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Using a simple dynamic model, we show that performance equal to or better than the
Probabilistic Neural Netwok (PNN) can be achieved with a single three-layer Multilayer Per-
ceptron (1fLP), by making fundamental changes in the network optimization strategy. These
changes are: 1) Neuron activation functions are used which reduce the probability of singular
Jacobians; 2) Successive regularization is used to constrain the volume of the weight space
being minimized; 3) Boltzmann pruning is used to constrain the dimension of the weight
space; and 4) Prior class probabilities are used to normalize all error calculations so that
statistically significant samples of rare but important classes can be included without distor-
tion of the error surface. All four of these changes are made in the inner loop of a conjugate
gradient optimization iteration and are intended to simplify the training dynamics of the op-
timization. On handprinted digits and fingerprint classification problems these modifications
improve error-reject performance by factors between 2 and 4 and reduce network size by 40%
to 60%.

In previous work on character and fingerprint classification [1] PNN networks were shown to
be superior to MLP networks in classification accuracy. In later work, [3], combinations of
PNN and MLP networks were shown to be equal to PNN in accuracy and to have superior
reject-accuracy performance. These results were achieved by using 45 PNN networks to make
binary decisions between digit pairs and combining the 45 outputs with a single MLP. This
procedure is much more expensive than conventional MLP training of a single network and
uses much more memory space.

\Vhen the results of the binary decision network [3] were analyzed it was found that the
feature space used in the recognition process has a topological structure which locally had
an intrinsic dimension [6] of 10 ..5 but global Karhunen-Loeve (K- L) transform dimension
of approximately 100. The number of features needed to make binary decision machines
discriminate between digits was larger than the intrinsic dimensionality. For binary decision



machines, typical feature set sizes are 20 to 28 but never approached the number of features
required by the global problem for MLPs, 48 to 52. Similar tests showed a comparable
structure in the fingerprint feature data. This explains the difficulty of the problem: the
1ILP is being used to approximate a very complex fractal object, the set of decision surfaces.
which has a typical local dimension of 10 embedded in a space of dimension 100. Since the
domain of each prototype in the PNN network is local, PNN can more easily approximate
surfaces with this topology. Figure 1shows a typical PNN decision surface and figure 2 shows
a typical MLP decision surface. See figure 8 of [1] for additional examples of this type of
local structure in PNN based recognition.

The local nature of PNN decision surfaces also explains why MLPs have better reject
accuracy performance. In [7], it was shown that the slope of the reject-accuracy curve is
most rapidly decreasing when binary choices are made between classes. The decision surfaces
in figure 1 are such that, as the radius of a test region expands, multiple class regions are
intersected. This will decrease the slope of the reject-accuracy curve. Simpler class decision
surfaces result in better reject-accuracy performance so that the shape of the reject curve
can be used to assess the complexity of decision surfaces.

Neural networks have been proven to be general nonlinear function approximators [8] so,
in theory, they should be capable of approximating complex decision surfaces. In this paper
we show that four modifications to the conjugate gradient method discussed in [5] will allow
a three layer MLP to approximate the required decision surface with zero-reject accuracy
similar to PNN and h' nearest neighbor (KNN) methods and reject-accuracy performance
better than the best binary decision method discussed in [3], indicating that the resulting
decision surfaces are both the most accurate and simplest approximations to the character
and fingerprint classification problem yet found.

In section 2 we discuss the simplified dynamical model of the network. In section 3 we
discuss the changes in training method used to improve network accuracy while simplifying
network structure. In section 4 we discuss the dynamics which suggested these changes in
network training. In section 5 we discuss the results of these changes on classification of
handprinted digits and fingerprints.

2 A Simple Dynamical Network Model
To understand the dynamics behind training, it is helpful to analyze a neural network model
that has feedback between the nodes, as the MLP has during training. but is simple enough
to be solved in closed form.

Consider a number of neuron nodes with nodal voltages, U, which can be written either
in matrix form:
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as is required by the linear or quadratic order of interaction.



These neurons aTe linear and the network is fully recurrent so that the interaction of the
neurons is described by a non-stationary set of first order couplings:
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The solution of (5) was postulated as (7) and checked using a symbolic mathematics
program to validate the solution terms. See [9] page 99 or [10] page 60 for similar linear
problems which were used as clues to the proposed solution. The solution derived and
checked in this way is:

In general G will have complex eigenvalues; only in the symmetric case are all eigenvalues
real and the upper triangle of AA zero. This symmetry requirement makes the construction of
stable associative memories with symmetric weights very difficult. These issues are discussed
in [11] along with many other aspects ofthe general network stability problem. Any iteration
carried out with finite precision on G will result in loss of symmetry and create oscillations
in the dynamic system. These oscillations may decay in a stable system but intermediate
oscillatory components will still exist.

The inclusion of driving factors '~lhichare assumed to be independent of time is relatively
straightforward. The G matrix is augmented from a dimension of TI to 11 + q where q is the



number of system independent driving factors. The solution to the corresponding augmented
part of V d matrix is just the augmented V (0) vector. This results in a stable driving term
from equation (5) and a solution to this part of the equation of the form: Vd = V(O)a.

\Vhy can't we just integrate equation (6) and use the answer for our model? First,
for n nodes there are 2n2 functions which must be evaluated and integrated to fully expand
equation (12). Second, equation (7) is a generalization of the dynamic system which generates
the Lorentz attractor [12], which is the source of the "butterfly wing effect" in weather
forecasting. This system has no attainable stable state and has very high sensitivity to
initial conditions. The theory of the solution to systems of this kind is treated in [13, 12, 10].
The simplified answer is that small changes in the values of the initial conditions or in the
integration of the coefficient matrices will result in large changes in the functional form of
equation (6) when the matrix exponential and inverse are expanded.

For values F and G that are locally stationary, as during a training iteration, the change
in these terms can be neglected and we write the solution as:

IHij 1*Lk=l SkieAkf Skj )
aij= IHI (12

where IHijl* is the matrix of ijth cofactors of H, IHI is the determinant of H, Sij are the
elements of the similarity transform of G and Ai are its eigenvalues as given by equation (8)
assuming that G is symmetric, and the elements of H are given by:

The full solution of equation (6) can be expanded using equations (11)-(14). These
equations are much less complex than the approach used in our training method but show
that complex dynamics will evolve even in a network that has only a quadratic nonlinearity.
Even for a symmetric network, obtaining the local linear solution involves calculating matrices
with 0(n2) terms for an nth order system. Equations (11)-(14) involv(' calculation of 0(n8)

terms for an nth order system. In addition, each term in (7) is a product of the form
SkifAkfSkj, where each term in the non-linear solution is a product at least as complex as:

Each term involves one non-linear factor, components of four eigenvectors (which in general
are complex numbers) and the product of two exponential terms. This increase in complexity
is a direct consequence of the F term in equation (6) being non-zero.

The center manifold theorem, given more concisely in [10] p. 115 and [12] p. 127,
states that the flow of solution to nonlinear system can be divided into three parts based
on the eigenvalue spectrum of the Jacobian of the right hand side of the equation. These
tlue(' parts are the stable manifold associated with eigenvalu('s with negative real part, the
nnstable manifold associated with eigenvalues with positive real part, and the center manifold



associated with eigenvalues with zero real part. The stable and unstable manifolds are unique
but the center manifold need not be. The center manifold is tangent to the stable and
unstable manifolds. If any of the eigenvalues in equation (15) has zero real part. the center
manifold theorem must be used to transform equation (5) into stable. center, and unstable
manifold parts, and the solution expansion of equation (7) must be revised accordingly [14]. In
numerical calculations, rounding error and lack of precision in the input data can cause some
solution components of the stable and unstable solutions to approach the center manifold
within the rounding error of the calculation.

The complexity of even small models, n = 3 with 9 terms in the primary matrix, each of
which has 729 terms similar in form to equation (15), exceeds the level of complexity which
can be locally analyzed by direct linearization about equilibrium points to study weight
stability during training. \Ve could return to equation (5) and build a numerical model but
this would cause all of the noise present in the training data to be present in a system of
equations which would couple this noise directly to the sensitive initial conditions and result
in various numerical significance problems. The resulting terms are multiplied to form n8

terms which are summed to form the solution. The noise seen in the resulting solution is not
a numerical artifact but an inherent part of the system.

The situation we face in analyzing even this over-simplified model is one in which the
mechanics of the process are clear and are soluble in the closed form given by equation
(11 )-( 14), but no direct comparison with real training data is feasible because the expanded
nonlinear solution is too complex to allow the components to be individually analyzed.

3 Optimization Constraints
The level of improvement in network performance which is achieved here requires four mod-
ifications in the optimization, each of which must be incorporated in the weight and error
calculations of the scaled conjugate iteration [5]. Each of these constraints alters the dynam-
ics of the training process in a way that simplifies the form of the decision surfaces, which
globally have a dimension of about 100 with a local dimensionality of 10. Understanding the
topology of this space is useful for developing improved training methods based on dynamics.

The four modifications all modify the error surface being optimized by changing the shape
or dimension of the error function. All of the modifications take place in the inner loop of
the optimization.

3.1 Regularization
Regularization decreases the volume of weight space used in the optimization process. This
is achieved by adding an error term which is proportional to the sum of the squares of the
weights. The effect is to create a parabolic term in the error function that is centered on
the origin. This reduces the average magnitude of the weights. A scheduled sequence of
regularization values is used which starts with high regularization and decreases until no
further change in the form of the error reject curve is detected. Constraining the network
weights causes a simplification in network structure by reducing the number of bits in the
weights and therefore the amount of information contained in the network.



The usual form for the activation function for neural networks is a sigmoidal or logistic func-
tion. This function has small changes in all derivatives for large or small value of the input
signal. This results in sets of conditions where the Jacobian of the dynamical system being
optimized is effectively singular [15]. This results in large numbers of near-zero eigenvalues
for the optimization process and forces the optimization to be dominated by center mani-
fold dynamics [14, 16]. Changing the activation function to a sinusoidal function creates a
significant change in the dynamics of the training since even and odd higher derivatives of
the dynamical system are never both small. This improves network training dynamics and
results in better reject -accuracy performance and simpler networks [17].

3.3 Boltzmann Pruning
Boltzmann pruning has two effects on the training process. First, it takes small dynamic
components which have small real eigenvalues and are therefore near the center manifold and
places them on the center manifold. This simplifies training dynamics by reducing weight
space dimension. Second, Boltzmann pruning keeps the information content of the weights
bounded at values which are equal to or less than the information content of the feature
set. For example, when K-L features are derived from binary images, the significance of a
feature is no greater than the number of significant digits in the mean image value used in the
calculation, log2 N bits for N training examples. Boltzmann pruning forces this constraint
on the weights [4].

In [4], when Boltzmann pruning was used, detailed annealing schedules were used to
insure convergence of the training process. "\iVhenregularization is combined with pruning
the need for annealing schedules is removed and pruning can proceed concurrently with
the regularization process. This reduces the cost of pruning to a small computational cost
associated with the weight removal.

3.4 Class Based Error Weights
In problems with widely variant prior class probabilities, such as fingerprint classification, it
may be necessary to provide large samples of rare classes so that class statistics are accurately
represented, but it is important to train the classifier with the correct prior class probabilities.
This is discussed in chapter 7 of [18]. In the conjugate gradient method used here hoth the
network errors and error signals used in the control of the iteration must be calculated using
class weights thus:

L Class lV tights X Raw ErrorError' = --------------L Class TiV tights

This insures that the optimization is performed in a way that produces the hest solution
to the global problem but allows reasonable sampling of less common classes.

4 Neurodynamics of Learning
The design and implementation of most neural network architectures is based on the result of
analysis of the size and content of the network training data. These direct forms of analysis



are suitable when the size of the training data is small, the class distribution is uniform, and
the local and global dimension of the feature set are approximately equal. In fingerprint and
character classification applications the training sets are large and the local and global rank of
the feature data are very different. The complex structure of the training data requires that
large networks, O(104) weights and O( 102) nodes, be used. If the training process is treated
as a dynamical system with the weights as the independent variables the this would result in
a Jacobian with 108 terms. Previous pruning studies have shown that these networks contain
at least 50% redundant weights [4] and have confirmed that no more than 12 bits of these
weights are significant. This makes direct analysis of the Jacobian numerically intractable.

To avoid the difficulties in analyzing this complex, low accuracy system we looked directly
at the qualitative properties expected in systems of this kind [14, 9, 12] and altered the
training procedure to take the expected dynamic behavior into account. This analysis used
the dynamical systems approach to provide us with qualitative information about the phase
portrait of the system during training rather than a statistical representation of the weight
space of the MLP network. For this approach we considered the training process as an
n-dimensional dynamical system [19] where for a given neuron:

dUi Ui )- = --+f(u +Ii
dTi Ti J J

where Ti is the time for the unit and fj is the input-output transfer function which is a
sinusoidal function driven through the Wij interconnection weights:

f-(u-) = ~ + ~ sin('"'" w-u -»
J J 2 2 L IJ J

J

and Ii is the initial input. We effectively reduce the dimension of the problem using the center
manifold approach [16]. This approach is similar to the Lyapunov-Schmidt technique [20]
which reduces the dimension of the system from n to the dimension of the center manifold,
which in numerical calculations is equal to the number of calculable eigenvalues. Since the
number of weights in the typical network is approximately 104 and the number of bits in the
feature data is approximately 12, direct numerical methods for calculation of the eigenvalues
from the linearized dynamics are very poorly conditioned. The center manifold method has
the advantage over the Lyapunov method in that the reduced problem still is a dynamical
system with the same dynamic properties as the original system. This reduction in dimension
is implemented using the Boltzmann machine for scaled conjugate gradient (SCG) learning
algorithm.

The reduced problem after application of the center manifold method is still a SCG sys-
tem. The SCG requires that at any given point, the performance of the dynamical system
be assessable through a certain error function, E. Then the system parameters are itera-
tively adjusted in the opposite direction of error. The reduction on the size of error can be
approximated as follows:

dw aE
- - -17-
dT - aw'

where 17 is the learning rate or time constant for parameter dynamics, 11' is the weight, and
E is the error.

This approach, unlike most training methods, can reduce the error independent of the
content of the particular sample distribution and the size of training data. This results in a



saving in training time and improvement in performance without analysis of those network
components which make minimal contributions to the learning process.

The training method was used on samples of handprinted digits and fingerprints. The digit
sample contained 7480 training and 23140 testing examples equally distributed for classes
"0" to "9". The fingerprint data contained 2000 training and 2000 testing samples from
NIST database SD4 [21]. These training and test samples are identical to those used in [1].

5.1 Digit Recognition
Figure 3 compares the results of digit recognition using MLP networks with sinusoidal and
sigmoidal activation functions to a PNN network. Both MLPs were trained using successive
regularization and Boltzmann pruning. The zero reject error rates are 3.34% for the sigmoidal
l\1LP. 2.54% for the PNN. and 2.45% for the sinusoidal MLP. The sinusoidal result is the
best yet achieved on this data and is comparable to human performance [22]. The slope of
the curves is initially proportional to their accuracy initially, but at higher reject rates the
sinusoidal MLP has substantially better performance. indicating simpler decision surfaces.

5.2 Fingerprint Classification
Figure 4 compares the results of fingerprint classification using MLP networks with sinu-
soidal and sigmoidal activation functions to a PNN network. Both MLPs were trained using
successive regularization and Boltzmann pruning. The zero reject error rates are 9.2% for the
sigmoidal MLP, 7.18% for the PNN. and 7.8% for the sinusoidal MLP. The sinusoidal result
is not as low as PNN at zero rejection indicating that the decision surfaces required for this
problem are more complex than for the less difficult digit recognition problem. The slope of
the reject-error curves is not proportional to the accuracy initially nor at any other point.
However. at higher reject rates the sinusoidal MLP has substantially better performance, in-
dicating simpler decision surfaces are providing better confidence estimates used to generate
the error-reject curve. At 10% reject the error rates have changed to 5.45% for the sigmoidal
MLP, 4.96% for the PNN, and 3.43% for the sinusoidal MLP. This again demonstrates that
the decision surfaces generated by the dynamically optimized MLP are simpler than those of
the other networks.

In this paper we have shown that some relatively low cost modifications to the MLP training
process based on training dynamics can result in lower error and better error-reject per-
formance on difficult classification problems. These improvements follow directly from less
complex decision surfaces. The digit recognition problem was solved with consistently bet-
ter performance at all reject rates. The more difficult fingerprint classification problem was
solved in a way which still showed some advantage for complex PNN decision surfaces at zero
reject. but which yielded better performance than PNN after a small percentage of the low
confidence classifications were rejected.
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Figure 1: The diagram shows digit classifications generated by a PNN classifier using the first two
K-L components in a region centered on (0,0) with an extent large enough to contain the feature
vectors.

Figure 2: The diagram shows digit classifications generated by a MLP classifier using the first two
K-L compenents in a region centered on (0,0) with an extent large enough to contain the feature
vectors.
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Figure 3: Error reject graph for sigmoida1 MLP, sinusoidal MLP, and PNN for classification of
digits.
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Figure 4: Error reject graph for sigmoidal MLP, sinusoidal MLP, and PNN for classification of
fingerprin t s.


