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A public domain document processing system has been developed by the National Institute of Standards and Technology
(NIST). The system is a standard reference form-based handprint recognition system for evaluating optical character recognition
(OCR), and it is intended to provide a baseline of performance on an open application. The system's source code, training data,
performance assessment tools, and type offorms processed are all publicly available. The system recognizes the handprint entered
on Handwriting Sample Forms like the ones distributed with NIST Special Database I. From these forms, the system reads hand-
printed numeric fields, upper and lowercase alphabetic fields, and unconstrained text paragraphs comprised of words from a lim-
ited-size dictionary. The modular design of the system makes it useful for component evaluation and comparison, training and
testing set validation, and multiple system voting schemes. The system contains a number of significant contributions to OCR
technology, including an optimized Probabilistic Neural Network (PNN) classifier that operates a factor of 20 times faster than
traditional software implementations of the algorithm. The source code for the recognition system is written in C and is organized
into II libraries. In all, there are approximately 19,000 lines of code supporting more than 550 subroutines. Source code is pro-
vided for form registration, form removal, field isolation, field segmentation, character normalization, feature extraction, character
classification, and dictionary-based postprocessing. The recognition system has been successfully compiled and tested on a host
of UNIX workstations inclUding computers manufactured by Digital Equipment Corporation, Hewlett Packard, IBM, Silicon
Graphics Incorporated, and Sun Microsystems.* This paper gives an overview of the recognition system's software architecture,
including descriptions of the various system components along with timing and accuracy statistics.

Keywords: CD-ROM, form processing, handprint recognition, neural network, optical character recognition, public domain,
software distribution, standard reference system, training data

A standard reference form-based handprint recognition system for evaluating optical character recognition (OCR) has
been developed. I The system has been developed as an open application; the system's source code, training data, performance
assessment tools, and types of forms processed are all publicly available. The system architecture and software organization is
completely documented for those interested in technology integration. The source code for the standard reference system is written
in C and is organized into II libraries. In all, there are approximately 19,000 lines of code supporting more than 550 subroutines.
Source code is provided for form registration, form removal, field isolation, field segmentation, character normalization, feature
extraction, character classification, and dictionary-based postprocessing. Any portion of the system may be used without restric-
tion in commercial products.

Due to its modular design, a component of the system may be easily replaced by an alternative algorithm. The same set
of input data can be run through the augmented system, and performances between the standard reference system and the aug-
mented system can be compared. The system can be retrained and tested in a controlled way so that the impact of different training
set profiles can be compared, and a training set that provides maximum robustness can be determined. Developers may find that
the techniques used in the standard reference system provide complimentary results to their own systems. If this is the case, then
combining the recognition results from the two systems, or allowing the systems to vote may improve overall recognition perfor-
mance as demonstrated in Reference 2.

* Specific hardware and software products identified in this paper were used in order to adequately support the development of the technology described in this
document. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply
that the equipment identified is necessarily the best available for the purpose.
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The standard reference system processes the Handwriting Sample Forms (HSF) distributed with NIST Special Database
13 (SDI). NIST Special Database 1 contains 2,100 full page images of handwriting samples printed by 2,100 different writers
geographically distributed across the United States with a sampling roughly proportional to population density. An example of a
filled in HSF form is shown in Figure I. All HSF forms use a single field template specifying the number of entry fields, their size
and location. Each entry field on the form is demarcated by a box. The form is comprised of 3 identification boxes, 28 digit boxes
of varying length, a randomly ordered lowercase alphabet, a randomly ordered uppercase alphabet. and a handprinted text para-
graph containing the Preamble to the U.S. Constitution. The forms were scanned at 12 pixels per millimeter (300 dots per inch -
dpi) binary.
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The system has been designed to read all but the first three fields on the HSF form. The functional architecture of the
recognition system is illustrated in Figure 2. This diagram represents the processing of handprinted fields that contain all digits,
fields that contain all lowercase or all uppercase letters, and fields that contain a text paragraph of mixed upper and lowercase
letters. As can be seen from the figure, there is a large overlap in the functional components used across these different types of
fields.

This report provides an overview of the standard reference system in terms of its components and functionality. Section
2 briefly describes the functional components of the standard reference system. System performance and timing statistics are pre-
sented in Section 3. Section 4 summarizes this paper. A complete description of the system including software organization, file
formats, source code compilation, system invocation, and functional components is found in Reference I.



This section documents the overall functionality of the standard reference form recognition system. The system compo-
nents shown in Figure 2 are organized into two functional groups (process form and process field). The first is responsible for
processing the input form image by dividing the image into separate fields. The second is responsible for reading the field values
handprinted on the form and storing the system results.

Initializing the system to process a form image requires reading the completed form from an input image file4 and retriev-
ing a spatial field template. The standard reference system is designed to read only one type of form. If the system was extended
to read multiple forms, then a form identification capability would need to be integrated. The appropriate spatial field template
would then be used based on the type of form recognized by the system. In all, there are 34 entry fields on an HSF form, each
represented as a rectangular region in the field template.

Currently, form recognition technology requires stringent form design and printing standards in order to ensure success-
ful OCR.5 No matter how much care is taken in printing the original forms, many forms processing applications must deal with
second and third generation photocopy, or even worse facsimile. These factors generally produce significant distortions in the final
image, including rotation, translation, and scale that must be accounted for in order for the recognition system to reliably locate
and recognize the data entered in each field on a form. These types of distortions are detected and removed through a process
known as form registration.

The standard reference system uses a registration technique based on Linear Least Squares6 (LSQ) where a set of pre-
defined registration marks on an input form image are matched to marks on an undistorted (registered) blank form image. Global
estimates of rotation, translation, and scale are automatically computed and applied so that the input image is transformed to line
up as well as possible, in a least squares sense, with the registered blank form. Six points distributed across the form are used by
the standard reference system. The recognition system uses spatial histogram projections to locate the position of these registration
marks within the input form image. The technique employed in the system carefully reduces the scope of successive histogram
projections, alternating between horizontal and vertical projections, until the desired structure is accurately isolated. Using this
technique, the standard reference system has been engineered and tested to tolerate up to 5 degrees of rotation in combination with
1.27 cm (0.5 inches) of translation.

Once the registration marks are located on a form, parameters estimating the amount of rotation, translation, and scale
are computed. The estimation of distortion parameters is embedded in a technique for detecting form registration failures. The
technique transforms the points located on the form using the distortion parameter estimates. If the distance between the trans-
formed points and the known points on a registered form is too great, then the point contributing the greatest distance is removed
from the calculation and the distortion parameters are recomputed. The algorithm loops until either there are too few points
remaining to accurately compute distortion parameters, or the maximum error distance from all the remaining points falls below
a specified threshold. If too few points remain, the form registration is determined to have failed. Otherwise, form registration is
determined to be successful, and the last set of distortion parameters computed are used to transform the entire input form image.

Equation (I) represents horizontal translation, rotation, and scale using the unknown quantities d X, Inx.' and In, '

whereas Equation (2) represents vertical translation, rotation, and scale using the unknown quantities dy, In,., and In, . "these
equations are written such that hypothesis points ((xh, Yh); i= I, ...,n) are linearly dependent on their associated reference points
((x r' Y r); i= I,...,11), where 11 is the number of registration marks on the form. Hypothesized points refer to the location of regis-
tration marks found by the recognition system on a completed form. Reference points are where the marks should be located if
the input image had absolutely no distortion whatsoever. A solution to these two distortion equations is sought such that they hold
true for all 11 registration marks.



These two equations can be separately represented in matrix form as the linear system shown in Equation (3), where M is an nx3
matrix containing the reference points.

For Equation (I), the vector p contains the horizontal distortion parameters, p=(~X, mx,' m,)T, and the vector q contains the x-
coordinates of the hypothesis points, q=(xh ' ... , xh )T. For Equation (2), the vector p contains the vertical distortion parameters,
p=( ~ y, m, ' m, )T, and the vector q contains the y-coordinates of the hypothesis points, q=(y h ' .•. , Y h )T. M is the same in both

·v '.\ I II

systems of equatIOns.

Equation (3) must be solved to determine the distortion parameters p. By using more than three registration marks, the
linear system of equations becomes over-determined. However, the elements ofp can be estimated using a method of Linear Least
Squares (LSQ), whereby both sides of Equation (3) are multiplied by MT. The resulting term (MTM) multiplied to p is square
(3x3), and its inverse exists so that the LSQ solution of p can be written as

p= [MTMJ-IMTq (5)

Distortions parameters for translation, rotation, and scale are computed by substituting the appropriate elements of M
and q from either Equation (I) or (2) into Equation (5). In the case of reading HSF forms, the model recognition system uses six
registration marks (n=6). This LSQ method computes a linear mapping that minimizes the total error between all the reference
and hypothesis points, so that the impact of error at anyone point is decreased as the number of points used increases, causing
registration quality to improve.

The parameter estimates ~x, m" m" ~y, m" and m, are substituted back into Equations (I) and (2) and the black
pixels in the input form are transformed by' corriputing (Xh', )'h)' This approach is efficient because it only computes a transforma-
tion for those pixels in the image that are black.

Upon registration, the pixels making up the form in the input image are known to correspond to the pixels in the registered
blank form. The form information is erased from the registered input image by applying the blank form as a mask. For each pixel
in the input image, an output pixel value is computed according to Equation (6), where 0 is the output pixel, r is the pixel from
the registered input image, and m is the corresponding pixel from the mask. In this way, 0 is set to black only when r is black and
m is white.

0= r& (-m) (6)

The LSQ method for form registration minimizes error, but does not absolutely remove all error. Detection of a registra-
tion mark even within an undistorted input image may be somewhat inaccurate and there is always a certain amount of discrete
round-off error when implementing pixel-based transformations. To compensate for these small amounts of error, the blank reg-
istered form image can be dilated? a number of times (four times in the case of HSF forms). This broadens all form structures in
the blank form image so that coverage is improved when overlaid with the registered input image.



A collection of data is necessary to conduct feature extraction and recognition for the specific set of characters contained
in each type of field on the form. For example, when processing a numeric field, feature extraction and classification components
only need to be trained to recognize digits. To process a text paragraph, feature extraction and classification components need to
be trained to recognize both upper and lowercase characters. A set of functions (called basis functions) are required to compute
feature vectors from each segmented character image. Also needed are the classifier weights required by the system's neural net-
work to recognize the derived feature vectors.

Through the process of form registration, the input form has been transformed to line up with the spatial field template.
The rectangular coordinates in the template are used to extract subimages of the fields from the registered input image. At times,
the extracted field images contain residue left over from form removal and other types of spurious noise. Spatial histograms are
computed and pixel densities within histogram bins are analyzed to distinguish black pixels comprising noise from black pixels
comprising handprint. The details of these histogram analyses are documented in Reference I. Once the edges are found, the hand-
print is extracted from the isolated field image.

The feature extraction and classification techniques used by the system are designed to classify images containing a sin-
gle character. Therefore, the isolated field image of multiple characters must be segmented into individual plausible character
images (one character per image). To do this, the system uses connected components or blobs to define these plausible character
images. A blob is defined to be a group of pixels all contiguously neighboring or connecting each other. In general, each blob is
extracted and assumed to be a separate character.

The blob segmentor is used independent of the field type being processed. Unfortunately, a blob is not guaranteed to be
a single and complete character. If two characters touch, then a single blob will contain both characters as a single composite
image. A blob may also contain only one stroke of a character that is comprised of several disjoint pieces. For example, writers
often print the top horizontal stroke of a 5 so that it does not connect the bottom portion of the digit. In this case, the two pieces
of the same five will be treated incorrectly as two independent characters. To avoid this type of error, a blob pasting step has been
developed for digit fields. The decision to join two blobs is based on a simple heuristic that tests neighboring blobs. The heuristic
tests the current blob with it neighbor, the next blob. If the difference between the next blob's bottom coordinate minus the current
blob's top coordinate is less than half the current blob's height, then the two blobs are pasted back together as a new plausible
character image.

No blob pasting is conducted on segmented upper and lowercase letters; however, the segmented character images
extracted from the text paragraph on the form must be re-assembled into proper reading order by organizing the blobs into their
appropriate lines. It was found that the handprint in the text paragraph fluctuates significantly within lines as well as across lines,
and this fluctuation is exaggerated by the use of punctuation marks, causing techniques that use global line statistics to fail.

In light of this, a localized point-to-point technique was developed to organize the segmented blobs into text lines. The
location of each blob is identified by computing the geometric center of the smallest rectangle bounding the blob. These centers
are used to form a 2-dimensional grid that can be used to reconstruct the line trajectories of the handprinted text. The technique
developed searches the grid, taking into account local writing fluctuations to sort the blobs into correct reading order.

A point-to-point search is conducted based on a local search space defined by the interior of the function in Equation (7).
This function forms a tear-drop shaped bubble when plotted in polar coordinates that is horizontally biased. At values of b near
0.1, the function's shape is circular, and as b increases the shape continuously forms into a tear-drop. The variable, a, controls the
length of the bubble along its horizontal axis of symmetry. By increasing a, the length of the bubble is increased and the search is



extended in the horizontal direction. The technique uses a linear control function to continuously change the search space from
circular to tear-drop in shape as the extent of the search increases. If a writer's handprint is small, the bubbles used in the search
are adapted to be smaller, and if a writer's handprint is large, the bubbles used in the search are adapted to be larger.

It It
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As each blob center is located, it is either appended to an existing phrase list or a new phrase list is started. Reference 8
describes a set of heuristics used to control the search and the updating of phrase lists. Upon completion, some of the lists represent
whole lines of text, and other lists represent only fragments of the text lines printed. A final merging process is conducted so that,
upon completion, only lists containing complete text lines remain. The heuristics used to conduct the merging of phrase lists are
also described in Reference 8. As a result of the merging, the blobs segmented from the text paragraph are gathered into lines. The
last step sorts the resulting lines vertically on the y-coordinate values of the first blob in each line. When finished, the correct read-
ing order has been reconstructed. Figure 3 shows the results of segmenting a text paragraph from an HSF form and using the bub-
ble technique to sort the blobs into lines. A bubble is traced from each point where a neighboring blob was found, and each bubble
reflects the actual size and the shape of the search space used to locate the neighbor.

To improve the classification performance of character images, a scale-normalization technique has been developed.
Scale-normalization attempts to remove size variations in handprint by scaling all segmented character images to a uniform size.
The normalization method is described in Reference I. In addition to scaling, the technique also applies a simple morphological
operator in an attempt to normalize the stroke width within the character image. If the black pixel content of a character image is
significantly high, then the image is eroded (strokes are thinned). If the black pixel content of a character image is significantly
low, then the image is dilated (strokes are widened).

The slant within a character image is removed by a technique that uses horizontal shears in which rows in the image are
shifted left or right in an attempt to straighten the character in the image. A slope factor f, defining a linear shifting function is
calculated in Equation (8), where tr is the vertical position of the top row, br is the vertical position of the bottom row, tl is the
horizontal position of the leftmost black pixel in the top row, and bl is the horizontal position of the leftmost black pixel in the
bottom row. The slope factor is used to compute a shift coefficient as defined in Equation (9), with r being a vertical row index in
the image and In equal to the vertical middle of the image. This causes the shifting to be centered about the middle of the image.
A positive value of the shift coefficient causes a row to be shifted s pixel positions to the right, and a negative value causes a row
to be shifted s pixel positions to the left. When finished, the leftmost pixels in the top and bottom rows line up in the same column.
By effectively reducing these two sources (size and slant) of variation, a character classifier is left to deal primarily with variations
due to character shape.



The Karhunen Loeve (KL) transform of a segmented character image is obtained by projecting the image onto the
orthonormal eigenvectors of the covariance matrix of a large number of prototype images.9 This transform requires computing
the covariance matrix, and then diagonalizing it to produce eigenvectors.1O The KL transform has many optimal properties and is
widely used in the pattern recognition field.11 The production of this transform is also known as principaljactor or principal com-
ponents analysis. The resulting eigenvectors are used as basis functions for feature extraction by the system. Computing the KL
transform is very expensive, so it is done once off-line, and the resulting basis functions are loaded during field initialization.

The pixels of a scale-normalized character image define a vector u, whose elements are obtained by considering the 2-
dimensional N by N image as a vector of N2 elements. This vector is formed by concatenating the rows of the image together, and
each binary element is converted so that black pixels are represented as I and white pixels are represented as -I. The mean vector
is computed from all the training images and is subtracted from all the training images forming a set of sample vectors. Each sam-
ple vector comprises a column in the sample matrix, U. The covariance matrix R is symmetric and is formed as the outer product
of the P sample vectors as in Equation (10). The covariance matrix is diagonalized using standard linear algebra routines such as
those in EISPACK 12, producing the eigenvalues and corresponding eigenvectors in descending order of largest eigenvalue. The
covariance matrix R has N2 eigenvectors as the columns of 'fI defined in the Equation (II ), and the only nonzero elements of A

are the eigenvalues on its diagonal. Equation (12) defines the KL transform v of a vector u to be the projection of the vector minus
the mean vector 11 onto the eigenvector basis 'fl.

R = ..!-UUT

P

R'fI = 'fIA

( 10)

(II)

(12)

Typically, only a subset of the eigenvectors corresponding to the largest eigenvalues are used in the transformation. The
initial dimensionality of u is N2. By selecting only the top k eigenve.ctors, the dimensionality of the transformed feature vector v
is reduced to k. For a more complete discussion of the effect of feature dimensionality please refer to Reference 13.

The classification ofKL features produced by projecting segmented character images onto the covariance's eigenvectors
have been studied extensively. 14, 15 The feature vectors are used in place of the pixels in the character images to train character
classifiers. A large number of prototypes (tens of thousands) are required to train these classifiers, so they are computed off-line
and loaded during field initialization.

Classification studies reported in References 13 and 15 show that Probabilistic Neural Networks 16 (PNNs) outperform
more popular neural networks and statistical classifiers, such as Multi-Layer Perceptrons 17 (MLPs), in terms of accuracy. There-
fore, the standard reference system uses PNN to conduct character classification. With PNN, each training vector (or prototype)
Xj becomes the center of a kernel function that takes its maximum at the vector and decreases gradually as one moves away from
the vector in feature space. An unknown feature vector y is classified by computing, for each class i containing Mi prototype vec-
tors, the sum of the values of the c1ass-i kernels at y, multiplying these sums by factors involving the estimated a priori probabil-
ities, and finding which of L classes has the highest resulting discriminant value. PNN assigns the class with the highest
discriminant value to the unknown vector y.

Many forms are possible for the kernel functions; we have obtained our best results using radially symmetric Gaussian
kernels defined in Equation (13). In the resulting discriminant functions, cr is a smoothing parameter that may be optimized by
conducting experiments on a testing set, p(i) is the a priori probability of class i, and Mi is the number of training prototypes in
class i.



The PNN algorithm, in its traditional implementation, requires all the distances D/y) to be computed each time an
unknown vector is classified. Similar methods are used in k-nearest neighbor c1assifiers.13 This computation is very expensive, so
up till now, the slow processing times incurred by software implementations of PNN have outweighed the accuracy benefits of
the classification. Several optimizations have been added to the traditional PNN implementation in order to decrease computa-
tional intensity and improve processing times.

The first optimization takes advantage of pruning those prototypes that do not significantly contribute to the computation
of discriminant values. Due to the presence of the exponential in Equation (13), the closer a training prototype is to the unknown
vector, the more significant the prototype's contribution to its discriminant value. In light of this, Equation (13) can be approxi-
mated by excluding prototypes whose exponential term contributes less than IO-A times the largest term. Formally, the/h proto-
type of any given class can be deleted according to Inequality (14), where the subscript c denotes the closest training prototype,
and distances are calculated according to Equation (15).

d2(y,x) >2Ao2InIO+d2(y,xc) (14)

k

d2(y,x) = I, (xi-y)2 (15)
i= I

The associated error can be constrained by setting A to a sufficiently large positive number. This parameter should not
be less than 10g(PIL), where P is the number of prototypes, and L is the number of classes. This ensures that classification results
will not change between the optimized and traditional PNN implementations.

It is important to note that the training prototype with smallest distance to the unknown vector Xc (thus contributing the
maximum exponential term to its discriminant value) can be determined on the fly, and distances to each prototype only need to
be computed once. Also, the discriminant computation can be made more efficient by taking advantage of the fact that the distance
calculations in Equation (15) can be preempted once they become sufficiently large to trigger the deletion criterion. This makes
pruning prototypes very efficient, which in turn greatly reduces the computation of discriminant values and achieves a factor of 4
speed up in the system.

A further optimization has been integrated into the PNN classifier. This step utilizes a search tree to reduce the number
of prototypes used in the PNN calculations. As stated earlier, distances must be recomputed between an unknown feature vector
and a set of training prototype vectors every time an unknown vector is to be classified. This method of classification is expensive;
the time is proportional to N, since N distances must be calculated. There is a large literature on faster methods.ls Among the best
are the k-d tree methods 19,20 of Bentley, which often have average searching time proportional to 10g(N). For our case, k is large
and N is relatively small (N is much smaller than 2k) and the training points are sparse in k-dimensional space. Therefore, the log-
arithmic behavior is not found. Some slight variations on the k-d tree give searching time proportional to sqrt(N), even for large
k. While not as good as log(N), this search time is a substantial improvement over time proportional to N. A detailed description
of this search method is presented in Reference 21.

The k-d tree is traversed producing a relatively small yet viable set of prototypes. This small set of prototypes is then
used to calculate approximated PNN discriminant values according to the deletion criterion defined in Inequality (14). In very rare
cases, no close prototypes are found in the tree search. When this occurs, all the training prototypes are used in the approximated
PNN calculation. The PNN exponential activations are normalized to estimated probabilities by dividing by their sum and used
as classification confidence values. The standard reference system uses the optimized version of PNN to achieve a factor of 20
improvement in processing time over the traditional PNNI6, and the speed improvement is realized without any loss in classifica-
tion accuracy. The optimizations introduced now enable applications to capitalize on the robustness of the PNN algorithm without
compromising processing time.

When processing textual fields, other types of context, such as dictionaries and language models, can be used to improve
the accuracy of the system. The text paragraph at the bottom of an HSF form contains a handprinted rendition of the Preamble to
the U.S. Constitution. This text is comprised of 38 unique words that are compiled into a short dictionary. A postprocessing tech-



nique illustrated by the example shown in Figure 4 uses the dictionary to detect words within a text line that contains combinations
of segmentation and classification errors.

The second column in the figure lists afan-out of hypothesized words beginning with the character S and adding one
successive character from the text line "STCTESLNORDE", forming a new hypothesized word on each row down the column.
The third column lists the best match from the dictionary for each hypothesized word in the second column. The fourth column
lists alignments that are produced using the Levenstein distance22 to match the hypothesized word to the dictionary match. In the
alignments, 0 represents a correct character, I represents a substituted character, 2 represents an inserted character, and 3 repre-
sents a deleted character.

Signal Hypothesis Match Alignment
0.5 0 -0.5 -0.230 S THIS 2220

-0.127 ST STATES 022022
-0.174 STC STATES 022021
-0.031 STCT STATES 001022

0.111 STCTE STATES 001002

< 0.254 STCTES STATES 001000
0.096 STCTESL STATES 0010003
0.040 STCTESLN STATES 00100033

-0.005 STCTESLNO STATES 001000333
\ -0.043 STCTESLNOR STATES 0010003333

\ -0.075 STCTESLNORD STATES 00100033333
\ -0.103 STCTESLNORDE STATES 001000333333

Figure 4. Signals generated from a fan-out of hypothesized words.

These signal values listed in the first column and plotted in the graph are used to detect words within the fan-out. A signal
value, s, is computed from two terms, e and t as defined in Equation (16). The first term, e, is an error term and is computed accord-
ing to Equation (17), where n is the number of errors (I 's, 2's, and 3's) in a hypothesized word's alignment, I is the total number
of characters in the alignment, and g is the number of contiguous groupings of I's and 3's. The variable g is used to favor hypoth-
esized words whose alignments contain contiguous groupings of correct characters (O's) over alignments containing many discon-
tinuities. The second term t is a translation term based on the linear function t=T(p) that biases longer hypothesized words over
shorter ones. In this way, matches to the word "DOMESTIC" are favored over matches to the word "DO". The translation term
is determined by locating the point on the line at the position corresponding to the length of the hypothesized word's dictionary
match, p.

n
e =--

I- g

(16)

(17)

The signals listed in the first column of Figure 4 are searched top to bottom, and only those hypothesized words with s>O
are considered to contain possible words. The hypothesized word with the largest positive signal strength is selected. If this word
is a substring of a hypothesized word further down the list, such as "DO" in "DOMAIN", and the word containing the substring
has a signal strength, s>O, then the longer word is selected in place of the word with maximum signal. In the provided example,
the hypothesized word "STCTES" is selected with a maximum signal of 0.254, the corresponding dictionary match "STATES" is
output by the system, and fan-out processing resumes with L (starting from the position in the text line "LNORDE ..."). A com-
plete description of this technique is provided in Reference 8. Through this approach, segmentation and classification errors are
corrected, and word boundaries are automatically identified.

The text recognized within each field on the form is stored as a hypothesis string. The raw classifications produced by
the character classifier are stored for digit, upper and lowercase fields. A real-valued confidence value is also stored for each char-
acter classification reported. This enables rejection models to be run on the system's output. The results stored for the text para-
graph are the words identified and corrected by the dictionary-based postprocessing. No confidence values are stored for this type



of field. Writers completing the forms were instructed to handprint the font information provided above each field. Therefore, the
fields are self-referenced, minimizing the cost of labeling the data entered on each form and automatically providing reference
strings for measuring recognition performance.

NIST has developed a recognition system testing methodology that has been implemented as the NIST Scoring Pack-
age23-26. The scoring package has been developed to measure the performance of character recognition systems and automated
form processing systems. Recognition performance is measured by reconciling the system's hypothesized field values to reference
field values (the characters the writer was instructed to enter in the field).

In a sample of the first 500 writers from SD I, the standard reference system achieves a character output accuracy of
92.9% on numeric fields with no character rejections. Character output accuracy, defined as CHARS in Reference 26, divides the
number of segmented character images correctly classified by the total number of characters that can possibly be recognized on
the completed forms. The system achieves a character output accuracy of 75.3% on lower case fields and 84.5% on upper case
fields without the use of context-based postprocessing. The standard reference system achieves a character decision accuracy of
95.4% on numeric fields with no rejections. Character decision accuracy, defined as CHAR3 in Reference 26, divides the number
of segmented character images correctly classified by the total number of segmented character images presented to the system's
classifier. Characters deleted by the system are not included in this metric. At a rejection rate of 4.6%, the system achieves a char-
acter decision accuracy of 97.4% on numeric fields.

The system achieves a field accuracy of 79.1 % on numeric fields with no characters rejected. Field accuracy, defined as
CHRFLDJ in Reference 26, divides the total number of fields correctly recognized by the total number of fields processed by the
system. In order for a field to be considered correctly recognized, no remaining characters in the field value after rejection can be
substituted, inserted, or deleted. The recognition system achieves a word accuracy of 60.5% when applying a limited-size dictio-
nary to the character classifications made on the text paragraph. The word accuracy is computed by tokenizing each word, using
the Scoring Package to align the word tokens, and then accumulating the number of substituted, inserted, and deleted words.

In February of 1994, the Second Census Optical Character Recognition Systems Conference was sponsored by the
Bureau of the Census and run by NIST. Ten different organizations submitted system results on the task of recognizing a small
handprinted portion of the 1990 Census Long Form from both microfilm and paper. This part of the form contains three questions
related to occupation. The details of the conference and the conclusions drawn from the results are presented in Reference 2.

The NIST standard reference recognition system is similar to the NIST system used in the conference. But despite their
similarities, the application of these two systems is significantly different. First, the image quality of the HSF forms distributed
with SD I is better than the qual ity of images scanned from the Census Long Forms. Second, the standard reference recognition
system uses a limited-size dictionary when processing the text paragraphs. This is in contrast to the conference where dictionaries
of more than 60,000 multiple-word phrases were used.

Nonetheless, some comparisons can be made at the word recognition level. The word accuracy of the standard reference
system was 61% on the HSF form's text paragraph. The average field in the conference contained two words so that this level of
accuracy, if sustained on the conference test, would have resulted in a 37% field accuracy rate. In the conference, NIST achieved
a 25% field accuracy. Based on these numbers, it is probable that the standard reference recognition system is better than the con-
ference system. The expected word accuracy for the best conference system was about 76%, so on a word basis we would expect
the standard reference recognition system to have about 15% (76%-61 %) more errors than the best conference system. This is
comparable to the median system reported at the conference. The difference between the best conference systems and the NIST
standard reference system is primarily due to the fact that the standard reference system does not use any techniques for overseg-
menting characters and reconstructing words.

Figure 5 lists all the different computers on which the recognition system was successfully compiled and tested. The last
column in the table shows the average user time required by each machine to process a single form. These averages were compiled
from the times produced on 10 different forms.



Man. Model O.S. #Proc. * RAM Time

DEC Alpha OSF/l VI.3 I 32 Mb 28.3

HP Model 712/80 HP-UX 9.03 I 64Mb 31.4

IBM RS6000 AIX 3.2.5 I 128 Mb 27.4

SGI Challenge (IPI9) IRIX 5.2 8 512 Mb 22.9

SGI Indigo 2 (IP22) IRIX4.0.5H I 128Mb 26.4

SGI Onyx (IP19) IRIX 5.1.1.3 4 512Mb 22.4

Sun SPARCserver 4/470 SunOS 4.1.1 I 32Mb 125.9

Sun SPARCstation IPC SunOS 4.1.2 I 8Mb 169.5**

Sun SPARCstation 2 SunOS 4.1.3 I 64Mb 81.8
(Weitek 80MHz CPU)

Sun SPARCstation 10 SunOS 4.1.3 I 32 Mb 63.0

Sun SPARCstation 10 SunOS 5.2 (Solaris) 2 128Mb 39.6

Figure 5. Table of timings from different computers on which the standard reference recognition system was tested.
*All computers, including those with mUltiple processors, were compiled and tested serially.

**The Sun IPC was run in a small memory mode due to its limited memory.

This report documents the NIST standard reference form recognition system in terms of its components and functional-
ity.1 The system has been successfully compiled and tested on a number of different vendors' UNIX workstations. The system's
source code is written in C and is organized into II libraries. In all, there are approximately 19,000 lines of code supporting more
than 550 subroutines.

Source code is provided for a wide variety of utilities that have application to many other types of problems. These util-
ities include form registration, form removal, field isolation, field segmentation, character normalization, feature extraction, char-
acter classification, and dictionary-based postprocessing. The system contains a number of significant contributions to OCR
technology, including an optimized PNN classifier that operates a factor of 20 times faster than traditional software implementa-
tions of the algorithm. The modular design of the standard reference system makes it useful for OCR benchmarking, component
development and testing, training and testing set validation, and multiple system voting schemes.

Distributions of the standard reference recognition system can be obtained free of charge on an ISO-966027 format CD-
ROM by sending a letter of request to the primary author. Any portion of this system may be used without restrictions. The system
software was produced by NIST, an agency of the U.S. government, and by statute is not subject to copyright in the United States.
Recipients of the standard reference recognition system assume all responsibilities associated with its operation, modification, and
maintenance.
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