3.7. A
typical Walsh filtering operation takes 6.1 ms.

2.4, Gabor Functions

The Gabor filtering section is accomplished using a least squares it of each
image. The kemel functions used are Gabor functions. The least squares fitting
of the filter coelficients is necessitated by the nonorthogonal nature of the Gabor
functions. Adopting the convention that bold upper case variables represent
array-processor matrix data types and bold lower case variables represent array-
processor vector data types. the Gabor funcitions are defined as:
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¥ |

Figure 3.7. Examples of order 1 6,13, 10, and 8 low-pass Walsh fiiters on the
digit 8.

_ . sin(mJX')
G,(X, Y) = exp(~R?) {cos(mJX') 4)
where the matrix variables R, X', and Y’ are given by:
R = (X2 4 y'2)q2 ()
X’) _ (X '—.l‘n‘)
(X' T Y - Yo ! ©)

The X and Y matrices in the array processor are row and column expanded in
the form:
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Xy Xy Tt das
X = Xy X2ttt Xaa )
\.\', Aa t g
SRR SIS
Yy = Yo ¥r oo ¥a (8)
Yax ¥a 0 T ¥an

A typical scalar transformation to be applied to each element of the matrix
variables is a rotation ol the form:

o ( c.osBJ sin @, ) - ©)
—sin @, cos 6

The matrix function G, is then expressed as a function of the scalar variables: w,,
which is the spatial frequency of the function; o, the spatial extent of the
function; (xo. o), the origin of the function; and 8;, the orientation of the
function.

2.4.1. Tiling

Since the Gabor basis functions are an infinite set, it is necessary to select a
specific subset of them to be used as the filter elements which cover the character
image. This selection process is referred 10 as tiling the image. For the class of
filter discussed here each set of image origins has twice the sample density of the
previous level and the number of directions selected, ay, is fixed. This results in a
fiter with directional sensitivity and positional sensitivity determined by the
choice of the level parameter, {. The character images used in this study are 32 x
32, so that using large values of { would result in massive over-sampling of the
image. The Gabor filter for the Iowest value of i, on the other hand, is approx-
imately a directional bar detector and adds little to the filter's spatial resolution.
At each level the frequency and spatial resolutions, w; and o;, are adjusted to
allow small overlaps in extent and provide octave spatial-frequency response.

After extensive experimentation, it was found that a reasonably good approx-
imation to the image could be obtained by using only Level 2 Gabor functions.
Reasonable directional selectivity was obtained with four-fold symmetry, n, = 4.
When the even and odd frequency components are included this results in a
Gabor function set with 32 functions. All filler operations described in this
chapter are carried out with these 32 lunction filters.

The results of the experiments are easily explained. For i = 1, the Gabor
functions form a directional filter and provide only field-centered spatial loca-

L
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Table 3.2. Table of the Possible Gabor Functions Used to Tile the Image.
Each level, i, contains 2/2n, possible Gabor functions. The values of d are
obtained by dividing the image as shown in Figure 3.8; d.., = d/2

i Xo Yot w  a 8,
.3 $ Eakios
o %3 @000, 434 G1oNg o, g,

tion. As i increases, the resolution of the filter increases. At Level 3, the spatial
and frequency resolution exceed the stroke size (line width) of the character and
provide limited improvement in resolution. All experiments also suggest that,
given the complex structure of Equations (4-9), sampling an image containing
less than 16 pixels for each 4; interval is not an efficient use of Gabor functions.

2.4.2. Filtering

Once the Gabor functions are selected, the filtering operation starts by converting
the binary image to an eight-bit image with a step height between levels of —127
and 127 with 2g = 0. Since the set of Gabor functions is nonorthogonal, the
filkering must be performed by least squares optimization. On the small images
discussed here, direct methods are far more efficient for this operation than the
neural net method proposed for data compression [4]. Given n different G;s the

(Io 2,1, ¥0 2.1) (Io 2,0~ Yo 2,0)
- -

— & ]
! ($o 1,0, Yo 1.0)

(zo 2.2, %0 22)] {Zo 23.%0 2.3)

—— do .

Figure 3.8. Location of the first two levels of tiling points for the Gabor func-
tions. The full set of locations is given in Table 3.2; in general &, , = d/2.
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filiering operation is based on obtaining a least-squares fit to the image ¢ by
forming the Matrix A, each component of which is the inner product of the form:

a; =G, G, {0
and the vector,
b, =¢- G, (1)
and solving
b = Ac (12)

for the filter coefficients, c. Since the Matrix A is the same for any given set of n
Gabor functions, the matrix is factored once, and only generation of & and back
substitution of the factored A matrix is required to obtain each c. The image is
converted to its filtered form:

n

g =2 ¢, (13)

J=1

and then thresholded at zero making the image binary again.

The effect of the filter can be seen in Figure 3.9. The input image is converted
to the gray-level image shown in the upper left quadrant of Figure 3.9. This input
image contains 1,024 eight-bit elements. Using Equations (10-13), the recon-
structed image ¢', shown in the upper right quadrant is produced. This image is
constructed using 32 eight-bit values of ¢;. The image is then thresholded at zero
to yield the filtered image shown in the lower right quadrant of Figure 3.9. The
residual error in the image fit, ¢ — ¢’, is shown in the lower left quadrant of
Figure 3.9. It is interesting to note that the residual output from the Gabor filter is
similar in form to the output of an edge detector. This suggests that the Gabor
filter is a “body-detecting” filter. The importance of this filtering will be dis-
cussed further when the impact of the filter on character recognition is con-
sidered.

An additional benefit of the feature enhancement properties of the Gabor filter
can be seen in Figure 3.10. The input to the filter is the same as that shown in
Figure 3.9, but with large quantities of random noise added, as shown in the
upper left quadrant of Figure 3.10. The filtered image is shown in the upper right
quadrant of Figure 3.10. The same thresholding procedure is used to produce the
output shown in the lower right quadrant of Figure 3.10. The image in the lower
left quadrant contains the residual and is a good image of the random noise in the
image. The filtering was still done with 32 eight-bit adaptive coefficients.
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S

Figure 3.9. Gabor filtering of a character image.

3. ASSOCIATIVE RECALL

The data stored in the associative memories, M, is compared to the image, g. The
association between a memory and an image is 0.0 for no similarity and 1.0 for a
perfect match. The associative memories are initialized for the pattemn with the
memory value M = | and are initialized for the relevance with the value M = 0.
Everything is true, but nothing is relevant. The maximum range on the eight-bit
memories is *+8.

The associative functions tested in the present implementation of FAUST are
shown in Table 3.3. Five functions are used: (1) correlation, 1/(1 + tan26,
/(1 + d%), (2) Tanimoto similarity, (3) offset cosine, (4) cosine, and (5) Eucli-
dian distance, 4. Three of these functions (cosine, Euclidian distance, and Tanti-
moto) are discussed in [12]. The correlation-based method is the one used in [4].
The tangent-based function has a mathematical form similar to Tanimoto with the
same properties near a perfect match as the distance-based form. All of the
indicated sums are carried out over all pixels in the image.

The class of usable similarity functions is very large. Any monotonic, single-
valued relationship between the image, ¢, and the memory contents, M, which
can be conveniently mapped on to the interval zero to one, could be used.
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Table 3.3. Function Used for Associative Comparison of Binary Input image,
q, and memory, M, for Eight-bit and Binary Memory Data. Each image has N
elements and eight-bit elements have a maximum value S. Binary input are
treated arithmetically as being zero or one. Therefore {—1)2 is 1 when g=0

and —1 when g = 1.

Function Eight-bit Form Binary Form
Correlation ~X(-1)Mm (g = M)
141 + tan® §) ! I

MG + (sE(—-1)amM)®
TS e

1
1/(1 + d2) - NTEXCOLST
4NS?
N -
Tanimoto & (i

M? + g% + SN(-1)mM

. M-1)am + N
Offset Cosine INVSAE + S50

14+ M2g? + (Z(g = M))?
(Z(g = M))2
1
T+ 2~ {g= M)N

2(g= M)
2N - 3(qg= M)

(X{g = M) + N/I2VEN)
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The efficiency of any particular function wili depend on the ability to separate
correct classifications from weak associations on marginal images. In a character
recognition application, the efficiency is partially counterbalanced by compuia-
tional cost.

4. SYMMETRIC TRIGGERING OF LEARNING

During the learing process, images are presented, filtered. and compared with
stored patterns using the association-strength equations of Section 3. If the match
is adequate, the image is used to update the memory in the learning phase. If the
image is not sufficiently similar to the existing patterns then it is treated as a
unique pattern and placed in a new memory location. Symmetric triggering is the
concurrent logical operation which uses comparable logical structures to update
all of the associative memory blocks in parallel. This parallel operation occurs in
an association space which has a dimension equal to the number of feature
classes and associative memory blocks.

The most general form of the FAUST-triggering logic for N associative memo-
ries for each feature class and M feature classes, for a total of N X M memories
which each have association strengths, 4. ., and logical thresholds for triggering,

i
prwherej=1,... Mandi=1,...,Nis

M
rnax(z (Ai.j - Pj)n) &4, >p) - & A, > P & (A > py).(14)
i e

The learning is triggered symmetrically in the ith set on ¥ memories, and N
features are being learned across M feature classes.

This is shown in two dimensions, M = 2, in Figure 3.11.

A less general type of triggering, similar to the ART methods, is obtained if X
takes on values R and P and N = 2. Pattern existence data is represented by n
binary map-feature classes indexed on J and with i occurrences of each pattern,
F, j» with association strength, £, ;. Triggering is initiated by n vigilance parame-
ters, p;. These vigilance parameters are not counted in the left-hand distance term
and pattern strength. Relevance data is represented by m multibit map-feature
classes indexed on & with i occurrences of each strength class, R, ,, with associa-
tion strength, R, ,, which have pr = 0. The generalized FAUST logic for trigger-
ing learning takes the form: Find an j and P = () x T (R, o) using

m

mr( D R20) &8> o0&k, B0k, >0y, a9

i=1
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Figure 3.11. The association space diagram that is used for symmetric trigger-
Ing. The Os are for nonmatching points. The & [s for the comrect classification.
The limits 4, , > p; for ] = 1, 2 are also marked.

For the case discussed in the example presented here, j = | and k = 1, so that the
FAUST-triggering logic reduces to: find an using

max(R2) & (B > p). (16)
A typical association space diagram for a set of R; and F; points are shown in
Figure 3.12 fori = 1,2, . . ., 10. The area P for the maximum case is marked

R -+ P = p

__________________ Soor
0
a
a
a

==

P
Figure 3.12. The association space diagram that is used for symmetric trigger-
ing. The o are for nonmatching points. The « Is for the comrect classification. The
area P and the limit £, > p are also marked.
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by the dashed lines. The limit £ > p is marked by a vertical line. The case which
triggers learning is marked by a buller, =, Weaker agsociations which do not result
in learning are shown as boxes, 0.

5. LEARNING METHODS

Alter learning is triggered, information {rom the image, ¢, is stored in one of the
eight-bit memories used by the relevance feature class, relevance memory, and
into one of the binary memories used by the pattern feature class. The location
used is determined by the logic discussed in Section 4. Any absolutely stable and
convergent learning rule may be used. Six different learning rules of varying
complexity have been used for the relevance memories; two different rules have
been used for the pattern memories. During leaming, the class of the sample
images is not used. The process is self-organizing and requires no knowledge of
class to construct the learned images. No explicit knowledge of class is used
except in the statistical evaluation of classes discussed in Section 6.3.

5.1. Learning in Multibit Memories
All of the learning methods used for eight-bit relevance memory take the form:
M,J{r + 1) = g(M,J(I) + o:AM,J), (17)

where if +§ is the scale, maximum range, of M, the limit function g is given by:

S ifa>§
g(x)={ x ifS=x= -5, 18)
=5 ifx<-§

a is the learning rate, and the memories are updated form epoch 1 to epochr + 1.
The time dependence generates a dynamically stable leamning sequence. All of
the rules used here involve mechanism which generate positive feedback be-
tween the memory locations and the image. The function g is used to provide a
bound on this feedback.

The first rule is the Dystal {10] rule given by:

S—M ) ifq i+ 1)>0

M, (1) — 8 otherwise. )

-4

= |

This rule was developed in [10] to more closely approximate the behavior of
neurons than previous rules. This has important consequences for the stability of
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the learning process. Unlike the other rules used here, this rule is self-limiting at
the scale values =S. This rule is only applied vertically; data from each pixel
only effect one memory element during learning. When a more extended field is
used, image data effects memory elements over some local region, referred to as
a receptor field. A rule of the Dystal type has a distinct stability advantage in the
recepltor field cases over nonlinear limit functions.

The second rule used is a simple Hebbian rute {13] of the form

_{ s ilg r+ 1N>0
AM, k) = I—S otherwise. 20
This rule is used because it is simpler and [aster than the rules used in (7] and (8]
but can be comparisons with these rutes. The stability on the rule is guaranteed
since only vertical interconnections are used.

The third rule used was a vertically distributed Hebbian rule [7] of the form

k=] d=pad
_ S ifg(r+1)>0
AM 0 = z z { -5 otherwise. 1

A=i—1 fe =1

The vertical part of the learning is identical to Rule 2. The field usedisa 3 X 3
square. The paralle! processor implementation is shown in Figure 3.13. The
arrows indicate shifting operation on the processor array. Although a loop struc-
ture is implied by the notation used for the rule, a linear sequence of shifts is
used. The stability of this rule is discussed in the next section.

The fourth rule used was a vertically distributed Hebbian rule and a laterally
connected anti-Hebbian rule [8] of the form

ke=itl o l=jt] { S ifg e+ 1)>0
Lisiz1 Dimj —S otherwise.

AM, =
ST gkmitD s { S sgnlMy ) = sga(, ) D
k=i—1 2, 1=p-1 —5 otherwise,
where
1 ifx>0
sgl'l(-\’) = { 0 ifx =0 (23)
1 ifx<0.

The vertical pan of the leaming is identical to Rule 3. The lateral component is
anti-Hebbian. Both the vertical and lateral terms used the field-distribution pat-
tern, shown in Figure 3.13.

The fifth rule used was a ventically-distributed Hebbian rule with Gaussian
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—— ——

4R

Figure 3.13. Distribution pattern used in the 3 x 3 field profiles of rules 3
and 4.

weights [7] on a field », square which must be summed over ¢ = (1, — 1)/2
elements and takes the form

PO 2 4 j2)ah)S if 1) >0
-2+ if g, Gt + 1) >
M =S 2 { exp(—(i? + j2Ho*)S it g, (r + 1)

—~exp(—(i2 + 2)/o?)S otherwise, 24

hmrmy fmjmg

where o is the envelope variance of the field; this variance is not related to the
variance used in the Gabor filter in Equation (3). The field-distribution pattern
used for a version of this rule in which n, = 7 is shown in Figure 3.14. The
addition of the Gaussian weights increases the stability of the leaming by making
the equivalent shunting mairix, discussed in Section 6, diagonally dominant.

The sixth rule used was a vertically distributed Hebbian rule and a laterally
connected anti-Hebbian rule with Gaussian weights [8] on field n square which
must be summed over ¢ = (1, — 1)/2 elements and takes the form

SEf Sl [ R @ e B+ )>0
i—g =j—q —exp(—(i? + j2)/o?)S otherwise

AM,, = i =
if sen(M =
_Eij+g tﬁ}g { exp(—(i* + j2)a?)§ sgfl%lr\ld( (':.;;{t))
=j— 2 == —_ —(f i .
exp(—@? + j?)/o?)s otherwise,

(25)

where ¢ is again the envelope vaniance of the field. The field-distribution pattern
used for this rule is shown in Figure 3.14.

5.2. Learning in Binary Memories

The two rules used for binary pattern learning are a logical “OR” of the positively
relevant elements
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Figure 3.14. Distribution pattemn used in the 7 x 7 field profiles of rules 5

and 6.

M, 1)V q,,(t + 1) if relevance > 0

M+ D= {M,J(r) otherwise,

and a logical product of the image and relevant elements.

1 if g, ¢ + 1) > 0 and relevance > 0
M0+ 1) = {0 if g,,{r + 1} = 0 and relevance < 0
M, (1) otherwise.

6. PATTERN CLASSIFICATION

(26)

@n

Two types of classification have been used with FAUST to provide classification
of images based on a previously learmed FAUST image-feature set. In the
simplest case, maximum resonance-based classification was used as in [3] with
ART-1 features. Since the association space diagram generated by the FAUST
feature set is morc selective than the associations, which are generated by
ART-1, a more general type of classification based on analysis of the association

space diagram is also discussed.

e ——— e b 8
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6.1. Resonance-Based Classification

Il Mg is a relevance memory and M, is a pattern memory. the classification of an
image, /, is found by finding

max(—Z((— 1M, & (I = M) (28)

and then taking the classification of the majority of the images used (o learn the
{Mx.M} pair. Since each of the terms used to generate the sum is equivalent to
the summed term in the correlation-association rule shown in Table 3.3, the
function maximized is the cross correlation of the two memories.

In the limiting case where the edge pixels have relevance zero then this would
be represented by Figure 3.15. When the relationship of the two memories is
contradictory near the edge, the area would over-represent the cross-correlated
relevance. In the case of complex learning rules, such as Rule 4 in Section 5, the
area would also be decreased by the down weighting of uniform regions far from
any edge.

6.2. Association-Based Classification

The association-based method calculated the values of R and £ according to one
of the functions used in Section 3. These values are then used to compute mean
values R and P. These values are then used to find:

S L T N I T

o

P

Figure 3.15. The assoclation space dlagram that is used for maximum-reso-
nance classification. The Os are for nonmatching points. The » is for the comrect
classification.
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max (V(R — Ry + (P — P)?) (29)

for which R > R and P > P. This is illustrated by the vector between the mean
and classifying point in Figure 3.16. As in the previous case, the classification is
determined by the majority of the images used to learn the classifying memory
pair.

6.3. Statistical Evaluation of Classes

The evaluation of the self-organized classes is achieved by accumulation of
statistics in a classification variable:

¥4

class k. j

= Zotnsa, T 1ifclass of (g) = k. (30)

This table can then be used to determine the most likely classification of each
associative memory of the set for all images and to assign classes to images based
on maximum strength achieved using either Equations (28) or (29) over all
memory location and class assignments. This allows a new set of images to be
leammed wholly by example and divided into classes based on the recognition
results achieved using the images assigned to the training set. This procedure is
equivalent to applying an inhibiting signal to the gates in the diagram in Figure
3.2.

a

g

P

Figure 3.16. The association space diagram that is used for associative c¢lassifi-
cation. The Os are for nonmatching points. The i is for the comect classification.
The « marks the mean.
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7. STABILITY IN FINITE PRECISION IMPLEMENTATIONS
All of the learning rules discussed in Section 5 are of the approximate form:
M@ + 1) = M(n) + AM. (31

This can be reformulated, to match as far as possibie the notation of [14], in the
form:

AM = (B - CM)Q — (DM + EVJ (32)

where the shunting network, that is the distributive mechanism which generates a
feedback equivalent to the bounding function, for excitatory inputs, where 0=
Wg,andu = (1,1,...,1) requires that signals be ineffective when

B=CM (33)

and in the present model where Q = J the shunting of inhibitory input occurs
when

E =DM, (34)

In [14] it is shown that absolute stability results when the matrices C and D are
symmetric. This reformulation, as discussed in [14], is equivalent to replacing
the limiting function g(x) by feedback terms of the form CMQ and DM where C
and D are chosen to limit AM to values which constrain M(r + 1) to the range
=AY

In the present work, M, 4, B, E, and j are 25, s-bit, vectors of length 1,024,
and C and D are 1,024 x 1,024 square 2s, s-bit, symmetric matrices. If the
restriction on the significance of these elements to s-bits did not apply then the
proof given in [14] would be sufficient to guarantee absolute stability.

A simple construction will show the consequences of finite precision on the
stability criteria. Take s = 8, a = 1.0, and assume for Rule 5 of Section 6 that
02 >> 2 + j2 and ny = 7. Under these conditions the Gaussian coefficient
approaches 1.0 and each double sum has 49 terms, each with eight bits. The
accumulation of one row of B times Q requires 26 X 28 or 214, 14-bit, arithmetic.
This calculation will work with 16-bit accumulators. In general, the accumula-
tion of one row will require:

foee = 5+ 2 logyln f} + loga{e) + 1 (35)

bits. The leaming rate, a, is less than or €qual to one so that lower learning rates
can decrease the need for large accumulators by allowing stepwise averaging.
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The solution to the shunting equation poses more difficult numerical prob-
lems. If the calculation is done in fixed point, then the worst-case condition for
formation of a term of BC—! will be when ¢, ; = 1/b; , which will require 2n,, . bit
dynamic range. For floating point calculation, the mantissa must contain 2n,,.
bits to avoid round-off errors. This would require 28-bit arithmetic, nine decimal
digits, to avoid round off for a seven-element receplor field. A fully connected
field would require 38 bits of precision. Decreasing the leaming rate will de-
crease the number of required bits by 2 loga{a). For a = s, the 7 X 7 field
would then require 32 bits.

The formation of the row accumulations and shunting terms are not the most
likely cause of errors in the numerical calculation. The most difficult computa-
tional task is the solution of the two shunting equations and particularly the
inhibitory equations resulting from Rules 4 and 6. The numerical theory required
to analyze these solutions is described in [15] and is outside the scope of this
work. The results are summarized by stating that for al! rules the Matrix C is
symmetric, positive definite, and diagonally dominant. The Matrix D from Rules
4 and 6, for regions which are already inhibited, may result in poorly conditioned
values of D,

8. RESULTS

The methods described in Sections 2—6 were tested by constructing a recognition
system which can adaptively learn both machine and hand-printed digits on a
massively parallel processor. The parallel FORTRAN program is approximately
1,400 lines long. The hardware used is discussed in Section 8.1 (below). A test
sequence consists of loading the images of the test data into the array processor
and performing filtering, feature extraction, and classification on these images.
Each test set is divided in half. The first half is used to learn the character set
features using the FAUST associative memories. The second half is used for
classification testing of the degree of generalization achieved. All classifications
use the method described in Section 6. All error rates shown are for the second
half of the test sample.
The symbols used in all tables are:

—

In is the sample file set name,

2. M is the number of memories,

3. N—normalize, S—Shear, and G—32 term Gabor (sequentially applied
filter types),

4. p is the vigilance,

5. P is the pattem association type (C—correlation, D—inverse squared dis-
\ance, Tan—inverse squared tangent, 7—Tanimolo, Cos—oflset cosine),

6. R is the relevance association (lypes as for P)

e
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Pl is the pattern leaming rule (/—logical or. R—relevance controlied),
Rl is the relevance leaming rule (D—Dystal. H—vertical Hebbian, V—
nine point vertical Hebbian, Hz—nine point vertical Hebian and nearest
neighbor horizontal anti-Hebbian, L5—35 X 3 Gaussian enveloped vertical
Hebbian, #5—5 X 5 Gaussian Hebbian and 3 % 5 Gaussian horizontal
anti-Hebbian,

Wro is the number of substitutional errors.

Unk is the number unknown,

Confidence is the confidence for correct answers.

Failure Con. is the confidence for wrong answers. and (The test sample file
have the size and composition shown in Table 3.4.)

The four image-processing requirements discussed in the introduction are

achieved by:

1. scale invariance—normalization,

2. rotational invariance—shear transform,

3. edge position invariance—FAUST relevance learning, and
4. local shape invariance—Gabor filtering.

The need for Items 2 and 4 is limited to hand print. Machine fonts are sufficiently
square on the page and uniform in shape so that only normalization and relevance
learning are needed.

8.1.

Hardware Architecture

The parallel data flow, shown in Figure 3.2, is ideally suited to a massively
parallel architecture in which the number of processors is equal (o or exceeds the
number of input data elements. Since many of the operations on the input involve
only limited precision operations, the precision of each processor need not be

Table 3.4 Table of the File of Data
Used In Testing. Each hand-print sample
comes from a different writer in [16].

name type size
fl1 machine print 300
fi2 hand print 300
fl3aa hand print 1024
f3ab hand print 1024

f3ac hand print 1024
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greal. Also, since data flow between the various parts of the architecture is
critical, the bandwidth for communications between processors must be high.

The SIMD (Single Instruction Multiple Daia) architecture used for this study
meets all of these requirements. The computer used was an Active Memory
Technology 510 Distributed Array Processor [12], DAP510.! This machine con-
sists of a 32 X 32 grid of one bit processor element (PE). Operation of the PE
array is controlled by a 4 MIPS RIS master control unit (MCU). All program
instructions are stored in a separate code memory and are passed to the PE array
through the MCU. A block diagram of this architecture is shown in Figure 3.17.

All data is stored in a separate array memory. The array memory is organized
in 32 X 32 bit planes with each of the bits in each plane connected to one
XPEData can also be passed between PEs along the grid. The cycle time of all
PEs is 100 ns.

This processor configuration is capable of performing 1010 binary operations
per second; processing speed decreases proportionally with the length of data
iterns used. Two data mappings are particularly well suited to the DAP structure:
a vector mode in which successive bits of a single word are mapped into a row of
the array, and a matrix mode in which successive bits of a word are mapped into
layers of the array memory vertically. Both of these modes of operation are used
in FAUST. The summation operations shown in Figure 3.2 use floating-point
matrix-mode operations to trigger learning and logical matrix operations to learn
binary pattern information.

8.2. Learning

The learning process in FAUST is illustrated in Figures 3. 17, 3.18, and 3.19. In
Figure 3.17 the pattern and relevance memories are shown in the two left col-
umns and the characters used in the learning process are shown extending to the
right of each memory pair. In Figure 3.18 the character images are replaced by
plots which are miniature versions of the association space diagrams in Figures
3.11, 3.15, and 3.16. In these plots the point at the upper left is the correct
match. Figure 3.19 is an enlarged view of material from the top row, where the
3" is learned. In the upper left the leared pattern is shown. In the upper right
the learned relevance is shown. The gray pixels represent regions of the character
where uncertainty has been detected and learned. In the lower left of Figure 3.19
the last character learned is shown. In the lower right, the association space map
is shown.

1 Certain commercial equipment may be identified in order 10 adequately specify or describe the
subject matter of this work. In no case does such identification imply recommendation or endorse-
ment by the National Institute of Standards and Technology, nor does il imply that the equipment
identified is necessarily the best available for the purpose.
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DAP Processor Architecture

typical procemor element (PE)

PE matriz L
(ESx ES PEi) o |
lTLy memary | array siore place
a least o
32k planm ane bil ia an

l wtay siore plane

I {ocal memery for
typical PE

Figure 3.17. Array processor architecture for massively parallel computer.

The way FAUST leams is demonstrated in Figure 3.17 by the increase in
image contrast in Column 2, the relevance memory data. Initially all locations
contain a blank gray field. As learning progresses, regions of the image which
are dark decrease in intensity and regions which are light increase in intensity.
The “9" in the twelfth row has been exposed to only one leaming event and
contains a low contrast image. The “2” in the thirteenth row has been exposed to
two learning events and shows increased contrast. The “7 in Row 6 has been
exposed to enough leamning to generate a high contrast image.

This shows gradual learning, but the importance of the leaming process is
shown in the association space diagrams in Figure 3.18. The x-axis on these
diagrams is the pattern associalion strength. The y-axis is the relevance associa-
tion strength. As learning progresses, classification accuracy is improved if one
point in the diagram separates from the other clustered points. In Row 4 the “4”
recognition is achieved by the point in the upper right of each diagram. Mast of
the separation, which results in improved classification, is achieved on the rele-
vance axis.
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Figure 3.18. Plot of leamed memory material, the leamed pattem is in column
1, the leamed relevance is in column 2, and the characters used in FAUST for the
learning are in columns 3 and above.

The mechanism which achieves this separation is shown in the expanded
views in Figure 3.19. The relevance memory data for the “3™ in row one, shown
in the upper-right quadrant, is dark in the background, bright inside the digit, and
gray at the edges. The uncertainty which has been learned at the edges is respon-
sible for the increased relevance association strength during leaming. Digits are
very reliable over most of the image. The difference in images is in the body of
the character.

8.3. Machine-Print Data

8.3.1. Effect of association rule

Tables 3.5 and 3.6 show the effects ol different association rules on machine-
print character recognition. All five rules are used. In all cases, with the correct
choice of p. it is possible to achieve 100% recognition on test samples of 150
characters. The association rules elfect the sensitivity ol leaming and through
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Figure 3.19. Plot of leamed memory materia!, the leamed pattemn Is in column
1, the leamed relevance is in column 2, and the association space dlagrams
which result from FAUST for the leaming are in columns 3 and above.

them the confidence levels. This is caused by the variation in sensitivity of the
functions in Table 3.3 to image similarity differences. The minimum recognition
rate is achieved using inverse square distance association and resonance classifi-
cation and is 2,4 ms/character.

8.3.2, Effect of classification method

The differences in Table 3.5 and 3.6 are caused by using different classification
rules. The same recognition accuracy is achieved in each case, but the confl-
dence, both of correct and of failed recognitions, is hi gher for resonance classifi-
cation. The advantage of associative classification is that the ratio of correct to
failure confidence is larger. This allows better discrimination between correct
and unknown cases. This improvement is achieved with slower recognition. The
recognition rate ranges between 4.7 ms per image for correlative association to
12.6 ms per image for offset cosine association.
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Figure 3.20. Enlarged plot of leamed pattem memory and relevance memory
material, last characters used, and last association plot used in FAUST leaming.

8.4. Hand Print

8.4.1. Effect of filters

Table 3.7 shows the classification error for three different samples of 512 hand-
printed digits. The digits were taken from hand-printed digits contained in the
NIST hand-print database [16]. Data from 18 different individuals were used in

Table 3.5. Machine-Print Classification Results. Legend is as in Section 8.
Resonance classification was used.

In M Filter p P R Pl Rl W Unk Confidence Fallure Con.

1l 16 N 09 C C R H none none 0.961295 no data
A1 16 N 09 Tan Tan R H nene 13 0.955444 0.7367923
fi1 16 N 08 Tan Tan R H none none 0.96159 no data
il 16 N 09 D D R H none none 0.960049 no data
fll 16 N 0.9 T T R H none 13 0.954134 0.736723
A1 16 N 09 Cos Cos R H none none 0961225 no data
A1 16 N Q.8 T T R H none none 0.960049 no data
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Table 3.6. Machine-Print Classification Results. Legend is as in Section 8.
Associative classification was used.

In M Fiter p P R Pl RI Wro Unk Confidence Fallure Con.
Al 16 N 09 C C R H none none 0.642354 no data
fll1 16 N 09 Tan Tan R H none 13 0.562907 0.04142
il 16 N 0B Tan Tan R H none none Q60939 no data
1 16 N 09 D D R H none none 0.597593 no data
A1 16 N 0.8 T T R H none none 0.58948 no data
il 16 N 09 Cos Cos R H none none 0782599 no data

each test file. Nine individuals were used in the learning phase, and a different
nine individuals were used to test classification. Several different filter types
were used on the hand-printed characters. Undetected error rates are a minimum
of 4.9% and detected error rates are about 12.1%. The use of resonance classifi-
cation is less effective than associative classification. The most effective filter
combination is shown to be a shear transform followed by a Gabor filter. These
combined filters reduce the substitutional error by a factor of three and the
number of unknowns by a factor of two.

8.4.2. Effect of associative classification

As in the machine-print case, the effect of using associative classification is to
increase the accuracy of the recognition process. Only the shear and Gabor filter
types were used since they were the most effective with the resonance classifica-
tion. Undetected error rates are a minimum of 2.3% and detected error rates are

Table 3.7. Classification Errors in a Sample of 512 Hand-Printed Characters
When Several Different Filters Are Used in FAUST. Resonance classification
and nearest neighbor Hebbian leaming are used throughout.

Sample Memory  Fliter p Wrong Unknown  Confidence  Fallure Con.
fi3aa 64 None 8 a3 106 B3T977 810095
fl3aa 64 S B 66 83 B47505 815503
fi3aa 64 G R 56 80 814819 765439
fi3aa 64 S4+4G 8 25 62 829200 765033
fidaa 64 $S+G 85 25 57 830161 J6TT45
fl3aa 64 S+G 90 44 66 841545 78179
A3aa 64 S+G 75 54 105 828508 776948
fidab 64 S+G 85 30 91 833265 756408
fi3ac &4 S+G 85 N 72 832459 J76401
A3aa 32 5+G B85 39 88 814784 .722403
fi3ab 32 S+G 85 44 103 814545 742161

fldac 32 S+G B5 63 104 817895 761885
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Table 3.8. Associative Classifier Results. Legend is as in bedinning of Section 8.

. Failure
In M Filter 1] P R Pl Rl Wro Unk Confidence  Con.
A2 32 none 0.8 C C 10 37 02927571 0.149181
2 392 S+ G 0.8 C C 4 23 0283133 0.155104
A3aa 64 S+ G 0.8 C C 24 67 0343192 0.202113
fA3aa 64 S+ G 08 Tan Tan 24 69 0263423 0.128439
fl3aa 64 S+ G 0.8 D o none 458 0.0001 0.0001
fi3aa 64 S+6 08 T T 17 90 0.246038 0.1113H

fidas 64 S$+6 08 Cos Cos
fldaa 64 S+W16+ G 08 C
fidas 130 S+ G 08 C
fA3aa 130 S+G 08 C
fi3aa 130 S+6G 08 C

C

C

none 455 Q0 0.0
22 68 0356265 020178
19 60 0352834 (.220397
12 4B 0368763 0.217061
o7 56 0361662 0.259817
o7 51 0377148 0.929399
14 62 03919238 0.211646
33 67 0340328 0.296505
16 70 0290596 0.147452
15 68 029219  0.15415
12 76 0301668 0.149273
4 14 0.27136%9 0.150463

f3ab 130 $+G 08

fi3aa 130 5+G 0.85

fidaa 130 S+G 015 C

flasb 130 S+ G 08 Tan Tan

fidab 130 S+G 0.8 T T
f3aa 130 S+G 08 T T
fie 130 S+G 08 T T

s Xatalakalakal
M AOXNORANDDDDOODRTMODRROX
ccc et et gcg g <<

about 9.4%. The substitutional error has been cut in haif by the use of associative
classification and the recognition rate has improved from 83 to 88%. Since the
number of filter types, association types, learning rules, and classification rules
form a large set, which has not been completely explored, better values for
recognition rate may be possible.

9. CONCLUSIONS

A new architecture, FAUST, has been developed which provides a method for
performing self-organizing pattern recognition using multimap classification and
learning similar to the multimap structures known to exist in the vertebrate
sensory cortex. The method is well suited to implementation on massively paral-
lel computers, since learning the relevance of image regions is in parallel with
the learning of image data itself. This has allowed a complete character-recogni-
tion package to be designed which uses unsupervised biologically motivated
methods for input filtering, feature extraction, and classification.

The effectiveness of the FAUST character-recognition methods are compared
to several other biologically motivated methods in Table 3.9. All of the calcula-
tions were performed on an Active Memory Technology DAP 510. The data for
the first three methods is taken from [18]. All of the timing data is for recognition



102 wiLsON

Table 3.9. Comparison of the Performance of Various Recongition Methods
on Low-Quality Machine-Printed Digits

System Filter Assoc. Trigger Leam Class Speed
ART-1 external corr. max P replace Bayesian 7.4ms
ART-2 nonlinear corr, max P average Bayesian =1400ms
CORT-X ART-2 & RF COIT. max P average Bayesian =1400ms
FAUST extemal 5 AssoC. 6 types As50C. 2.5ms

4 types types Space of RF Space

of low-quality machine-printed digits with 100% recognition. The leaming times
for the ART-1 and FAUST methods are comparable to the recognition times. The
learning times for the ART-2 and CORT-X methods are approximately ten times
the recognition times. All of the methods are unconditionally stable and always
converge. The advantage of the FAUST method over ART-2-based method is
obtained by using Gabor filtering methods instead of a nonlinear filter. The
advantage over ART-1-based methods is that the filter can be eliminated for
simple recognition tasks, such as machine print, because edge and stroke varia-
tions are learned by the associative relevance memory.

The effectiveness of the FAUST architecture is further demonstrated on a
character-recognition example providing greater than 99.5% recognition accu-
racy on low- to medium-quality machine-print with no substitutional errors and a
2.4 ms recognition time and 88% recognition on hand print with a 2.3% substity-
tional error rate and a 30.9 ms recognition time. The hand-print recognition time
includes the 13.6 ms used for Gabor filtering.
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