
ENCYCLOPEDIA OF
COMPUTER SCIENCE
AND TECHNOLOGY

UNIVERSITY OF PITTSBURGH
PITTSBURGH. PENNSYLVANIA

ADMINISTRATIVE EDITORS

Carolyn M. Hall Rosalind Kent

VOLUME 31
SUPPLEMENT 16



DESIGN, COLLECTION, AND ANALYSIS OF HANDWRITING
SAMPLE IMAGE DATABASES

A handwriting sample image database is comprised of two major types of data (images
and reference classifications). The images represent a specific application where a com-
puter is used to automatically convert the pixel data in the image into ASCII data for
further computer processing. In the case of automated character recognition, these im-
ages include credit card slips, checks, insurance claims, tax forms, and so on. These
types of systems greatly reduce the amount of human labor required to enter information
into computer databases.

Handwriting sample image databases also contain reference classifications for use
in training and testing recognition systems. In May 1992, the First Census Optical Char-
acter Reconsign Systems Conference was hosted by the National Institute of Standards
and Technology (NIST) under the sponsorship of the Bureau of the Census (I). At this
conference, 47 different character recognition systems were evaluated as to how well they
could classify images of individual characters including digits and uppercase and lower-
case letters. Of the 47 systems, 23 achieved error rates between 3% and 5% on digits.
These performance levels are sufficient for the technology to be economically advanta-
geous and these systems appear to be approaching near-human performance. System de-
velopers agree that improving the performance of these systems will require an enormous
amount of effort and an enormous increase in the number of images used to train these
systems. This is why handwriting sample image databases are so important, and without
reference classifications assigned to each image in the database, these types of system
evaluations and future system improvements are not possible.

The next section discusses the design and collection of NIST Special Database J.
The third section describes the production of segmented character databases NIST Spe-
cial Database 3 and NIST Special Database 7. A method for machine-assisted labeling of
segmented character images is presented. The fourth section introduces a method for
measuring the complexity of large collections of handwriting.

In 1988, the Image Recognition Group at NIST undertook a project sponsored by the
Bureau of the Census to design and collect a large database of handprinted characters.
The database was designed to be used in training and testing high-speed high-throughput
character recognition engines. NIST Special Database J (SO I) (2) contains 2100 full-
page images of handwriting samples printed by 2100 different writers geographically dis-
tributed across the United States with a sampling roughly proportional to population



density. The writers used in this collection were permanent Census field representatives
experienced in filling out forms.

Database Content
Each of the 2100 pages in the database is an image of a structured form filled in by a
unique writer. A field template specifying the number of entry fields, their size, and lo-
cation was used. An image of one of the blank forms used in the database is shown in
Figure I. The form is comprised of 3 identification boxes, 28 numeral boxes, 2 alpha-
betic boxes, and I unconstrained text paragraph box. This structured form layout pro-
vides a total character count of over 1,000,000 characters in the database; about 300,000
numerals and 700,000 alphabetic characters. In addition to the primary form images, 33
isolated subimages of the boxes on each primary page, excluding the name field, are in-
cluded, accounting for 71,400 individual images in the entire database. With an individ-
ual form image requiring approximately I MB of memory, the total image database, in
uncompressed form, occupies approximately 3 GB of mass storage. Therefore, the im-
ages are 2-dimensionally compressed in accordance with CCITT Group 4 (3,4), reducing
the overall size of the database to under 700 MB.

Handwriting Sample Form Layout
Figure 2 displays an actual form from the database. Each entry field on this form is rep-
resented as a box. The writers in the database have been made anonymous by blacking
out the name field. The string of machine-printed information above each box instructed
the writer what to print in the box. The instructions on the form requested that the writer
print within the box the information provided above each box. Assuming the writer fol-
lowed the directions and correctly completed the form, each box is self-referenced. This
method of collection reduces the overall cost incurred by eliminating the need for tran-
scribing the printed samples by hand. The instructions do not specify what writing im-
plement should be used. Therefore, the database contains a random assortment of pencils
and pens resulting in handwriting samples varying in width, contrast, and color.

Careful planning went into the design of this form. The form strategy applied was
developed to ensure successful data capture based on current forms processing tech-
niques. Every field is consistently defined as a bold box explicitly defining the location
and spatial extent of each field. The single-line boxes are 7 mm in height, giving writers
ample room to fit entire characters within the box. This served to minimally constrain the
writer's print but more importantly aids the automated field isolation within a recogni-
tion system. By using a consistent field demarcation such as a rectangular box, a single
software or hardware solution can be implemented to locate every field on the form. The
boxes on this form are maximally spaced in an attempt to minimize crowding and clutter.
The more cluttered a form layout, the more difficult it becomes for a computer to locate
and identity fields, thereby increasing the potential for recognition failures. This implies
a trade-off between minimizing the amount of paper handled by increasing the amount of
data entered on each page versus lower recognition rates due to increased clutter and in-
creased recognition confusion.

Ignoring the first three identification boxes shown in Figure 2, as one scans down
the form, there is a progression of increasing recognition difficulty. The first series of
boxes are comprised of digits only, followed by boxes comprised of alphabetic characters.
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There are only to unique classes of digits, 0 through 9, versus 26 possible classes of the
alphabetic characters, A through Z. The reduced size of possible classes makes the rec-
ognition of numeric character fields easier than the recognition of alphabetic fields
which, in turn, are easier to recognize than alphanumeric fields. There also is a progres-
sion down the form of increased character segmentation difficulty. The segmentation of
lowercase characters is challenging because extenders on the characters, g, j, p, q, and y,
often extend beyond the bottom of the box. The Constitution box, the last box on the
form, pushes the outer limits of current segmentation and recognition technology due to
the handwriting being unconstrained; no specific line breaks designated, no form lines to
guide the writer left to right, no form lines to constrain the height of the characters, and
so on.

There are 50 variations of the form layout in the database. As stated above, a single
field template was used so that all 2100 forms contain the same number of boxes, each
of the same size and relative location. The variations are realized in the information pro-
vided above each box. Every form requested that the writer print the sequence of digits,
o through 9, three times in boxes 3,4, and 5. Depending on the form variation, the digits
in boxes 6 through 30 vary; however, the number of digits in each box remain fixed. The
variations in forms provide 50 different random orders of the lowercase alphabet and 50
different random orders of the uppercase alphabet across the 2100 forms.

Database Acquisition
The 50 form variations were tightly specified using a typesetting software package and
printed on a laser printer. The 50 templates were then massively reproduced with a pho-
tocopier. From copies of the original 50 variations, 3520 blank forms were mailed to 12
regional offices within the Bureau of the Census. There, the forms were filled out by
Census field representatives and returned via business return envelopes. This process
greatly reduced administrative and mailing overhead expenses while providing a sampling
roughly proportional to geographic population distributions within the United States.
Figure 3 illustrates the 12 different census regions.

Out of 3520 forms mailed to regional offices, 2100 completed forms were returned
in time to be included in the database. The number of forms mailed to each regional of-
fice and the number of completed forms included in the database from that region are
listed in Figure 4. Region 0 represents forms in which the field containing city, state, and
zip code was left empty. From August 1989 through October 1989, the forms received at
NIST were sequentially indexed, sorted by region, logged, and digitized. Figure 5 lists
the information recorded in the Historical Log provided with the database. Included is
the form identification index, the form variation type (1 of 50), the date received and
processed at NIST, the assumed writing implement used in completing the form, the
color of the implement's ink or lead, and a subjective quality rating.

IHead Image File Format
Image file formats and effective data compression and decompression are critical to the
usefulness of these types of databases. Each page returned was digitized in binary form
at 12 pixels per millimeter [300 dots per inch (dpi)], 2-dimensionally compressed using
CCITT Group 4, and temporarily archived onto computer magnetic mass storage. Once
all forms were digitized, the images were mastered and replicated onto ISO-9660 for-
matted CD-ROM discs for permanent archiving and distribution.
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In this application, a raster image is a digital encoding of light reflected from dis-
crete points on a scanned form. The 2-dimensional area of the form is divided into dis-
crete locations according to the resolution of a specific grid. Each cell of this grid is
represented by a single bit value 0 or I called a pixel; 0 represents a cell predominantly
white, I represents a cell predominately black. This 2-dimensional sampling grid is then
stored as a I-dimensional vector of pixel values in raster order; left to right, top to
bottom.

After digitization, certain attributes of an image are required to correctly interpret
the I-dimensional pixel data as a 2-dimensional image. Examples of such attributes are
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REGIONAL OFFICE 1
NAME: BOSTON. MASS

OFFICE CODE NO.: 2100
MAll.ED: 310 pieces

INDEX TMPLT DATE WRITING COLOR QUALITY
RECENED TOOLS RATING

1) 0817 40 08-29-1989 PENCIL BLACK MEDIUM
2) 0818 03 08-29-1989 BALLPOINT BLACK LImIT

3) 0819 13 08-29-1989 PENCIL BLACK LIGHT
4) 0852 40 08-29-1989 FELT TIP PEN BLACK MEDIUM

5) 0855 46 08-29-1989 PENCIL BLACK LIGHT

6) 0869 20 08-29-1989 PENCIL BLACK LIGHT
7) 0872 30 08-29-1989 BALLPOINT BLACK MEDIUM
8) 0874 26 08-29-1989 BALLPOINT BLUE LIGHT
9) 0889 48 08-29-1989 BALLPOINT BLACK LIGHT
10) 0891 44 08-29-1989 PENCIL BLACK DARK
11) 0892 23 08-29-1989 PENCIL BLACK MEDIUM
12) 0895 48 08-29-1989 PENCIL BLACK LIGHT
13) 0896 44 08-29-1989 PENCIL BLACK MEDIUM
14) 0897 19 08-29-1989 FELT TIP PEN BLACK DARK

the pixel width and pixel height of the image. These attributes are stored in a machine-
readable header prefixed to the raster bit stream. A program that manipulates the raster
data of an image is able to first read the header containing these attributes and determine
the proper interpretation of the data that follows it.

NIST has designed, implemented, and distributed images based on this paradigm.
A header format named IHead has been developed for use as an image interchange for-
mat. Numerous image formats exist; some are widely supported on small personal com-
puters, others supported on larger workstations; most are proprietary formats, few are
public domain. IHead is an attempt to design an open image format which can be uni-
versally implemented across heterogeneous computer architectures and environments.
IHead has been successfully ported and tested on several systems including UNIX work-
stations and servers, DOS personal computers, and VMS mainframes. Both documenta-
tion and source code for the IHead format are publicly available. IHead has been designed
with an extensive set of attributes in order to (I) adequately represent both binary and
gray level images, (2) represent images captured from different scanners and cameras, (3)
and satisfy the image requirements of diversified applications, including but not limited
to image archival/retrieval, character recognition, and fingerprint classification.

The IHead structure definition written in the C programming language is listed
in Figure 6; Figure 7 lists the header values from an IHead file corresponding to these
structure members. This header information belongs to the isolated box image displayed
in Figure 8. Referencing the structure members listed in Figure 6, the first attribute field
of IHead is the identification field, id. This field uniquely identifies the image file, typ-
ically by a file name. The identification field in this example not only contains the im-
age's file name but also the reference string the writer was instructed to print in the box.
The reference string is delimited by double quotes. This convention enables an image



/*************************************************************
File Name: IHead.h
Package: NIST Internal Image Header
Author: Michael D. Garris
Date: 2/08/90

#define IHDR_SlZE 288
#define SHORCClIARS 8
#define BUFSlZE 80
#define DXfELEN 26

typedef struct ihead {
char id[BUFSlZE]:
char created[DATELEN];
char width[SHORT_ClIARS];
char height[SHORT_CHARS];
char depth[SHORT_CHARS];
char density[SHORT_CHARS];
char compress[SHORT_ClIARS];
char complen[SHORT _ClIARS];
char align[SHORT _ClIARS];
char unitsize[SHORT_ClIARS];
char sigbit;
char byte_order;
char pix_offset[SHORT_CHARS];
char whitepix[SHORT _CHARS];
char issigned;
charrm_cm;
char tb_bt;
char lr_rl;
char parent[BUFSlZE];
char par_x[SHORT _ClIARS];
char par-y[SHORT_ClIARS];

}IHEAD;

1* len of hdr record (always even bytes) *1
1* # of ASOI chars to represent a short *1
1* default buffer size *1
1* character length of data string *1

1* identification/comment field *1
1* date created *1
1* pixel width of image *1
1* pixel height of image *1
1* bits per pixel *1
1* pixels per inch *1
1* compression code *1
1* compressed data length *1
1* scauline multiple: 8116132 *1
1* bit size of image memory units *1
1* G->sigbit first 1 l->sigbit last *1
1* G->highlow II->lowhigh*1
1* pixel column offset *1
1* intensity of white pixel *1
1* G->unsigned data II->signed data *1
1* G->row maj I l->column maj *1
1* G->top2bottom II->bottom2top *1
1* G->left2right I 1->rigbt2left *1
1* parent image file *1
1* from x pixel in parent *1
/* from y pixel in parent *1

recognition system's hypothesized answers to be automatically scored against the actual
characters printed in the box.

The attribute field, created, is the date on which the image was captured or dig-
itized. The next three fields hold the image's pixel width, height, and depth. A binary
image has a pixel depth of I , whereas a gray-scale image containing 256 possible shades
of gray has a pixel depth of 8. The attribute field, density, contains the scan resolution
of the image; in this case, 12 pixels per millimeter (300 dpi). The next two fields deal
with compression.

In the lHead format, images may be compressed with virtually any algorithm.
Whether the image is compressed or not, the lHead is always uncompressed. This enables
header interpretation and manipulation without the overhead of decompression. The
compress field is an integer flag that signifies which compression technique, if any, has
been applied to the raster image data following the header. If the compression code is
zero, then the image data is not compressed, and the data dimensions, width, height, an
depth, are sufficient to load the image into main memory. However, if the compression
code is nonzero, then the compIen field must be used in addition to the image's pixel



dimensions. For example, the image described in Figure 7 has a compression code of 2.
By convention, this signifies that CCITT Group 4 compression has been applied to the
image data prior to file creation. To load the compressed image data into main memory,
the value in complen is used to load the compressed block of data into main memory.
Once the compressed image data has been loaded into memory, CCITT Group 4 decom-
pression can be used to produce an image which has the pixel dimensions consistent with
those stored in its header. A compression ratio of 20 to I was achieved using CCITT
Group 4 compression on the full-page images in SO I.

The attribute field, align, stores the alignment boundary to which scan lines of
pixels are padded. Pixel values of binary images are stored 8 pixels (or bits) to a byte.
Most images, however, are not an even multiple of 8 pixels in width. To minimize the
overhead of ending a previous scan line and beginning the next scan line within the
same byte, a number of padded pixels are provided to extend the previous scan line to
an even-byte boundary. Some digitizers extend this padding of pixels out to an even
multiple of 8 pixels; other digitizers extend this padding of pixels out to an even multiple
of 16 pixels. This field stores the image's pixel alignment value used in padding out the
ends of raster scan lines.

The next three attribute fields identify binary interchanging issues among hetero-
geneous computer architectures and displays. The unitsize field specifies how many con-
tiguous pixel values are bundled into a single unit by the digitizer. The sigbit field
specifies the order in which bits of significance are stored within each unit; most signif-
icant bit first or least significant bit first. The last of these three fields is the byte_order
field. If unitsize is a multiple of bytes, then this field specifies the order in which bytes
occur within the unit. Given these three attributes, binary incompatibilities across com-
puter hardware and binary format assumptions within application software can be iden-
tified and effectively dealt with.

The pbLoffset attribute defines a pixel displacement from the left edge of the
raster image data to where a particular image's significant image information be-
gins. The whitepix attribute defines the value assigned to the color white. For exam-
ple, the binary image described in Figure 7 is black text on a white background and the
value of the white pixels is O. This field is particularly useful to image display routines.
The issigned field is required to specify whether the units of an image are signed or un-
signed. This attribute determines whether an image with a pixel depth of 8 should have
pixels values interpreted in the range of -128 to + 127, or 0 to 255. The orientation of
the raster scan may also vary among different digitizers. The attribute field, rllLcm,
specifies whether the digitizer captured the image in row-major order or column-major
order. Whether the scan lines of an image were accumulated from top to bottom or bottom
to top is specified by the field tb_bt, and whether left to right, or right to left, is specified
by the field rUr.

The final attributes in IHead provide a single historical link from the current
image to its parent image, the one from which the current image was derived or ex-
tracted. In Figure 7, the parent field contains the full path name to the image from
which the image displayed in Figure 8 was extracted. The par-" and par_y fields con-
tain the origin, upper-left-hand corner pixel coordinate, from where the extraction took
place from the parent image. These fields provide an historical thread through successive
generations of images and subimages. We believe that the IHead image format contains
the minimal amount of ancillary information required to successfully manage binary and
gray-scale images.



Identity
Header Size
Date Created
Width
Height
Bits per Pixel
Resolution
Compression
Compress Length
Scan Alignment
Image Data Unit
Byte Order
MSBit
Column Offset
White Pixel
Data Units
Scan Order

Parent
x Origin
Y Origin

: box_03.pct "0123456789"
: 288 (bytes)
: Thu Jan 4 17:34:21 1990
: 656 (pixels)
: 135 (pixels)
: 1
: 300 (ppi)
: 2 (code)
: 874 (bytes)
: 16 (bits)
: 16 (bits)
: High-Low
: First
: 0 (pixels)
:0
: Unsigned
: Row Major.
Top to Bottom.
Left to Right
: hsCO/fOOOO_14/f000<U4.pct
: 192 (pixels)
: 732 (pixels)

Database Examples
SD I embodies a wide range of handwriting styles. The completed forms in this database
illustrate the difficulty in recognizing handprinted characters with a computer. Fre-
quently, even humans cannot positively identify characters without confirming their best
guesses against the font information printed on the forms above each box. A quick scan
of these handwriting samples shows great variation in size, slant, contrast, spacing,
shape, the random interchanging of uppercase and lowercase, and the random switching
between print and cursive script. In this section, a select set of handwriting samples from
the database are shown in an attempt to illustrate to the reader the extreme variation in
handwriting existing between different writers.

Compare the handprint in Figure 2 to the sample shown in Figure 9. If all handprint
were of the style and quality shown in Figure 2, the challenge of recognizing handprint
would no longer exist. The quality of handprint in Figure 9 is dramatically lower. Espe-
cially notice how the quality of the writing degrades from left to right, top to bottom,
within the Constitution box. The characters in the top left corner of this box are well

1_0_, Z-.._3_1_5'_"_'7_1_7 1



spaced both horizontally and vertically and appear reasonably legible. As the writer be-
came cramped for space at the end of lines and toward the bottom of the box, the re-
striction of space visibly impacted the neatness and readability of the person's writing.

Figure 10 shows an example of a person's handprint written with a pronounced
slant. It is interesting to note how the slant of characters from this writer varies. The
characters printed in the digit boxes contain substantial slant, but when the person printed
within the unconstrained Constitution box, the slant is even more pronounced. It is cu-
rious how the slant is almost completely missing from the characters printed in the two
alphabetic boxes.

The average size of characters between writers also greatly varies. Figure II con-
tains a sample of handprint which is relatively tall. If this person wrote any taller, the
characters would not remain within the boxes. Note how the writer's lowercase extenders
on the g, y, q, p, and j all extend well below the bottom of the lowercase alphabet box.
In contrast to tall print, Figure 12 shows a portion of a form containing extremely small
handprinted characters. Here the writer's handprint is almost the same size as the
machine-printed information on the form.

In this database, the writers were not told what writing implement should be used
to fill in the form. Therefore, the forms in this database represent different hardness of
pencils, different colored ink pens, and different pen tips. A static scanner setting was
used to digitize all the forms in the database regardless of the contrast between a form's
background and the handprinted information it contains. The result is a database of im-
ages varying greatly in image quality or contrast. An example of a box completed using
a hard-lead pencil is shown in Figure 13. The characters in this image are barely readable,
some are not. Note how the individual characters are breaking up. Most character rec-
ognition systems would have significant problems reading this image. On the other hand,
Figure 14 shows a section of a form which was completed using a broad felt-tipped pen.
In this image, the pen strokes are extremely wide, causing most interior holes in char-
acters to be closed. Note how difficult it is to distinguish 3 's from 8 'So

It has been observed that writers frequently make no distinction when printing
lowercase and uppercase letters. Also, writers tend to randomly mix handprint with cur-
sive script. Figure 15 shows a section of a form completed by a writer who printed nearly
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every lowercase letter in the lowercase alphabetic box the same way as the uppercase
letters were printed. Note how the writer of this form printed within the alphabetic boxes
but switched completely to cursive script when filling in the Constitution box. In Figure
16, the two boxes illustrate a writing style in which the writer printed all characters in the
lowercase alphabetic box as cursive and filled in the upper case alphabetic box with
printed letters. A robust recognition system must account for these inconsistencies.

Measurements Acquired During Processing
Robust document recognition systems detect and account for form rotation within an im-
age. NIST has developed a model recognition system based on the forms in SO I (5). This
hybrid system combines traditional image processing, biologically motivated image
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filtering, and neural networks on a massively parallel machine. One component in this
system identifies form rotation and normalizes the image appropriately. The database
contains images of forms rotated between + 1.45° and -2.23° with an average of 0.3°.

This rotation was introduced at two different points in time. First, the original 50
form variants were reproduced using a photocopier. This introduced small rotational vari-
ations in the pages produced by the photocopier. The second source of rotational noise
was introduced during the scanning of the completed forms. Note that despite the tight
controls NIST placed on the printing, reproducing, and scanning of these forms, signif-
icant rotational noise exists in the database. Figure 17 shows an image from the database
of a form with substantial rotational noise.

As stated earlier, SD I was collected to be used in training and testing high-speed high-
throughput character recognition engines. Character classifiers typically recognize one
individual character at a time, so in order to train and test these classifiers a subset of the
more than 1,000,000 characters contained in SOl had to be segmented into individual
images and assigned reference classifications. This section discusses the creation of two
segmented character image databases, NIST Special Database 3 (S03) (6) and NIST Spe-
cial Database 7 (SO?) (7).

Creation of NIST Special Database 3
The 2100 form images contained in SDI are included in S03. The digit and uppercase
and lowercase fields on each form were segmented into isolated character images with
each resulting image automatically assigned a character classification. Each segmented
image from a field was assigned a consecutive character from the field's associated ref-
erence string. Using this technique, each image is assigned its correct reference classi-
fication, assuming there are no errors incurred during segmentation.

Unfortunately, the segmenter used was only about 80% accurate, frequently merg-
ing and splitting characters. Therefore, the classification assignments from the reference
string often became unsynchronized with the actual images. This caused many images to
be labeled incorrectly. Each referenced image was manually checked by a human, dis-
carding the image when segmentation errors were detected and correcting the character
image's classification when recognition errors were detected. Every referenced character
image in this database has been manually checked and verified at two independent times,
each time by a different person. This checking process took approximately 6 months to
complete. As a result, S03 contains 313,389 referenced character images.



FIGURE 17 An image of a form from the database containing substantial rotational noise.

Multiple Image Set (MIS) File Format

Based on experience gained from creating and manipulating large on-line image data-
bases, NIST has developed a number of diversified file formats. One such file format has
been developed to manage large volumes of segmented character images. Storing char-
acter images in individual files has proven to be very inefficient, especially when ma-
nipulating databases containing hundreds of thousands of characters. Devoting a separate
file node for each character image creates enormous file system overhead, and unrea-
sonably large directory tables must be allocated. Rarely are experiments conducted on
only a single-character image in isolation. Rather, most experiments require a large sam-
ple of characters. Experience has shown that the gathering of a large sample of characters
from a file system where the images have been stored in individual files greatly burdens
the computer's disk controller. This results in slow experiment loading times as well as
limiting the access of other applications to data stored on the same storage device.



In addition to creating large directory tables, storing segmented character images in
individual files results in sparse usage of the storage device. This sparseness is even more
exaggerated when the images are compressed. For example, segmented character images
in SD3 have been centered within a 128 x 128 binary pixel image. The resulting image
size is 2344 bytes, 296 bytes for the IHead header and 2048 bytes of image data. These
files when CCITT Group 4 compressed average 360 bytes in size, 296 bytes for the IHead
header and only 64 bytes of compressed image data. Storing these compressed image files
onto CD-ROM for example, which uses a 2048 block size, would be extremely wasteful.
Only 18% of each block containing image data would be used.

In light of these observations, NIST has developed a Multiple Image Set (MIS) file
format. The MIS format allows multiple images of homogeneous dimensions and depth
to be stored in one file. MIS is a simple extension or encapsulation of the IHead format
described previously. It can be seen in Figure 18 that the IHead structure is included as
a member within the MIS definition.

An MIS file contains one or more individual images stacked vertically within the
same contiguous raster memory, the last scanline of the previous image concatenated to
the first scanline of the next image. The individual images that are concatenated together
are referred to as MIS entries. The resulting contiguous raster memory is referred to as
the MIS memory. The MIS memory containing one or more entries of uniform width,
height, and depth is stored using the IHead header format. The IHead attribute fields are
sufficient to describe the MIS memory. The IHead structure's width attribute specifies
the width of the MIS memory, and likewise the IHead structure's height attribute spec-
ifies the height of the MIS memory. In this way, the MIS memory can be stored just like
any normal raster image, including possible compression.

Due to the uniform dimensions of MIS entries, the IHead structure's width at-
tribute also specifies the width of the entries in the MIS memory. What is lacking from
the original IHead definition is the uniform height of the MIS entries and the number of
MIS entries in the MIS memory. Realize that given the uniform height of the MIS en-
tries, the number of entries in the MIS memory can be computed by dividing the entry
height into the total MIS memory height. The interpretation of two of the IHead attribute
fields, par-.X and par_y, changes when the IHead header is being used to describe an MIS
memory. The par-.X field is used to hold the uniform width of the MIS entries, and the
par_y field is used to hold the uniform height of the MIS entries. In other words, width
and height represent MIS memory width and MIS memory height, respectively, whereas
par-.X and par_y represent MIS entry width and MIS entry height, respectively. Using
this convention, an MIS file is treated like an IHead file.

Figure 18 lists the MIS structure definition written in the C programming lan-
guage. The structure contains an IHead structure, head, and an MIS memory, data. In
addition, there are six other attribute fields which hide the details of the IHead interpre-
tation from application programs that manipulate MIS memories. The MIS attributes
misw and mish specify the width and height, respectively, of the MIS memory. These
values are the same as the width and height attributes contained in the IHead structure
pointed to by head. The MIS attributes entw and enth specify the uniform width and
height, respectively, of the MIS entries. These values are the same as the par-.X and par_y
attributes contained in the IHead structure pointed to by head. The MIS attribute
enLaIIoc specifies how many MIS entries of dimension entw and enth have been allo-
cated to the MIS memory data. The MIS attribute enLnum specifies how many entries
out of the possible number allocated are currently and contiguously contained in the MIS
memory data.



/*************************************************************
Filename: Mis.h
Author: Michael D. Garris
Date: 7/18/90

*************************************************************/
typedef struct misstruct{

IHEAD *head;
unsigned char *data;
intmisw;
intmish;
intentw;
int enth;
intenCnum;
int encalloc;

} MIS;

Checking the results of segmenting the digit, uppercase, and lowercase fields from
the 2100 full-page form images produced 313 ,389 referenced character images in SD3.
Each segmented character was centered and stored into a separate 128 x 128 binary pixel
memory preserving the original size and density of the character. The characters seg-
mented from each form image were then organized into three different MIS files con-
taining character images segmented from the digit fields, uppercase fields, and lowercase
fields. An example of an MIS memory is displayed in Figure 19.

There is a potential for 6300 MIS files in the database, 2100 forms times the 3
character groups. Due to segmentation errors, the database actually contains 6166 MIS
files including 23,125 digits, 44,951 uppercase letters, and 45,313 lowercase letters. A
statistical log is provided with SD3 which lists all those forms missing one or more of the
three MIS file groups. Every MIS file in the database has been compressed using CClTT
Group 4, and the database is approximately 135 MB in size. Uncompressed, the database
would require approximately 2.75 GB of storage.

Character Classification (CLS) File Format
For each segmented character image in SD3 there is an associated character classification
which has been assigned and manually checked. Punctuation characters are often inter-
preted by disk operating systems and shells as special characters; so a character-naming
convention has been developed at NIST which avoids these ambiguities. The classifica-
tion value stored for each character image is the hexadecimal representation of the char-
acter's ASCII value. For example, an image of a handprinted 2 is assigned the class 32,
a lowercase z is assigned the class 7a, and a handprinted semicolon (;) is assigned the
class 3b.

These classifications are stored in Character Classification (CLS) files and corre-
spond one-to-one to the entries in an associated MIS file in the database. Figure 19 dis-
plays an MIS memory along with its associated CLS file. The CLS file is an ASCII file
with the first line containing the number of classifications values listed in the file, one
value per successive line. Each ASCII text line is terminated with the linefeed character,
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OxOA. Every MIS file in SD3 has an associated CLS file, and for each entry in a MIS
file, there is a corresponding classification value in the CLS file. Figure 20 lists the fre-
quency with which each digit and letter occurs within SD3.

Creation of NIST Special Database 7
Upon the creation of SD3, a conference for comparing the performance of various hand-
print character recognition systems was proposed. It was determined that SD3 would be
distributed to conference participants for use in training and initial testing of their char-
acter classifiers. Details of the conference are recorded in Reference I.



Digits Uppers Lowers

0 22.971 A 1.649 a 1.738
1 24.772 B 1.691 b 1.766
2 22.131 C 1.732 c ).794
3 23.172 0 1.712 d 1.748
4 21.549 E 1.759 e 1.769
5 19545 F 1.756 f 1.608
6 22.128 G 1.707 g 1.740
7 23.209 H 1.677 h 1.791
8 22.029 I 2.102 i 1.838
9 21.619 J 1.633 j 1.446

K 1.662 k 1.740
L 1,830 1 2,021
M 1.716 m 1.731
N 1,732 n 1.777
0 1,774 0 1.800
p 1,723 p 1.589
Q 1.664 q 1,554
R 1.707 r 1,738
S 1.755 s 1.776
T 1,559 t 1.692
U 1.763 u 1.827
V 1.749 v 1.777
W 1.705 w 1.765
X 1.785 x 1,861
y 1.631 y 1.614
Z 1.778 z 1.814

Because all of S03 was used as training data, a new segmented character data-
base was required to test the systems entered in the conference. Blank handwriting
sample forms like the ones used in SO I were distributed to high school math and
science students. From the set of filled out forms, 500 were selected for use in creating
S07. In association with the conference, this database is also referred to as N/ST Test
Data I (TOI).

Machine-Assisted Reference Classifications
To test the character classifiers submitted to the conference, referenced character images
had to be produced from the 500 forms. The 6 months required to produce S03 was too
long and demanded too much manual effort to meet the proposed schedule for the con-
ference. Therefore, a new method for creating reference character images was proposed.

Within this same period of time, the Image Recognition Group as NIST completed
the development of a massively parallel model recognition system (5). The system was
designed to automatically process the Handwriting Sample Forms in SO I, reading the
handprinted information contained in the digit and alphabetic fields. The system locates
the entry field boxes on the form, segments the handprint within each field, and uses a
neural network classifier to assign character classifications to each of the segmented im-
ages. Segmented character images along with their recognized classifications are stored
as output from the model recognition system, At that time, the system was 94% accurate
across all of SOl with no rejections when reading digits, and less than 80% accurate
when reading uppercase and lowercase letters. These performance statistics were com-



puted by using the NIST Scoring Package, NIST Special Software I (SS I) (8,9) which
applies the methods described in Reference 10.

A database production method was proposed that uses the results of the model rec-
ognition system to initially assign classifications to segmented character images. The de-
tails of this machine-assisted method are documented in Reference II. The recognition
system computes a confidence value for each character classification made. Based on the
confidence value, a classification is labeled by the recognition system as accepted if the
confidence is sufficiently high, otherwise the classification is labeled as rejected.

The segmented images whose classifications were accepted by the system are
sorted by class and visually checked by a human. This phase, known as the checking
pass, is very efficient, as up to 1024 characters images allegedly belonging to the same
class are displayed simultaneously on a computer screen. In this way, any images contain-
ing segmentation errors or not belonging to the class being displayed are quickly located
and flagged. The remaining images not flagged, along with their verified classifications,
are stored as part of the database. The checking pass quickly incorporates the correctly
segmented and correctly classified character images into the database.

A second phase, known as the correcting pass, is more labor intense. Here, images
containing segmentation errors are separated from images that are correctly segmented
but have been assigned an incorrect classification. The images containing segmentation
errors are discarded, whereas the remaining images are reclassified by the human. The
correcting pass is initiated by collecting all the images initially rejected by the recogni-
tion system and any images flagged during the checking pass and sorting them all by
class. Ouring the correcting pass, the images are displayed one at a time along with the
image's currently assigned classification. The human is asked to verify that the current
image is properly segmented. If the image is deemed to contain segmentation errors, it
is discarded. If the image is properly segmented, the human is asked to verify that the
current classification is correct. If the classification is deemed incorrect, the human is
asked to enter the correct classification. Nondiscarded images from the correcting pass
are then collected into a new checking pass.

The segmented images along with their classifications oscillate between the check-
ing and correcting passes with image/classification pairs being incorporated into the
database within the checking pass and image/classification pairs being reclassified or dis-
carded within the correcting pass. Upon several complete oscillations, the database pro-
duction reaches a steady state and the process is terminated. Figure 21 illustrates the two-
pass process. Using this machine-assisted labeling approach, S07 was ready for
CO-ROM mastering in 2 weeks.

Database Content
The above labeling method produced approximately 83,000 images of handprinted digits
and letters, and assigned to each image a correct reference classification for testing char-
acter recognition systems. The images from each form were organized into MIS files ac-
cording to groups similar to S03. In all, about 59,000 digits and 24,000 uppercase and
lowercase letters are contained in S07. The reference classifications were organized into
corresponding CLS files and are provided on a separate floppy disk. This way the images
can be distributed as testing material separate from the reference classifications which
are the answers to the test. In May 1992, the First Census Optical Character Recognition
Systems conference was hosted at NIST and the success of this event was heavily de-
pendent on the production of S03 and S07.
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As stated earlier, S03 contains handwriting samples from regional data-takers employed
by the Bureau of the Census, whereas SO? contains handwriting samples from high
school math and science students. Based on these samples, one might ask, "Are the
handwriting styles within these two databases similar or are they quite diverse? Does this
diversity make one database more difficult to recognize than the other? If given a choice,
what combination of writers would make up the ideal training set for maximizing rec-
ognition performance across the remaining writers from both databases?" Questions like
these and many more face researchers and developers of optical character recognition sys-
tems. The goal of these databases is to provide sufficiently numerous and varied training
and testing images that the performance of a character classifier can be reliably mea-
sured. It is widely acknowledged within the neural network and pattern recognition com-
munities that the robustness of a classifier depends on the generality contained within the
training set. A method of cross-validation has been applied to these databases in an at-
tempt to unlock some of the answers related to handwriting complexity (12).

In standard v-fold cross-validation, a population of segmented and referenced char-
acter images is divided into v equally sized partitions. A character classifier is tested,
reserving one partition as testing data and using the remaining partitions as training data.
Recognition results are accumulated as each partition is used in turn for testing, and the
remaining partitions are used for training. Statistics are then computed and analyzed to
assess the amount of diversity contained within a given population.

To compare diversity across two database populations, a cross-cross-validation
must be conducted. Once again, each database is divided into equally sized partitions. In
this case, a large number of partitions from the first database are selected as a fixed train-
ing set, whereas each partition in the second database is used, one at a time, for testing.
Statistics are computed on the results from testing with each partition from the second
database. Then the roles of testing and training are reversed: A large number of partitions



from the second database are selected as a fixed training set, whereas each partition from
the first database is used for testing. The statistics computed are used to analyze the di-
versity between the two databases.

A study comparing S03 to S07 was conducted in Reference 12. In this study, the
first 500 writers from S03 were compared against the 500 writers in S07. The two col-
lections of 500 writers were each divided into 10 partitions with handprinted digits from
50 different writers in each partition. A standard IO-fold cross-validation was computed
for each set. Each partition of 50 S03 writers were selected in turn and used for testing
the character classifier trained with the remaining 450 S03 writers; 10 results were ac-
cumulated. The same was done for each partition of 50 S07 writers, testing each par-
tition in turn against the character classifier trained with the remaining 450 S07 writers.
The results from both standard IO-fold cross-validations are entered along the main di-
agonal of the validation comparison matrix shown in Figure 22. The results are shown as
a mean percent error with associated standard deviation.

The cross-cross-validation is shown in the off-diagonal elements of the matrix in
Figure 22. Four hundred fifty S03 writers were used to train the character classifier, and
then the partitions of 50 S07 writers, one partition at a time, were used in testing. The
resulting statistics are shown in the top-right element of the matrix. In reverse, 450 S07
writers were used to train the character classifier, and then the partitions of 50 S03 writ-
ers, one partition at a time, were used in testing. The results of training on S07 writers
and testing with S03 writers is shown in the bottom-left element of the matrix.

The actual percentages of error shown in the matrix are not relevant to the compari-
son. The same character classifier was used throughout in an attempt to gain information
about the data, not to gain information about the performance of the classifier. What is
important are the differences in relative magnitudes between the various cross-validation
statistics. The on-diagonal elements of the validation comparison matrix show that S07
is a more diverse digit set than is S03. When trained and tested on partitions of itself, the
S03 tests achieved a mean error rate of only 1.7%, whereas the S07 tests achieved a
mean error rate of 3.8%. In essence, S07 is a more complex and difficult database to
recognize than is S03. The off-diagonal elements show that S03 used as training pro-
totypes for S07 is markedly inferior to S07 used as a training set for S03. The classifier

Mean Error TestSD3 Test SD7
±a 50 writers 50 writers

Train SD3
450 writers 1.7xlO-2 ± 0.3 6.8xIO-2 ± 0.4

Train SD7
450 writers 3.5xlO-2 ± 0.3 3.8xlO-2 ± 0.5



trained on SD7 and testing with SD3 achieved a mean percent error of 3.5%, whereas the
classifier trained on SD3 and testing with SD7 achieved a mean percent error of 6.8%.
This suggests that handprinted digits in SD7 represent a superset of the variation found
in the samples contained in SD3. In other words, SD7 is a more general dataset.

Databases like NIST Special Databases I, 3, and 7 are critical to advancing automated
character recognition technologies. The Image Recognition Group at NIST is currently
using these databases to research areas including field isolation, box detection and re-
moval, character segmentation, and writer-independent character classification. Through
the production of these databases, the First Census Optical Character Recognition Sys-
tems Conference was made possible, and practical lessons learned include issues of file
formats, compression, and organization. As a result, techniques such as machine-assisted
labeling of reference classifications and cross-validation studies for analyzing database
complexity have been developed.' These general techniques have broad application be-
yond character recognition. Together, these databases represent the largest publicly avail-
able collection of handprinted character images available for recognition system training
and testing with copies being distributed and used around the world.
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