
Fast Implementations of Nearest Neighbor
Classifiers

P. J. Grother, G. T. Candela and J. L. Blue

Abstract— Standard implementations of non-paramet-
ric classifiers have large computational requirements.
Parzen classifiers use the distances of an unknown
vector to all N prototype samples, and consequently
exhibit O(N) behavior in both memory and time.
We describe four techniques for expediting the near-
est neighbor methods. replacing the linear search
with a new kd tree method, exhibiting approximately
O(N1/2) behavior; employing an L∞ instead of L2 dis-
tance metric; using variance ordered features; and
rejecting prototypes by evaluating distances in low
dimensionality subspaces. We demonstrate that variance-
ordered features yield significant efficiency gains over
the same features linearly transformed to have uni-
form variance. We qive results for a large OCR
problem, but note that the techniques expedite recog-
nition for arbitrary applications. Three of four tech-
niques preserve recognition accuracy.

Index Terms— Non-parametric classifiers, kd trees,
k Nearest Neighbors, Distance metrics, Karhunen-
Loève transform, OCR.

I. Introduction

Statistical classifiers for OCR have been widely investigated.
Using Karhunen-Loève (KL) transforms of normalized bi-
nary images it has been found that the non-parametric clas-
sifiers work better than many commonly used neural net-
works [1]. Indeed the simplicity and efficacy of the KNN
method [2] has made it the algorithm of choice for proto-
typing pattern recognition tasks. However non-parametric
classifiers in on-line recognition systems are expensive: the
space and speed requirements rise linearly with the num-
ber of known samples, and that number is often necessar-
ily large. Although extensive literature on faster methods
exists, for example the papers in Dasarathy’s volume [3],
speed and memory requirements have historically mitigated
against the practical use of non-parametric classifiers. How-
ever older research [4] recently applied to high dimensional
searches has shown the aversion to non-parametric to of-
ten have been unjustified. The techniques we describe are
unrelated to the traditional and very effective methods of
condensing the sample sets (through deletion [5] or cluster-
ing [6]), which may still be applied in conjunction with our
procedures.

Given that fast parametric classifiers, and neural net-
works can obtain very good classification results, the persis-
tence of the neighbor methods is, in our case, due to their
superior error rate performance and their simplicity. Thus
this investigation details several methods of improving ef-
ficiency while preserving recognition performance. Section
II.compares the KNN and PNN algorithms, while section
III.describes their efficient implementation. Such methods
confer a data dependency to the recognition speed, and sec-
tion IV.discusses optimally efficient feature representations.
Section V.describes the kd tree, and its use with KNN and
PNN. The paper finishes with sections giving results for the
various factors when applied to an OCR problem and the
final conclusions.

II. Non-parametric Classification

The nearest neighbor methods employ n-dimensional fea-
ture vectors from N samples of known identity. Non-paramet-
ric classifiers usually use some function of the distances of
an unknown to the known points. For practical OCR the
number of training samples may exceed 106, each being rep-
resented in, say, a 40-dimensional space. An unknown, y, is
assigned that class whose discriminant value, Di(y), is max-
imum. Given x(i)

j as the N (i) prototypical sample vectors
of class i, the Parzen [7] discriminant value is

Di(y) =
1

N (i)

N(i)∑
j=1

κi(y − x(i)
j)

where the form of the kernel function, κ, defines a non-
parametric classification method and may be different for
each class. The KNN and PNN algorithms considered in
this paper use both the L2 Euclidean squared distance and
the L∞ maximum metrics defined thus:

d (y,x) = (y − x)T (y − x)

d (y,x) = max
j

|yj − xj | .

The Euclidean metric has useful analytic properties, and
turns out to produce more accurate results. The latter met-
ric is more efficient.

A. KNN and PNN

The KNN algorithms consider only the k nearest neighbors,
denoted by c1, · · · , ck, as members of the set

Su = {xj | d (y,xj) ≤ d (y, ck)} (1)

where the subscript k denotes the kth closest prototype. If
the set is composed of ki ≥ 0 elements from each class i, then
the traditional method classifies using Di(y) = ki so that
the unknown takes the majority class. This algorithm can
be regarded as the Parzen classifier with a top hat function
kernel whose width is a random variable, and different for
each class. However we prefer a distance-dependent contin-
uous discriminant value offering superior classification and
the possibility of low-confidence rejection. The discriminant
function is

Di(y) =
∑

x
(i)
j
∈ Su

1

1 + d(y,x(i)
j)

(2)

PNN originated in the neural network literature [8] as a
parallel implementation of a Parzen type classifier. Our im-
plementation uses a radially symmetric kernel of width σ
which most simply is fixed for all classes. Although class
specific σi’s potentially offer superior performance, our in-
vestigation of applying a conjugate gradient algorithm to
minimize a mean square error function has yielded minimal
classification gains for our hand print and machine print
applications. The discriminant function is

Di(y) =
1

N (i)

N(i)∑
j=1

exp
(
−1
2σ2

d(y,x(i)
j)

)
(3)

For squared L2 distances the kernel is normal and if the dis-
criminant values for each of the L classes are normalized by
their sum, they become estimates of the a posteriori prob-
abilities. The algorithm is slow due to the exponential: the
many distant prototypes have negligible contribution. Thus
the discriminant may be approximated by ignoring terms
less than e−α times the largest. If all the discriminant func-
tions are accumulated, the jth prototype contributing to any
Di(y) is retained if it satisfies this condition:

exp
(
−1
2σ2

d (y,xj)
)

< exp (−α) exp
(
−1
2σ2

d (y, c1)
)

(4)

where c1 is the closest prototype. This is most economically
used in the distance domain whence the voting set is:

Su =
{
xj | d (y,xj) < 2ασ2 + d (y, c1)

}
(5)

This approximates pure PNN with an error controlled by α,
a lower bound of which is the log of the number of samples
per class. Pathologically this number of only-just-ineligible
samples could cause the classification to be changed. The α
value used in the public-domain [9] implementation is set to

9 ensuring no hypothesis changes, yet still affording a five-
fold speed increase over the naive algorithm. Small α yields
speed and any accompanying loss in recognition is limited,
since, as α → 0, PNN reverts to KNN with k = 1. Although
the PNN and KNN discriminants have different form, hy-
potheses are identical and error versus reject performance is
comparable. The KNN method with k = 1 defines the lower
time and error rate bounds for this PNN variant as α → 0.
As α → ∞ PNN defaults to its slow definition. Since the
number of samples local to y is a random variable, PNN
potentially has a recognition advantage over KNN.

III. Implementations

It is not necessary to calculate all the distances to an un-
known in order to find the nearest prototype. Rather it is
sufficient, during the computation of the distances, to retain
only those prototypes that survive the membership condi-
tions in equations 1 or 5. The distance metrics in section II.
nominally require complete (that is, using all n feature com-
ponents) calculation of dot products (L2) and maxima (L∞
). However for KNN, once the distance has been found for
the first k prototypes, it is possible to discard a subsequent
prototype after any nd ≤ n elements of the dot product or
the maxima have been used; if the distance already exceeds
the distance to the current kth closest sample, then the pro-
totype is too distant and n−nd elements are ignored. If the
prototype is ultimately nearer than the kth nearest neigh-
bor then it is retained and the current ck is discarded. The
situation for PNN is analogous; any nd ≤ n elements that
put a prototype beyond the perimeter defined in equation
5 are sufficient to disqualify it. The use of a prototype ac-
cording to these criteria is temporary; the eligibility is fixed
only at the end of the search when c1 has been found. Since
any of the k currently closest distances can only decrease
during the search, prototypes that become ineligible remain
permanently so.

The order in which the feature components are considered
is irrelevant to the classification, but not to the computation
time. For either metric the selection order can be arbitrary
so that it is possible, without loss of generality, to use the
elements in order of largest expected contribution to the
distance calculation. For the L2 metric let d2

i be the square
of the ith component of the difference vector xj − y. Its
expectation for y over all the training samples is

Ej(d2
i) = Ej(x2

i)− 2yiEj(xi) + y2
i

If the prototype set has zero mean, the second term disap-
pears and the first term is just the variance. If further the
testing vectors, y, are identically distributed the expecta-
tion of the contribution of the ith feature component to the
distance sum is

E(d2
i) = var(xi) + var(yi) = 2var(xi)

That is compaction of feature variance increases the ex-
pected partial distance accumulations and thereby expedites

eligibility determination. This holds for arbitrary recogni-
tion applications. The KL transform has some powerful
properties in this respect: if the N zero-mean sample vec-
tors form the columns of the sample matrix U, and the co-
variance N−1UUT is diagonalized by eigenvectors Ψ, then
the KL transforms are V = ΨT U. The covariance of these
extracted features is

N−1VVT = N−1ΨT UUT Ψ = Λ

where the only non-zero elements of the Λ are the eigen-
values on its diagonal, usually obtained in decreasing order.
Of all unitary transforms the KL transform optimally com-
pacts variance into the leading features. These therefore
contribute most, on average, to the distance sums, and yield
briefest computation.

Given these details the methods retain their linear search
character since all prototypes are considered and the al-
gorithm still scales as O(N). The naive implementations
are also O(n) with respect to dimensionality and, although
these optimizations give significant data dependency, the
speed remains closely linear in n.

IV. Variance Equalization

Variance ordering of the features (obtained by design, through
KL transformation, direct sorting, or other methods) will
improve the efficiency of nearest neighbor methods applied
to arbitrary tasks. The overhead associated with any rear-
rangement of the data may be zero or quite considerable.
The KL transform may be costly to the whole process, be-
cause, in the worst (complete) case, the expansion involves
an O(n2) matrix-vector operation for each unknown. The
Cosine and Discrete Fourier transforms approach the KL
transform in terms of energy compaction and may be calcu-
lated using fast O(n log n) algorithms. In our applications
the KL transforms are the features of our images; we have
not contrived their use, we incur no overhead, and expedited
classification is a fortunate by-product. Depending on the
application, therefore, variance ordering maybe be benefi-
cial to the whole process. To quantify the gains that are
available, we compare the variance-ordered situation to the
“average case” where the variances of the features are the
same. To this end we transform our original features, V, to
a set, Z, by applying a linear transformation, Φ. The new
set Z = ΦT V is obtained. The covariance matrix of these
new features is

N−1ZZT = N−1ΦT VVT Φ = ΦT ΛΦ

where Λ is the diagonal eigenvalue matrix of the original V .
The new covariance is not diagonal but its diagonal elements
should all be equal to the mean of the original KL variances,
λ̄ = n-1Tr(Λ). The simplest transformation achieving this is
feature whitening using Φ = λ̄1/2Λ-1/2 but as distances are not
invariant under this transformation KNN and PNN classify
very poorly. This is avoided if we require the new basis Φ to

be complete and orthonormal in which case the basis cor-
responds to a subtle rotation of the coordinate axes. Note
that the above discussion does not apply to the L∞ metric.

The following algorithm makes the columns of Φ sequen-
tially. The first column is made by forming a random vector
and normalizing each trial version of it to unit length. Sub-
sequent columns are made by again generating a random
vector and employing Gram-Schmidt to produce a new ver-
sion of unit length and orthogonal to all previous columns.
The vectors are made speculatively and although orthonor-
mal by design, they must satisfy the intended equal variance
condition, namely that the variance of the component each
extracts from the original features, calculated using

var(zi) = N−1φT
i VVT φi = λiφ

T
i φi,

must not differ from the goal variance, λ̄, by more than a
specified tolerance ε. If this is true then the basis vector
is retained and the algorithm continues, otherwise another
trial vector is generated and tested. The smaller the ε, the
closer the variances of the new features will be to all being
equal, but the longer it will take to produce the transform.
The algorithm is primitive; for ε = 10−3, λ̄ = 10.5, a com-
plete n = 40 basis was made using about 105 trial vectors
and several cpu minutes.

V. kd Trees

Although there are large performance gains associated with
the above implementation of the NN methods, the algo-
rithms still have the character of a linear search methods.
Alternatives exist; among the best are the “kd tree” meth-
ods [10], which often have average searching time propor-
tional to log N [4]. However this excellent behavior is usu-
ally only realized when the sample points in the feature
space are dense, N � 2n. In our OCR example described
later, the dimensionality is high so that N � 2n, and the
logarithmic behavior is not found. A brief description of our
implementation, which is a slight variation on the original
kd tree method, follows; details of the original may be found
in [4].

Construction of the kd tree is done recursively. The top
node contains all N points. The two children of this node
each contain N/2 points. The left child node contains those
points whose value of the tth component is less than the
global median; the right child node has the remainder. The
order in which components are considered, t = t1, t2, · · ·, is
determined for each subtree from the variance of the features
contained therein. Each child node is then divided in half
using the median of the component with the largest variance
of the points in that subtree, and so on. The depth of the
tree would therefore be log2N , which for our application is
less than the value of n that gives optimal digit classifica-
tion. However, the recursive building of the tree is limited
by stipulating a minimum number of points per leaf node,
m. This is implemented by stopping tree division when the
number of points contained in a subtree is less than 2m.

Construction of the tree takes time proportional to NlogN
and is generally inexpensive. A simpler alternative is to
build the tree by splitting each node using the median of
the next component in order, t = 1, 2, · · · , n. In this case,
global decreasing variance order, as obtained, for example,
with the KL transform, will be important. However, we
have found the preferred method of using variance ordered
node division to give 25% greater speed in the classification
phase.

Searching for k nearest neighbors in the kd tree achieves
speed because calculating distances for entire sub-trees can
be avoided. The method is applicable with both L2 and L∞
distances. In kd trees, rather than searching for the k closest
points, it is more natural to search for points within distance
δ of the unknown vector, y, as follows. Start at the top node
and suppose yt1 < xt1 where the subscript t1 indicates on
which component the node was originally split. Put the left
child node on a list to look at later. All the points in the
right child node are at least xt1 − yt1 distant from y. If
xt1 − yt1 > δ, ignore the right child node; otherwise put
it on the list. Continue searching by taking one node at a
time off the list. If the node has no children, look at the
distances of the point or points in the node and remember
the k smallest distances. If the node has children, look at
both child nodes and put one or both of them on the list.

If δ is excessively large, too few subtrees will be discarded
and too many distances calculated, leading to a long search
time; with δ too small, too many subtrees will be discarded
and too few nearest neighbors will be found, though this
calculation is fast. A reasonable approach is to estimate,
δ, preferably on the small side. If fewer than k nearest
neighbors are found, δ is doubled and a new search is made.
During the search, after k distances less than δ have been
calculated, δ can be reduced to the kth largest distance, giv-
ing efficiency gains. To initialize δ, the centroid vectors of
each prototype class can be used as trial points and their
distances to the unknown calculated. If a fraction, say 0.5,
of the smallest such distance is used as an estimate for δ,
then the k near neighbors may be found in the search. How-
ever if less than the mandated k neighbors are ultimately
found, the search is restarted. This effect is clearly data
dependent and is determined by the distance distributions.
Thus search time is a sensitive function of the initial δ. We
report results for a simpler implementation; we initially use
δ = ∞. After k distances have been calculated δ assumes
the kth largest distance. The search finds the k nearest
neighbors in one traversal.

For PNN the ideal choice of δ would be just the right
hand side of the condition in 5. Initially δ = ∞ and its
value quickly decreases as successively closer prototypes, c,
are found. During the search δ is the closest distance so far
plus 2ασ2.

VI. Handprint OCR Results

Large databases are important to the meaningful appraisal
of recognition algorithms. For this study we have used the
digits from NIST Special Database 19 [11]. The training set
contains 17231 examples of each of the 10 classes from 1831
writers; the testing data is 2314 samples per class from a
further 250 writers. The features used throughout are KL
transforms; i.e. the projections of the binary images onto
the eigenvectors of the covariance matrix of the training
images. An industry-academia OCR competition using this
data is detailed in [12]. The sets contain many examples
that do not define decision boundaries and are thus suitable
candidates for prototype pruning, using Voronoi deletion
techniques [5] [13] or clustering.

The results cover four axes of investigation: the L2 versus
L∞ comparison, the kd tree versus linear search methods,
the merits of KNN versus PNN, and the effect of variance-
ordered over variance-equalized features. The tables use the
definitions below. Specific values apply to all the tabulated
results unless noted otherwise.

k = KNN’s number of near neighbors, k = 3
σ = PNN’s kernel width, σL2 = 2, σL∞ = 0.2
α = PNN’s deletion parameter in eq. 5, α = 2
m = minimum allowed samples per kd tree leaf, m = 10
N = number of training samples available, N = 172310
Ns = number of samples searched, Ns ≤ N , the equality holds in the linear case,

for kd trees this is the sum of the patterns in the visited leaves
Nr = number of samples retrieved for possible use i.e. those patterns

considered, at any stage, to be close to the unknown, Nr ≤ Ns

Nu = number of samples finally used in the discriminant summation. For
KNN Nu ≡ k, for PNN Nu ≤ Nr is the mean number satisfying condition 5

n = the overall feature space dimension, n = 40
nd = the mean number of components used in the distance summation

i.e. the dimension sufficient to determine sample eligibility nd ≤ n

E = recognition error percent
t = recognition time in ms per unknown

Empirically error and speed performance is largely invari-
ant over relatively wide ranges of n, m, σ and k. Table 1
compares the naive and fast implementations of KNN. By
aborting the distance calculations, large efficiency gains are
obtained. The ratio of the nominal dimensionality, n, to the
actual dimension, nd, gives a theoretical speed improvement
since both metrics take time proportional to feature dimen-
sion. Although run time is reduced by a factor of four, the
theoretical order of magnitude gains are not realized, due
to the expense of the eligibility test. The number of compo-
nents required decreases with increasing numbers of samples
because, on average, a closer kth nearest neighbor is present.

The first row of table 2 shows that the kd tree search

N nd n/nd ts/tf E
5000 3.83 10.4 5.5 2.7

10000 3.38 11.8 4.4 2.2
20000 3.03 13.2 4.0 1.9
40000 2.76 14.5 4.2 1.6
70000 2.58 15.5 4.3 1.3

100000 2.48 16.1 4.5 1.3
140000 2.40 16.7 4.5 1.2
172310 2.35 17.0 4.6 1.1

Table 1: Naive versus fast linear search for KNN using an L2

distance metric. The fourth column gives measured speed
improvement as the ratio of the slow and fast times.

kd Tree Linear
KNN PNN KNN PNN

Ns/N 0.098 0.134 1.00 1.00
Nr 14.6 92.7 35.0 116.6
Nu 3 80.5 3 80.5
nd 5.5 6.3 2.4 2.6
t 41 94 400 442

Table 2: Linear versus kd tree searches using L2 distances.
The error rates for KNN and PNN, 1.09% and 1.17%, are
independent of the search method.

avoids retrieval of about 90% of the prototypes and saves
corresponding time over the linear algorithm. Note that
by using fewer samples the kd search requires additional
components and temporarily finds relatively more of the
Ns prototypes to be eligible. These increases in nd and
Nr/Ns negate some of the efficiency gains. Ultimately, both
searching schemes produce the same result. The number of
prototypes found during the search, Nr, is generally larger
than the number, Nu, that finally remain eligible after final
retention is determined by 1 and 5. The kd tree exhibits
superior economy in this regard since the tree traversal more
quickly yields close points.

Table 3 shows the effect of using KL transforms in place
of variance-equalized features for both searching paradigms.
The table also compares the two distance metrics. The kd
tree method reaps greater benefit from KL variance-ordering
than does the linear search; classification times fall by fac-
tors of about 4 and 1.5 respectively. As noted previously, kd
trees succeed because many subtrees are never searched and
the use of KL transforms cuts Ns by more than a factor of
three, relative to their variance-equalized counterparts. Al-
though the orthonormal transformation that produced the
variance-equalized features gives invariant L2 distances and
identical classifications, we found that kd tree traversal con-
siders (Ns) and retrieves (Nr) differing numbers of points
when using the new features. This is due to the kd con-
struction algorithm reordering prototypes while distribut-
ing them over the tree. With respect to feature dimension,

Ordered Equalized
L2 L∞ L2 L∞

E 1.09 1.57 1.09 1.53
kd nd 5.5 3.6 6.4 3.5
Tree Ns/N 0.098 0.014 0.328 0.044

Nr 14.6 15.4 15.6 16.6
t 41 6 165 16

L2 L∞ L2 L∞
Linear nd 2.4 1.3 5.6 2.1

Nr 35.0 35.1 35.0 35.1
t 400 305 609 360

Table 3: Comparison of variance-ordered (KL) and
variance-equalized (λ̄) features using KNN and both search-
ing schemes.

the L∞ retention criterion is more efficient. For a KNN lin-
ear search with k = 1 using KL features, an average of just
1.1 coefficients are necessary to determine eligibility and,
despite L∞ distances not being invariant under rotation,
classification is actually slightly superior for the variance-
equalized features.

Empirically, speed increases obtained by using L∞ (ver-
sus L2) distances and using KL (versus variance-equalized)
features scale closely with n1/2

d Ns. The benefit of either op-
timization to the linear algorithm is much less pronounced
since it gains only from a reduction in the number of dimen-
sions required to determine retention, nd, and not from any
reduction in Ns, which is a constant equal to N .

Figure 1 shows the dependence of classification time on
the number of prototypes used by the kd classifier. Given
the log scales on both axes it is apparent that t ∝ Nβ where
β is less than unity and is a function of the feature space
dimension, n. In the worst case, when n is large, searching
takes time proportional to N 2/3. For small n the perfor-
mance is markedly better, scaling as N 1/3. For the OCR
case the dimensionality, n = 40, is large and the number
of prototypes relatively small, so N � 2n. This sparseness
in the n-dimensional space is the cause of the logarithmic
behavior [4] not being found. However while never as good
as log N , our results offer a substantial improvement over
time proportional to N .

Table 4 shows that, using a value for α that preserves
hypotheses, PNN employs many more neighbors in the dis-
criminant calculation than KNN. The implication is that, al-
though many samples contribute significantly, by an amount
greater than e−αd(y, c1), the hypothesized class is deter-
mined sufficiently by the first few neighbors, and the re-
maining prototypes merely saturate the result. The number
used in classification, Nu, increases approximately as α2 for
α > 1. Since the number of eligible prototypes for PNN is
a random variable, classification is relatively slow and time
increases about linearly with α. Recognition error is ulti-
mately very similar to KNN. For this data set PNN has only

10

100

1000

10000 100000

t

N

Figure 1: Classification time versus number of prototypes,
for the kd method using KNN with L2 distances. The
curves, from top to bottom, correspond to n = 40, 24, 16, 8.
Using a least squares fit their slopes are 0.67, 0.61, 0.53 and
0.37 respectively.

KNN k 1 2 3 5 7
E 1.23 1.23 1.09 1.18 1.21
nd 2.1 2.3 2.4 2.5 2.6
nd ◦ 4.7 5.3 5.6 6.1 6.4
Nr 12 24 35 56 77

PNN α 1.15 2.3 4.6 9.2 13.8
E 1.17 1.16 1.17 1.17 1.17
nd 2.2 2.4 2.6 3.2 3.9
nd ◦ 5.2 5.7 6.7 8.6 10.4
Nr 21 40 117 400 851
Nu 5 19 81 326 729

Table 4: KNN versus PNN for various k and α using the lin-
ear search and L2 distances. The symbol ◦ denotes results
for variance-equalized features.

its superior error versus reject performance to recommend it
over the more constrained KNN scheme. It should be noted
that PNN gives superior classification in other applications,
for example in fingerprint recognition [14], in which only
small training sets are available and density estimation is
less accurate.

For variance-equalized features the mean number of com-
ponents used is 4.7, double that for the KL transforms. The
attendant increase in classification time is a factor of 1.5.

VII. Conclusions

The kd tree data structure gives rise to an order of magni-
tude increase in speed over our fast linear implementations
of the non-parametric methods. Searching times scale much
better than linearly with the number of prototypes. The de-

pendence of time on the number of samples, N , and the fea-
ture dimensionality, n, means that real applications benefit
from compact feature representation; Karhunen-Loève ex-
pansions are used very parsimoniously by the non-paramet-
ric classifiers. Partial distance calculations using these fea-
tures afford a four-fold increase in classification speed over
the naive definitions of these algorithms. The KL trans-
form decreases the number of feature components used by
the classifiers by more than a factor of two compared to the
case where features have equal variance.

The L∞ distance metric applied with the kd data struc-
ture yields another order of magnitude efficiency gain over
the traditional L2 norm. The improvement is much less
pronounced in the linear search. The disadvantage of this
metric is an increase in recognition error from 1.1% to 1.6%,
although this may be traded for speed by using a larger
training set.

PNN gives comparable recognition and speed to the KNN
method. Given the necessity to optimize an extra parameter
and the absence of any classification advantages associated
with having a locally variable k, it is the authors’ conclusion
that PNN has little to commend it over KNN.

The relative efficacies of the techniques will depend on the
data in question and, although specific pathologies therein
can both help and hinder the classifier, we suggest that kd
trees, alternative distance metrics, energy compaction and
variance ordering, are potent means for expediting nearest-
neighbor classifiers and worthy of investigation when speed
is an issue. The traditional application of the sample con-
densation methods is still recommended as their action will
usually be complementary to the techniques described.

References

[1] J. L. Blue, G. T. Candela, P. J. Grother, R. Chellappa,
and C. L. Wilson. Evaluation of Pattern Classifiers for
Fingerprint and OCR Applications. Pattern Recogni-
tion, 27(4):485–501, 1994.

[2] T. M. Cover and P. E. Hart. Nearest neighbor pat-
tern classification. IEEE Transactions on Information
Processing, IT-13:21–27, 1967.

[3] B. V. Dasarathy, editor. Nearest Neighbor (NN)
Norms: NN Pattern Classification Techniques. IEEE
Computer Society Press, 1991.

[4] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An
algorithm for finding best matches in logarithmic ex-
pected time. ACM Transactions on Mathematical Soft-
ware, 3:209–226, 1977.

[5] P. E. Hart. The condensed nearest neighbor rule. IEEE
Transactions on Information Theory, IT-14:515–516,
1968.

[6] K. Fukunaga and R. R. Hayes. The reduced Parzen
classifier. IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, 11:423–425, 1989.

[7] K. Fukunaga. Introduction to Statistical Pattern Recog-
nition, chapter 6, pages 254–299. New York: Academic

Press, second edition, 1990.
[8] D. F. Specht. Probabilistic neural networks. Neural

Networks, 3(1):109–118, 1990.
[9] M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dim-

mick, J. Geist, P. J. Grother, S. A. Janet, and C. L.
Wilson. NIST Form-Based Handprint Recognition Sys-
tem. Technical Report NISTIR 5469, National Institute
of Standards and Technology, July 1994.

[10] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18:509–517, 1975.

[11] P. J. Grother. Handprinted forms and characters
database. Technical Report Special Database 19,
HFCD, National Institute of Standards and Technol-
ogy, March 1995.

[12] R. A. Wilkinson, J. Geist, S. Janet, P. J. Grother,
C. J. C. Burges, R. Creecy, B. Hammond, J. J. Hull,
N. J. Larsen, T. P. Vogl, and C. L. Wilson. The
First Optical Character Recognition Systems Confer-
ence. Technical Report NISTIR 4912, National Insti-
tute of Standards and Technology, August 1992.

[13] G. T. Toussaint, B. K. Bhattacharya, and R. S.
Poulsen. The application of Voronoi diagrams to non-
parametric decision rules. In Computer Science and
Statistics: 16th Symposium on the Interface, Atlanta,
Georgia, 1984.

[14] G. T. Candela and R. Chellappa. Comparative Per-
formance of Classification Methods for Fingerprints.
Technical Report NISTIR 5163, National Institute of
Standards and Technology, April 1993.

Biographies

Patrick J. Grother received his B. Sc. degree in Physics
from Imperial College, London. He subsequently received
his M. Sc. degree in Computing and Image Processing from
the same establishment. He is presently pursuing research
in the Advanced Systems Division at the National Institute
of Standards and Technology. His current interests include
pattern recognition, numerical methods and image process-
ing, as used for fingerprint and document processing.

Gerald T. Candela received a B.S. degree in mathemat-
ics from the University of Maryland in 1982. His research
interests are in the areas of image processing and pattern
recognition, particularly as applied to fingerprint classifica-
tion.

James L. Blue received his A.B. in Physics and Math-
ematics from Occidental College and his Ph.D. in Physics
from the California Institute of Technology. He currently
heads a mathematical modeling group at the National In-
stitute of Standards and Technology. He has done research
in semiconductor devices, mathematical modeling, and nu-
merical methods at Bell Telephone Laboratories. His cur-
rent interests include computer algorithms and simulation,
micromagnetics, and neural networks.

