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Abstract

The goal of this study was to evaluate human accuracy at identifying people
from static and dynamic presentations of faces and bodies. Participants
matched identity in pairs of videos depicting people in motion (walking or
conversing) and in “best” static images extracted from the videos. The type
of information presented to observers was varied to include the face and body,
the face only, and the body only. Identification performance was best when
people viewed the face and body in motion. There was an advantage for
dynamic over static stimuli, but only for conditions that included the body.
Control experiments with multiple-static images indicated that some of the
motion advantages we obtained were due to seeing multiple images of the
person, rather than to the motion, per se. To computationally assess the
contribution of different types of information for identification, we fused the
identity judgments from observers in different conditions using a statistical
learning algorithm trained to optimize identification accuracy. This fusion
achieved perfect performance. The condition weights that resulted suggest
that static displays encourage reliance on the face for recognition, whereas
dynamic displays seem to direct attention more equitably across the body
and face.
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1. Introduction

In the real world, we interact with people in motion. These interactions
typically begin at a distance and unfold over time, as a person approaches,
and ultimately stands “face-to-face” with us. The recognition of a person in
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natural viewing conditions, therefore, begins with a glimpse at the overall
shape of a person and builds toward more confident judgments as the par-
ticularities of the movements, body structure, and face are integrated and
processed.

The human face has generally been regarded as the most easily accessi-
ble and accurate entry point into the task of determining a person’s identity
from visual cues. Despite evidence that humans excel at recognizing familiar
faces (Burton, Bruce, and Hancock, 1999a), performance is less impressive
for relatively unfamiliar faces (Hancock, Bruce, and Burton, 2000). In partic-
ular, there is evidence to indicate that recognition can be poor under viewing
conditions that are non-optimal or are poorly matched to those in which a
face is learned. The difficulties humans have with unfamiliar face recogni-
tion can be mitigated potentially by relying on a broader array of identity
cues available in natural viewing conditions. These include the shape and
structure of the body, as well as gait and other gesture-based movements
of the body. Body motions and gestures that are idiosyncratic or “identity-
diagnostic” have been referred to previously as dynamic identity signatures
(O’Toole, Roark, and Abdi, 2002).

There is surprisingly little psychological work aimed at understanding
the extent to which humans use information, beyond the face, to identify
people. Most of these studies examined the cues available in biological mo-
tion stimuli. For example, Cutting and Kozlowski (1977) found poor, but
above chance performance, for identifying friends from point-light motion
displays. Westhoff and Troje (2007) demonstrated that people could learn to
discriminate a small number of individuals using their motions. Moreover,
Loula, Prasad, Harber, and Shiffrar (2005) demonstrated that humans are
most sensitive to point-light motions of themselves and friends, but are not
able to discriminate the motions of strangers.

Using more natural dynamic viewing conditions, Burton, Wilson, Cowan,
and Bruce (1999b) considered the relative contribution of the face versus
body for recognition in dynamic viewing conditions. They looked at iden-
tification of people captured on CCTV as they walked through a door and
found that observers performed quite poorly when they were unfamiliar with
the person in the video, but were nearly perfect when the person was known
to them. Davis and Valentine (2008) confirmed the finding that matching
unfamiliar identities in video is highly susceptible to error and found that
this held across low-, moderate-, and high-quality video. Burton, Wilson,
Cowan, and Bruce (1999b) also found that identification performance de-
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clined substantially when the face in the video was obscured, but remained
high when the body was obscured. This result suggests that even with more
complete information about the face and body, recognition performance is
supported more strongly by the face than by the other information in the
video.

In static displays, Robbins and Coltheart (2010) likewise demonstrated
the importance of the face in identifying relatively unfamiliar people. In
that study, observers learned people from full body pictures and were tested
with composite images made from the head of one person on the body of
another person. People were more accurate at identifying people from their
heads than from their bodies. Moreover, in integrating information from
the combined face and body, Robbins and Coltheart (2010) found a greater
degree of holistic processing across the right-left mid-line halves than across
the top- and bottom- halves of the full body image. They conclude that the
head is more important than the body for recognition, but that the body
can also provide identity information, when the person is processed as an
integrated whole.

In the context of viewing people in motion, Pilz, Vuong, Bülthoff, and
Thornton (2006) have also considered the question of how we integrate in-
formation across the face and body in making an identification decision.
They placed three-dimensional head models from different people onto a sin-
gle identical moving body, defined by an avatar. Observers responded more
quickly to a target face when the body was approaching than when it was
static. In a second experiment, they found that faces learned on an approach-
ing avatar, were responded to more quickly than those learned on an avatar
that was static. These findings suggest that natural approach motions may
facilitate the processing of a face. However, the body information in the
Pilz et al. (2006) study did not vary. Thus, it remains an open question
if approach motion would likewise facilitate the processing of the body if it
carried individuating information.

From a neural perspective, the visual processing of faces and bodies from
dynamic and static displays is likely to involve a complex network of brain
regions. Based on evidence from human neuropsychology and primate neu-
rophysiology, Haxby, Hoffman, and Gobbini (2000) proposed a distributed
neural network that divides the processing of the invariant and changeable
aspects of faces into two streams. According to this model, the invariant fea-
tures of faces, those useful for face identification, are processed in the ventral
temporal areas of the cortex near the fusiform gyrus (cf. fusiform face area,
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FFA, Kanwisher, McDermott, and Chun 1997). The changeable aspects of
faces (e.g., expression, gaze), useful for social communication, are thought
to be processed in the posterior Superior Temporal Sulcus (pSTS) along the
dorsal stream of visual processing. (See Shultz and Pilz (2009) for a review
of recent functional neuroimaging results for viewing natural face motions).

As noted by Haxby et al. (2000), the invariant information in faces sup-
ports the function of identifying people, whereas the motion-based change-
able information supports a social communication function. Given that the
neural systems responsible for these functions are, to a first approximation,
functionally and anatomically distinct, the question arises as to how facial
motions contribute to face recognition. The task of recognizing someone is
based presumably more on the invariant structure of a face. In theoretical
terms, O’Toole et al. (2002) proposed two ways that motion could benefit
face recognition. The supplemental information hypothesis posits that we
represent dynamic identity signatures in addition to the invariant features of
faces. The representation enhancement hypothesis posits that motion benefits
face recognition by perceptual structure-from-motion processes that enable
a better three dimensional representation of a face (O’Toole et al., 2002). To
date, there is strong support for the supplemental information hypothesis,
and hence the use of dynamic identity signatures for face recognition, but
only limited support for the representation enhancement hypothesis (O’Toole
and Roark, 2010, in press).

Although the Haxby et al. (2000) and O’Toole et al. (2002) models were
proposed to account for face processing, some essential elements of these
perspectives may apply analogously to the recognition of people from natural
viewing of full bodies. It has been known for sometime that the pSTS plays
an important role also in processing body motion as well as the motion of
individual body parts (e.g., hands) (cf. Allison, Puce, and McCarthy 2000;
Pinsk, DeSimone, Moore, Gross, and Kastner 2005). As noted, for the face,
and possibly body, the role of pSTS may be primarily for processing social
communication movements (Haxby et al., 2000). By extension, the pSTS
may also have a role in recognition via dynamic identity signature processing
(O’Toole et al., 2002)

The extra-striate body area (EBA) may likewise contribute to the recog-
nition of people from static images of bodies and body parts (Downing, Jiang,
Shuman, and Kanwisher, 2001). This region, located in the lateral occipi-
tal cortex, responds to still images of bodies and body parts more strongly
than it responds to a variety of control images, including faces. Downing
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et al. (2001) have suggested a role for the EBA in representing the visual
appearance of bodies. In particular, they suggest a role for EBA in identifi-
cation when viewing conditions are poor and the face is not easily accessible
due to poor lighting, occlusion, or viewing direction. Some studies have also
proposed a role for EBA in processing body motions with the goal of under-
standing actions and intent (Astafiev, Stanely, Shuman, and Corbetta, 2004),
but this finding remains controversial (Downing, Peelen, Wiggett, and Tew,
2006; Peelen and Downing, 2005).

Combined, the data from functional neuroimaging studies indicate a widely
distributed network of neural regions involved in processing faces and bod-
ies, both from static and dynamic stimuli. These studies also suggest that
neural regions may differ in the extent to which they subserve different tasks,
including the processing of social signals (pSTS), the recognition of intent
(pSTS, EBA), and person recognition (FFA, EBA, and pSTS). The complex-
ity of the neural processing belies a simpler question about how humans use
the information in faces and bodies for identifying someone under natural
viewing conditions, when a face is attached to a body and is experienced
intermittently in motion and at rest. A better understanding of how humans
identify people from static and dynamic information in the face and body
can constrain the interpretation of the neural data.

The goal of the present study was to systematically assess the contribu-
tion of the face and body for making an identity judgment in static versus
dynamic presentation conditions. We also tested the extent to which iden-
tification advantages in video could be accounted for by the presentation
of “more information about a person” from the multiple static images that
comprise the video sequence. We carried out a series of experiments in which
participants matched “person identity” (same or different?) in pairs of static
images/videos. We used this identity matching task to assess the quality
of information available perceptually, without requiring longer-span memory
resources. For all experiments, the task was to determine whether two im-
ages/videos were of the same person or of different people. The experiments
differed only in the type of stimulus used for the identity match. In Exper-
iments 1a, 2a, and 3a, participants viewed pairs of videos. In Experiments
1b, 2b, and 3b, identifications were made on the “best” image extracted from
the videos. The stimuli used in Experiments 1a and 1b included both the
face and body. For Experiments 2a and 2b, only the face was visible and for
Experiments 3a and 3b, only the body was visible. As we shall see, the face
and body and body-only experiments yielded a video advantage. Therefore,
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we carried out multi-static control experiments (Experiments 1c and 3c) to
test the extent to which the video advantage could be accounted for by the
extra image-based information in the video. Table 1 gives a summary of
stimulus conditions in each experiment.

Within each experiment, we also varied the types of videos presented for
identity matching. In one condition, participants saw pairs of “gait” videos,
picturing a person walking toward a camera. In a second condition, they saw
pairs of “conversation” videos, picturing the subject conversing with another
person. In a third condition, participants had to match the identity of the
two people between a conversation and gait video. We expected performance
to be best for the gait stimuli, because the quality and resolution of the final
frames of these videos was best. The primary reason we used different types
of match conditions was to diversify the stimulus types, allowing for a more
general test of the main questions of the study. These general questions
focused on video versus static presentations and recognition from the face
versus body.

Next, we applied a fusion strategy to the task of quantitatively and quali-
tatively assessing how to optimally combine human identity judgments based
on different information (face and/or body, viewed in static or dynamic dis-
plays) to improve identification. Fusion has been used widely in computer
vision applications to improve biometric identifications by combining infor-
mation from multiple sources (e.g., face and fingerprint, or face and iris)
(Ross, Nandakumar, and Jain, 2004). In general, the idea is that when par-
tially independent information about a person’s identity is available from
multiple sources, the information can be combined to improve accuracy over
that of the best performing source. Fusion algorithms vary in complexity
from simple averaging of the judgments from different sources to pattern
classification algorithms that learn a statistical mapping from the source
judgments to the identification status (e.g., same or different person). Here
we used a pattern classifier based on partial least squares (PLS) regression
to implement the fusion. PLS combines elements of principal components
analysis (PCA) and multiple regression and provides a set of weights for the
optimal combination of information across sources. These weights can be
used to assess the role of different information sources in creating an opti-
mal identity judgment. As such, they can provide insight into the extent to
which the information used by humans across these presentation modes is
complementary, redundant, or independent.
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2. Experimental Methods

The methods were similar for all experiments, and so for brevity, we
describe them once and include a brief section that details the stimulus ma-
nipulations undertaken in each experiment. We conducted these experiments
independently using different observers so that we could use the same set of
identity pairings in each experiment. This allows for the fusion across exper-
iments to be based on independent participant judgments for single viewings
of each identity pair.

2.1. Participants

Volunteers for the experiments were recruited from the undergraduate
student population enrolled at The University of Texas at Dallas (UTD).
Students received research credit as part of a course requirement for psychol-
ogy majors. A minimum of 30 volunteers participated in each experiment.
Exact numbers of participants for each experiment are indicated in Table 1.
None of the participants had any previous familiarity with the people filmed
in the images/videos.

2.2. Stimuli

A database of video clips and static images of faces and people (OToole,
Harms, Snow, Hurst, Pappas, Ayyad, and Abdi, 2005) served as the source
of stimuli for these experiments. There were multiple gait and conversation
videos available for each person in the database. A gait video showed a per-
son walking parallel to the line of sight of a stationary camera, starting at a
distance of 10 m. The person is filmed as they walk toward the camera and
veer off to the left to pass the camera (see See Figure 1 for a multi-frame
example of these videos). The gait videos varied across individuals from 8s
to 11s, depending on how quickly the individual walked. The average du-
ration of the videos was 9.6 s. We decided not to edit these videos to a
common duration in order to preserve natural differences in walking speed
and style for individuals. A conversation video showed a person conversing
with a laboratory staff member. The lab member stands with his/her back
to the camera and the subject faces the lab member. The distance between
the camera and the center point of the subject’s trajectory was 10.4 meters.
The videos were filmed from the top of a short flight of stairs at a height of
3.5 meters, looking down on the subject and the lab member. To encourage
gesturing in the videos, the subject was asked to give directions to a building
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Figure 1: Five frames extracted from an example of the conversation videos (top) and the
gait videos (bottom).

on campus. For the experiments, these 10s videos were edited to be 9.6s in
length to match the average of the gait videos. Both types of videos were
filmed in a building foyer with high ceilings, enclosed entirely on one side with
glass windows. This environment approximates outdoor lighting and makes
for variable lighting conditions across the set of videos because the position
and intensity of the light (mostly the sun) varies on a stimulus-by-stimulus
basis. There were two sets of images and videos for each person: an original
set and a second, duplicate set of images and videos collected between one
week and six months subsequent to the original set. Thus, across the two
filming sessions, there are natural variations in the person’s appearance in-
cluding hairstyle, clothing, etc. This ensured that participants in the identity
matching experiments could not base their decisions on transient cues such
as clothing, or other artifacts.

To create stimuli for the body only experiments, we obscured the face by
blurring a circular region around and including the face in each frame of the
video. To create stimuli for the face only experiments, we applied a black-out
mask to the entire image in each frame, exclusive of a circular bubble around
the face. For the static presentations, we extracted the “best” still image
from each video as follows. For the gait videos, this was the image taken
closest to the camera that showed the face from the frontal view. For the
conversation video, we chose a good image that showed the face from as close
to a frontal view as possible. See Figure 2 for examples of the stimuli.

To make stimuli for the multi-static control experiments, we extracted
one image per second for each of the videos. Specifically, we took the first
frame of each second of the video and presented these frames in sequence
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Figure 2: Five frames extracted from an example of the conversation videos (top) and the
gait videos (bottom).

at a rate of one image per second. As noted previously, the original videos
varied in length from 8 to 11s. We did not shorten the videos to preserve the
walking speed of the individuals. Thus, for comparability, we likewise allowed
the number of multi-static frames to vary (between 8 and 11), keeping the
sampling rate constant. The images were presented in the sequence in which
they actually occurred in the video (i.e., not in random order), the image
sampling was far enough apart in the video to eliminate apparent motion.

For all stimuli, in all experiments, the images subtended a visual angle of
approximately 22.18 degrees horizontally and 15.03 degrees vertically. These
figures are approximate, because participants were free to move their heads
or the chair while they viewed the computer.

In all, there were 60 unique identities represented in the videos. All were
young adult males between 19-30 years of age. Twenty identities were used
to create identity-match pairs (i.e., two videos of the same person-presented
in match trials). The remaining 40 identities were used to create no-match
pairs (i.e., two videos of different people).
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2.3. Procedure

Participants in each experiment were assigned randomly to one of three
conditions. In the gait-gait (GG) condition, they matched identity in a pair
of stimuli created from the gait videos (with the exact stimulus type deter-
mined by the experiment). In the conversation-conversation (CC) condition,
participants matched identity in a pair of stimuli created from the conversa-
tion videos. In the conversation-gait (CG) condition, participants matched
identity between stimuli created from a conversation video and a gait video.

The participants viewed pairs of videos (images) and were asked to de-
termine if the people pictured were the “same person” or “different people”.
On each trial, they viewed the first video in the pair on the left side of the
screen, followed by the second video presented on the right side of the screen.
The screen went blank at the end of each video. For the best-static image
experiments, the first image appeared on the left side of the screen for 9.6
s (the average duration of the videos) and the second image appeared for
9.6 s on the rights side of the screen. Again, the screen went blank at the
end of each image presentation. Next a prompt appeared with the following
response choices : “1.) sure they are the same person; 2.) think they are the
same person; 3.) don’t know; 4.) think they are not the same person; 5.)
sure they are not the same person.” The prompt remained visible until the
participant pressed a response key.

There were 40 trials in all: 20 matched identity trials and 20 non-matched
identity trials. The order of stimulus presentation was randomized for each
participant.

2.4. Results

The confidence ratings for the identity match task enabled the construc-
tion of ROC curves. These appear in Figure 3 and offer an overview of
performance across stimulus conditions (tests of statistical significance using
the d’s computed from these data follow). Identification performance ap-
pears best when both the face and the body were presented in motion. In
more detail, these curves suggest three kinds of results. First, comparing the
right-left ROC curve pairs suggests an advantage for the video over static
presentations for the face and body and body-only conditions, but not for
the face-only condition. Second, performance for the face and body appears
to be better than performance for either the face or body alone. Moreover,
identification with the face-only is far better than identification with the
body-only. Third, the relative placement of the ROC curves within each
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Experiment Information Presentation N main effect
1a face and body video 48 F(2,45)=9.21, p <.001
1b face and body static 30 F(2,27)=1.25, p <ns.
1c face and body multi-static 30 F(2,27)=3.37, p <.05
2a face only video 30 F(2,27)=4.54, p <.001
2b face only static 36 F(2,33)=12.12, p <.001
3a body only video 30 F(2,27)=10.03, p <.001
3b body only static 31 F(2,28)=9.39, p <.001
3c body only multi-static 30 F(2,27)=.36, p <ns.

Table 1: In this table, we give a summary of the experiments, with their presentation and
information-type conditions. N is the number of participants in each experiment, divided
between the CC, CG, and GG conditions. The main effect of match type (CC,CG, and
CG) is reported in the last column and is significant in all but two cases (see text for
details).

experiment indicates better performance for the GG condition over the CC
and CG conditions, in all but the face-only video match condition. The CC
and CG conditions were roughly equivalent in all but the static face-only
condition.

Although the ROC curves provide a complete account of the data, these
curves are difficult to test for statistical significance. Thus, for the purpose
of conducting inferential tests of statistical significance, we computed a d’
for discriminating matched and mismatched identity pairs each individual in
each condition of the experiments. As indicated in Figure 3, the bow-shape of
the curves suggest that d’ is an appropriate summary measure. To calculate
a d’, the responses must be divided into correct matches (hits) and incorrect
matches (false alarms), which requires placing a somewhat arbitrary break
in the confidence rating scale to define match and non-match responses.1

The d’s were calculated by dividing the rating scale into “match judgments”
(ratings of 1 or 2, in which the participant said “sure or think” same person)
and non-match judgments (ratings of 3, 4 or 5, don’t know and sure or think
different people). We tabulated the proportion of hits and false alarms as

1We divided the scale to assign rating of 1 or 2 to “match” and responses of 3, 4 or 5
to non-match judgments, but we verified that the results were the same with the second
obvious break point between 3 and 4.
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Figure 3: ROC curves for the experiments show a video advantage for the face and body
conditions and the body-only condition, but not the face-only condition. They also show
a small advantage for the face and body conditions over the face and a stronger advantage
for the face-only over body-only condition. There is a reasonably consistent GG advantage
over the CG and CC conditions.
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follows. Hits were defined as match pairs that received ratings of 1 or 2 (i.e.,
sure or think that they are the same person). False alarms were defined as
non-match pairs that received ratings of 1 or 2.

2.4.1. Overview Experimental Results

To examine the effects of video versus static presentation, as well as the
kind of information presented (face and body, body, or face), we conducted a
two-factor (video/static and information type) meta-anova, combining data
across the six experiments.2 An overview of the means for these conditions
appears in Figure 4. Consistent with the figure, there was a main effect
of video versus static presentation, F (1, 199) = 17.17, p < .0001, with video
better than static. There was also a main effect of the information presented,
F (2, 199) = 54.88, p < .0001, with face and body best, followed by face-only
and then body-only. Both main effects were qualified by the presence of
a significant interaction between video/static presentation and information
type, F (2, 199) = 4.81, p < .009. The source of this interaction can be found
in two results involving the face-only conditions. First, static and dynamic
presentations were equivalent when only the face was presented. This was
supported by simple main effects tests of the effect of presentation mode
(video/static) in each information type condition (face and body, face-only,
body-only). These showed a significant effect of presentation mode in the
face and body condition (F (1, 72) = 19.76, p < .0001) and in the body-
only condition (F (1, 55) = 9.71, p < .01), but not in the face-only condition
(F (1, 60) < 1, ns). Thus, we conclude that observers did not benefit from
seeing multiple images of the face from the video, or from the motion of the
face in the videos. The lack of a motion effect for the face condition is not
surprising as the videos show only rigid rotational and translation movements
of the head.

The second component of the interaction is more interesting. This is the
equivalence of the static face-only condition (M = 1.75, SE = .11) and the
static face and body condition (M = 1.78, SE = .10) (Tukey HSD test, ns).
It is worth noting that the face images from which the judgments were made
in the static condition were included (identically) in the face and body static
images. By identically, we mean that the size of the face image in the static

2Because the effects of match type (GG, CC, and CG) were relatively consistent across
experiments, for simplicity we omitted match type from the meta-anova.
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Figure 4: An overview of the means for the first six experiments shows a video advantage
for the face and body and body-only conditions. There is also an advantage for the face-
only over the body-only conditions. Of note, the interaction between factors highlights
the equivalent performance for a static presentation of the whole person and a static
presentation of the face-only. Error bars indicate standard error of the mean.

face-only presentation was identical to the size of the embedded face in the
face and body image. This finding suggests that when observers looked at the
full person in a static image, they use only the face for the identity decision.
By contrast, in the video presentation conditions, performance was better
with the face and body than with the face alone. The fusion data we present
shortly offers insight into this interaction.

Combined, the two components of the interaction result in three condi-
tions with roughly equal levels of performance: 1.) static presentation of the
face and body; 2.) static presentation of the face only; and 3.) dynamic pre-
sentation of the face only. These conditions stand in contrast to a substantial
performance advantage for video presentations of the face and body together.
Substantially lower performance is seen for the conditions that eliminate the
face. These body-only conditions also show a video advantage.

Multi-static controls. Given the video advantage found for the face and
body and body-only conditions we conducted a multiple static image version
of each of these two conditions. The equivalent performance for the face in
the best static image and video conditions suggests that more information
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about the face (i.e., more images/frames) would not improve performance. 3

Across the video, static, and multi-static experiments, three patterns of
performance are possible. A “pure motion advantage” should yield equiva-
lent performance for the best-static and multi-static conditions. If both the
motion and the additional static images contribute to the video advantage,
performance in the multi-static control should fall between the video and best
static condition performance. If the video performance can be accounted for
by the multiple images in the video, then the multi-static control condition
will be at the same level as the video condition. We found examples of all
three patterns in our findings.

The results of the two multi-static control experiments are plotted in
Figure 5 along with the video and best static image results. Performance
in the multi-static condition, relative to the video and static presentations,
yielded no “general” result. Starting with the face and body and body-only
presentations, the GG comparison showed a pure video advantage, with the
multi-static performance well below the video at the level of the single static
presentation. This indicates that the video advantage in the GG conditions
comes from using inherently dynamic information for identification. The fact
that the pure video advantage appears only in the GG condition, where the
motion in both videos (e.g., walking style) is similar enough to be useful for
identification, is a further indication of the use of dynamic identity signatures.

At the opposite extreme, in the body-only CG and CC conditions, presen-
tation of multiple static images completely accounted for the video advantage.
In the CG face and body condition, both the motion and the extra informa-
tion in multiple static images contribute to the video advantage. Again, the
fusion simulations offer insight into these findings.

Up to this point, the results show that human identification is at its best
when the whole person was seen in motion. This indicates that people can
benefit from complementary information about the face and body and that
seeing the whole person in motion can, in some cases, add to the accuracy
of the identification judgment. There was also evidence that performance
with the face-only was far better than with the body-only. An interaction

3Although it is logically possible to find better performance in the multi-static condition
without a dynamic advantage, if this were to occur, it would likely reflect a preference for
presentation style (e.g., short exposures to multiple images might be helpful in attending
to the images). Here, we set aside that possibility to focus on understanding the source of
the motion advantages we obtained.
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Figure 5: The multi-static control experiments show a range of results from a clear demon-
stration of the movement in improving performance (GG) to a clear demonstration of
multi-static images accounting for the video advantage (CG body-only, CC body-only), to
a contribution from both movement and multiple images (CG face and body). Error bars
indicate standard error of the mean.

between body part and presentation mode suggests that the face “carries”
identification in static presentations that include both face and body. Next,
we consider the effects of match mode within the experiments.

Within-Experiment Match Mode Comparisons. As noted initially, the
primary reason we used different types of match conditions was to diversify
the stimulus types, allowing for a more general test of motion versus static
presentations and the use of face versus body information. We assumed that
differences in this variable would be due to the specifics of the information
each provides. To determine the effects of the matching condition (CC,GG,
and CG), in each experiment the data were submitted to a one-factor analysis
of variance (ANOVA) with pair type as a between-subjects factor and d’ as
the dependent variable. A summary of results appears in Table 1 and shows
statistically different performance across the CC, CG, and GG conditions
in all but Exp. 1b, the static face and body match, and in Exp. 3c, the
multi-static body match.

As expected, performance with the GG stimuli was generally best. This
is likely due to the fact that the person in the gait video was quite close to
the camera in the final frames of the video. These frames offered a better
view than any of the frames in the conversation videos. Notably, the perfor-
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mance using face-only in the CC and CG conditions was above chance, even
given the small size and and low quality of the images. An informal glance
at performance in these conditions suggested that performance in these con-
ditions came more from accurate rejection of non-matched pairs than from
confident judgments of match status in non-matched pairs. The GG advan-
tage was found in all but the video face-only experiment. We are uncertain
why the video face-only experiment differed from the others for the GG ad-
vantage. Across the experiments the ordering of the CG and CC conditions
varied, but was largely undifferentiated. Of note, for the static presentation
of the face there was a relatively strong advantage for the CG multi-modal
face comparison over the CC comparison. This seemingly odd result, where
matching between images of higher and lower quality is better than match-
ing between two lower quality images, is consistent with previous work (Lui,
Seetzen, Burton, and Chaudhuri, 2003). Combined, these results suggests
that the higher quality image can bootstrap face processing from the lower
quality image.

3. Fusion

The purpose of the fusion simulations was to assess more quantitatively
how the information presented to participants across the different experi-
ments can be combined to support more accurate identity judgments. As
noted, fusion methods are commonly used in computer vision and biometrics
applications when there are multiple, but imperfect, sources of information
that are useful for identification. Fusion can improve performance when the
contributing information is at least partially independent and when an op-
timal formula for combining the information generalizes across exemplars.
In other words, fusion will improve performance when the information or
strategies humans employ in different conditions are complementary. We
used fusion here as a tool for assessing how information across these sources
is used by humans and to see how the presentation modes (dynamic or static)
affect this pattern of use.

It is perhaps worth stressing that even if information is duplicated in con-
ditions (e.g., static face and static face-body), it is nonetheless still possible
to improve human performance with fusion. This could occur, for example,
if viewing a particular type of stimulus affects the way humans allocate at-
tention to different parts of the stimulus. We will see evidence of this type
of effect in the fused combination of conditions.
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4. Methods

Fusion of the experiments was accomplished with PLS regression, a tech-
nique that combines elements of principal component analysis and multiple
regression (Abdi, 2003; Naes, Isaksson, Fearn, and Davis, 2004). The tech-
nique is used to predict a set of dependent variables from a set of independent
variables. In other words, PLS is a standard pattern classification algorithm.
In the present application, we used PLS to predict the true match status of
the 40 pairs of faces (i.e., same person or different people) from the estimates
made by humans (i.e., their ratings) under different conditions (e.g., dynamic
face only, dynamic body only, etc.). Specifically, the classifier was trained to
learn a statistical mapping from the human estimates to the ground-truth
identity match status of the face pairs. The goal is to find a way to combine
the human estimates in different conditions to improve performance.

The choice of PLS is in part arbitrary and we would expect other pattern
classification algorithms to give similar results. We used PLS because it gives
a set of easily interpretable weights for individual predictors. PLS yields a set
of orthogonal factors, called latent vectors t1...tl from the covariance matrix
of the predictors and dependent variables. The latent vectors (factors) are
used to predict the dependent variable(s) by appropriately weighting the
predictors. The set of weights is referred to as Bpls in the PLS-regression
literature. Like other types of multivariate pattern analyses, PLS solutions
are specified in terms of the number of factors (latent vectors) used (e.g.,
2-, 3-, 4-factor solutions) for the prediction. We report the solution that
improves performance most.

Also, as is the case for other pattern classifiers, the PLS should be tested
for generalization using a cross-validation procedure. To cross validate clas-
sifier results, the test of classification is made on a stimulus (or stimulus set)
not used in training the classifier. We implemented cross-validation by train-
ing the classifier with n-1 face pairs (i.e., 39) and testing it with the left-out
pair. This procedure was implemented 40 times, iterating the left-out face
pair through the set of available pairs. Thus, the performance we report is
based on the proportion of times the correct match status of the left-out pair
was predicted by the classifier.

The fusions we report are as follows. First, we carried out a fusion that
combined identity judgments across all conditions of the 6 video and static
experiments. Based on the results of this first fusion, three additional sub-
set fusions were undertaken, combining data from within the stimulus type
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conditions (GG, CG and CC) across the body information conditions (face
and body, face-only, and body-only).

Six-experiment fusion. The predictors used in this fusion were the esti-
mates of the match status of the 40 pairs of identities (20 matched identities
and 20 mismatched identities) from each of the three conditions (CC, CG,
and GG) of the video and static experiments (Exps. 1a and 1b, Exps. 2a
and 2b, Exps. 3a and 3b). For each pair of images/videos in each con-
dition of each experiment, we averaged the response ratings (i.e., 1 : sure
the same person to 5 : sure different people) across participants for the
individual identity pairs. These averages were used as real-valued predic-
tors that retain information both about the human participants’ estimates
of identity and their certainty. To equate the stability of the averages across
the different experiments which varied somewhat in number of participants,
we averaged the first 10 participants in each condition of each experiment.
Recall that there were between 30 and 48 participants in each experiment,
divided roughly equally between the CC, CG, and GG conditions. Thus, the
minimum number of participants in each condition was 10, and so we used
data from the first 10 participants in each component of the fusion. Thus,
the predictor for each pair was the average of the participants’ ratings of
the likelihood that the people were the same. We had 18 such estimates (6
experiments, 3 estimates per experiment) for each pair, that varied based on
the type of information (face and body, body, or face) and presentation type
(video, static) used in the different experiments. The dependent variable was
the actual match status of the pair (same person/different people), quantified
as 1 or 0.

A robust estimate of the fusion performance was determined in a cross-
validation test in which the PLS regression was computed n times with n−1
identity pairs and tested with the nth “left-out” pair. The fusion performance
we report is based on the proportion of correct match status classifications
of the 40 face pairs. We tested a range of retained PLS factors to find the
best performance.

Fusions for GG, CG, and CC conditions. Three additional fusions within
the stimulus type conditions (GG, CG, and CC) were also conducted. For
each of these, we extracted the appropriate stimulus type across Experiments
1a,1b, 2a, 2b, and 3a, 3b. Each of these fusions used 6 predictors (video and
static presentations of face and body, face-only and body-only conditions).
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5. Results

The cross-validation six-experiment fusion classified the match status of
the face pairs with 100% accuracy for both the 3-factor and 4-factor solutions.
The weight patterns for these solutions were similar and showed that high-
valued weights (i.e., those contributing most strongly) were concentrated in
the GG conditions. This is likely due to the general performance advantage
for the GG conditions across the experiments. For this reason, we divided
the fusions into the GG, GC, and CC subset fusions.

The cross-validation fusion for the GG conditions, by itself, yielded per-
fect match classification accuracy, again for the 3- and 4-factor solutions.
Thus, perfect performance was achievable from the information presented in
the GG conditions. Again, the pattern of weights for the two solutions were
similar, and so we averaged them. These averaged weights appear in Figure
6 and show an intriguing result. The strongly weighted components for the
static presentations are from the conditions that include the face (face and
body, face-only). For dynamic presentations, the conditions that include the
body (face and body, body-only) are strongly weighted. The result suggests
that in the static presentation, the face dominates, and the body seems to
add little useful information for identification. In the dynamic presentation,
however, the body dominates with little independent or complementary con-
tribution from the face. The result also suggests that the combination of the
information humans assess most readily from the static presentations (the
face) and information assessed most readily from the dynamic presentations
(the body) produced perfect identification. Note that the fusion does not
indicate how humans combined information across static and dynamic pre-
sentations, but rather, how they might combine independent judgments made
from the two presentation modes to optimize identification accuracy.

The cross-validation fusion for the CG condition did not achieve perfect
match classification, although it did improve classification over the next best
condition. The weights in this case, however, were roughly equivalent across
all six sub-conditions used in the fusion, suggesting that observers rely on
complementary information in each of the six conditions. The CC condition
fusion did not improve match status classification accuracy, but rather, in all
cross-validation solutions, proved worse than the best input condition. This
suggests that there was no formula for combining the identity information
across these conditions in a way that generalized across the face pairs. More
likely, different combinations of condition-based estimates might be better
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Figure 6: The weights on the fused conditions indicate that in static presentations, the
face dominates with the body adding little to the identification. In the video presentation,
the body dominates with little independent or complementary information from the face.

suited to different subsets of the identity pairs.

6. Discussion

When we recognize a person in the real world, we see the whole person,
in motion and at rest. In this study, we examined the effects of dynamic and
static presentations of the face and body for recognizing people in relatively
natural viewing conditions. The primary finding of this study is that human
identification is at its best when the whole person was seen in motion. This
indicates that identification can benefit from both the face and body, and
that seeing the whole person in motion can add to the accuracy of the identi-
fication judgment. In other words, recognition in the present study was most
accurate when the conditions approximated natural viewing conditions, that
include a person approaching.

In dissecting this natural viewing condition advantage, a striking finding
was the equivalence of the static face and body and static face-alone condi-
tions. Consistent with previous studies (Burton et al., 1999b; Robbins and
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Coltheart, 2010), the present data confirm human reliance on the face for
identification in static viewing conditions, even when the body is available.
From this result, it is tempting to conclude that the static body does not, or
cannot, provide useful information for human identification. This conclusion
is at odds, however, with the solid performance (i.e., d’ ≈ 1.0) we found in
the static body-alone condition, indicating that humans can use the body
for identification. Rather, a better interpretation of the combined findings is
that body-based identity information (i.e., structure) is more likely to be used
when the face is unavailable, or in real world terms, when viewing conditions
for the face are poor.

In neural terms, areas in the inferior temporal cortex, including FFA
and OFA, are the likely neural sub-strates for face processing from static
images. Concomitantly, the use of static body information in the present
study accords well with the function proposed for the EBA by Downing et al.
(2001). Based on the particular responsiveness of EBA to static bodies,
Downing et al. (2001) proposed a role for EBA in representing the visual
appearance of bodies when viewing conditions are poor or when the face is
not easily accessible due to poor lighting, occlusion, or viewing direction.

The second component of our empirical findings concerns the effects of
motion on identification. Motion improved identification accuracy when the
body was visible. This suggests that the body motions we see in natural
viewing conditions can contribute to the visual representation of identity.
Of note, these body-based video advantages came from different sources,
which we probed by comparing performance in the best-static and dynamic
conditions to a multi-static image control condition. The pure motion ben-
efit we found in the gait-to-gait comparisons indicates the use of dynamic
identity-signatures for identification and fits with the supplemental informa-
tion hypothesis (O’Toole et al., 2002), and thus a role for the pSTS in in
person recognition. A prerequisite for using this information is that in the
gait-to-gait comparisons, there was a match between the types of motion
signatures available. Thus, stereotyped walking motions may have provided
the supplemental motion-based identity information.

Other body-based video advantages could be accounted for entirely by
seeing multiple images of the person. This was clearest for the body-only
conversation-conversation and conversation-gait comparisons. This latter is
a cross-modal comparison requiring observers to match across rather different
image formats. In these cases, we found roughly equal performance for the
video and multi-static conditions, at a level that exceeded performance for
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the best static image condition. Of note, the video/multi-static advantage
for the cross-modal case could not have been due to direct image matching
processes between the comparison pair. In fact, the images embedded in
the conversation and gait videos differed markedly in viewpoint, illumina-
tion, distance, and resolution. Rather the match task required observers to
compare video/images between a higher quality (gait) and lower quality (con-
versation) stimulus. Consequently, the video and multi-static advantage had
to have been based on active internal processing, whereby multiple images in
the sequence are used to create a more robust representation than would be
possible with the single image. Previous studies (Lui, Seetzen, Burton, and
Chaudhuri, 2003; Roark, Barrett, O’Toole, and Abdi, 2005) have likewise
shown a kind of bootstrapping from lower to higher quality face recognition.
All three findings suggest a process that actively constructs a more robust
representation from low-quality stimuli, using internal resources from long
term experience with faces and bodies. A computational illustration of com-
bining images to improve the quality of a face representation for recognition
can be found in a recent paper (Jenkins and Burton, 2008).

It is worth noting that the lack of motion benefit with faces should not be
over-interpreted to suggest that we have no representation of facial motion in
the identity code. Indeed, previous studies have demonstrated that non-rigid
facial motions can be used for identifying someone (Hill and Johnston, 2001;
Knappmeyer, Thornton, and Bülthoff, 2003). Under normal conditions, these
non-rigid motions are visible only when we view a face from a short distance.
At this close distance, movement is generally not needed for identification,
because of the high quality of the pictorial codes. Rather, consistent with
distributed model, the primary function of non-rigid facial motions is likely
to be social.

In the introduction, we proposed that a better understanding of how hu-
mans identify people from static and dynamic information in the face and
body could constrain the interpretation of the complex neural network of
brain areas that respond to faces and bodies. The fusion data offer a func-
tionally based mechanism for applying these constraints to a complex data
set. It is worth stressing that the fusion applied here does not tell us specifi-
cally how humans used the information in the various conditions, but rather
how human identification judgments made in different stimulus and viewing
conditions could be combined to optimize accuracy. The fusion results sug-
gest that humans access non-redundant identity information from the face
versus body to differing degrees from moving versus static stimuli. Specif-
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ically, it indicates that optimal performance can be achieved by combining
human observer judgments from static viewing conditions that include the
face and dynamic viewing conditions that include the body. One reason for
the differential access of face versus body information from moving and static
stimuli, may be based on the complex structure of neural areas processing
face and body information for different reasons.

In summary, human judgments of identity are likely to be based on the
collaborative computations of multiple representations of face and body, and
their associated motions in the high-level visual processing network. A knowl-
edge of how humans identify people in natural viewing environments can
ground theories of how this identity information interacts in these neural
networks.

References

Abdi, H., 2003. Partial least squares regression (pls-regression). In: Beck,
M. L., Bryman, A., Futing, T. (Eds.), Encyclopedia for Research Methods
for the Social Sciences. Thousand Oaks: CA, Sage, pp. 792–795.

Allison, T., Puce, A., McCarthy, G., 2000. Social perception from visual cues:
The role of the sts region. Trends in Cognitive Science 4(7), 267–278.

Astafiev, S., Stanely, C., Shuman, G., Corbetta, M., 2004. Iextrastriate body
area in human occipital cortex responds to the performance of motor ac-
tions. Nature Neuroscience 7.

Burton, A. M., Bruce, V., Hancock, P. J. B., 1999a. From pixels to people: A
model of familiar face recognition. Trends in Cognitive Sciences 23, 1–31.

Burton, A. M., Wilson, S., Cowan, M., Bruce, V., 1999b. Face recognition in
poor-quality video. Psychological Science 10, 243–248.

Davis, J. P., Valentine, T., 2008. Cctv on trial: Matching video images with
the defendant in the dock. Applied Cognitive Psychology 23(4), 482–505.

Downing, P. E., Jiang, Y., Shuman, M., Kanwisher, N., 2001. A cortical
area selective for visual processing of the human body. Science 293(5539),
2470–2473.

Downing, P. E., Peelen, M., Wiggett, A., Tew, B. D., 2006. Is the extrastriate
body area involved in motor actions? Nature Neuroscience 1(1), 52–62.

24



Hancock, P. J. B., Bruce, V., Burton, A. M., 2000. Recognition of unfamiliar
faces. Trends in Cognitive Sciences 4, 330–337.

Haxby, J., Hoffman, E., Gobbini, M., 2000. The distributed human neural
system for face perception. Trends in Cognitive Science 20(6), 223–233.

Hill, H., Johnston, A., 2001. Categorizing sex and identity from the biological
motion of faces. Current Biology 11, 880–885.

Jenkins, R., Burton, A. M., 2008. 100 % accuracy in automatic face recogni-
tion. Science 319, 435.

Kanwisher, N., McDermott, J., Chun, M., 1997. The fusiform face area: a
module in human extrastriate cortex specialized for face perception. Jour-
nal of Neuroscience 17, 4302–4311.

Knappmeyer, B., Thornton, I., Bülthoff, H. H., 2003. The use of facial motion
and facial form during the processing of identity. Vision Research 43(18),
1921–1936.

Loula, F., Prasad, S., Harber, K., Shiffrar, M., 2005. Recognizing people from
their movements. Journal of Experimental Psychology: Human Perception
and Performance 31, 210–220.

Lui, C. H., Seetzen, H., Burton, A., Chaudhuri, A., 2003. Face recognition is
robust with incongruent image resolultion. Journal of Experimental Psy-
chology: Applied 9, 33–44.

Naes, T., Isaksson, T., Fearn, T., Davis, T., 2004. Multivariate calibration
and classification. NIR Publications, New York.

O’Toole, A., Roark, D., Abdi, H., 2002. Recognition of moving faces: A
psychological and neural perspective. Trends in Cognitive Science 6, 261–
266.

O’Toole, A. J., Roark, D. A., 2010, in press. Memory for moving faces: The
interplay of two recognition systems. In: Dynamic faces: Insights from
Experiments and Computation. p. (in press).

Peelen, M., Downing, P., 2005. Is the extrastriate body area involved in
motor actions? Nature Neuroscience 8(125), 6996–7001.

25



Pilz, K. S., Vuong, Q. C., Bülthoff, H. H., Thornton, I. M., 2006. Body
motion influences the perception of identity. Perception 35, 210.

Pinsk, M., DeSimone, K., Moore, T., Gross, C., Kastner, S., 2005. Represen-
tations of faces and body parts in macaque temporal cortex: A functional
mri study. Proceedings of the National Academy of Sciences 102(19), 6996–
7001.

Roark, D. A., Barrett, S. E., O’Toole, A. J., Abdi, H., 2005. Learning the
moves: The effect of facial familiarity and facial motion on person recog-
nition across large changes in viewing format. Perception 35, 761–773.

Robbins, R., Coltheart, M., 2010. Heads, bodies and holistic processing in
person recognition. Journal of Vision in press, pp.

Ross, A., Nandakumar, K., Jain, A., 2004. Handbook of Multibiometrics.
Springer-Verlag, New York.

Shultz, J., Pilz, K. S., 2009. Natural facial motion enhances cortical responses
to faces. Experimental Brain Research 194(3), 465–475.

Westhoff, C., Troje, N., 2007. Kinematic cues for person identification from
biological motion. Perception and Psychophysics 69(2), 241–253.

7. Acknowledgments

This work was supported by funding from the Technical Support Working
Group, U.S. Dept. of Defense, to A. J. O’Toole.

26


