
CAR-TR-691CS-TR-3162 October 1993Evaluation of Pattern Classi�ers forFingerprint and OCR ApplicationsJ.L. Blue1G.T. Candela1P.J. Grother1R. Chellappa2C.L. Wilson11National Institute of Standards and TechnologyGaithersburg, MD 208992Department of Electrical EngineeringComputer Vision LaboratoryCenter for Automation ResearchUniversity of MarylandCollege Park, MD 20742-3275AbstractIn this paper we evaluate the classi�cation accuracy of four statistical and three neuralnetwork classi�ers for two image based pattern classi�cation problems. These are �ngerprintclassi�cation and optical character recognition (OCR) for isolated handprinted digits. Theevaluation results reported here should be useful for designers of practical systems for thesetwo important commercial applications. For the OCR problem, the Karhunen-Lo�eve (K-L)transform of the images is used to generate the input feature set. Similarly for the �ngerprintproblem, the K-L transform of the ridge directions is used to generate the input featureset. The statistical classi�ers used were Euclidean minimum distance, quadratic minimumdistance, normal, and k-nearest neighbor. The neural network classi�ers used were multi-layer perceptron, radial basis function, and probabilistic. The OCR data consisted of 7,480digit images for training and 23,140 digit images for testing. The �ngerprint data consistedof 2,000 training and 2,000 testing images. In addition to evaluation for accuracy, the multi-layer perceptron and radial basis function networks were evaluated for size and generalizationcapability. For the evaluated datasets the best accuracy obtained for either problem wasprovided by the probabilistic neural network, where the minimum classi�cation error was2.5% for OCR and 7.2% for �ngerprints.

1 IntroductionOver the last thirty years, signi�cant progress has been made in the theory and designof pattern classi�ers for a number of practical problems drawn from character recognition,�ngerprint classi�cation, biomedical applications, and automatic target recognition. Priorto the re-emergence of Neural Network (NN) techniques, the dominant paradigms werestatistical, structural, and syntactic. Since the mid-eighties, NN techniques have raised thepossibility of realizing fast, adaptive systems for pattern classi�cation. In spite of all theseadvances, very little has been done on evaluating the di�erent classi�ers for one or moreapplications. Only recently, a probabilistic model has been proposed [1] for the evaluationof NN classi�ers, with results on synthetic data. Known theoretical results on error boundsand probabilities are often based on ideal distributions of class conditional densities and/oron in�nite samples. Thus a purely theoretical evaluation of a wide variety of classi�ers for�nite samples is very di�cult. However, one can make such an evaluation by empiricallyobserving the performance of a number of classi�ers on a very large dataset. As of now, suchstudies have not been widely published. The reasons may be one or more of the following:a) inadequate computational resources, b) non-availability of large datasets, and c) a generaldislike for doing evaluations or comparative studies. Given that pattern classi�cation is amature area and that several NN approaches have emerged, the time is ripe for an evaluationof the di�erent classi�ers for a speci�c application domain. Such a study should involve alarge dataset and also should be unbiased.Over the last year, the Image Recognition Group at the National Institute of Standardsand Technology (NIST) has undertaken such evaluation tasks for two important problems:OCR and �ngerprint classi�cation. This paper is a report on this evaluation study. Weevaluate four statistical classi�ers and three NN classi�ers. The statistical classi�ers are Eu-clidean MinimumDistance (EMD), Quadratic MinimumDistance (QMD), Normal (NRML),and k-Nearest Neighbor (k-NN). The three neural classi�ers included in the evaluation arethe Multi-Layer Perceptron (MLP), Radial Basis Functions (RBF), and a Probabilistic Neu-ral Network (PNN). For a given application, all the classi�ers were given the same featuresets. Misclassi�cation errors are tabulated as a function of feature dimension and classi�er1

parameters such as the number of hidden units, etc. These tables should be very useful fordesigners of OCR and �ngerprint classi�cation systems. Although we have used moderatelylarge datasets, we refrain from drawing conclusions on the performance of classi�ers sincethe classi�ers have not been optimized in terms of best features, code e�ciency, etc. Wehope that with the availability of enormous computational resources, more such evaluationstudies on large datasets can be undertaken. A limited performance evaluation study usinga statistical classi�er and a backpropagation algorithm for the recognition of handwrittennumerals can be found in [2].The organization of the paper is as follows. After a brief introduction to the OCR and�ngerprint classi�cation problems in Section 1, we discuss, in Section 2, the datasets usedin the experiments. The system components are described in Section 3. The structuresof the various classi�ers used are described in Section 4. Section 5 provides the results ofclassi�cation experiments. In addition, variation of classi�cation accuracy with respect tothe size and generalization capability of NN is studied for RBF and PNN in Section 6.1.1 The OCR problemOCR has been a popular focus of pattern recognition research since at least the 1960's.The ready availability of image samples and the continuing challenge of commercially viablerecognition has kept OCR research ongoing. Classi�cation of loosely constrained handwrittendigits, at least, is largely a solved problem [3].A good review of OCR can be found in [4]. A huge quantity of research from academiaand industry has yielded a multitude of algorithms for normalization [5, 6], feature extrac-tion [7], and classi�cation [8, 9, 10, 11], that are capable of OCR of digits. The popularityof OCR research has increased with the advent of NN paradigms applicable to feature ex-traction and classi�cation. The advantage of many NN classi�ers, once trained, is theire�ciency. In future commercial segmentation and recognition e�orts [12, 13], lack of e�-ciency will preclude using numerous techniques from the literature because of their compu-tational requirements. The trade-o� between classi�cation performance and computationalrequirements has prompted this study of digit classi�er e�cacy.2

1.2 The �ngerprint problemAt least three major approaches have been taken to automatic �ngerprint classi�cation.These are the structural, syntactic, and arti�cial neural network (ANN) approaches. Inthe structural approach [14, 15, 16], one extracts features based on minutiae and representsthe features using a graph data structure. Structural matching is done by exploiting thetopology of the features. In the syntactic approach [17], one typically approximates ridgepatterns [18] as strings of primitives and models the plausible strings from a class such asTented Arch using production rules as in grammar. Depending on the type of grammar usedone can see a signi�cant drop in the number of production rules required. For example, acontext-free grammar would require fewer production rules than a regular grammar. Whena new �ngerprint arrives whose identi�cation is sought, one extracts the string of primitivesand passes it through a parser. A successful parser output indicates the class to which the�ngerprint belongs. Whether the parsing is successful or not, a description of the input stringis always generated. The more general the grammar is, the more complex the parser tends tobe. Applications of the syntactic approach using more complex grammars such as stochasticgrammars [19] (where probabilities are associated with the production rules), tree grammars[20], and programmed grammars [21] have been considered for the �ngerprint classi�cationproblem. The main stumbling block of the syntactic approach is that mechanisms for theinference of grammars from training samples have not been well understood [22, 23]. Recentadvances in learning the structure of a grammar from training samples using neural nets [24]look promising.The Image Recognition Group at NIST has recently implemented a massively parallelNN �ngerprint classi�cation system using a parallel computer of the SIMD variety (single-instruction-stream, multiple-data-stream) [25]. This system uses image-based ridge-valleyfeatures. Using K-L transforms, a signi�cant reduction in feature vector dimensions isachieved. A MLP network trained using a conjugate gradient method is used for classi-�cation. It takes about 2.7 seconds to preprocess and classify a �ngerprint using a massivelyparallel computer. The system is capable of 93% classi�cation accuracy with 10% rejects.More recently [26], a �ngerprint matching and classi�cation system that uses a hierarchical3

pyramid structure has been reported. The matching module takes two images as inputsand outputs a number between 0 and 1. This number, which reects the degree of beliefthat the two images are from the same �nger, is estimated using a probabilistic Bayesianapproach. The network parameters (about 104 in number) are trained using a steepest de-scent procedure that minimizes a cross entropy measure. Impressive matching results arereported. It is interesting to note that the receptive �elds of the learning �lter at the bottomof the pyramid appear to be edge or ridge orientation detectors, but sometimes correspondto minutiae detectors. This �nding supports the choice of ridge direction components usedas features in the NIST system.1.3 GeneralizationThe focus of most NN applications has been on error minimization. A standard method oferror minimization for real world problems is backpropagation [27] although more powerfulmethods of optimization have also been used [28, 29]. In addition to the problem of errorreduction, e�ective generalization also requires that the information content of the networkbe reduced to some minimum value [30, 31, 32]. The resulting reduced network has theadvantage of increased speed achieved by using fewer connections and is more e�ective interms of the use of information capacity to achieve a speci�ed pattern recognition accuracy.The optimization strategy used in this research focuses on information content and thee�ciency of information transferred to the network from the training set. This results in asmaller network with a very high information content that allows the use of a reasonably smalltraining set. We have used the Boltzmann method as a secondary method of optimizationto prune the networks used here [30, 31]. The method can be used in conjunction witha primary method of optimization such as a scaled conjugate gradient scheme [29]. Theresulting optimized MLP network has been used for both �ngerprint pattern classi�cationand OCR.In the case of RBF networks, the explicit network pruning used on MLP's is unnecessary.RBF networks are self-pruning to some degree. Unimportant connections are e�ectivelypruned away by the training process learning a large width; each large width e�ectivelydeletes one connection from an input to one RBF and reduces the number of active param-4

eters by two. More pruning is done with small training sets than with large ones, and morewith large networks than with small ones.2 Databases2.1 OCRThe classi�ers described in this report were trained and tested using feature vectors derivedfrom the digit images of NIST Special Database 3 [33]. This database consists of binary 128by 128 pixel raster images segmented from the sample forms of 2100 writers published on CDas [34]. Other results on segmentation and recognition of this database have been reported[35]. The relative di�culties of the NIST OCR databases have been discussed in [36]. Forthis study samples were drawn randomly from the �rst 250 writers to yield a training set of7480 digits with a priori class probabilities all equal to 0:1. Even for digits, depending onthe application, certain classes may be more prevalent; in banking tasks, for example, \0"is more common. The test set is similarly constructed from the second 250 writers yielding23140 samples. The images are size normalized by pixel deletion, stroke width bounded bybinary erosion and dilation, and consistent orientation is e�ected by shearing rows by anamount determined by the leftmost and rightmost pixels in the �rst and last rows de�ninga vertical line.2.2 FingerprintsThe classi�ers described in this report were trained and tested using feature vectors derivedfrom the �ngerprint images of NIST Special Database 4 [37]. This database consists of 8bit per pixel gray level raster images of two inked impressions (\rollings") of each of 2000di�erent �ngers. The feature vectors used to train the classi�ers were made from the 2000�rst-rollings, and those used to test the classi�ers were made from the 2000 second-rollings.Every �ngerprint in the database has an associated class label, assigned by experts. Thetwo rollings of any �nger have the same class, since the class of a �ngerprint is not a�ectedby variations that occur between di�erent rollings of the �nger.5

Fingerprints as they naturally occur are not distributed equally into the �ve classes. Wehave taken a summary of the NCIC classes1 of �ngerprints from more than 22.2 millioncards and reduced the numbers contained therein to estimates of the true frequencies or apriori probabilities of the �ve �ngerprint classes. The estimated probabilities are .037, .029,.338, .317, and .279, for the classes Arch, Tented Arch, Left Loop, Right Loop, and Whorl,respectively.The 2000 �ngers represented in Special Database 4 are equally divided among the �veclasses. The database was produced this way, rather than by using a natural distribution,so as to increase the representation of the relatively rare, and also di�cult, Arch and TentedArch classes. This provides trainable classi�ers with more examples with which to learnthese di�cult classes. The training and testing sets have equally many prints of each class.3 System ComponentsEach of our experimental classi�ers consists of a set of components as shown in Figure 1.The ovals represent input and output data, the rectangles represent processing components,and the arrows represent the ow of data. The components do not necessarily correspondto separate devices or programs; they merely represent a separation of the processing intoconceptual units, so that the overall structure may be discerned. The inputs for OCR and�ngerprints are extracted from the appropriate NIST databases. OCR images are a 32pixel square binary raster containing a hand printed digit image extracted from a document.The feature extraction performs a K-L transform on the normalized character image. The�ngerprint image is a raster of 512 by 512 8-bit grayscale pixels, produced by scanning the�ngerprint card with a CCD camera. The �ngerprint classi�ers described in this reporttake as their input a small vector of numerical features derived from a �ngerprint rasterimage. The �ngerprint is reduced to 112 features (not all of which need be used) as follows.First, it is subjected to an FFT-based �lter that increases the relative power of dominantfrequencies, increasing the ratio of signal (�ngerprint ridges) to noise. The local orientations1The NCIC classi�cation system separates �ngerprints into numerous classes, which are basically thesame as the classes used in the Henry system. The NCIC method for producing a card's class from theclasses of its individual �ngerprints is di�erent than the summarizing method used in the Henry system.6

of the ridges at 840 equally-spaced locations (a 28 by 30 grid) are then measured, usingan orientation �nder described in [25]. The orientation �nder is based on a \ridge-valley"�ngerprint binarizer described in [38]. It computes an orientation at the location of eachpixel, then averages these basic orientations in nonoverlapping 16 � 16-pixel squares toproduce the grid of 840 orientations. These are used as input to a translational registrationmodule that attempts to standardize core location. The K-L transform of these modi�edridge directions is taken as a compact classi�able representation of the �ngerprint.'& $ %inputimage - FeatureExtractor - DiscriminantFunctions - - MaximumFinderRejector - '& $%hypothesizedclass- '& $%accept orrejectFigure 1: Components of Classi�cation SystemFor both OCR and �ngerprint classi�cation the next component of the system is thebank of discriminant functions. There is one discriminant function for each class. Each oneproduces a single oating-point number, which tends to have a large value if the input imageis of the corresponding class. The n-tuple of values produced by the bank of discriminantfunctions is sent to two �nal components, the maximum �nder and the rejector. The maxi-mum �nder �nds which one of the discriminant values is highest, and assigns its class as thehypothesized class of the image, that is, the classi�cation system's best guess as to the class.In the experiments reported here, the reject option was not exercised. Experimentsincluding rejectors of the following form are reported in [39]. The outputs of the discriminantfunctions are fed to a \con�dence function", which produces a number that is treated as if itwere a measure of reliability of the classi�cation decision made by the maximum �nder. Inother words, images that produce high values of the con�dence function are considered to bemore likely to have been assigned correct classes than those that produce lower con�dencevalues. The following con�dence function often produces good results: de�ne its value to be7

the highest discriminant function value minus the second highest value. This is intuitivelyreasonable, since it will assign low con�dence to examples that are near a hypothetical classboundary. Rejection of an image means that the classi�cation system refuses to assign a class,because it cannot be su�ciently certain as to the correct class. As di�erent classi�ers canbe optimized using di�erent rejectors, we decided not to include rejectors in our evaluationtests. This could be a topic for future study.4 Classi�ersEach classi�er consists of a bank of discriminant functions. The classi�ers are separated intothree categories. It is, however, notable that the category names are somewhat arbitrary andthat some classi�ers have attributes of more than one category. In the statistical patternrecognition literature [40] parametric classi�ers use variables such as the estimated meansand covariances to express the class density functions. The decision surfaces implicit inthe EMD classi�er are linear. Those of the QMD and NRML classi�ers are quadratic. Wecategorize the EMD, QMD, and NRML methods as parametric classi�ers. Non-parametricclassi�ers do not adopt a structured expression of the density functions; two nearest neighborclassi�ers, the popular k-NN and an improvement termed WSNN, were considered. Finally,the neural net category contains MLP, RBF classi�ers of two types (RBF1 and RBF2), andPNN.For each type of discriminant function, one or more diagrams are provided showing theresulting hypothetical class regions in two-dimensional feature space. These diagrams showthe hypothesized classi�cations of regularly spaced feature vectors sampled over the squareregion centered on (0,0) and with extent large enough to contain the training vectors. The�gures refer only to the OCR problem but it is notable that the corresponding �gures for�ngerprint are similar in form. Restriction of this graphical representation to two dimensionsis undeniably, but necessarily, not ideal. 8

4.1 NotationThe notation below will be used in the descriptions of the discriminant functions.L = number of classes. For digits, L = 10, for �ngerprints, L = 5N = number of clusters, N � Lp(i) = a priori probability of cluster ip̂(i) = an estimate of p(i)n = dimensionality of featuresRn = the set of all n-tuples of real numbers = \feature space"x = extracted \feature vector" of a image (x 2 Rn)x(i)j = feature vector from jth image of cluster i (1 � i � N; 1 � j �Mi) (x(i)j 2 Rn)Mi = number of training images of cluster i (1 � i � N)�i = mean feature vector for cluster i (1 � i � N) (�i 2 Rn)mi = an estimate of �i�i = covariance matrix for cluster i (1 � i � N) (�i 2 Rn�n)Si = an estimate of �id2(x;y) = (x� y)T(x� y) = squared Euclidean distance between x and y (x;y 2 Rn)r2(x;y; z) = nXi=1((xi � yi)=zi)2= distance between x and y normalized by z (x;y; z 2 Rn)Di(x) = ith discriminant function (1 � i � N;x 2 Rn)4.2 Parametric Classi�ers4.2.1 Euclidean Minimum Distance Classi�erThis is perhaps one of the simplest classi�ers that one can design. The discriminant functionsare of the form Di(x) = �d2(x;mi):9

An unknown is assigned the class associated with the cluster of the highest-valued discrimi-nant function. This is equivalent to using the class label of the estimated cluster mean thatis closest, in the Euclidean distance sense, to the unknown. Each cluster region is boundedby a convex polygon. In the one cluster per class case these regions are the hypotheticalclass decision regions. This classi�er su�ers from the same linear separability limitations asthe Perceptron critiqued by Minsky and Papert [41]. In the many clusters per class casethe union of the cluster regions de�nes the class decision region whose boundary is thenpiecewise linear. Figure 2 shows the class for regions when only two features and one clusterper class are used. The estimated cluster mean vectors mi are marked with plus signs.EMD QMD NRMLFigure 2: Parametric classi�ers. For EMD note the perpendicular bisectors. For QMD notethe quadratic forms of the decision boundaries. The + signs indicate the locations of theestimated class means.4.2.2 Quadratic Minimum Distance Classi�erThe training examples of each cluster i are used to produce sample covariance matrices, Si,and estimated mean vectors mi. The following discriminants are used:Di(x) = �(x�mi)TS�1i (x�mi)= �zTzz = �� 12i 	Ti (x�mi)That is, the cluster mean,mi, is �rst subtracted from the unknown, and the result projectedonto the eigenvectors 	i of the cluster i covariance matrix, and �nally whitened by dividingeach component by the root of the corresponding eigenvalues �i. This can be thought ofas a form intermediate between EMD and the NRML classi�er, described below. Figure 2shows the resulting class regions. The form of these �gures is similar for the �ngerprint10

classi�cation problem. As in the EMD classi�er, one can use several prototypes to representeach class. When the number of clusters per class increases, the inverse covariance matricesfor a given cluster are formed from a decreasing number of training examples. Computationaldi�culties occur when the number of cluster examples forming the covariance is small. Therank of Si may then be less than n, preventing its conventional inverse from being evaluated.4.2.3 Normal Classi�erThis classi�er is based on parametric density estimation that presupposes a multivariatenormal distribution for each class of images. First, it will be useful to mention a few factsthat pertain to any parametric classi�er, using the following terminology:�(ijj) = loss incurred by classifying as i an image that is of class j (1 � i; j � N)p(x) = mixture density: for S � Rn, RS p(x)dx = P (x 2 S)p(xji) = conditional density: for S � Rn, RS p(xji)dx = P (x 2 Sjx is from a class-i image)p(ijx) = a posteriori probability: for a particular x, p(ijx) = P (x is from a class-i image)Given a particular loss function �(ijj), the optimal or \Bayesian" classi�er is the one thatminimizes the expected loss. De�ne the \symmetric" loss function in terms of the Kr�oneckerdelta: �(ijj) = 1 � �ij = 8><>: 0 i = j1 otherwise :This means that correct classi�cations produce no losses and that incorrect classi�cationsproduce equal loss values of 1. In this case, the Bayesian classi�er is the one that classi-�es each unknown x to the class i for which the a posteriori probability p(ijx) is highest.According to Bayes' rule [42], p(ijx) = p(i)p(xji)p(x) :Since the value of the mixture density p(x) has no e�ect on which possible i value maximizesp(ijx), p(x) can always be omitted. Further, for a pattern recognition problem in which thea priori probabilities are the same, p(i) can be ignored. The result is to classify x to thecluster i for which p(i)p(xji) is highest. 11

For the normal classi�er each cluster, i, is assumed to have conditional density functionp(xji) = (2�)�n2 j�ij� 12 exp��12(x� �i)T��1i (x� �i)� ;where �i and �i are the mean vector and covariance matrix for cluster i. For classi�cationthe (2�)�n2 term is constant and may be discarded. Finally by replacing the mean vectors�i and covariance matrices �i with their sample estimates,mi and Si, squaring, and takinglogarithms we are able to de�ne the discriminant function for the Normal classi�er asDi(x) = 2 log p̂(i)� log jSij � (x�mi)TS�1i (x�mi)since the squaring and taking of logarithms has no e�ect on which i maximizes the discrim-inant. The hypothetical class regions are given in Figure 2.4.3 Nearest Neighbor Classi�ersNearest-neighbor classi�ers have been the subject of decades of research (see, for example,Dasarathy's collection of papers [43]). The following are simple and ubiquitous yet e�ectiveexamples of such methods.4.3.1 k-Nearest NeighborIf k = 1, this is an elaboration of EMD; instead of using just mi, as a single prototypefor the class, the 1-NN classi�er uses all of the class-i training examples as prototypes forthe class. The 1-NN classi�cation of an unknown vector is simply the class of the nearestprototype. This rule is intuitively appealing, and Cover and Hart [8] have shown it to havegood asymptotic behavior: under mild assumptions, its large-sample probability of error isbounded above by twice the Bayes (i.e. minimum possible) probability of error. The 1-NNdiscriminant functions have the form:Di(x) = � min1�j�Mi d2 �x;x(i)j � :Figure 3 shows the class regions. Each region is the union of many convex polygons eachcontaining a single prototype of the class; hence, a class region is a very complicated polygon,12

not necessarily convex or even connected. In the more general case voting between the knearest neighbors is used. The majority class is used as the hypothesis. The method is usefulnear class boundaries when the single nearest neighbor maybe of the wrong class but themajority are not. If Sx is the set of the k closest prototypes voting on the class of x then itis the union of the sets of voting prototypes, S(i)x , containing only prototypes of class i. Thek-NN discriminant function is then simply the set size:Di(x) = jS(i)x j1-NNFigure 3: Single nearest neighbor classi�er. Note the very intricate non-contiguous decisionboundaries local to each training prototype.4.3.2 Weighted Several Nearest NeighborsA more elaborate form of the nearest neighbor method is to allow k to be a random variablesuch that the number of voting neighbors is di�erent for each unknown. This classi�er�nds the closest prototype to the unknown, then de�nes the \neighboring" prototypes to bethose whose squared Euclidean distance from the unknown is less than � times the squared-distance of the nearest prototype, where � is a constant. Further the number of \votes"received by class i is divided by the square root of the sum of squared-distances of class-inear neighbors from the unknown, so as to diminish the importance of neighbors that arerelatively far away compared to other neighbors. Formally,� = neighborhood-size factorS(i)x = the set of indices of class-i training vectors that arein the �-neighborhood of unknown vector x= �j ����1 � j �Mi; d2 �x;x(i)j � < � min1�k�N;1�p�Mk d2 �x;x(k)p ��13

V (i)x = jS(i)x j = number of \votes" for class iThe discriminant functions are thenDi(x) = 8>><>>: V (i)x �Pj2S(i)x d2 �x;x(i)j ��� 12 if V (i)x > 00 otherwise :Figure 4 shows the WSNN class regions resulting from � values of 50, 500 and 1000.
� = 50 � = 500 � = 1000Figure 4: Weighted several nearest neighbors. In the limit of small � this classi�er defaultsto 1-NN. Note the �ne grained structure throughout that is typical of nearest neighbormethods.4.4 Neural Net Classi�ers4.4.1 Multi-Layer PerceptronThis classi�er is also known as a feedforward neural net. We have used an MLP with threelayers (counting the inputs as a layer). It will be convenient to de�ne the following notation:N (i) = number of nodes in ith layer (i = 0; 1; 2), N (0) = n, N (2) = Lf(x) = 1=(1 + e�x) = sigmoid functionb(k)i = bias of ith node of kth layer (k = 1; 2)w(k)ij = weight connecting ith node of kth layer to jth node of(k � 1)th layer (k = 1; 2; 1 � i � N (k); 1 � j � N (k�1))The discriminant functions are then of the formDi(x) = f 0@b(2)i + N (1)Xj=1 w(2)ij f 0@b(1)j + N (0)Xk=1 w(1)jk xk1A1A :14

For the training of the weights of this network, a reasonable procedure is the use of anoptimization algorithm to minimize the mean-squared-error over the training set betweenthe discriminant values actually produced and \target discriminant values" consisting of theappropriate strings of 1's and 0's as de�ned by the actual classes of the training examples.For example, if a training feature vector is of class 2, then its target vector of discriminantvalues is set to (0, 1, 0, 0, 0). It is more feasible to minimize this kind of an \error function"than to attempt to directly minimize the number of incorrectly classi�ed training examples,since the latter number will take on only relatively few values and is a discontinuous \stepfunction". The error function is modi�ed by the addition of a scalar \regularization" term[44]. This equals a tunable constant, �, multiplied by the mean square weight, w2ij. Thisterm prevents large weights which are associated with overtraining, i.e. the over�tting of theweights to the training data. This has been shown to increase the generalization ability ofthe network [29].Networks of the MLP type are the most commonly used \neural nets" in use today, andthey are usually trained using a \backpropagation" algorithm [45]. A \scaled conjugategradient" training method [46, 47, 28, 29] was used in our research instead of the ubiqui-tous backpropagation method, training speed gains of an order of magnitude being typical.Figure 5 shows MLP class regions resulting from varying the �rst two inputs to a trained 8input, 48 hidden unit network.
Figure 5: MLP classi�cation and con�dence maps. From left: class boundaries, highestdiscriminant value, di�erence in highest two discriminant values.15

4.4.2 Radial Basis FunctionsNeural nets of the RBF type get their name from the fact that they are built from radiallysymmetric Gaussian functions of the inputs. Actually, the RBF nets discussed here useGaussian functions that are more general than radially symmetric functions: their constantpotential surfaces are ellipsoids whose axes are parallel to the coordinate axes, whereasradially symmetric Gaussian functions have spherical constant potential surfaces. However,the name RBF has become customary for any neural net that uses Gaussian functions in its�rst layer.We have experimented with RBF networks of two types, which will be referred to asRBF1 and RBF2. The following notation will be convenient:N (i) = number of nodes in ith layer (i = 0; 1; 2)c(j) = center vector of jth hidden node (1 � j � N (1)) (c(j) 2 Rn) = (c(j)1 ; : : : ; c(j)n)T�(j) = width vector of jth hidden node (1 � j � N (1)) (�(j)2 Rn) = (�(j)1 ; : : : ; �(j)n)Tb(k)j = bias to the jth node of the kth layerf(x) = 1=(1 + e�x) = sigmoid functionwij = weight connecting ith output node to jth hidden node (1 � i � N (2); 1 � j � N (1))Each hidden node computes a radial basis function. For RBF1, these functions areunbiased exponentials �j(x) = exp ��r2(x; c(j);�(j))� ;and for RBF2, they are of the biased sigmoidal form�j(x) = f ��b(1)j � r2(x; c(j);�(j))� :For either type of RBF, the ith discriminant function is the following function of the radialbasis functions: Di(x) = f 0@b(2)i + N (1)Xj=1 wij�j(x)1A :16

The centers c(j), widths �(j), hidden-node bias weights b(1)j (RBF2 only), output-nodebias weights b(2)i , and output-node weights wij may be collectively thought of as the trainable\weights" of the RBF network. They are trained initially using the cluster means (from a \k-means" algorithm applied to the prototype set) as the center vectors c(j). The width vectors�(j) are set to a single tunable positive value. More sophisticated methods of determiningRBF parameters can be found in [48, 49]. The output layer weights are set such that eachoutput node is connected with a positive weight to hidden nodes of its class (that is, hiddennodes whose initial center vectors are means of clusters from its class), and connected with anegative weight to hidden nodes of other classes. Training proceeds by optimization identicalto that described for the MLP. Figure 6 shows RBF1 class regions resulting from the use of1, 2, 4, and 6 hidden nodes per class, and Figure 7 shows RBF2 class regions for the samenumbers of hidden nodes per class.
1 2 34 5 6Figure 6: RBF1 classi�cation regions for increasing numbers of centers per class.4.4.3 Probabilistic Neural NetThis classi�er was proposed in a recent paper by Specht [50]. Each training example becomesthe center of a kernel function which takes its maximumat the example and recedes graduallyas one moves away from the example in feature space. An unknown x is classi�ed by17

1 2 34 5 6Figure 7: RBF2 classi�cation regions for increasing numbers of centers per class.computing, for each class i, the sum of the values of the class-i kernels at x, multiplyingthese numbers by compensatory factors involving the estimated a priori probabilities, andpicking the class whose resulting discriminant value is highest. Many forms are possible forthe kernel functions; we obtained our best results using radially symmetric Gaussian kernels.The resulting discriminant functions are of the formDi(x) = p̂(i)Mi MiXj=1 exp�� 12�2d2 �x;x(i)j �� ;where � is a scalar \smoothing parameter" that can be optimized by trial and error. Figure 8shows the PNN class regions resulting from the use of � values of 0.25, 1.00, and 5.00. Noticethat a small � value produces very complex class regions similar to those of 1-NN, and thatas � is increased, the regions become simpler and are similar to those produced by parametricstatistical and RBF classi�ers.5 Results of Classi�cation5.1 OCRTable 1 shows for each classi�er the estimated probabilities of error, expressed as percentages,for increasing dimensionality of the K-L feature set. Note that the optimal number of features18

� = 0:25
� = 1:00
� = 5:00Figure 8: PNN classi�cation and con�dence maps in two dimensions for increasing � values.From left: class boundaries, highest discriminant value, di�erence in highest two discriminantvalues.

19

yielding lowest classi�cation error (shown in bold) is not the same for all classi�ers, theparametric classi�ers, QMD and NRML, being noticeably more parsimonious in the numberof features required. It is also apparent that most of the classi�ers essentially attain a plateauas the number of features reaches approximately 32, thereafter gaining only a few tenths ofa percent. The best classi�ers are the computationally expensive nearest neighbor classi�erand the related PNN. They achieve one third fewer errors than the neural networks andparametric classi�ers. The optimum value � = 1:1 for WSNN corresponds to a 1-NN schemefor most test patterns. Accordingly, k-NN is seen to have a higher error rate for increasingk. Two caveats may be stated about the table. First, the MLP and RBF results dependon the initial guesses for the parameters. Often a number of di�erent random guesses aretried to assess the e�ect of the initial guess; for this table, because of the magnitude of thecalculation necessary, only one initial guess was used. Second, the RBF calculations weredone with a sigmoidal output layer; the later work summarized in Section 6.2 suggests thatbetter results can be obtained with a linear output layer.5.2 FingerprintsThe test set used in these experiments|the second rollings of Special Database 4|consistsof an equal number (400) of each of the �ve classes of �ngerprints. Because naturally occur-ring prints have a very unequal distribution into classes, it would be a mistake to use thepercentage of this test set incorrectly classi�ed as an estimate of the probability that a clas-si�er will incorrectly classify a naturally occurring print. Instead, the following calculationsare used to produce the test \score" (estimated probability of incorrect classi�cation). Foreach class i, the number of the 400 class-i test prints (i.e. test prints whose actual class isi) that were incorrectly classi�ed was counted; this count is denoted by wi. Clearly, wi=400can be used as an estimate of the conditional probability of incorrect classi�cation of a printgiven that the actual class of the print is i. Therefore,NXi=1 p̂(i)wi=40020

Table 1: Dependence of classi�cation error on KL transform dimensionality for digit recognition. Given with the classi�er acronym are: For k-NN,the value of k; for WSNN, the value of �; for PNN, the value of �; for MLP networks, the number of hidden units; for RBF networks, the number ofcenters per class; and for EMD and QMD, the number of clusters per class. Boldface indicates optimum dimensionality for each classi�er.System 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64k-NN:1 27.0 7.9 4.6 3.5 3.1 2.9 2.7 2.7 2.7 2.6 2.6 2.6 2.7 2.7 2.7 2.7k-NN:3 23.7 7.1 4.2 3.4 3.1 2.8 2.7 2.7 2.7 2.6 2.7 2.7 2.7 2.7 2.8 2.7k-NN:5 22.1 6.8 4.1 3.3 3.1 2.9 2.8 2.8 2.7 2.8 2.8 2.8 2.8 2.8 2.8 2.8WSNN:1.1 26.8 7.8 4.5 3.4 3.0 2.8 2.7 2.6 2.6 2.5 2.6 2.6 2.6 2.6 2.5 2.6PNN:3.0 21.9 7.2 4.3 3.3 2.9 2.7 2.7 2.6 2.6 2.5 2.6 2.6 2.6 2.6 2.5 2.5MLP:32 23.6 9.7 6.9 6.4 6.2 5.8 5.6 5.7 5.5 5.6 5.5 5.3 5.4 5.4 5.3 5.4MLP:48 22.8 9.0 6.5 5.9 5.4 5.2 5.2 5.0 4.7 4.9 5.0 4.7 4.6 4.9 5.0 4.9MLP:64 22.2 8.7 6.2 5.3 4.9 4.6 4.5 4.6 4.5 4.5 4.5 4.5 4.3 4.5 4.4 4.5RBF1:1 29.8 14.3 13.2 13.0 13.4 13.2 13.1 13.9 13.0 12.6 13.4 12.6 13.2 13.3 13.2 13.2RBF1:2 24.4 11.5 9.8 9.3 8.9 8.5 8.5 8.4 8.2 8.4 8.2 8.1 8.3 8.1 7.9 7.9RBF1:3 22.7 10.0 8.0 61.4 7.1 6.7 6.6 6.5 6.5 6.5 6.4 6.4 6.2 6.4 6.2 6.3RBF1:4 22.2 9.3 6.9 6.1 5.8 5.7 5.5 5.5 5.5 5.4 5.5 5.4 5.4 5.3 5.3 5.4RBF1:5 21.4 8.9 6.4 5.5 5.0 5.0 4.7 4.9 5.0 4.9 4.8 4.7 4.9 4.9 4.7 4.6RBF1:6 21.0 8.5 5.9 5.1 4.9 4.6 4.4 4.3 4.5 4.3 4.3 4.2 4.2 4.4 4.3 4.4RBF2:1 28.5 71.3 11.7 9.9 9.7 8.7 9.5 9.1 9.1 9.2 8.6 8.8 8.8 8.9 8.9 8.9RBF2:2 24.3 11.3 8.9 7.9 7.3 6.7 6.4 6.1 6.1 6.3 6.3 6.2 6.3 6.2 6.2 6.5RBF2:3 23.0 9.9 7.2 7.0 6.1 5.6 5.5 5.0 6.0 5.4 4.9 5.7 4.9 5.0 5.6 5.0RBF2:4 22.4 9.6 6.4 5.3 5.4 4.4 5.6 5.0 4.3 4.5 4.6 4.6 4.5 4.4 4.8 4.7RBF2:5 21.7 8.2 6.0 5.1 5.3 4.5 4.6 4.4 4.6 4.4 4.4 4.4 4.2 4.1 4.1 4.0RBF2:6 21.4 8.6 5.6 4.7 4.7 4.3 4.5 4.0 4.0 4.2 3.9 4.2 4.0 3.9 4.0 4.0EMD:1 37.3 19.1 17.3 16.1 15.6 15.2 15.1 15.0 15.0 14.9 14.9 14.8 14.8 14.8 14.8 14.8EMD:2 29.6 14.4 13.1 11.7 11.2 11.0 10.8 10.7 10.7 10.7 10.7 10.7 10.6 10.6 10.6 10.6EMD:3 26.8 12.7 10.8 9.3 9.0 8.8 8.8 8.7 8.6 8.6 8.7 8.7 8.7 8.7 8.7 8.7EMD:4 25.4 11.9 9.5 8.1 7.6 7.3 7.3 7.4 7.3 7.1 7.2 7.1 7.1 7.1 7.1 7.1EMD:5 25.5 11.1 8.9 7.5 6.7 6.7 6.6 6.6 6.5 6.3 6.7 6.6 6.2 6.2 6.2 6.3EMD:6 26.4 10.7 8.2 7.3 6.1 6.1 5.9 6.1 6.0 5.7 6.0 5.8 5.9 6.0 5.9 6.1EMD:7 26.3 10.3 7.6 6.1 5.9 5.6 5.3 5.5 5.3 5.2 5.4 5.1 5.2 5.4 5.4 5.6QMD:1 26.2 10.0 6.3 5.1 5.0 4.8 4.9 5.1 5.1 5.2 5.3 5.6 5.6 5.8 5.8 5.9QMD:2 23.6 9.2 5.8 4.9 4.7 4.7 4.9 4.9 5.0 5.2 5.3 5.5 5.6 5.7 5.8 5.9QMD:3 25.8 9.1 5.4 4.5 4.1 4.0 4.5 4.7 4.9 5.1 5.3 5.4 5.6 5.9 6.0 6.3QMD:4 25.5 8.9 5.7 5.0 5.0 4.5 4.9 5.0 5.3 5.5 6.1 6.3 6.5 6.9 7.2 7.6NRML 26.1 9.9 6.3 5.1 5.0 4.8 4.9 5.0 5.0 5.2 5.3 5.5 5.6 5.5 5.5 5.6

21

can be used as an estimate of the probability of incorrect classi�cation. The accuracy \scores"mentioned below are these estimated probabilities, expressed as percentages.Table 2 shows the lowest error rate that was obtained for each type of classi�er. Alsolisted, for each classi�er type, are the optimal settings that were found for other parameters:number of K-L features used; type of training set|the full \balanced" set of 400 prints ofeach class, or a \natural" set produced by discarding some of the training prints so as tocause the frequencies to be approximately equal to the estimated a priori probabilities; and,for some of the classi�er types, another adjustable parameter or a number of hidden nodes.Table 3 shows, for each classi�er type, the lowest error rates that were obtained for each ofseveral numbers of features; it is clear that the optimal number of features is not the samefor all of these classi�er types, as was the case for characters.Table 2: Lowest error percentages for the various classi�er types, and the parameters thatproduced them for the �ngerprint problem.Classi�er Error % No. of features Training set Other parameter valuesEMD 26.2 80 balanced {QMD 12.8 16 balanced {NRML 11.3 28 balanced {1-NN 9.0 96 natural {WSNN 8.9 96 natural � = 1:09MLP 8.2 64 natural 64 hidden nodesRBF1 8.3 112 natural 70 hidden nodesRBF2 8.1 64 natural 110 hidden nodesPNN 7.2 112 balanced � = 2:266 Generalization Experiments6.1 Information Based MethodsIn the MLP generalization experiments, K-L features were used to train MLP's using di�erentmethods of statistical size reduction. Only the training and recognition parts of the systemwere involved in the test. For the OCR problem two sets of 10,000 K-L features derived fromcharacters taken from NIST Special Database 3 [33] were used. For the �ngerprint problem22

Table 3: Fingerprint classi�cation error percentages as a function of feature dimensionality.NRML produced a smaller error percentage for a number of features not in the table: 11.3,for 28 features. Number of featuresClassi�er 16 32 48 64 80 96 112EMD 26.9 26.6 26.4 26.3 26.2 26.3 26.3QMD 12.8 15.6 18.0 20.1 20.7 21.6 23.0NRML 13.5 12.8 16.8 18.1 19.7 20.7 23.01-NN 10.7 9.6 9.7 9.3 9.1 9.0 9.3WSNN 10.3 9.3 9.1 9.1 8.9 8.9 9.0MLP 9.1 8.8 8.6 8.2 8.2 8.4 8.5RBF1 9.8 8.6 9.1 8.8 8.8 8.5 8.3RBF2 10.7 9.5 10.7 8.1 8.8 8.4 8.2PNN 9.0 7.9 7.5 7.6 7.4 7.3 7.2two sets of 2,000 K-L features derived from �ngerprints from NIST Special Database 4 [37]were used.The scaled conjugate gradient (SCG) method of [29] is used to obtain a starting networkfor the Boltzmann weight pruning algorithm. For the OCR problem the network has aninput layer with 48 nodes, a hidden layer with 64 nodes, and an output layer with 10 nodes.For the �ngerprint problem, the network has an input layer with 128 input nodes, a hiddenlayer with 128 nodes, and an output layer with �ve nodes. In both cases the initial networkis a fully connected network. The pruning using the Boltzmann method was carried outby selecting a normalized temperature, T , and removing weights based on a probability ofremoval Pi = exp(�w2i =T):The values of Pi are compared to a set of uniformly distributed random numbers, Ri, on theinterval [0; 1]. If the probability Pi is greater than Ri then the weight is set to zero. Theprocess is carried out for each iteration of the SCG optimization process and is dynamic.If a weight is removed it may subsequently be restored by the SCG algorithm; the restoredweight may survive if it has su�cient magnitude in subsequent iterations.This method can be modi�ed to include information about the strength of the input23

features so that Pi = exp(��jw2i =T);where �j is the eigenvalue associated with the jth K-L feature for weights connected to thesefeatures in the input layer and �j = 1 for weights connecting the hidden and output layers.This method of pruning is referred to as eigenvalue-weighted pruning.During this optimization process two important measures of information content arecalculated [51]. The information capacity of the network, C, is given byC = Nwts(log2 jwmaxj � log2 jwminj+ 1);where Nwts is the number of non-zero weights, wmax is the weight with the largest magnitude,and wmin is the weight with the smallest magnitude. The entropy is given byH = C � NwtsXi=1 log2 jwij+Nwts(1� log2 jwminj):The e�ect on the information content of the network can be evaluated by examining thedistribution of weights in the network as a function of temperature or by evaluation of theinformation capacity of the network.The results of using Boltzmann and eigenvalue-weighted pruning during the training ofa network for the solution of the OCR problem are shown in Table 4. The results of usingBoltzmann and eigenvalue-weighted pruning during the training of a network for the solutionof the �ngerprint problem are shown in Table 5. The statistical evaluation of each networkwas carried out using the equations provided in the previous section. Examination of theseresults shows two distinct results. The OCR problem is easier to solve than the �ngerprintproblem and the e�ciency of information transfer in both cases is improved by the eigenvalueweighting of the pruning.In every statistical measure of network capacity and accuracy, the OCR network prunedwith the eigenvalue-weighted pruning function is superior to the Boltzmann pruned network.Recognition accuracy is higher at all temperatures for both testing and training. At the twocritical temperatures accuracy is 93.5% for the Boltzmann case and 93.6% for the eigen-value case. The critical temperature, Tc, is the temperature where the loss of informationfrom pruning is equal to the information gained by the CG optimization. The number of24

weights used is 1186 in the Boltzmann case and 1065 in the eigenvalue-weighted case. Thecapacity-error product is lower in the eigenvalue case and the bits per weight are higher.This indicates that the information transfer during training is more e�cient for eigenvalue-weighted training.Table 4: Parameters of the pruned network for the OCR problem using Boltzmann pruningand eigenvalue-weighted Boltzmann pruning.Parameter Boltzmann EigenTc 0.07 0.77Weights 1186 1065Maximum weights 3786 3786Capacity (bits) 11146 10281Maximum capacity (bits) 41646 41646Accuracy (%) 93.5 93.6Maximum accuracy (%) 94.8 94.8Minimum error� capacity 658 560Bits per weight 8.00 9.79Table 5: Parameters of the pruned network for the �ngerprint problem using Boltzmannpruning and eigenvalue-weighted Boltzmann pruning.Parameter Boltzmann EigenTc 0.404 0.737Weights 667 1046Maximum weights 17157 17157Capacity (bits) 4120 6632Maximum capacity (bits) 171570 171570Accuracy (%) 71.8 78.1Maximum accuracy (%) 84.3 84.3Minimum error� capacity 1177 1447Bits per weight 6.34 7.14The result for the �ngerprint problem are more complex. Some statistical measuresof network capacity and accuracy for the �ngerprint network pruned with the eigenvalue-weighted pruning function are superior to the Boltzmann pruned network and some are not.Recognition accuracy is higher for the eigenvalue-weighted case at all temperatures for bothtesting and training. At the two critical temperatures accuracy is 71.8% for the Boltzmann25

case and 78.1% for the eigenvalue case. The number of weights used is 667 in the Boltzmanncase and 1046 for the eigenvalue-weighted case. The Boltzmann pruned network is smallerbut less accurate. The capacity-error product is high in the eigenvalue case both becausethere are more weights and because the number of bits per weight is higher. This indicatesthat the information transfer during training is more e�cient for eigenvalue-weighted trainingand that more information is retained.6.2 Sample Size Based MethodsThe RBF generalization experiments used training and test sets, each containing 10,000character images from NIST Special Database 3 [33]. Each feature set was a truncatedK-L expansion of a 32 by 32 pixel binary image of a hand-printed digit. The RBF networksconsidered have 24 to 48 inputs, a hidden layer consisting of from one to four RBFs per digit,and an output layer of 10 linear or sigmoidal nodes. Also considered are some standard MLPnetworks, with sigmoidal hidden and output layers.The supervised learning minimized the standard objective function, the sum of squaresof the output errors. For networks with a sigmoidal output layer, a small constant timesthe sum of squares of the output layer weights was added to the objective function as aregularization, i.e. to minimize over-training. In order to simplify the gradient calculation,the inverses of the widths, sij = 1=�ij , were used as variables.The optimization (training) was done using a combination of scaled conjugate gradients[28, 29] and a limited-memory quasi-Newton algorithm [52]. The program was written toallow any combination of the centers, widths, and weights to be learned, and the remainderto stay �xed. Training was done with varying training set sizes, from 156 patterns to theentire 10,000 patterns; testing was done on the entire 10,000 pattern testing set.The initial values for the RBF centers were obtained from a k-means algorithm [53]. Thewidths produced by the k-means algorithm were not directly useful. Instead, uniform widths,several times the typical widths from the k-means algorithm, were used. It proved better tomake the Gaussians much too broad than too narrow; the exact value used is unimportantas long as it is large enough. The importance of large widths may be understood by thefollowing argument. 26

Suppose a pattern x has all its r2 values so large that their activations are essentiallyzero. Then the contribution of x to the gradient of the objective function will be essentiallyzero for all centers, and the pattern will not inuence the training at all. An extreme case ofthis behavior can be seen by taking all widths much too small. Then all RBFs produce zerofor all patterns, and all the optimization can do is to adjust the bias terms in the outputlayer; the process converges rapidly to a poor local minimum.For the same reason, random output layer weights do not work well for RBF networks.In the work reported here, the initial weights used were \sensible": positive for the weightsfrom the centers to their corresponding output nodes, zero for the remaining weights and forthe biases.The number of free parameters in the experiments reported here ranged from 570 to4250. The objective function has multiple local minima and is sensitive to details of theinitial values; a relatively small change in the initial values for the parameters generallyresults in �nding a di�erent local minimum. For each network, ten di�erent sets of initialconditions were used; for RBFs, it proved adequate to use a random �5% variation onthe widths. For MLPs, initial weights were chosen from a uniform random distribution in(�0:5;+0:5).Two strategies were used in training. The �rst is to train on successively larger subsets ofthe 10,000 pattern training set: 156, 312, 625, 1250, 2500, 5000, and �nally 10,000 patterns.Training on the smallest sets goes quickly, and each set of parameters is a good initial guessfor training on the next larger training set, but there is a possibility of wasting some work.The second strategy is to train only on the full training set.The �rst strategy was, on average, faster, but not drastically faster. It has the addedadvantage of providing extra information, as seen in Figures 9 and 10. Especially for largernetworks, the �rst strategy, on average, provides better training and testing.Keeping the centers and widths �xed and learning appropriate weights resulted in poortraining and poor testing in networks with only one or a few RBFs per class. Accordingly,centers and widths were also learned. Using initial widths from the k-means algorithm alsoresulted in poor training and testing; the optimization got stuck in a poor local minimum.Accordingly, all initial widths were then set to the same reasonably large value, with a small27

Figure 9: Testing error (top curves) and training error (bottom curves) versus training setsize for MLP networks. The results are shown for the random start with the best testingerror when trained with the full training set. 48-18-10 () 48-36-10 (4).28

Figure 10: Testing error (top curves) and training error (bottom curves) versus training setsize for RBF type 1 networks with a linear output layer. The results are shown for therandom start with the best testing error when trained with the full training set. 48-20-10() 48-40-10 (4). 29

random variation.In general, RBF networks with sigmoidal output layers trained signi�cantly more slowlythan RBF networks with linear output layers, and gave somewhat worse training and testingerrors.In general, RBF2 networks trained more slowly than RBF1 networks and gave slightlypoorer training and testing errors. However, RBF2 networks with sigmoidal output layershave the useful property that the output weights can be �xed at reasonable values, ratherthan learned, with little or no worsening of the training and testing error.RBF networks are self-pruning to some degree. Unimportant connections are e�ectivelypruned away by the training process learning a large width, �ij; each large width e�ectivelydeletes one connection from an input to one RBF and reduces the number of active param-eters by two. More pruning is done with small training sets than with large ones, and morewith large networks than with small ones. Some results are shown in Table 6.Table 6: Networks used and free parameters for each; for RBF networks, active number usedin best solution found training on the full training set.RBF/MLP Structure Parameters ActiveR 24-10-10 590 566R 24-20-10 1170 1014R 24-30-10 1750 1448R 36-10-10 830 766R 36-20-10 1650 1364R 48-10-10 1070 982R 48-20-10 2130 1650R 48-30-10 3190 2122R 48-40-10 4250 2870M 24-16-10 570M 24-24-10 850M 24-36-10 1270M 48-18-10 1072M 48-36-10 2134The remainder of this section refers only to RBF1 networks with linear output layers.30

Compared to MLP networks of a similar size (i.e., similar numbers of free parametersto optimize), RBF networks in general train at about the same rate. Their behavior versustraining set size is di�erent, though. Figure 1 gives results for a small (24-16-10, 570 param-eters) and a large (48-36-10, 2130 parameters) MLP network. The large network gives quiteaccurate training results, much better than the small one, but the testing error is not muchdi�erent for large training set sizes.For comparison, Figure 10 gives results for a small (24-10-10, 590 parameters) and amedium (24-30-10, 1750 parameters) RBF network. The large network does not train asaccurately, but there is much less di�erence in training and testing accuracy than for theMLP networks. In other words, the RBF networks are less likely to over�t the training data.Figure 11 summarizes many hours of computation for MLP and RBF networks. Trainingand testing results from ten random starts are shown for each network.The RBF results are closer to the diagonal, the diagonal being as good as one could everexpect. The smaller networks are closer to the diagonal than the larger ones; 10,000 trainingpatterns are su�cient to train the small networks as well as they can be trained, but morepatterns are needed for the larger networks.The MLP results are farther from the diagonal. Increasing the network size gives bettertraining error, but no better testing error. Many more training patterns are needed.Figure 12 shows testing error versus number of free parameters. For a small number offree parameters, MLP networks do better.7 ConclusionsExamination of Table 1 and Table 2 shows that even on problems as diverse as OCR and�ngerprint classi�cation the ranking of the methods is similar. The neighbor-based methodsare the most accurate with PNN being the best of them. The comparison of MLP and RBFmethods show that RBF is usually the better method. Generalization experiments on MLPand RBF networks (see Tables 4, 5, 6) demonstrate that fully connected MLP networkscontain far too many free parameters for e�cient information use. RBF networks can beconstructed which are self-pruning and which achieve better accuracy for a given training31

Figure 11: Training error versus testing error for di�erent networks. All training is on thefull training set. The symbols near the upper left of the �gure are MLP networks: 24-16-10(�), 24-24-10 (+), 24-36-10 (�), 48-18-10 (2), and 48-36-10 (3). The symbols nearer thediagonal line are RBF type 1 networks with a linear output layer: 24-10-10 (+), 24-20-10(�), 24-30-10 (lower group of +), 24-40-10 (lower group of �), 36-10-10 (4), 36-20-10 (5),48-10-10 (2), 48-20-10 (3), 48-30-10 (lower group of 2), and 48-40-10 (lower group of 3).32

Figure 12: Testing error versus number of free parameters for MLP networks (+) and forRBF networks (2). 33

set size. When MLP and RBF methods are compared to multicluster EMD and QMDmethods the NN methods are more straightforward to implement but do not show a clearaccuracy advantage. All of the experiments presented here also suggest that the training setsizes used, although large, are not su�cient to fully saturate most of the machine learningmethods studied here.AcknowledgementThe authors would like to thank Jon Geist for assistance in interpretation of the results ofthe classi�er comparisons.References[1] M.T. Musavi, K.H. Chan, D.M. Hummels, K. Kalantri, and W. Ahmed. A probabilisticmodel for evaluation of neural network classi�ers. Pattern Recognition, 25:1241{1251,1992.[2] J. Cao, M. Shridhar, F. Kimura, and M. Ahmadi. Statistical and neural classi�cation ofhandwritten numerals: A comparative study. In 11th IAPR International Conferenceon Pattern Recognition, pages 643{646, The Hague, The Netherlands, 1992.[3] R.A. Wilkinson, J. Geist, S. Janet, P.J. Grother, C.J.C. Burges, R. Creecy, B. Ham-mond, J.J. Hull, N.J. Larsen, T.P. Vogl, and C.L. Wilson. The First Optical CharacterRecognition Systems Conference. Technical Report NISTIR 4912, National Institute ofStandards and Technology, August 1992.[4] T. Pavlidis and S. Mori, editors. Special Issue on Optical Character Recognition. Proc.IEEE, Volume 80, Number 7, July 1992.[5] F.L. Alt. Digital pattern recognition by moments. In G.L. Fischer et al., editors, OpticalCharacter Recognition, pages 159{179. McGregor & Werner, 1962.[6] R.G. Casey. Moment normalization of handprinted characters. IBM J. Res. Dev., 1970.34

[7] G.L. Cash and M. Hatamian. Optical character recognition by the method of moments.CVGIP, 39:291{310, 1987.[8] T.M. Cover and P.E. Hart. Nearest neighbor pattern classi�cation. IEEE Transactionson Information Processing, 13:21{27, 1967.[9] Y. Le Cun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and L.D.Jackel. Handwritten digit recognition with a back-propagation network. In D. Touretzky,editor, Advances in Neural Information Processing Systems, volume 2, pages 598{605.Morgan Kaufmann, 1990.[10] J.S. Denker, W.R. Gardner, H.P. Graf, D. Henderson, R.E. Howard, W. Hubbard, L.D.Jackel, H.S. Baird, and I. Guyon. Neural network recognizer for hand-written zip codedigits. In D. Touretzky, editor, Advances in Neural Information Processing Systems,volume 1, pages 323{331. Morgan Kaufmann, 1989.[11] K. Fukushima, T. Imagawa, and E Ashida. Character recognition with selective atten-tion. In Proceedings of the IJCNN, volume 1, pages 593{598, 1991.[12] G. Martin and J. Pittman. Recognizing handprinted letters and digits using backprop-agation. Neural Computation, 3:258{267, 1991.[13] G.L. Martin. Centered-object integrated segmentation and recognition for visual char-acter recognition. In J. Moody, S. Hanson, and R. Lippmann, editors, Advances inNeural Information Processing Systems, volume 4, pages 504{511. Morgan Kaufmann,1991.[14] M.K. Sparrow and P.J. Sparrow. A Topological Approach to the Matching of SingleFingerprints: Development of Algorithms for Use on Rolled Impressions. TechnicalReport Special Publication SW-124, National Bureau of Standards, Washington, DC,October 1985.[15] P.K. Isenor and S.A. Zapy. Fingerprint identi�cation using graph matching. PatternRecognition, 19:113{122, 1986. 35

[16] A.K. Hrechak and J.A. McHugh. Automated �ngerprint identi�cation using structuredmatching. Pattern Recognition, 23:893{904, 1990.[17] K.S. Fu. Syntactic Pattern Recognition. Prentice-Hall, Englewood Cli�s, NJ, 1982.[18] B. Moayer and K.S. Fu. A syntactic approach to �ngerprint pattern recognition. PatternRecognition, 7:1{23, 1975.[19] B. Moayer and K.S. Fu. An application of stochastic languages to �ngerprint patternrecognition. Pattern Recognition, 8:173{179, 1976.[20] B. Moayer and K.S. Fu. A tree system approach for �ngerprint pattern recognition.IEEE Transactions on Computers, 25:262{274, 1976.[21] K. Rao and K. Balck. Type classi�cation of �ngerprints: A syntactic approach. IEEETransactions on Pattern Analysis and Machine Intelligence, 2:223{231, 1980.[22] K.S. Fu and T.L. Booth. Grammatical inference: Introduction and survey|Part I.IEEE Transactions on Systems, Man, and Cybernetics, 5:95{111, 1975.[23] K.S. Fu and T.L. Booth. Grammatical inference: Introduction and survey|Part II.IEEE Transactions on Systems, Man, and Cybernetics, 5:409{423, 1975.[24] C.L. Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun, and Y.C. Lee. Learning andextracting �nite state automata with second-order recurrent neural networks. NeuralComputation, 4:380, 1992.[25] C.L. Wilson, G.T. Candela, P.J. Grother, C.I. Watson, and R.A. Wilkinson. MassivelyParallel Neural Network Fingerprint Classi�cation System. Technical Report NISTIR4880, National Institute of Standards and Technology, July 1992.[26] P. Baldi and Y. Chauvin. Neural networks for �ngerprint matching and classi�cation(abstract). In Proceedings, Neural Information Processing Systems Conference, 1992.[27] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations byerror propagation. In D.E. Rumelhart and J. L. McClelland, editors, Parallel Distributed36

Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations,Chapter 8, pages 318{362. MIT Press, Cambridge, MA, 1986.[28] M.F. M�ller. A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning.Technical Report PB-339, University of Aarhus, November 1990.[29] J.L. Blue and P.J. Grother. Training feed forward networks using conjugate gradients.In Conference on Character Recognition and Digitizer Technologies, SPIE volume 1661,pages 179{190, San Jose, CA, February 1992.[30] O.M. Omidvar and C.L. Wilson. Optimization of neural network topology and informa-tion content using Boltzmann methods. In Proceedings of the IJCNN, Volume 4, pages594{599, June 1992.[31] O.M. Omidvar and C.L. Wilson. Topological separation versus weight sharing in neuralnetwork optimization. In S.S. Chen, editor, Neural and Stochastic Methods in Imageand Signal Processing, SPIE volume 1766, San Diego, CA, 1992.[32] I. Guyon, V.N. Vapnick, B.E. Boser, L.Y. Botton, and S.A. Solla. Structural riskminimization for character recognition. In R. Lippmann, editor, Advances in NeuralInformation Processing Systems, volume 4, pages 471{479. Morgan Kaufmann, 1992.[33] M.D. Garris and R.A. Wilkinson. Handwritten Segmented Characters Database. Tech-nical Report Special Database 3, National Institute of Standards and Technology, Febru-ary 1992.[34] C.L. Wilson and M.D. Garris. Handprinted Character Database. Special Database 1,National Institute of Standards and Technology, April 1990.[35] R.G. Casey and H. Takahashi. Experience in segmenting and recognizing the NISTdatabase. In Proceedings of the International Workshop on Frontiers of HandwritingRecognition, 1991.[36] P.J. Grother. Cross validation comparison of NIST OCR databases. In D.P. D'Amato,editor, SPIE volume 1906, San Jose, CA, 1993.37

[37] C.I. Watson and C.L. Wilson. Fingerprint database. Special Database 4, NationalInstitute of Standards and Technology, April 1992.[38] R.M. Stock and C.W. Swonger. Development and evaluation of a reader of �nger-print minutiae. Cornell Aeronautical Laboratory, Technical Report XM-2478-X-1:13{17,1969.[39] G.T. Candela and R. Chellappa. Comparative Performance of Classi�cation Methodsfor Fingerprints. Technical Report NISTIR 5163, National Institute of Standards andTechnology, April 1993.[40] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, NewYork, second edition, 1990.[41] M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.[42] N.J. Nilsson. Learning Machines: Foundations of Trainable Pattern-Classifying Sys-tems, Chapter 3, page 45. McGraw-Hill, New York, 1965.[43] B.V. Dasarathy, editor. Nearest Neighbor (NN) Norms: NN Pattern Classi�cation Tech-niques. IEEE Computer Society Press, 1991.[44] T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of theIEEE, 78:1481{1497, 1990.[45] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning representations by back-propagating errors. Nature, 332:533{536, 1986.[46] R. Fletcher and C.M. Reeves. Function minimization by conjugate gradients. ComputerJournal, 7:149{154, 1964.[47] E.M. Johansson, F.U. Dowla, and D.M. Goodman. Backpropagation learning for multi-layer feed-forward neural networks using the conjugate gradient method. IEEE Trans-actions on Neural Networks. To be published.[48] M.T. Musavi, W. Ahmed, K.H. Chan, K.B. Faris, and K.M. Hummels. On the trainingof radial basis function classi�ers. Neural Networks, 5:595{603, 1992.38

[49] D. Wettschereck and T. Dietterich. Improving the performance of radial basis functionnetworks by learning center locations. In J.E. Moody and S.J. Hanson and R.P. Lipp-mann, editors, Advances in Neural Information Processing Systems, volume 4, pages1133{1140, Morgan Kaufmann, San Mateo, CA, 1991.[50] D.F. Specht. Probabilistic neural networks. Neural Networks, 3:109{118, 1990.[51] J.J. Atick. Could information theory provide an ecological theory of sensory processing?Networks, 3:213{251, 1992.[52] D.C. Liu and J. Nocedal. On the limited memory BFGS method for large scale opti-mization. Mathematical Programming, 45:503{528, 1989.[53] J.A. Hartigan. Clustering Algorithms. Wiley, New York, 1975.

39

