

ELFT Phase II - An Evaluation of Automated Latent Fingerprint

 Identification Technologies

M. Indovina

V. Dvornychenko

E. Tabassi

G. Quinn

P. Grother

S. Meagher

M. Garris

NISTIR 7577

(This page intentionally left blank.)

NISTIR 7577

ELFT Phase II - An Evaluation of Automated Latent Fingerprint

 Identification Technologies

M. Indovina

V. Dvornychenko

E. Tabassi

G. Quinn

P. Grother

M. Garris
Information Access Division / Image Group

Information Technology Laboratory

S. Meagher
Dactyl ID, LLC

April 2, 2009

U.S. Department of Commerce
Gary Locke, Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Deputy Director

2

Acknowledgements

The authors would like to thank the Department of Homeland Security’s Science and Technology Directorate

and the Federal Bureau of Investigation’s Criminal Justice Information Services Division for sponsoring this

work.

Disclaimer

Specific hardware and software products identified in this report were used in order to perform the

evaluations described in this document. In no case does identification of any commercial product, trade name,

or vendor, imply recommendation or endorsement by the National Institute of Standards and Technology, nor

does it imply that the products and equipment identified are necessarily the best available for the purpose.

3

Technology Providers

This table lists the technology providers who participated in this study. The letter keys listed down the first

column are used throughout the report to identify results from specific algorithms. The authors wish to thank

the technology providers for their voluntary participation and contribution.

Key Technology Provider Name

K1 Motorola, Inc.

L1 Sonda Technologies, Ltd.

M1 NEC Corporation

N1 Peoplespot, Inc.

O1 SPEX Forensics, Inc.

P1 Cogent, Inc.

Q1 L1 Identity Solutions

R1 BioMG, Ltd.

Table 1: SDK letter keys and the corresponding technology provider

4

Executive Summary

Introduction:

The National Institute of Standards and Technology (NIST), with the cooperation of eight technology providers,

performed a test of accuracy for searching latent fingerprints when using automatic feature extraction and

matching (AFEM). This test is Phase II of the Evaluation of Latent Fingerprint Technology (ELFT) project. The

test was open to both the commercial and academic community, and participants included vendors of

Automated Fingerprint Identification Systems (AFIS). This report provides the design, process, caveats, results,

observations and conclusions of the test.

The primary objective of the test is to determine whether significant latent print examiner time savings can be

achieved while maintaining accuracy by not performing manual encoding of the latent fingerprint features.

Doing so would permit a greater workload to be processed in the same amount of time and would potentially

open up new opportunities for better exploitation of latent fingerprint services in various applications.

The eight technology providers each submitted a Software Development Kit (SDK) containing a latent

fingerprint and ten-print minutiae extraction algorithm, and a 1-to-many match algorithm that returns a

candidate list report. The specific fingerprint features extracted by the SDK were at the discretion of the

technology provider and could be proprietary, and the feature template input to the SDK’s matcher may

include the original latent fingerprint image in its entirety. Technology providers were encouraged to submit

research algorithms in this study. There was no requirement for the SDKs to be in operational use or

commercially available. NIST performed a pre-test of the SDKs to ensure all functional capabilities were

working. After validation of the SDKs, the technology providers were no longer involved in the testing. NIST

performed the same test on all SDKs.

The test dataset contained 835 latent fingerprints, the associated ten-print fingerprint records containing the

mates to the latent fingerprints, and two separate galleries of ten-print fingerprint records: one containing

5,000 records (50,000 fingerprints), and the second containing 10,000 records (100,000 fingerprints). The

latent fingerprints were studied at two image resolutions: 1000 pixels per inch (ppi) (39.37 pixels per

millimeter (ppmm)) images, and sub-sampled 1000 ppi producing 500 ppi (19.69 ppmm) images. In all tests,

the ten-print galleries were 500 ppi
1
. The technology providers had no knowledge of, or access to, the

fingerprint datasets prior to, during, or after the tests.

The SDKs were tested as black boxes. For each SDK, all ten-print fingerprint records and latent fingerprint

images were processed by each SDK’s automatic feature extraction algorithm. There was no human

intervention during these processes. The automatically extracted features for the latent fingerprints were

independently searched against the galleries of ten-print fingerprint features. A candidate list report was

generated for each latent fingerprint search listing the top 50 candidates in ranked order by score, with the

candidate having the highest score listed at rank 1.

In addition to assessing the overall performance of AFEM latent fingerprint technology, tests were designed to

study specific factors expected to significantly impact performance. Insights into the effect of some of these

factors may contribute to automated determination of latent fingerprint image quality. To this end, factors

analyzed included the effect of gallery size, latent image resolution, supplementary region of interest, latent

minutiae count, finger position, and finger pattern classification.

1
 Pixels per inch (ppi) is used throughout this report as this unit is commonly used across the biometric community, which is the

audience to which this report has been written.

5

Caveats:

1. The 835 latent fingerprints represent identifications made using operational AFIS technology in actual

case examinations. As a result, the latent fingerprints and their ten-print mates possess sufficient

quality and quantity of information to result in identification, and therefore the results are

representative of a category of higher quality latent fingerprints.

2. The characteristics of a latent print dataset that determine its difficulty level with respect to matching

are largely determined by the source, selection, and preparation of the data. The results reported in

this study may differ greatly from other latent datasets and operational fingerprint repositories.

3. The digital images of the latent fingerprints used for the test have undergone pre-search processing

typical of AFIS operations. These include a combination of latent print analysis, selection criteria for

AFIS search, scanning, orientation, image enhancement, classification, and finger designation.

4. The SDKs were not overly constrained by time in either extracting features or searching the galleries. It

is possible for tighter time constraints to cause a decrease in performance. It is also possible to

mitigate this concern by adding computing resources. However, the impact of time on performance

was not tested.

5. The latent fingerprints were all directly captured at 1000 ppi. The creation of the 500 ppi images for

the tests were produced by down-sampling the 1000 ppi images. The performance of matching with

latents directly captured at 500 ppi was not tested in Phase II.

6

Results:

NIST performed analyses of the data and determined the performance and accuracy for each technology

provider’s SDK. A summary of identification rates based on candidate list position (rank) is reported in the

following table. Note that each latent fingerprint search generated a list of fifty candidates, and it was

generally observed that most identifications occurred within the top ten. Therefore, rank one and rank top ten

results are reported.

SDK
Technology

Provider

1000 ppi latents

vs. 100K fgpts,

Rank 1

1000 ppi latents

vs. 100K fgpts,

Rank 10

500 ppi latents

vs. 50K fgpts,

Rank 1

500 ppi latents

vs. 50K fgpts,

Rank 10

M1 NEC 97.2 98.8 96.4 97.2

P1 Cogent 87.8 89.2 88.0 89.9

O1 SPEX 80.0 85.6 80.0 87.1

K1 Motorola 79.3 83.2 79.6 84.0

Q1 L1 Identity Solutions 78.8 86.5 81.4 88.0

N1 Peoplespot 67.9 77.8 68.5 79.0

L1 Sonda 28.5 30.9 76.0 83.0

R1 BioMG 27.5 30.2 74.0 80.5

Table 2: Summary of Identification Rates (%)

Score-based measures can be used for two purposes: for candidate list reduction (eliminating low-probability

candidates from candidate lists), and for automatic determinations of high-likelihood hits.

Candidate list reduction offers a tradeoff of accuracy for a reduction in human examiner workload: if a

candidate list is reduced, the matcher will present shorter (or empty) candidate lists to the examiner, but some

true mates will be excluded, lessening overall accuracy. This is illustrated by analyzing the results for the

highest performing SDK shown in the Figure 1 (note that these results are based on probability of true mate
2

score values). At a false positive identification rate (FPIR) of 95% the false negative identification rate (FNIR) is

3%, whereas at FPIR of 47% the FNIR is 4%. Moving from the first operational point to the second cuts the

examiner workload by up to half (FPIR from 95% to 47%), while missed identifications are increased by one

third (FNIR 3% to 4%). It is a policy issue to determine if this is an acceptable trade-off.

2
 See observation 9.

Automatic determinations of high-likelihood hits can be used operationally to flag likely matches in low

priority cases that might otherwise never warrant examiner time, or to priorit

based on the likelihood of match. In either case, automatic determinations of high

used for areas with an excessive backlog to maximize examiner efficiency. This is illustrated by analyzing the

highest performing SDK shown in the figure below. At FN

identifications are successfully made 92% of the time with only 1% of the examiner’s comparisons including

non-mates.

K1 Motorola L1 Sonda

O1 SPEX P1 Cogent

Figure 1: Detection error trade

7

likelihood hits can be used operationally to flag likely matches in low

priority cases that might otherwise never warrant examiner time, or to prioritize an examiner’s workload

based on the likelihood of match. In either case, automatic determinations of high-likelihood hits could be

used for areas with an excessive backlog to maximize examiner efficiency. This is illustrated by analyzing the

erforming SDK shown in the figure below. At FNIR of 8% the FPIR is 1%. At this operating point,

identifications are successfully made 92% of the time with only 1% of the examiner’s comparisons including

Sonda M1 NEC N1 Peoplespot

Cogent Q1 L1 Identity Solutions R1 BioMG

: Detection error trade-off (DET) characteristics at rank 1

likelihood hits can be used operationally to flag likely matches in low-

ize an examiner’s workload

likelihood hits could be

used for areas with an excessive backlog to maximize examiner efficiency. This is illustrated by analyzing the

R of 8% the FPIR is 1%. At this operating point,

identifications are successfully made 92% of the time with only 1% of the examiner’s comparisons including

8

Observations:

1. The effect of scaling the gallery size was clearly observed as all SDKs demonstrated a drop in

performance. The average decrease in rank 1 identification rate was 1% between searching a gallery

of 50,000 fingerprints and a gallery of 100,000 fingerprints.

2. Five of the eight SDKs showed some benefit when searching latent images at 1000 ppi over 500 ppi

(against a gallery of 500 ppi ten-prints), but the benefit was not shown to be statistically significant.

An average improvement of 0.93% in rank 1 identification rate was observed. It was also observed

that for every SDK, increasing resolution from 500 ppi to 1000 ppi caused some hits to be gained, but

also some to be lost. The net outcome differs with each SDK.

3. The “region of interest” (ROI), produced mixed results. While for some SDKs the overall results

improved when using ROI, for others they were worse. It was observed that those images with heavy

excision (greater than 50% of the image cut out) tended to benefit the most. We conclude that ROI is

inexpensive compared to manual markup, but so far has only been shown to be of limited use. More

studies in this area are needed.

4. There is a strong correlation between the number of minutiae exhibited by a latent image and its

search performance across all SDKs. Searches with higher numbers of minutiae tended to do better.

5. As with other biometric modalities, the quality of the image data strongly influences accuracy.

6. Looking at just the thumb, index, middle, and ring fingers on each hand, there is some evidence that

latent search performance is highest with thumbs, next with index fingers, and lowest with ring

fingers. However, results varied across the SDKs. Results on little fingers were not analyzed due to

very small sample size representation in the Phase II dataset.

7. There is some evidence that latent search performance is affected by latent pattern class. Latent

search performance was higher with whorls. The results for arches were bipolar; some SDKs

performed best on arches; while other SDKs performed worst. Loops achieved medium performance.

The undetermined category performed worst over all, which appears to be an indication of low latent

image quality.

8. Fusing the latent search results (candidate lists) of multiple (cross-vendor) SDKs did improve the hit

rate. The same is true for fusing the results of the same SDK for two or more of an individual's latent

fingerprints. These methods provide a powerful mechanism for potential improvements of accuracy.

9. In addition to proprietary matcher scores, all SDKs reported a form of normalized scores, probability of

true mate values in the range 0 to 100 indicating the SDK’s estimated likelihood that a candidate is

actually a mate. This has important implications for candidate list reduction, interoperability, and

fusion. Results were mixed, with two SDKs demonstrating enhanced capability to reduce false

matches.

Conclusions:

1. The results from ELFT Phase II demonstrate that a limited class of latent fingerprint case work can

benefit from today’s AFEM technology, thereby reducing some of the human workload during the AFIS

latent fingerprint processes.

Cautionary Note: Technology providers were encouraged to submit research algorithms in this study.

There was no requirement for the SDKs to be in operational use or commercially available.

2. While the testing has demonstrated a level of performance beyond pre-test expectations, the

limitations of the technology remain undefined and further testing is required.

3. Test results do not provide sufficient insight to determine with any specificity which latent prints in a

case can benefit or should not be considered for AFEM. Latent fingerprint image quality measures are

needed and should be tested.

9

Table of Contents

ACKNOWLEDGEMENTS ... 2

DISCLAIMER .. 2

TECHNOLOGY PROVIDERS ... 3

EXECUTIVE SUMMARY .. 4

TABLE OF CONTENTS ... 9

TERMS AND DEFINITIONS ... 10

1 INTRODUCTION ... 11

1.1 ELFT AND AUTOMATED FEATURE EXTRACTION AND MATCHING ...11

1.2 PHASE I ...11

1.3 PHASE II ..12

1.4 WHAT PHASE II IS NOT ..12

2 TEST IMPLEMENTATION .. 13

2.1 EXPERIMENTAL DESIGN ..14

2.2 DATASET DESCRIPTION ..16

2.2.1 Latents .. 16
2.2.1.1 Latent Pattern Classification ... 16
2.2.1.2 Latent Finger Position .. 17

2.2.2 Foreground ... 17

2.2.3 Background ... 19

2.2.4 Ten-Print Image Quality .. 19

2.2.5 Mate Association and Validation .. 20

2.2.6 ROI Markup .. 20

3 RESULTS AND ANALYSIS .. 22

3.1 ACCURACY RESULTS OF PHASE II ...22

3.1.1 CMC .. 22

3.1.2 DET ... 24

3.2 COMPARISON WITH PHASE I RESULTS ...30

3.3 EFFECT OF GALLERY SIZE ..31

3.4 EFFECT OF RESOLUTION ...33

3.5 EFFECT OF REGION OF INTEREST (ROI) MARKUP ...35

3.6 EFFECT OF MINUTIA COUNT ..38

3.7 EFFECT OF FINGER POSITION ...42

3.8 EFFECT OF PATTERN CLASS ..45

3.9 TIMING RESULTS ...48

4 PROBABILITY SCORES VS. RAW SCORES .. 53

4.1 REPORTED PROBABILITY SCORES ...53

4.2 RE-COMPUTING DET USING PROBABILITY SCORES..55

5 FUSION ... 57

5.1 MULTI-INSTANCE FUSION ..57

5.2 MULTI-ALGORITHM FUSION ..62

6 REFERENCES .. 63

APPENDIX A – MODELLING EFFECT OF GALLERY SIZE .. 64

APPENDIX B – ELFT PHASE II PROTOCOL DESCRIPTION ... 70

APPENDIX C – ELFT PHASE II API SPECIFICATION .. 77

APPENDIX D - COMPLETE SET OF ACCURACY CHARACTERISTICS ... 88

10

Terms and Definitions

This table provides ELFT-specific definitions to various words and acronyms found in this report.

Term Definition

1 AFEM Automated Feature Extraction and Matching

2 API Application Programming Interface

3 Background A set of enrolled ten-prints not containing mate fingerprints

4 CMC Cumulative Match Characteristic

5 DET Detection Error Tradeoff characteristic

6 Exemplar Fingerprint image acquired during an enrollment process and the mate of a latent

fingerprint

7 FNIR False Negative Identification Rate (also called miss rate or false non-match rate)

8 Foreground A set of enrolled ten-prints containing mate fingerprints.

9 FPIR False Positive Identification Rate (also called false-match rate)

10 Fusion A method of combining biometric information to increase accuracy

11 Gallery A set of enrolled ten-prints; synonymous with “database.” An ELFT Gallery is

composed of foreground and background ten-prints.

12 Hit/hit-rate A “hit” results when the correct mate is placed on the candidate list; the “hit rate” is

the fraction of times a hit occurs, assuming a mate is in the gallery.

13 Latent A fingerprint image left on a surface touched by an individual

14 Matcher Software functionality which produces one or more plausible candidates matching a

search print

15 Mate An enrolled fingerprint corresponding to a latent

16 NIST National Institute of Standards and Technology

17 PPI Pixels per inch (500 ppi corresponds to 197 pixels per centimeter)

18 ROC Receiver Operator Characteristic

19 ROI Region of Interest

20 Rolled print A fingerprint image acquired by rolling a finger from side to side

Table 3: Glossary of ELFT Phase II related terms

11

1 Introduction

NIST has been investigating automated fingerprint matching since 1969, beginning with the pioneering work of

Ray Moore. Focus on latent fingerprints is more recent, and was initiated in 2004 by a study comparing the

performance of matching latent images against plain impressions versus rolled impressions [1]. In 2006, NIST

inaugurated a more extensive project, called Evaluation of Latent Fingerprint Technology (ELFT) to investigate

the performance of automated feature extraction and matching (AFEM) in the context of latent fingerprint

identification [2].

ELFT is a study of latent fingerprint identification (one to many search) rather than verification (one to one

match). Generally, the unknown fingerprint presented to an identification system may be any of the three

types (rolled, plain, or latent), and the database against which it is searched may also be any of the three

types, or even a mixture of types. In this study, the unknown is always a latent fingerprint, and the database

consists entirely of rolled fingerprint impressions.

1.1 ELFT and Automated Feature Extraction and Matching

It is important to distinguish AFEM-based latent fingerprint identification from the general concept of lights-

out identification. Lights-out identification refers to a system requiring minimal or zero human assistance in

which an image is presented as input, and the output consists of a short candidate list. For ten-print search

applications, this list may be: 1) empty, 2) contain a single candidate, or rarely 3) have more than one

candidate. Event (3) will occur only in cases when the matcher produces more than one candidate with a

significant computed probability of being a true mate. Lights-out matchers are currently in operation for rolled

fingerprint search systems, and are emerging for plain impressions. Latent fingerprints are much more difficult,

and no lights-out matchers are currently in operational service. Furthermore, the ELFT07 Concept of

Operations (CONOPS) asserts that a fully lights-out latent fingerprint matching capability represents too large

of a single step from current practices [2].

Accordingly, the initial focus of ELFT is on AFEM-based latent fingerprint identification systems in which

manual feature extraction by an examiner is eliminated (i.e. the feature extraction and search operations are

fully automated), but the candidate lists output by these systems may be of non-trivial size, and require

varying degrees of human inspection. This automates the traditional human feature selection on the latent

image – often referred to as “front end functions” – but does not fully address the “backend” functions,

including reduction of the output candidate list. Human feature extraction by a latent fingerprint examiner is a

time-consuming task. It is common for the examiner to spend twenty minutes or more on this step. It is

therefore highly desirable to automate feature extraction to the extent possible, as well as automate any other

time-consuming steps.

In current latent matching practice the candidate lists tend to be of fixed length, typically 10 to 20 candidates

long. A fixed number of candidates is then always produced, even though the vast majority of these are non-

matching to the search latent. (Although they do represent the best matches encountered, these are not close

matches in any meaningful sense and cursory inspection often reveals that the candidate cannot possibly

match the search print.) One goal of ELFT is to suppress these non-matching candidates, resulting in a much

shorter candidate list of variable length. We refer to this goal as candidate list reduction.

1.2 Phase I

ELFT Phase I was designed as a “proof of concept” test for evaluating state-of-the-art AFEM-based one-to-

many (1:N) latent fingerprint identification systems. A secondary goal of Phase I was to determine the test

methods and metrics necessary to evaluate the technology. Participation was open to all, and testing and

reporting was done anonymously to encourage participation and minimize risk to participants. Software was

submitted to NIST for testing in the form of Software Development Kits (SDKs) conformant to an Application

12

Programming Interface (API) created by NIST. Ten technology providers participated in Phase I, submitting a

total of 16 SDKs for testing. These SDKs were installed and executed on NIST hardware, by NIST personnel.

The dataset used for Phase I was a mix of operational and non-operational images. A total of 100 latent

images were searched against a gallery of 10,000 rolled fingerprints (1000 ten-prints). The aggregate results of

Phase I have been reported publically without mention of the technology provider names [4], and detailed

reports have been provided directly to the individual participants. Phase I demonstrated the feasibility of the

technology and test methods, and provided valuable insights into how future phases should be conducted.

1.3 Phase II

Whereas ELFT Phase I was intended to assess the feasibility of AFEM-based latent fingerprint identification

systems, ELFT Phase II was designed to assess the performance of state-of-the-art AFEM technology and

evaluate its viability for operational use. ELFT Phase II builds on the work in Phase I by using 100% operational

images, as well as larger and more diverse datasets to provide better performance estimates. A primary

objective of the test was to determine whether significant latent print examiner time savings can be achieved

by applying AFEM technologies while maintaining accuracy. Doing so would permit a greater workload to be

processed in the same amount of time and would potentially open up new opportunities for better exploiting

latent fingerprint services in various applications.

A further objective of Phase II was to study specific factors that are expected to significantly impact the

performance of AFEM latent fingerprint technologies. It is anticipated that insights into the effect of these

factors may contribute to automated determination of latent fingerprint image quality, which is a key

component to future AFEM-based systems. Phase II analyzed the effect of the following factors:

• Gallery size

• Latent image resolution

• Supplementary region of interest (ROI)

• Latent minutiae count

• Finger position

• Finger pattern classification

In all, eight technology providers chose to participate in ELFT Phase II, each contributing an SDK for testing.

Section 2 provides an overview of the Phase II test implementation, experimental design, and the dataset

used. Section 3 reports accuracy results and analyses on various factors. Section 4 discusses the results of

using probability scores in place of raw matcher scores. Section 5 presents a study on candidate list fusion.

The appendices cover topics including a simple model for predicting the effect of increasing gallery size along

with the ELFT Phase II protocol and application program interface (API). A complete set of Detection Error

Trade-off (DET) curves created for this study are included in Appendix D.

1.4 What Phase II is Not

The following are specifically not within the scope of ELFT Phase II:

• Evaluation of human examiner assisted latent fingerprint based identification

• Evaluation of standardized fingerprint feature encodings and standard templates

• Closed set (“closed universe”) identification

• Verification or one-to-one (1:1) matcher performance

• Performance when matching ten-print records against a repository of latent fingerprints (also called

“reverse latent” searches)

• Performance when matching latent fingerprints to latent fingerprints (latent-to-latent)

• Evaluation of latent fingerprint collection/processing methods

• Estimates of algorithm speed when implemented in operational systems

• Template update or adaptive search algorithms

13

2 Test Implementation

The testing model used by ELFT is similar to that used by NIST for Minutiae Interoperability Exchange (MINEX)

Test 2004 [5] and Proprietary Fingerprint Template Test [6]. Binary software modules only (no source code),

referred to as SDKs, are solicited from participants. These are intended to be executed by NIST on local

computer hardware, and they must adhere to an Application Programming Interface (API) specified by NIST.

The SDK testing model is different from other fingerprint evaluations such as Fingerprint Vendor Technology

Evaluation (FpVTE) [7] and Fingerprint Verification Competition (FVC) [8] in that it provides greater flexibility

and control over the execution of software during the test. Testing of the SDKs on NIST hardware by NIST

personnel ensures that the test images themselves are never disclosed outside of NIST. This has important

implications for privacy as well as for the use of these images in future testing. The principal disadvantage of

this approach is that it limits the feedback NIST can provide to participants regarding image-specific behavior

of their software.

Each technology provider submitted an SDK containing a latent fingerprint and ten-print minutiae extraction

algorithm, and a 1-to-many match algorithm that returns a candidate list report. The specific fingerprint

features extracted by the SDK were at the discretion of the technology provider and could be proprietary, and

the feature template input to the SDK’s matcher may include the original latent fingerprint image in its

entirety. Technology providers were encouraged to submit research algorithms in this study. There was no

requirement for the SDKs to be in operational use or commercially available. NIST performed a pre-test of the

SDKs to ensure all functional capabilities were working. After validation of the SDKs, the technology providers

were no longer involved in the testing. NIST performed the same test on all SDKs.

The test dataset contained 835 latent fingerprints, the associated ten-print fingerprint records containing the

mates to the latent fingerprints, and two separate galleries of ten-print fingerprint records: one containing

5,000 records (50,000 fingerprints), and the second containing 10,000 records (100,000 fingerprints). The

technology providers had no knowledge of, or access to, the fingerprint datasets prior to, during, or after the

tests. Latent prints were searched at both 500 pixels per inch (ppi) (19.69 pixels per millimeter (ppmm)) and

1000 ppi (39.37 ppmm) resolutions, as well as with and without supplementary ROI markup. In all tests, the

ten-print galleries were 500 ppi.

The SDKs were tested as black boxes. For each SDK, all ten-print fingerprint records and latent fingerprint

images were processed by each SDK’s automatic feature extraction algorithm. There was no human

intervention during these processes. The automatically extracted features for the latent fingerprints were

independently searched against both galleries of ten-print fingerprint features. A candidate list report was

generated for each latent fingerprint search listing the top 50 candidates in ranked order by score, with the

candidate having the highest score list at rank 1.

The computer hardware used to run the SDKs were of the following configuration:

• Processor:

o Dual 2.8 GHz/1MB Cache, Xeon (dual-core)

o 800 MHz Front Side Bus for PE 1855

• Memory:

o 2GB DDR2 400 MHz (2x1GB) single ranked DIMMS

• Secondary storage:

o DUAL 73GB 10K RPM, Ultra 320 80 pin SCSI Hard drives (hot plug)

Note that the above hardware may not be representative of operational systems. Therefore, all timing

requirements and all timing results may not be directly comparable to operational scenarios, which may

involve different hardware and software.

14

In the remainder of this section, section 2.1 presents the overall experimental design and section 2.2 describes

the dataset of latents, ten-print exemplars (foreground), and ten-print background used.

2.1 Experimental Design

NIST ran each of the eight Phase II SDKs through a series of four major latent search tests. Each test involved a

different configuration of latents and ten-prints designed to measure overall performance, as well as analyze

the effects of gallery size (5,000 vs. 10,000 ten-print records), image resolution (500 ppi vs.1000 ppi), and

supplementary ROI.

There were three different sets of latents used in the study; each consisted of impressions from the same 835

distinct fingers. These are listed in the table below. The first set, L1, consisted of images at 500 ppi resolution.

The second, L2, consisted of images at 1000 ppi resolution. The third set, L3, consisted of the same 1000 ppi

images in L2, but with ROI included in the search. All latent images were originally scanned at 1000 ppi

resolution. The corresponding 500 ppi latents in L1 were produced by sub-sampling the 1000 ppi images in L2.

None of the latent images were ever lossy-compressed. More details on the characteristics of the latent

fingerprint images used in this study are provided in section 2.2.1.

Latent

test set

Total

latents

Latent

image

resolution

(ppi)

ROI

included?

L1 835 500 No

L2 835 1000 No

L3 835 1000 Yes

Table 4: Phase II latent test sets

There were four different configurations of galleries used in the study; the four are paired into two groups.

These are listed in the table below. The first pair, G1A & G1B, contains a 10K random sample of ten-print

records; the second pair, G2A & G2B, contains a 5K proper subset of those records in G1A & G1B. In both

pairings, the ‘A’ set includes the mated ten-print records, called the foreground, while the ‘B’ set excludes the

mated ten-print records, called the background. Another way to say this is the ‘A’ set is a seeded gallery

comprised of background ten-print records in addition to the latent set’s mated ten-print records. The ‘B’ set

is unseeded, and contains none of the latent set’s mated ten-print records. The seeded galleries have been

constructed with the foreground ten-print records randomly distributed throughout. For each latent in a test

set, there is one, and only one, mate in the corresponding seeded gallery. By searching a seeded gallery,

genuine (true) match scores can be accumulated contributing to the calculation of the False Negative

Identification Rate (FNIR). By searching an unseeded gallery, imposter (non-match) scores can be accumulated

contributing the calculation of the False Positive Identification Rate (FPIR).

It should be noted that all ten-print records used in this study were scanned at 500 ppi, and they were lossy-

compressed using Wavelet Scalar Quantization (WSQ). More details on the characteristics of the ten-print

records used in this study are provided in sections 2.2.2 and 2.2.3.

15

Gallery

test set

Total

ten-print

records

Mate

ten-print

records

(foreground)

Non-mate

ten-print

records

(background)

Ten-print

image

resolution

(ppi)

G1A 10000 608 9392 500

G1B 10000 0 10000 500

G2A 5000 608 4392 500

G2B 5000 0 5000 500

Table 5: Phase II gallery test sets

The latent and gallery test sets, described above, were combined into the four major latent search tests listed

in the table below. Notice that not all possible combinations of latent to gallery configurations were executed

in Phase II. This was due to the large computation time it takes to execute one SDK on just one search

configuration. It was determined that there was only time to execute the four tests below by each of the eight

SDKs, and that the selection of these four was sufficient to study the effects of gallery size, image resolution,

and supplementary ROI. Results in this report identify which of these four tests they were derived from, and

analyses identify which of these four tests are studied and/or compared.

Latent search test

Search

configuration

Latent

test set

Gallery

test set

500 ppi Latent vs. 5K Gallery
L1 G2A

L1 G2B

1000 ppi Latent vs. 10K Gallery
L2 G1A

L2 G1B

1000 ppi Latent vs. 5K Gallery
L2 G2A

L2 G2B

1000 ppi Latent +ROI vs. 5K Gallery
L3 G2A

L3 G2B

Table 6: Phase II major latent search tests

16

2.2 Dataset Description

2.2.1 Latents

The images NIST used for this evaluation were obtained from an unnamed U.S. Government operational

source. The latents were prepared during the course of feature search transactions conducted by an examiner

using the FBI’s Integrated Automated Fingerprint Identification System (IAFIS). For each latent, a single

examiner was involved in feature selection, searching, and subsequent pairing with a subject’s ten-print mate.

The complete set of latent images, minutiae features, images of ten-print mates, and original IAFIS candidate

lists were provided to NIST, along with associated metadata.

The dataset contains latents of type “latent photo,” and most are likely to have originated from paper medium

after first being developed using ninhydrin (the precise methods of developing the print are not documented).

The images themselves are assumed to be scans of original photographic prints, which make them 2
nd

generation images. Most all images were modified by the examiner conducting the original case work to

enhance usability, which typically included cropping and/or rotation of the original scanned image. In

approximately one third of the cases, a kind of “contrast enhancement” was applied which sometimes resulted

in the images having a “binarized” appearance.

All latent images in the dataset were originally scanned at 1000 ppi resolution. The width of these images

ranges from 216 to 1510 pixels, and the height ranges from 276 to 1667 pixels. The mean width is 586 pixels,

and the mean height is 696 pixels.

2.2.1.1 Latent Pattern Classification

Table 7 lists the percentages of latent prints in the dataset belonging to three major ridge flow pattern

classifications as reported to NIST: loops, whorls and arches. All pattern classifications listed here were

determined by the examiners when conducting the original case work. (Additionally, a fingerprint examiner at

NIST verified these original classifications.) A fourth category of “undetermined” is included for those latent

prints in which there was no discernable pattern class. The table compares these percentages to the

approximate pattern class percentages for all fingerprints in the FBI’s Criminal Master File (CMF). Based on

this, the ELFT dataset appears somewhat overrepresented in whorls and underrepresented in loops.

 ELFT Phase II Dataset (%) FBI CMF (%)

Loops 46.8 65

Whorls 41.7 30

Arches 3.6 5

Undetermined 7.9 N/A

Table 7: Distribution of latent pattern classes for ELFT Phase II dataset vs. FBI CMF

17

2.2.1.2 Latent Finger Position

Table 8 lists the percentages of latent prints in the dataset by finger position as determined by the examiner

during the original case work. Finger position of each latent is based on the finger position of the

corresponding ten-print mate. As shown, the dataset contains predominately thumbs (47.2%) and index

fingers (27.3%). It should be noted that the prevalence of whorls shown in Table 7 is most likely due to the

dataset containing a large percentage of thumbs, as thumbs are more likely to have whorls.

Finger position
Right

thumb

Right

index

Right

middle

Right

ring

Right

little

Left

thumb

Left

index

Left

middle

Left

ring

Left

little

% of total 29.6 15.2 7.7 2.4 0.7 17.6 12.1 7.7 5.7 1.3

Table 8: Distribution of latent fingerprint positions in ELFT Phase II dataset

2.2.2 Foreground

For each latent image in the dataset, there is a corresponding ten-print mate image. The collection of ten-

prints containing these mates comprises the foreground. While 588 unique subjects are associated with the

latents in the dataset, the number of subjects associated with the foreground ten-prints is 608 – this is an

artifact of a number of latents having been excluded from the study after gallery creation. (See section 2.2.5

for more detail.)

Figure 2 shows how the latent prints are distributed by subject. The majority of subjects (75%) have a single

associated latent in the dataset; however, a significant percentage (25%) have two or more. The top chart in

the figure shows the total number of latent images per subject in the dataset, whereas the bottom chart

counts only distinct physical fingers present per subject (e.g., a subject having three total fingers where two

are right index and one is right thumb is counted as having only two “distinct” fingers). This is of relevance to

section 5, which examines the potential utility for “fusion” of search results when two or more fingers are

available per subject.

The foreground consists of approximately 18% live-scanned and 82% non-live scanned (ink) impressions. The

foreground images were all scanned at 500 ppi, and were WSQ compressed (15:1). The image width of the

foreground images ranges from 304 to 837 pixels, and the height ranges from 432 to 800 pixels. The mean

width is 798 pixels, and the mean height is 752 pixels

Figure 2: The distribution of lat

18

: The distribution of latent fingerprint images for all 588 subjects

19

2.2.3 Background

The dataset consists of a larger number of non-mate ten-prints called the background. To ensure dataset

diversity, the background was selected to be composed of ten-print images from four different government

operational datasets: TXDPS, LACNTY, AZDPS, and INSBEN. Ten-prints were randomly selected from these

datasets in order to achieve a 50/50 mix of ink and live-scan impression types along with equal proportionality

from each source. Table 9 below shows the composition by data source of each gallery defined in Table 5. The

background images were all scanned at 500 ppi, and were WSQ compressed (15:1). The image width of the

background images ranges from 384 to 812 pixels, and the height ranges from 544 to 801 pixels. The mean

width is 800 pixels, and the mean height is 742 pixels.

Gallery

Name

Non-mate

ten-print

records

(background)

TXDPS

(100%

ink)

LACNTY

(50%

live-scan

and 50%

ink)

AZDPS

(100%

live-scan)

INSBEN

(50% live-

scan and

50% ink)

G1A 9392 2348 2348 2348 2348

G1B 10000 2500 2500 2500 2500

G2A 4392 1098 1098 1098 1098

G2B 5000 1250 1250 1250 1250

Table 9: Phase II background sources

2.2.4 Ten-Print Image Quality

Table 10 summarizes the quality of the ten-prints by source comprising the ELFT Phase II dataset. The NIST

Fingerprint Image Quality (NFIQ) [9]) is being used for the comparison with NFIQ=1 of highest image quality

and NFIQ=5 of lowest image quality. (Note that NFIQ was primarily designed for use with plain fingerprints,

but is being applied to rolled prints in this case.) The Summary NFIQ listed in the right column of the table is

based on equation 1 of NIST IR 7422 [10] and is on the scale of 0 to 100, with 100 being of highest image

quality. As can be seen from Table 10, the resulting foreground ten-prints are generally of higher quality than

the background ten-prints.

Dataset name
NFIQ=1

(%)

NFIQ=2

(%)

NFIQ=3

(%)

NFIQ=4

(%)

NFIQ=5

(%)
Summary NFIQ

TXDPS 36.5 9.2 38.7 6.4 9.2 83.6

LACNTY 33.4 17.8 29.5 5.0 14.2 79.9

AZDPS 38.5 17.3 24.2 9.4 10.6 82.4

INSBEN 31.0 15.2 29.9 11.8 12.2 79.3

ELFT foreground 44.1 15.5 27.9 4.7 7.8 86.7

ELFT background 34.9 14.9 30.6 8.1 11.5 81.3

Table 10: Summary of ten-print quality by source

20

2.2.5 Mate Association and Validation

Accurately determining the correspondence between latent fingerprints and their associated ten-print mates is

essential for the purpose of measuring latent search error rates. As described earlier, the latent images used

for this study are from real case work, and the metadata provided was used to establish the associations to the

corresponding ten-print mates. Specifically, all latents in this study were originally submitted to the FBI IAFIS

system in order to produce suitable candidate lists for subsequent (1:1) comparisons by US government latent

fingerprint examiners. In each case, a ten-print record was eventually determined by examiners to contain a

mate corresponding to the search latent.

Use of latent data obtained as a result of a successful AFIS search introduces “AFIS bias.” AFIS bias results

when the data has been selected using an AFIS. Latents that may have a mate in the database, but which are

not matched because of poor exemplar image quality, relative distortion differences, or insufficient overlap,

are excluded. This can result in a significant overstatement of the system performance capability as compared

to the expected performance level that is likely to be achieved in an operational environment. The quality of

the latent fingerprints used in Phase II was reviewed by a latent fingerprint examiner, and it was determined

that the overall quality was higher than typical operational latent case work. This is supported by the

observation that the average minutiae count for the Phase II dataset is 23, which is higher than the average

minutiae count observed in typical latent case work (reported to be 17.
3
)

In order to validate the association of identity between latents and their alleged mates, a limited number of

cases were reviewed by a latent examiner at NIST. Included for review were cases in which all SDKs missed

reporting the alleged mate on the candidate list, cases in which the highest performing SDK missed reporting

the alleged mate on the candidate list, cases of high scoring alleged non-mates, and cases of low scoring

alleged mates. Of all cases reviewed, six were removed as confirmed non-matches. Six cases were

determined inconclusive, and of these, three were missed by all SDKs and therefore removed. For each of the

three inconclusive cases retained in the dataset, the associated mate provided from the original case work was

assumed to be true, and SDKs were scored accordingly. This validation process promoted the accuracy of

testing while it minimized any bias in removing particularly difficult latents.

2.2.6 ROI Markup

The ELFT Phase II CONOPS proposed a type of human assistance to the AFEM SDKs requiring minimal effort on

the part of the human expert. The basic concept is to have the examiner designate an ROI on the latent image.

The ROI would include the area of the primary fingerprint in the image, while excluding areas of non-

fingerprint data, extraneous fingerprints, and / or highly smudged parts of the fingerprint. In principle, this

should increase the signal-to-noise ratio, resulting in better performance. Experience has shown that selecting

an ROI is much less labor intensive than extracting minutiae manually, and can typically be done by an expert

in well under a minute, compared to possibly 20 minutes for a full examiner-markup.

Figure 3 shows the steps in creating an ROI. In the first image (a) an ROI is outlined on the latent fingerprint

image. The next figure (b) shows the resulting ROI mask by itself. This is followed by a figure (c), which shows

the effect of applying the ROI mask to the image. These three images constitute a simplified example, for

illustrative purposes. The actual Phase II masks had more complicated boundaries, as shown in (d) for a

different latent image case.

The ROI is intended to preserve the “good” part of the fingerprint image, while excising regions considered

possibly “detrimental.” When creating the ROI masks, NIST found that there were many cases where excising

any part of the image would be an arbitrary decision, and therefore unjustified. In these cases the ROI mask

was selected to cover the entire image, and in essence the entire image was retained. Of the 835 latent cases

in the dataset, 89 included an ROI of the entire latent image.

3
 Minutiae count of 17 for typical case work cited by NIST latent expert.

21

(c) Sub-mage created by applying

mask (b) to original image (a)

(d) Specimen of actual Phase II mask

(unrelated to prior image)

Figure 3: Example of Region-of-Interest (ROI) markup

(a) Original image with

region-of-interest marked
(b) Image mask created from

region of interest

22

3 Results and Analysis

3.1 Accuracy Results of Phase II

Overall accuracy results are presented in this section first using rank-based metrics via Cumulative Match

Characteristic (CMC) curves, and then using score-based metrics via Detection Error Trade-off (DET) curves. It

should be noticed that ranked-based statistics are not necessarily stable as database size grows.

3.1.1 CMC

A CMC curve shows how many latent images are correctly identified at rank 1, rank 2, etc. A CMC is a plot of

identification rate (or hit rate) vs. recognition rank. Identification rate at rank k is the proportion of the latent

images correctly identified at rank K or lower. A latent image has rank k if its mate is the k
th

 largest comparison

score on the candidate list. Recognition rank ranges from 1 to 50, as 50 was the (maximum) candidate list size

specified in the API.

Figure 4 shows CMC plots of the eight SDKs for different gallery sizes (5K and 10K) and latent images at

different resolution (500 ppi and 1000 ppi). SDK M1 outperforms other SDKs, with P1 at a distant second

place. This is confirmed by Figure 5, which shows the identification rate at rank 1 (i.e. percentage of hits in

first position) for the eight SDKs along with the 95% confidence intervals for latents at 500 ppi and gallery of

5K. The non-overlapping confidence intervals of M1 and P1 suggest significant difference between their

performance and other SDKs. Figure 4 also suggests that there is not much gain in identification rate after rank

10. Also, L1 and R1 exhibit curiously lower performance on 1000 ppi than on 500 ppi latents. There are small

changes observed between the CMC plots when comparing effect of gallery size, latent image resolution

(ignoring L1 & R1), and supplementary ROI. These factors will be analyzed more closely in later sections.

Key Observations:

• SDK M1 outperforms other SDKs (rank 1 identification rate of 97.2% for 1000 ppi gallery 10K) ; the

second best performer is P1.

• There is not much gain in identification rate after rank 10.

23

(a) CMC – 500 ppi latents vs.5K gallery

(b) CMC – 1000 ppi latents vs.5K gallery

(c) CMC – 1000 ppi latents vs. 10K gallery

(d) CMC – 1000 ppi latents + ROI vs.5K gallery

Figure 4: CMC of all SDKs for four test cases.

(L1 & R1 have noticeable problems processing 1000 ppi latent images)

24

Figure 5: Rank 1 identification rate; 500 ppi latents vs. gallery size 5K with 95% confidence intervals

3.1.2 DET

While CMC is a rank-based identification performance measure, most operational biometric systems report

hits and misses relative to a threshold based on matcher score. An analysis of performance relative to

threshold is needed here because identification is rarely a closed-universe problem. Instead, in the open-

universe case, many latents will not have an enrolled mate. Thus the ideal response to a search is a candidate

list of length one for searches that have an enrolled mate and length zero when there is no enrolled mate. In

practice, however, there will be more than one entry on a candidate list, because some impostor comparisons

will probably exceed threshold, resulting in false matches (Type I error). The opposite case occurs when a

genuine comparison score falls below threshold; the result is a false reject, or a miss (Type II error). A

Detection Error Trade-off (DET) curve is a plot of Type II error (false reject rate) vs. Type I error (false match

rate).

In real-world forensic one-to-many applications, the biometric comparison system returns a candidate list of

enrolled identities that may include the correct match. Candidate lists are examined by human experts for the

final decision on identity match. There are two types of error that can occur: the correct (genuine) match does

not appear on the candidate list, or one or more impostors generate comparison scores higher than the

correct (genuine) match and so appear at rank better than the correct match. There are different but closely

related terminologies for these two types of errors in the literature, such as False Match and False Non-Match,

False Accept and False Reject, False Positive and False Negative, Selectivity and Reliability to name a few.

25

Absent universally accepted identification error rate metrics, the ISO/IEC 19795 Biometrics Performance

Testing and Reporting - Part 1: Framework and Principles suggested new terms. These are False Positive

Identification Rate (FPIR) and False Negative Identification Rate (FNIR). The standard, however, leaves the

exact mathematical definition to the implementer. So for ELFT we define FPIR as the fraction of candidate lists

which contain one or more non-mate entries after the original candidate list has been thresholded at score t

and limited to length K. Formally, if

IDi denotes subject’s i unique ID

Ci is candidate list for latent print of subject i (IDi)

sij is the comparison score of latent print of subject i (IDi) and

gallery image of subject j (IDj)

(i.e. sii is the comparison score of latent and gallery images of

the same subject, and likewise sij is the comparison score of

latent and gallery images of different subjects.)

rankj is the rank of gallery image of subject j (IDj) on the Ci

N is the total number of searches

t is the specified threshold

K is the candidate list cut-off (limit)

then the false positive identification rate is:

FPIR(t, K) =
|{ Ci : ∃ IDj ∈ Ci and sij > t, length(Ci) = K, IDi ≠ IDj }|

N

Similarly, the false negative identification rate, as a statement of miss rate, is the fraction of candidate lists for

which the enrolled mates do not appear in the top K positions with score greater than threshold, t.

FNIR(t, K) =

|{ Ci : ∀IDj sii < t or rank i > K }| + |{ Ci : Ci = ∅ }|

N

The ELFT API requires SDKs to produce a candidate list of length 50. In the DETs that follow we restricted rank

to values of 1, 20 and 50, and let the threshold run over the entire range of scores reported by the SDK. The

dual application of constraints on rank and threshold constitute a candidate list reduction procedure.

To compute FPIR we used impostor scores from searches of galleries containing no mates (see “G1B” and

“G2B” above). This was done to reflect operational reality that many searches do not have mates. It is often

assumed that the non-mate scores returned in an identification search will be independent of whether or not

the enrollment set includes the mate. However, this is not always the case. ELFT included the execution of

searches without an enrolled mate, because false matches are a considerable hazard in large gallery one-to-

many biometric identification applications, and because the a priori knowledge that a mate exists would allow

performance to be artificially improved.

Figure 6 shows DET curves of all eight SDKs for four different test cases when only the rank 1 entry on the

candidate list is considered (i.e. reducing candidate list to length 1). DET curves for rank 20 and 50 are shown

in Figure 7 and Figure 8, respectively.

The results observed from the DET curves are similar to the CMC results discussed above. M1 outperforms all

the other SDKs, followed by P1. L1 and R1 exhibit lower performance on 1000 ppi than on 500 ppi latents. The

very small difference in DET curves of ranks 1, 20, and 50 is consistent with our earlier (CMC curve) observation

that SDKs most of the time place the correct match at rank 10 or below. Such information is helpful in

choosing an appropriate candidate list length in operation. There are small changes observed between the

26

DET plots when comparing effect of gallery size, latent image resolution (ignoring L1 &R1), and supplementary

ROI. These factors will be analyzed more closely in later sections.

Key Observations:

• M1 outperforms all the other SDKs at all thresholds; the second best performer is P1.

• For 1000 ppi latent and gallery 10K, M1 achieves FNIR = 0.149 at FPIR = 0.01.

• The very small difference in DET curves of ranks 1, 20, and 50 is consistent with our CMC-based results

in that SDKs most of the time place the correct match at rank 10 or below.

Figure 6: DET at rank 1

27

at rank 1 of all SDKs for four test cases

Figure 7: DET at rank 20

28

at rank 20 of all SDKs for four test cases

Figure 8: DET at rank 50

29

at rank 50 of all SDKs for four test cases

30

3.2 Comparison with Phase I Results

It is of interest to compare the Phase II performance with the performance using the Phase I dataset. The

Phase I dataset was not primarily intended for performance evaluation. Rather, it was intended as a “proof of

concept test.” As such, it included a large variety of different image types and quality, not necessarily

representative of actual case work.

There were 88 latent fingerprint images used to compute performance in the Phase I dataset, and the gallery

consisted of 1000 ten-prints. As shown in the table below, when all 15 Phase I SDKs are included in the

aggregate, the resulting performance was 59% in first place and 66% on the candidate list. The second row

shows the performance for those Phase I SDKs in which the Participant selected to continue to Phase II. The

third row shows the performance of revised SDKs submitted for Phase II on the Phase I data. Finally, the

fourth row shows the performance of the Phase II SDKs on the Phase II dataset.

Based on Phase I results, NIST expected Phase II performance to be comparable or slightly worse due to the

larger gallery. The actual outcome was a surprise, as performance was 12 to 15% higher.

Key Observations:

• On average, performance of Phase II SDKs improved over their corresponding SDKs on the Phase I

dataset.

• Phase I dataset is more difficult than the Phase II dataset.

 Performance

 In first place
(top)

On candidate
 list (1-50)

All Phase I SDKs 59.02% 66.06%

Those going on to Phase II 62.69% 68.37%

Phase II SDKs on Phase I data 68.61% 75.00%

Using Phase II data 80.50% 89.13%
Table 11: Comparison with Phase I results

31

3.3 Effect of Gallery Size

It is known that as gallery size increases (i.e. the number of individuals in the gallery set increases) the

identification rate (as shown on the Y-axis of the CMC curves) decreases [11]. This is known as the scalability

problem. We examined the effect of gallery size on performance by comparing the performance of searching

the 5K gallery against that of the 10K gallery.

Figure 9 compares identification rate for the two different gallery sizes. Specifically, it shows the rank 1

identification rate of each SDK along with their 95% confidence interval for both the 5K gallery and 10K gallery

(an increase in gallery size by a factor of two.) The observed average decrease is 1%.

Figure 9: Comparison of Rank 1 identification rate of 1000 ppi latents at two gallery sizes, 5K and 10K;

superimposed are 95% confidence intervals

It is interesting to note that the theoretical model described in

in performance between the 5K gallery and the 10K gallery. The graph below takes this model and predicts the

estimated decrease in performance when scaling the gallery size from 5K to the number of subjects plotted

along the x-axis. (Note that the x-axis is on the log scale.) The observed average decrease in Phase II testing

between the 5K and 10K gallery is plotted as the red point. The model estimates a decrease of performance of

just over 10% when scaling from a 5K gallery to a 10M gallery.

The reader is strongly encouraged to not put too much weight in these results. In this case a very simplistic

model was used based on the average performance of the eight SDKs in Phase II. The ability of the model to

predict the change in performance between the 5K and 10K gallery is promising, but there is no evidence

that the model’s estimates should be trusted further out. More work in this area is warranted.

Key Observations:

• There is a clear trend that for all SDKs, the Rank

increased from 5k to 10K.

• The amount of change in identification rate is not the same for all SDKs.

• Initial work in modelling the effect of increasing the gallery size has been demonstrated.

Figure 10: Estimated average drop in performance due to scaling gallery size.

Red data point is observed decrease between gallery size of 5K and 10K.

32

It is interesting to note that the theoretical model described in Appendix A similarly predicts a 0.95% decrease

in performance between the 5K gallery and the 10K gallery. The graph below takes this model and predicts the

estimated decrease in performance when scaling the gallery size from 5K to the number of subjects plotted

axis is on the log scale.) The observed average decrease in Phase II testing

between the 5K and 10K gallery is plotted as the red point. The model estimates a decrease of performance of

allery to a 10M gallery.

The reader is strongly encouraged to not put too much weight in these results. In this case a very simplistic

model was used based on the average performance of the eight SDKs in Phase II. The ability of the model to

change in performance between the 5K and 10K gallery is promising, but there is no evidence

that the model’s estimates should be trusted further out. More work in this area is warranted.

There is a clear trend that for all SDKs, the Rank 1 identification rate decreases when gallery size is

The amount of change in identification rate is not the same for all SDKs.

ing the effect of increasing the gallery size has been demonstrated.

: Estimated average drop in performance due to scaling gallery size.

Red data point is observed decrease between gallery size of 5K and 10K.

milarly predicts a 0.95% decrease

in performance between the 5K gallery and the 10K gallery. The graph below takes this model and predicts the

estimated decrease in performance when scaling the gallery size from 5K to the number of subjects plotted

axis is on the log scale.) The observed average decrease in Phase II testing

between the 5K and 10K gallery is plotted as the red point. The model estimates a decrease of performance of

The reader is strongly encouraged to not put too much weight in these results. In this case a very simplistic

model was used based on the average performance of the eight SDKs in Phase II. The ability of the model to

change in performance between the 5K and 10K gallery is promising, but there is no evidence

1 identification rate decreases when gallery size is

33

3.4 Effect of Resolution

Increased latent image resolution provides more information, and in principle, should result in better

performance. One of the objectives of this study was to analyze the effect of latent image resolution. This is

accomplished by comparing searches at 1000 ppi with those at 500 ppi. In both cases, the gallery consists of

5K ten-prints, and note that the ten-print images were scanned at 500 ppi and WSQ compressed. There is a

caveat with the latent images: the 500 ppi images were actually scanned at 1000 ppi, and then sub-sampled to

500 ppi. This may produce higher-quality imagery and therefore more favorable results than if the images

were originally scanned directly at 500 ppi.

Figure 11 compares identification rate at the two resolutions. Specifically, the figure shows rank 1

identification rate of each SDK along with their 95% confidence interval at 500 ppi and 1000 ppi. SDKs L1 and

R1 curiously had much lower identification rates for 1000 ppi latent images than for 500 ppi. Additionally it is

noted that Q1’s performance slightly drops from 500 ppi to 1000 ppi. The other five SDKs (K1, M1, N1, O1, &

P1) all show a small improvement when going from 500 ppi to 1000 ppi, and their average rank 1 identification

rate increases by 0.93%. The fact that differences in performance between pairs (same SDK at 500 ppi vs. 1000

ppi) are often smaller than half the confidence interval does not necessarily imply statistically insignificance.

Keeping in mind that searches of a latent at 500 ppi and a 100 ppi are in no way independent observations, the

issue of whether higher resolution offers higher accuracy is more completely addressed by counting the

occurrences of improved and degraded accuracy. These outcomes are shown in Figure 12.

Figure 11: Comparison of Rank 1 identification rate at different resolutions; 500 ppi and 1000 ppi latents vs.

gallery size 5K

34

The following figures provide a detailed comparison between the performance when searching latent images

at both 500 and 1000 ppi resolution. (R1 and L1 are excluded.) The general case is that the use of 1000 ppi

over 500 ppi causes some hits to be gained, but also some to be lost. M1, Q1 and K1 demonstrate a net

benefit, while N1, O1 and P1 show a loss. While M1 realizes the most consistent improvement, all SDKs exhibit

degraded rank for some latents. While the changes in the numbers of hits is generally less than 2 percent of

the total searches, the net gain for M1 represents a large fraction of the number of latents not hit at rank 50.

Key Observations:

• Excluding L1, R1 & Q1, an average improvement of 0.93% in rank 1 identification rate is observed.

• Increasing resolution from 500 ppi to 1000 ppi causes some hits to be gained but also some to be lost.

The net outcome differs between each SDK.

Figure 12: Effect of latent resolution on Rank 50 detection rate; searches of 1000 and 500 ppi latents against

gallery of size 5K

35

3.5 Effect of Region of Interest (ROI) Markup

ROI markup is discussed in section 2.2.6. It should be noted that the instructions to the test participants did

not specify that only the ROI image (i.e., after application of the mask) be used. In principle, it was permitted

for an SDK to use the original image along with the ROI-extracted image. NIST has no information regarding the

actual approach used by any SDK.

Figure 13 shows the rank1 identification rate of the 1000 ppi latents with and without ROI markup, for gallery

size of 5K, along with their 95% confidence interval. The results are mixed and show that augmenting the

search with ROI markup only slightly improved the performance of matchers K1, N1 & R1, while slightly

degraded that of L1, O1, and P1. There is no affect on the performance of M1.

Figure 13: Comparison of Rank 1 identification rate of 1000 ppi latents with and without ROI masking;

gallery size 5K; superimposed are the 95% confidence intervals

36

The following analysis provides additional comparisons between the performance when using the ROIs and not

using ROIs. Figure 14 shows the number of cases where the ROI improved the result, the number of cases

where it made it worse, and the net difference between these two. Again, the results are mixed. The general

case is that the use of ROI causes some hits to be gained but also some to be lost. While K1 and N1 realize the

most consistent improvement, all SDKs exhibit degraded rank for some latents. It is interesting to note

however, that if ROIs could somehow be selectively applied only to those images where beneficial (i.e.,

eliminating the cases of degraded performance), it could have resulted in a 3.3% to 4.5% performance increase

for three of the SDKs.

Figure 14: Effect of ROI on Rank 50 detection rate; for searches of 1000 ppi latents with and without ROI

against gallery of size 5K

To gain more insight, we looked at how performance was affected

Five “bins” were selected. A latent case was assigned to a bin depending upon the amount of area

excised from the image when applying the ROI

no area excised; bin #2 contains cases of area excised

excised between 15% and 35%; bin #4 contains ca

contains cases of area excised greater than 50%

following figure shows the total change in performance for each bin.

weighted rankings. Thus a candidate which went from first position (with no ROI) to second position (when

using ROI) would receive a delta score of – ½

receive + 1/6. The delta performance reported

across the SDKs (excluding L1 & R1) for each search.

When only a small amount of the image is excised (

without ROI. When the amount excised is between

definite trend is observed when larger amounts of a

than 50% of the image, a 3% improvement in performance is observed. So in these cases, using ROI appears to

have benefit.

Key Observations:

• The results were mixed for rank1 identification rate of

markup. When using ROI, three SDKs slightly improved, three SDKs slightly degraded, with one SDK

remaining the same.

• Using ROI causes some hits to be gained

each SDK. If ROI could be selectively applied only to those latent images where beneficial, three SDKs

could have improved performance by as much as 3% to

• When more than 50% of the latent image is excised as a result of applying the ROI, an avera

3% in performance was observed.

Figure 15: Change in Performance vs. percentage of latent image area marked as ROI

37

To gain more insight, we looked at how performance was affected by how much of the image was excised.

was assigned to a bin depending upon the amount of area

when applying the ROI. Bin #1 contains cases where the entire image was used with

f area excised between 0% and 15%; bin #3 contains cases of area

35%; bin #4 contains cases of area excised between 35% and 50%; and bin #5

50%. The largest area of excision in the dataset was 80%.

performance for each bin. A “delta-score” was computed

weighted rankings. Thus a candidate which went from first position (with no ROI) to second position (when

½, while one that went from third place to second place would

performance reported in the figure represents the sum of all delta scores averaged

across the SDKs (excluding L1 & R1) for each search.

excised (0%-15%), the results with ROI are slightly worse than

When the amount excised is between 15% and 35% results are rather neutral. However, a

definite trend is observed when larger amounts of area are excised. For ROIs resulting in excision of greater

in performance is observed. So in these cases, using ROI appears to

The results were mixed for rank1 identification rate of the 1000 ppi latents with and without ROI

markup. When using ROI, three SDKs slightly improved, three SDKs slightly degraded, with one SDK

causes some hits to be gained, but also some to be lost. The net outcome differs bet

be selectively applied only to those latent images where beneficial, three SDKs

ed performance by as much as 3% to 4%.

of the latent image is excised as a result of applying the ROI, an avera

Change in Performance vs. percentage of latent image area marked as ROI

e was excised.

was assigned to a bin depending upon the amount of area that was

where the entire image was used with

15%; bin #3 contains cases of area

50%; and bin #5

was 80%. The

was computed based on

weighted rankings. Thus a candidate which went from first position (with no ROI) to second position (when

hile one that went from third place to second place would

delta scores averaged

are slightly worse than

However, a

rea are excised. For ROIs resulting in excision of greater

in performance is observed. So in these cases, using ROI appears to

the 1000 ppi latents with and without ROI

markup. When using ROI, three SDKs slightly improved, three SDKs slightly degraded, with one SDK

. The net outcome differs between

be selectively applied only to those latent images where beneficial, three SDKs

of the latent image is excised as a result of applying the ROI, an average gain of

Change in Performance vs. percentage of latent image area marked as ROI.

38

3.6 Effect of Minutia Count

Each latent has been evaluated by examiners, and information such as the number of minutia points, pattern

class, etc., was encoded in the original Type 9 record that was used as part of the transaction (LFFS - latent

fingerprint feature search) when submitting to IAFIS. To our knowledge, only one examiner has marked each

latent, and given that many aspects of latent markup are subjective, this information might be prone to

variation. Nevertheless, such information is useful to study how performance is affected by number of

minutiae or pattern class of latent images.

Figure 16 shows how each SDK performed based on the minutia count in each latent searched. The figure

reports the distribution of minutia count for latent cases identified at rank 1, rank 2 to 50, and latent cases that

were missed. The results were obtained when searching with latents at 1000 ppi on a gallery of 5K. Note that

ELFT API required SDKs to produce a candidate list of length 50. Latent cases identified at rank 2-50 are those

whose mate appeared on the candidate list, but not as the most probable candidate. Missed latent cases are

those that either the mate did not appear on the candidate list or latent cases for which the SDK failed to

return a candidate list.

In the Phase II dataset, the latent with the least minutiae has 8, and the latent with most minutiae has 90. The

dotted horizontal line in the figure marks the median minutia count at 22 for the latent cases identified at rank

one. Furthermore, median minutia count for latent cases identified at rank 2-50 (i.e., appeared in the

candidate list, but not at rank 1) is relatively similar to median minutia count for missed latent cases (mate not

reported in the candidate list), with their distributions considerably overlapping. This suggests that factors

other than minutiae count are needed to distinguish lower-ranking latent cases from missed cases.

Figure 16: Box plot of minutia count vs. performance

(Minutia count was performed manually by

To determine the extent to which the overall

the latent images were divided into three approximately equal bins.

count (from 25 up to 90); the second has medium minutiae count (from 17 to

minutiae count (8 to 16). The mean minutiae count for the three bins is 35.0, 20.6, and 13.7.

cases is 23.

The average performance for the eight SDKs was then evaluated for each bin.

following figure using latents at 500 ppi on a 5K gallery. A weighted rank

makes allowance for hits in other positions than rank 1. The weight assign

position on the candidate list. Thus a hit in first place receives full value (w=1), a hit in second place receives

half value (w=1/2), a hit in third place receives

A.1) for more discussion on this and other rank

39

: Box plot of minutia count vs. performance for latent resolution 1000 ppi and gallery size of 5k.

(Minutia count was performed manually by fingerprint examiners.)

the overall observed detection performance is affected by minutiae count,

atent images were divided into three approximately equal bins. The first bin has the highest minutiae

up to 90); the second has medium minutiae count (from 17 to 24); and the third had the lowest

). The mean minutiae count for the three bins is 35.0, 20.6, and 13.7. The mean for all

SDKs was then evaluated for each bin. The results are reported in the

s at 500 ppi on a 5K gallery. A weighted rank-based metric (Mw) is used

makes allowance for hits in other positions than rank 1. The weight assigned to a hit is the reciprocal of its

position on the candidate list. Thus a hit in first place receives full value (w=1), a hit in second place receives

), a hit in third place receives one third value (w=1/3), and so forth. See Appendix

for more discussion on this and other rank-based metrics.

resolution 1000 ppi and gallery size of 5k.

affected by minutiae count,

The first bin has the highest minutiae

); and the third had the lowest

The mean for all

The results are reported in the

) is used, which

ed to a hit is the reciprocal of its

position on the candidate list. Thus a hit in first place receives full value (w=1), a hit in second place receives

Appendix A (section

40

Figure 17: Matcher performance by minutia count category (high, medium and low).

Performance computed using average of the Mw metric.

It is clear that performance generally drops off for lower minutia count (successive bins), as expected. In the

case of M1 and P1, the performance for the “high” count and “medium” count are almost the same. This

suggests that beyond some critical number of minutiae, additional minutiae do not necessarily aid

performance for these particular SDKs.

The following graph shows “aggregate” performance plotted against the number of minutiae, where the

performance of all eight SDKs was averaged together. There are now four bins. They are similar to the three

used above, but now include a “very low minutiae count” bin, so as to better determine the behavior.

Superimposed on the graph is a “trend line.” The equation of the trend line (a quadratic) is also exhibited. This

trend line may be used to compute a “sensitivity coefficient” (= slope of the trend line). For example, at 20

minutiae, the slope is 1.49% per minutia. This can be interpreted that, if the minutiae count is reduced by one,

the Mw statistic can be expected to drop by 1.5%. (The quadratic used here is illustrative of model fitting, but

not necessarily the best equation to apply in this case, as it behaves with an inflection point rather than

asymptotic as greater numbers of minutiae within latents are encountered.)

The average minutiae count for the Phase II dataset is 23. This is higher than the average minutiae count

observed in latent case work, which has been reported to be 17 (this data was provided by an expert latent

examiner). The difference in performance between the two minutiae counts can be estimated as 6 x 1.5% =

9%. (E.g., the Mw metric is 71% for 23 minutiae, and 62% for 17 minutiae.) This can be verified directly from

the graph.

41

As expected, rank one identification rate is positively correlated with number of minutiae in a latent print. This

implies minutia count could be a proxy for level of difficulty identifying a latent; the more minutia points in a

latent print, the “easier” it is to identify the latent.

Key Observations:

• Minutia count is an indicator of the level of difficulty in correctly identifying the latent. The median

minutia count for latent cases identified at rank one is 22, while the median minutia count for latent

cases identified at rank 2 to 50 is less than 22.

Figure 18: Aggregate matcher performance (Mw) vs. number of minutiae

Mw

42

3.7 Effect of Finger Position

In this section we examine the effect of finger position on performance. Finger position refers to the specific

finger of a subject, and is a number from 1 – 10. Finger #1 is the right thumb, and finger #2 is the right index

finger, and so forth. Similarly, finger #6 is the left thumb, and finger #7 the left index finger, and so forth.

Most latent fingerprints come from finger positions 1, 2, 6, and 7; and not surprising, most of the latent images

in ELFT test set are thumb and index fingers. There are very few latents of little fingers (position #5 & #10);

therefore results for little fingers are presented but not considered reliable. All fingerprint position

information presented here originated from the latent fingerprint examiners who conducted the original case

work.

Rank 1 identification rate per finger position for each SDK at resolutions of 1000 ppi and gallery size of 10K is

given in Table 12. SDK M1 is least affected by finger position while N1 and K1 performance varies by finger

position more than for other SDKs. In order to detect trends, Table 13 was created based on the performance

results reported in Table 12. The performance numbers for each SDK were ranked within each hand by finger

position. (Note that L1 & R1 are omitted from the ranking due to their unusually low performance on 1000 ppi

latents, and little fingers (#5 & #10) have been omitted due to small sample representation.) For example, SDK

K1 with the right hand achieved highest performance of 0.85 for the right thumb, and rank 1 is recorded in the

corresponding cell in Table 13; likewise, K1 with the right hand achieved lowest performance of 0.55 for the

right ring finger, and rank 4 is recorded in the corresponding cell in Table 13. The overall results suggest that

multi-algorithm fusion based on finger position could improve performance.

Some trends are seen in Table 13. For right hand, the SDKs rather consistently rank their performance in the

order of finger position; #1 ranks 1, #2 ranks 2, etc. The right index finger ranks highest down to the right ring

finger. Ranks are a bit more blended for the left hand, but trends are still seen. The left index finger has a

higher frequency of rank 2, while left middle and left ring fingers trade off ranks 1 & 3. The left ring finger has

the highest frequency of rank 4, and is therefore considered the most difficult to match on the left hand.

Figure 19 plots the results of Table 12 in the bottom graph (latents at 1000 ppi and gallery size of 5K). The top

graph is for latents at 500 ppi and gallery size of 5K, and is provided for the benefit of SDKs L1 & R1. These

graphs support the trends observed above.

Key Observations:

• SDK M1 is least affected by finger position, while N1 and K1 performance varies by finger position

more than for other SDKs.

• Looking at just the thumb, index, middle, and ring fingers on each hand, there is some evidence that

latent search performance is highest with thumbs, next with index fingers, and lowest with ring

fingers. Results on little fingers were not analyzed due to very small sample size representation in the

Phase II dataset.

43

Finger

position

1

2

3

4

5

6

7

8

9

10

Number

Searches

247 127 64 20 6 147 101 64 48 11

K1 0.850 0.772 0.672 0.55 0.833 0.816 0.782 0.844 0.688 0.818

L1 0.356 0.236 0.219 0.35 0.000 0.306 0.277 0.234 0.208 0.091

M1 0.996 0.945 0.938 1.00 1.000 0.959 0.960 1.000 0.979 1.000

N1 0.789 0.622 0.531 0.50 1.000 0.673 0.733 0.609 0.521 0.545

O1 0.854 0.795 0.766 0.75 1.000 0.796 0.743 0.828 0.688 0.727

P1 0.891 0.890 0.875 0.70 0.833 0.876 0.891 0.860 0.833 1.000

Q1 0.866 0.732 0.734 0.75 0.833 0.755 0.802 0.828 0.625 0.818

R1 0.332 0.244 0.250 0.30 0.000 0.327 0.248 0.219 0.146 0.091

Table 12: Rank 1 identification rate per finger position for latent searches at 1000 ppi and gallery size of 10K.

Finger position for each latent in the probe set was determined manually by fingerprint examiners.

Number of latent images with each finger position is shown in the second row.

Finger

position

1

2

3

4

5

6

7

8

9

10

K1 1 2 3 4 2 3 1 4

M1 2 3 4 1 4 3 1 2

N1 1 2 3 4 2 1 3 4

O1 1 2 3 4 2 3 1 4

P1 1 2 3 4 2 1 3 4

Q1 1 4 3 2 3 2 1 4

Table 13: Ranking within each SDK, with each hand, by finger position based on performance reported

in Table 12. (SDK L1 & R1 along with little fingers (#5 & #10) are omitted.)

Figure 19: Rank 1 identification rate

(Finger position for each latent was determined manually by fingerprint examiners

44

: Rank 1 identification rate for all SDKs per latent finger position for two test cases.

Finger position for each latent was determined manually by fingerprint examiners

two test cases.

Finger position for each latent was determined manually by fingerprint examiners.)

45

3.8 Effect of Pattern Class

NIST investigated how identification rate varies for different latent pattern classifications. Each latent in the

probe set has been assigned one of the four basic pattern classes: arch, left slant loop, right slant loop, and

whorl; if none of these could be established with certainty, a category of “undetermined” was assigned. All

pattern class information presented here originated from the latent fingerprint examiners who conducted the

original case work.

About 42% (348 of 835) of ELFT Phase II latent searches are whorls, 23% right loops, 23% left loops, 4% arches,

and 8% were undetermined. The FBI’s Criminal Master File contains a distribution of 65% loops, 30% whorls,

and 5% arches. If this is representative of the US population, then it appears that the Phase II dataset set is

somewhat overrepresented in whorls, and underrepresented in loops. This is most likely due to the dataset

containing a large percentage of thumbs, as thumbs are more likely to have whorls.

Rank 1 identification rate for each SDK for latent images of 1000 ppi and gallery size of 10K is given in the Table

14. In order to detect trends, Table 15 was created based on the performance results reported in Table 14.

The performance numbers for each SDK were ranked by pattern class. (Note that L1 & R1 are omitted from

the ranking due to their unusually low performance on 1000 ppi latents.) For example, SDK K1 achieved

highest performance of 0.813 on whorls, and rank 1 is recorded in the corresponding cell in Table 15; likewise,

K1 achieved lowest performance of 0.742 on the undetermined category, and rank 5 is recorded in the

corresponding cell in Table 15.

Some trends are seen in Table 15. In terms of SDK performance, whorls are either ranked first or second,

indicating higher matchability. The results for arches are quite bipolar. Four SDKs achieved highest

performance on arches, while two SDKs achieved lowest performance on arches. The rankings for loops are

mixed, with medium ranks (mostly ranks 3&4.) The undetermined category has the highest frequency of ranks

4 & 5, indicating that they are the most difficult to match. The observation that whorls have higher

matchability may be indicative of AFIS-bias in the selection of latent cases, which would explain why whorls are

somewhat overrepresented in the Phase II dataset.

Figure 20 plots the results of Table 14 in the bottom graph (latents at 1000 ppi and gallery size of 10K.) The

top graph is for latents at 500 ppi and gallery size of 5K, and is provided for the benefit of SDKs L1 & R1. These

graphs support the trends observed above.

Key Observations:

• Latent search performance was higher with whorls. The results for arches were bipolar; four SDKs

performed best on arches; while two SDKs performed worst. Loops achieved medium performance.

The undetermined category performed worst over all, which appears to be an indication of low latent

image quality.

46

 Whorl

348

Arch

30

Right Loop

195

Left Loop

196

Undetermined

66

K1 0.813 0.933 0.754 0.791 0.742

L1 0.322 0.233 0.246 0.270 0.273

M1 0.991 1.000 0.954 0.959 0.955

N1 0.701 0.600 0.672 0.679 0.621

O1 0.807 0.867 0.795 0.791 0.773

P1 0.882 0.933 0.877 0.872 0.848

Q1 0.807 0.700 0.805 0.765 0.742

R1 0.328 0.167 0.221 0.255 0.273

Table 14: Rank 1 identification rate per pattern class for latent searches at 1000 ppi and gallery size of 10K.

Pattern class for each latent in the probe set was determined manually by fingerprint examiners.

Number of latents with each pattern class is shown in the first row.

 Whorl

348

Arch

30

Right Loop

195

Left Loop

196

Undetermined

66

K1 2 1 4 3 5

M1 2 1 5 4 3

N1 1 5 3 2 4

O1 2 1 3 4 5

P1 2 1 3 4 5

Q1 1 5 2 3 4

Table 15: Ranking within each SDK by latent pattern class.

(SDK L1 & R1 are omitted.)

Figure 20: Rank 1 identification rat

(Pattern class of each latent was

47

: Rank 1 identification rate of all SDKs per latent pattern class for two test cases

Pattern class of each latent was determined manually by fingerprint examiners.)

e of all SDKs per latent pattern class for two test cases.

)

48

3.9 Timing Results

The observed execution times for all SDKs tested are presented here as elapsed time (i.e. “wall clock time”)

measurements. These timings were generated using the system clock on systems executing only a single SDK

in addition to the typical system software load. Note that some SDKs implemented individual execution

phases as multi-threaded processes, which were able to more fully utilize the four processing “cores” available

on each system.

Figure 21 presents the average execution time for enrolling a gallery subject. There appears to be a variation of

about a factor of 6 between the different SDKs. The mean enrollment time is approximately 50 seconds, so

that to enroll the 10K gallery would require about 5.8 days. Two of the best performing matchers in the test

(M1 and Q1) in terms of hit-rate were the slowest in terms of enrollment time. (The rankings shown in Figure

5 are used in this section for the purpose of SDK comparisons. These rankings are based on searching 500 ppi

latents against the gallery of 5K.) The lowest performing matcher (N1) was the fastest. Some matchers’

enrollment times were affected by gallery size: L1 & Q1 become faster per ten-print for the larger gallery size;

P1 becomes slower per ten-print for larger gallery size.

Figure 21: Ten-print enrollment times

49

Figure 22 shows the enrollment time per latent for three cases: 500 ppi, 1000 ppi, and 1000 ppi with ROI. The

median latent enrollment times vary more by SDK than do the ten-print enrollment times; there appears to be

at least a factor of ten variation. Three of the highest performing matchers (M1, P1, Q1) in the test are also

the slowest; and the best performing matcher (M1) is more than an order of magnitude slower than the next

slowest matcher. The lowest performing matcher (N1) was the 2nd fastest. Median times are about equal for

both image resolutions (500 &1000 ppi) for all matchers except N1. The addition of ROI has no affect on

median times in 2 cases (R1,Q1) ; in four cases (K1,L1,O1,P1) the median time is decreased slightly, and in 2

cases (M1, N1) it increases slightly.

Figure 22: Latent enrollment time

50

Figure 23 compares total search times. Two cases are shown for each SDK, 5K and 10K gallery. Not surprisingly,

the search times for the 10K gallery are very nearly twice those for the 5K gallery. The variation by SDK of

individual search times is again large, and appears to be at least a factor of ten. The slowest matcher, K1, was

the 5th most accurate performing matcher overall. The second and third slowest matchers, P1 & M1, were the

first and second most accurate performing matchers overall. The fastest matcher, N1, was the least accurate

matcher overall. The increase in median search time between 5K and 10K gallery was usually linear (i.e. a

factor of 2). However, in three cases it increased less than a factor of two (Q1,P1,K1).

Figure 23: Search times for Gallery sizes 5K and 10K

51

Figure 24 is similar to the previous one, but breaks the data down by the three cases: 500 ppi, 1000 ppi, and

1000 ppi with ROI. Search times for the three cases appear very similar, though the 2
nd

 case is often the

slowest. The slowest matcher was the 5th most accurate performing matcher overall. The second and third

slowest matchers were the first and second most accurate performing matchers overall. The fastest matcher

was the least accurate overall (ignoring the 1000 ppi cases for L1 & R1). There was a slight increase in median

search time between 500 & 1000 ppi across all matchers except O1 (excluding L1 & R1). When going from

1000 ppi to 1000 ppi with ROI, there was a decrease in observed median search time across all matchers

except R1 (which had a slight increase). The greatest decrease occurred when ROI was added for L1.

Figure 24: Search times for 500 ppi, 1000 ppi, and 1000 ppi + ROI

52

Key Observations:

• The most accurate SDKs tend to execute for longer periods of time than less accurate ones during ten-

print enrollment, latent feature extraction, and latent search operations. The least accurate SDK

nearly always executed for the least amount of time.

• Latent image resolution and use of ROI masks have small, mixed effects on latent feature extraction

and search times.

• Increases in gallery size in general (but not always) have proportional increases in latent search times.

• Note that the hardware used in this study may not be representative of operational systems.

Therefore, all timing results reported may not be directly comparable to operational scenarios, which

may involve different hardware and software.

53

4 Probability Scores vs. Raw Scores

The ELFT Phase II API specifies that every candidate reported by an SDK should be accompanied by an estimate

of the likelihood that the candidate is a true mate of the search latent (called a probability score). The exact

manner of calculation was not specified, but some guidelines were provided in the CONOPS. The estimate is to

be assigned a value between 0 and 100. A value near 100 is to be interpreted as “this candidate is almost

certainly a true mate”; while a value near zero is to be interpreted as “this candidate is very unlikely a true

mate.”

The motivation behind this was three-fold:

1. The magnitude and range of raw match scores vary greatly between different algorithms from

different providers. Some matchers produce scores that are small fractions (say 0.1), while others

produce scores in the hundreds of thousands. A latent expert needs to be thoroughly familiar with a

particular matcher to assess whether a given raw score is significant or not. Probability scores were

introduced into this study in an attempt to simplify this by standardizing the range and meaning of the

scores making them more intuitive for human judgment.

2. It is also desirable to have scores that can be used for candidate list reduction. Candidate lists

produced by current-generation latent matchers are “cluttered” with many candidates that are

patently improbable – for example, when the search latent and the candidate differ in pattern class. A

goal of ELFT is to study how to eliminate as many “nuisance” candidates as possible. Using probability

scores provides a mechanism whereby candidates having very low likelihood of being a mate (for

example 2% or less) could be pruned from the list.

3. Probability scores have the potential to factor in information in addition to just the matcher’s raw

score including: quality of the latent, number of minutiae found, number of minutiae matched, pattern

class, finger position, and the size and difficulty of the gallery. Factoring in this information has the

potential to generate more robust scores that place true mates closer to the top of candidate lists,

thus increasing performance.

4.1 Reported Probability Scores

All the SDKs reported probability scores in their generated output; however, analysis of the eight SDKs shows a

variety of approaches and results. The bar graph in Figure 25 compares the mean value of probability scores

for true mates to that of true non-mates (i.e., impostors). L1 and R1 computed probability scores for true

mates too low to be useful. The other SDKs computed reasonably good probability estimates for true mates,

but their probability estimates for impostors tend to be too high.

Figure 26 shows the ratio of mean probability scores for the two distributions (true mates and imposters) by

SDK. The largest ratio (i.e., highest separation) was obtained by M1 and Q1. We may therefore consider these

two as having come closest to implementing a workable candidate list reduction measure. However, the mean

value of 5 for impostors is considered too high for effective candidate list reduction – a candidate which has a

1/20 chance of being a mate is worth looking at.

54

Figure 25: Mean values for probability scores for two distributions

(true mates and imposters) by SDK

Figure 26: Ratio of mean probability scores between two distributions

(true mates and imposters) by SDK

0

20

40

60

80

100

120

P1 K1 M1 N1 Q1 O1 R1 L1

SDK

M
ea

n
V

al
ue

 o
f P

_T
ru

e_
m

at
e

Mean P_True

Mean P_Impostor

0

2

4

6

8

10

12

R1 L1 M1 Q1 K1 P1 N1 O1

SDK

R
at

io Ratio

55

4.2 Re-computing DET Using Probability Scores

The reported probability scores can be substituted in place of raw matcher score when computing DET curves.

This may or may not produce the same result, depending upon whether additional information enters into the

calculation of the probability scores. Figure 27 compares DET results between using raw matcher scores and

using the provided probability scores. The performance of two SDKs (M1 & N1) improves when probability

scores are used, O1 shows improvement down to an FPIR around 5%, while no change is noticed from P1, K1,

and Q1.

Comparing the difference in performance for SDK M1 between the bottom two graphs (c & d) in the figure

(latents @ 1000 ppi on 10K gallery), we see that at an FPIR of 5%, the FNIR with raw scores is 11%, while the

corresponding FNIR with probability scores is 6%. An even larger change in performance is seen with SDK N1.

These results are promising, but it appears more work is needed in this area.

Key Observations:

• Results were mixed, but promising, with two SDKs clearly demonstrating enhanced capability to

reduce false matches.

• More work in the area of probability scores is warranted for the purposes of increasing accuracy, but

also in generating probability scores that are more intuitive to human examiners, more effective in

candidate list reduction, and more interoperable across SDKs.

Figure 27: DET at rank 1 of all SDKs comparing between results using probability scores (left) to results using

raw matcher scores (right) for two test cases

56

comparing between results using probability scores (left) to results using

raw matcher scores (right) for two test cases.

comparing between results using probability scores (left) to results using

57

5 Fusion

Biometric fusion involves consolidating information from multiple biometric sources. For example, multiple

latent impressions of the same person can be combined to improve matching accuracy. Although fusion can be

accomplished at various stages during the identification process, this report only addresses fusion at the rank

and score level, which occur post-matching. The fusion problem in this context involves consolidating the

candidate lists from different searches into a single fused candidate list, preferably with the correct mate at

better position on the fused list. Recent work on fusion has been reported for latent fingerprints [12].

Score level fusion uses the raw score associated with each returned candidate to perform fusion, and fusion at

the rank level uses only the relative position of the candidate in the unfused candidate list. If the candidate

lists were generated by different matching algorithms, as is the case with multi-algorithm fusion, the raw

scores must be normalized before they can be directly compared. The rank can be used in place of the raw

score to avoid the normalization requirement. However, the rank does not contain as much information as the

raw score and may therefore lead to smaller performance gains.

Fusion can also be accomplished at the feature level, which occurs prior to matching. A method of feature-

level fusion that is sometimes applied to fingerprints is referred to as image “mosaicking” [13]. The technique

involves combining the valid areas of two or more images of the same fingerprint into a new aggregate image.

Since the constructed image combines the useful information from each of the individual fingerprint images, it

is expected to perform better when matched. Fingerprint examiners sometimes use a similar strategy when

they markup a latent image. If an area of a latent image it too poor to identify minutiae, the examiner will look

at another latent image of the same fingerprint to extrapolate the location of minutiae within the poor quality

area. When mosaicking is performed at the minutia level, it is known as “template consolidation.”

Mosaicking is often impractical for the latent identification problem for several reasons. Firstly, multiple latent

impressions of the same finger tend to look nearly identical (e.g., when a person flips through a book, he/she

tends to leave nearly identical latent impressions on each page). When this occurs, all the latent impressions

contain roughly the same information, negating the potential benefit of mosaicking. Secondly, precisely

aligning the different images can be difficult if there is little overlapping fingerprint area. An incorrect

alignment would misrepresent an individual’s finger, leading to a reduced chance of making a correct

identification. The safer alternative would be to search each of the impressions separately.

5.1 Multi-Instance Fusion

Multi-instance fusion combines the results of matching two or more latent impressions of a single person.

Applying multi-instance fusion to the latent identification problem is very practical since a criminal will often

leave several latent impressions at a crime scene. At present, a latent examiner will often run each latent

through IAFIS separately. The other latent images are typically used to verify a match that was returned for a

particular search. Since AFEM does not require a manual markup of the images, all latent impressions can be

searched in parallel with little additional work for the human examiner. For the Phase II dataset, which is

somewhat reflective of case work, latent impressions of more than one finger were available for 121 of the

588 subjects. This frequency may be higher than what is typical of actual case work data, since the Phase II set

includes only individuals who were identified by IAFIS, and an individual is more likely to be identified if

multiple latent impressions are available.

Two latent impressions representing different fingers were selected for each of the 121 subjects. If more than

two were available, two were chosen at random. Each latent impression was searched separately and the rank

of the correct mate determined. Table 16 shows the frequency at which different combinations of ranks occur

for each set of paired latent impressions for two algorithms. The table demonstrates that the correct match is

almost always at rank one on at least one of the candidate lists. This behavior occurs for the other algorithms

(not shown) as well. This suggests complicated methods of fusion are unnecessary to achieve near optimal

results; the fusion method need only place the rank one candidates from the unfused lists at a top position on

58

the fused candidate list. This conclusion may not apply to situations where a longer candidate list is available,

or for larger gallery sizes.

R
a

n
k

 o
f

co
rr

e
ct

 m
a

te

fo
r

se
co

n
d

 f
in

g
e

r

Rank of correct mate for first finger

1 2-10 11-20 20-50 Miss

1 111 0 3 1 3

2-10 0 0 0 0 0

11-20 1 0 0 0 0

21-50 1 0 0 0 0

Miss 1 0 0 0 1

(a) M1

R
a

n
k

 o
f

co
rr

e
ct

 m
a

te

F
o

r
se

co
n

d
 f

in
g

e
r

Rank of correct mate for first finger

1 2-10 11-20 20-50 Miss

1 86 0 2 1 12

2-10 0 0 0 0 0

11-20 0 0 0 0 0

21-50 1 0 1 0 0

Miss 14 0 2 0 3

(b) K1

Table 16: Two distinct latent impressions were selected for each subject and the rank of the correct mate

determined for each latent. The tables show the frequency at which different combinations of ranks occur

for each set of paired latent impressions for M1 (a) and K1 (b).

Gallery size is 5,000; latent image resolution is 500 ppi.

The Borda count method [14] of fusion was used to generate all fusion plots. Borda count assigns points to

each candidate based on rank, with better ranking candidates receiving more points. If a subject appears on

more than one list, the points for that subject are summed. The fused candidate list is generated by sorting the

subjects by their points such that the subject with the most points is assigned the best rank. Ties are broken

randomly to maintain a strict ordering.

59

Figure 28 shows the result of performing two-finger fusion using the Borda count method for each algorithm.

The rank 10 “hit rate” refers to the fraction of searches that placed the correct mate at one of the top 10

positions on the candidate list. A substantial performance improvement occurs for every algorithm. In

addition, several algorithms perform almost as well when two fingers are used as M1 using a single finger. The

figure may give a false impression of the potential for fusion to improve matching results for two reasons.

Firstly, multi-instance fusion can only be performed if two distinct latent impressions are available for a

subject, and the Phase II dataset suggests that most of the time only a single latent impression is available.

Secondly, although a better rank ordering is achieved, the overall identification rate of case work is unlikely to

be affected, since an examiner is still expected to make a positive identification as long as the correct mate is

on at least one of the candidate lists.

Figure 28: Comparison of rank 10 performance for single finger and two-finger fusion for each algorithm.

Gallery size 5,000; latent image resolution 500 ppi.

60

A possible application of multi-instance fusion is to allow the examiner to send all available latent impressions

for a subject to IAFIS. The Phase II dataset contained 467 subjects with only one distinct impression, 121

subjects with two or more distinct impressions, 34 subjects with three or more distinct impressions, and 11

subjects with 4 or more distinct impressions. Figure 29 shows the results of applying Borda count fusion to all

of the available latent impressions for each subject. If only one impression was available, no fusion was

performed and the unfused candidate list was used. Since only one impression was available for the majority

of subjects, the performance improvement is not as pronounced as in Figure 28. Nevertheless, the

performance improvement demonstrates that multi-instance fusion can be used to improve rank ordering,

thus reducing workload on the human examiner.

Figure 29: Comparison of rank 10 performance for single finger and for fusion using all available latent

impressions per subject. Gallery size 5,000; latent image resolution 500 ppi.

61

On occasion, two latent impressions may be mistakenly assigned to a single subject when they are, in fact,

from different subjects. The examiner would most likely notice such a problem when attempting to verify a

“match”. When comparing each of the latent impressions to the corresponding ten-print record of the

matching subject, the examiner would discover that some of the latent impressions match while others do not.

Applying multi-instance fusion to this type of situation is expected to reduce the chances of positively

identifying any of the subjects represented by the latent impressions. Figure 30 shows the effect of applying

two-finger fusion when the second impression is from a different subject that is not in the gallery set. The

figure shows a moderate drop in the hit rate for most of the algorithms. However, the drop is no more than 5

percent for 7 of the 8 algorithms and no more than 10 percent for the remaining algorithm. The figure does

not demonstrate what would occur if both subjects were present in the gallery. Nevertheless, the results

suggest multi-instance fusion is somewhat robust to situations where two latent impressions are mistakenly

assigned to the same subject.

Figure 30: Rank 10 performance for single finger and two-finger fusion when the second latent impression is

from a different subject not in the gallery. This might occur if two impressions from different subjects were

mistakenly assigned to the same subject.

62

5.2 Multi-Algorithm Fusion

Multi-algorithm fusion in this context refers to searching the same latent impression using multiple matching

algorithms. Unlike multi-instance fusion, it has the advantage of not requiring additional latent information,

but it is more computationally intensive. In this section, multi-algorithm fusion is applied to the Phase II data.

Matching performance is highly dependent on the quality of the latent impressions. A difficult latent for one

algorithm tends to be difficult for others as well. Thus, a certain amount of correlation between matching

algorithms is expected. This is reflected in the candidate lists returned by the different algorithms, which are

often very similar with regard to their placement of the correct match. Nevertheless, Table 17 shows that

performance can be improved by combining algorithms. In particular, the hit rate can be improved beyond

what M1 is able to achieve without fusion. In addition, M1 by itself achieved a hit rate better than any other

two algorithms combined (not including M1). However, the statistical significance of these results could not be

established.

 K1 L1 M1 N1 O1 P1 Q1 R1

K1 .84 .90 .98 .90 .94 .95 .94 .90

L1 .90 .83 .98 .89 .93 .94 .93 .88

M1 .98 .98 .97 .98 .99 .98 .98 .98

N1 .90 .89 .98 .79 .92 .93 .93 .88

O1 .94 .93 .99 .91 .87 .96 .94 .92

P1 .95 .94 .98 .93 .96 .90 .96 .94

Q1 .94 .93 .98 .93 .94 .96 .88 .92

R1 .90 .88 .98 .88 .92 .94 .92 .81

Table 17: Rank 10 identification rates when various pairs of algorithms are combined by applying Borda

count fusion to the candidate lists. The main diagonal represents the cases where no fusion occurs.

Key Observations:

• Fusing the search results (candidate lists) for two latent fingerprints from the same subject

consistently improved the identification rate for each of the eight SDKs. This increase in performance

can be realized without any significant increase in the human examiner’s workload due to AFEM being

used.

• Fusing the latent search results (candidate lists) of two different SDKs consistently improved the

identification rate. The amount of improvement varied between the systems being fused due to the

search results of some systems being more correlated than others.

63

6 References

[1] S. S. Wood and C. L. Wilson. Studies of Plain-to-Rolled Fingerprint Matching Using the NIST Algorithmic

Test Bed (ATB). NISTIR 7112. April 2004. ftp://sequoyah.nist.gov/pub/nist_internal_reports/ir_7112.pdf

[2] NIST Latent Fingerprint Homepage http://fingerprint.nist.gov/latent/

[3] V. Dvornychenko. Concepts of Operations (CONOPS) for Evaluation of Latent Fingerprint Technologies

(ELFT), Rev. E, 1 Nov 2007. http://fingerprint.nist.gov/latent/elft07/elft_p2_concept.pdf

[4] V. Dvornychenko. Summary of the Results of Phase I ELFT Testing, 24 Sept. 2007.

http://fingerprint.nist.gov/latent/elft07/phase1_aggregate.pdf

[5] P. Grother, M. McCabe, C. Watson, M. Indovina, W. Salamon, P. Flanagan, E. Tabassi, E. Newton, and C.

Wilson. Performance and Interoperability of the INCITS 378 Fingerprint Template. NISTIR 7296. March

2006. http://fingerprint.nist.gov/minex04/minex_report.pdf

[6] C. Watson et al. NIST Fingerprint SDK (Software Development Kit) Testing. NISTIR 7119. June 2004.

http://fingerprint.nist.gov/SDK/

[7] C. Wilson et al. Fingerprint Vendor Technology Evaluation (FpVTE) 2003. NISTIR 7123. June 2004.

http://fpvte.nist.gov/

[8] R. Capelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain. Performance evaluation of fingerprint

verification systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1):3–18, January

2006.

[9] E. Tabassi, C. L. Wilson, and C. Watson. Fingerprint Image Quality (NFIQ). NISTIR 7151. August 2004.

ftp://sequoyah.nist.gov/pub/nist_internal_reports/ir_7151/ir_7151.pdf

[10] E. Tabassi and P. Grother. Recommendations on Biometric Quality Summarization across the Application

Domain. NISTIR 7422. May 2007. http://www.itl.nist.gov/iad/894.03/quality/reports/enterprise.pd

[11] Johnson, A., J. Sun, and A. Bobick, “Predicting Large Population Data Cumulative Match Characteristic

Performance from Small Population Data,” 4th International Conference on Audio and Video Based

Biometric Person Authentication (AVBPA 2003), University of Surrey, Guildford, UK June 9-11, 2003.

[12] Jianjiang Feng, Soweon Yoon, and Anil K. Jain, Latent Fingerprint Matching: Fusion of Rolled and Plain

Fingerprints, to appear in Proc. International Conference on Biometrics 2009.

[13] A. Jain and A. Ross, Fingerprint mosaicking, in proceedings of IEEE International Conference on Acoustics,

Speech, and Signal Processing, 2002. Volume: 4, pp 4064--4067 vol.4

[14] J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining classifiers. IEEE Trans. Pattern Analysis and

Machine Intelligence, 20(3), March 1998.

[15] J. Wayman, A. Jain, D. Maltoni, and D. Maio. Biometric Systems. Springer, 2004 - Chapter 6 discusses the

modeling of large-scale identification systems.

[16] V. Dvornychenko. Latent fingerprint system performance modeling. Proceedings of the SPIE, Volume

6812, pp. 68120C-68120C-11 (2008).

[17] FBI Electronic Fingerprint Transmission Specification (EFTS), Version 7.1,

http://www.fbibiospecs.org/ebts/default.htm

64

Appendix A– Modelling Effect of Gallery Size

A.1 Scalar Performance Measures

In comparing the performance of different systems it is convenient to be able to do so via a single number

(scalar). In this section three such measures are introduced (Mfirst , Mlist and Mw).

Mfirst is the percentage of searches which resulted in the true match appearing in first (top) place on the

candidate list. Mfirst takes on values between 0 and 1 (or 0 to 100%).

The related measure is Mlist, the percentage of searches which appear (anywhere) on the candidate list. Mlist

also takes on values between 0 and 1 (or 0 to 100%).

Mfirst tends to underestimate performance, while Mlist provides an overoptimistic value. This is the motivation

for introducing the third measure, Mw.

Mw makes allowance for a “hit” in other positions than first place. (These are often referred to as “secondary

hits”.) However, these secondary hits are weighted less than a hit in first position. The weights are taken to be

the reciprocal of the list position. Thus, a hit in first place receives full value (w =1), but one in second position

receives only half value (w = 1/2); one in third position is given weight (w = 1/3), etc. (These weights are also

known as “roll-off factors.”) As is the case for Mfirst and Mlist, Mw is always between 0 and 100%. It is easy to see

that Mfirst ≤ Mw ≤ Mlist .

There are two justifications for this weighting/roll-off scheme. The first is that that secondary hits tend to “fall

off” (disappear) from the candidate list if the gallery is greatly enlarged. For example, a hit in seventh position

has six imposters ahead of it. If the gallery were to be (say) doubled, the expected number of impostors ahead

of this hit would be 12. Now the hit could be expected to appear in 13
th

 position. If we suppose the candidate

list to be of length ten, the true mate would “fall off” the list.

The second justification for rolling off inversely as the list position takes into account human effort expended.

To examine a subject in tenth position (say) requires that the nine candidates ahead of it be examined first.

Hence, roughly speaking, the amount of work which must be performed is ten times as large as for a subject in

first position. There is therefore justification for considering a subject in tenth position to be worth only 1/10

as much as one in first position.

A number of investigators have suggested different schemes for the roll-off weights. One such proposed

method is to roll of inversely as the square-root of the ranking as opposed to inversely as the first power of the

ranking [15]. The thinking is that the 1/k (k is the ranking) “punishes” lower places too much, and that 1/√k is

“softer.” This may have some merit, but additional experimental support is required. Another proposed

scheme is to roll off as (L +1 –k)/L, where L is the list length. This scheme suffers from the shortcoming that, if L

is increased, the value of the metric goes up, even if there were no additional “hits” on the expanded

candidate list.

65

A.2 Power-Law Model

It is desirable to have a performance measure which captures the intrinsic merit of the system, independent of

the size and quality of the gallery used in performing measurements. Ideally the performance measure should

factor in the difficulty of the searches.

One model which has gained recognition is the power-law. This particular model can be derived/justified

theoretically in a number of ways [16]. A particular merit of this model is its simplicity. The probability

that the true mate appears on the candidate list is given by:

P(L) = (L/N)α … (A-1)

Where, L = length of candidate list, N = database size, and α is a parameter characterizing the intrinsic quality

of the system and the difficulty of the data. For a “good” system α must be quite small, say α < 0.1. Note that

α = 1.0 represents a random-guessing (zero information) system.

From equation (A-1) we can conclude that the probability of being in first position is 1/N
α

; while the

probability of obtaining a hit in position k (1< k ≤ L) is

 p(k) = (k/N)α - ((k-1)/N)α …(A-2)

We have already introduced the weighted metric (Mw). This metric is defined by assigning one point if the

mate is in the top position, ½ point if in second position, and so on. This measure provides a finer measure in

performance than simply counting the number of mates reported in first place (P(1)). Mw is particularly useful

when gauging relatively small changes in performance (for example by doubling the gallery size), as it provides

a smoother estimate.

Using eq. (A-2) we can compute the theoretical value of Mw. To a high degree of approximation it is given by

 Mw = {1 + (α/(1 – α))*(1 – Lα-1)}/ Nα … (A-3)

This expression is valid for all values of α in the range 0 to 1.0. For small α and large L (say L>10) the following

simplification may be used:

 Mw = (1 + α)/ Nα = (1 + α)P(1) … (A-4)

It can be shown that Mw always taken on values between 0 and 1.0, and that Mw >= P(1). (A result that is

obvious from eq. (A-4).)

Note that for high performance systems, Mw and P(1) are nearly the same. (The largest difference

between Mw and P(1) occurs when α = 1/ln(N). Assuming N = 100,000 fingers, this gives α = .09. In this

event P(1) = 37%, while Mw = 40%. In fact α = .09 characterizes a relatively poorly performing system.

For small α the two metrics are even more similar.)

A.2.1 Figure of Merit (FOM):

The α of equation (A-1) is a characteristic parameter of a system, in the sense that it captures the intrinsic

quality of the system (including database). In particular, α provides a type of performance measure,

independent of gallery size.

A figure of merit (FOM) of a system is a measure capturing the intrinsic merit of a system. Of course any

given system may be characterized by many FOMs. Convention dictates that a larger FOM indicates a

better system. Thus a FOM of 5 should indicate a better system than an FOM of 2.

The parameter α behaves in the opposite manner – smaller values indicate a better system. We can

overcome this by defining an FOM as follows:

 FOM = -ln(α) … (A-5)

This has the required property that the better system provides a higher FOM. Note also that, with using

this definition, a random-guessing (zero information) system has an FOM of zero.

66

A.2.2 Using the Power Law to Analyze Scalability

An objective of the ELFT Phase II tests was to assess the effect of gallery size on the performance of current

latent search technologies. We call this the “scalability problem.”

That increasing the size of the gallery results in a performance drop (say as measured by the “hits” in first

place) is well known. Qualitatively, this decrease in performance can be understood using fairly elementary

arguments. However, creating a precise numerical model is much more difficult.

A following simple argument provides insight into the “scalability problem.” Suppose that for a gallery of size

N the true mate of a given search appeared in fifth position. This means, of course, that the true mate was

outscored by four “impostors.” If the gallery were now doubled, a reasonable extrapolation is that the number

of impostors (outscoring the true mate) would also double, from 4 to 8. The hit would now be expected to

appear in ninth position. Of course this is true only “on the average”, and in any given trial the hit might

appear in eight place, in tenth place, even further away from ninth place.

Execution time imposes limitations on the size of the dataset which can be employed. The Phase II runs

required several weeks to execute. Even a modest increase in gallery size requires careful planning so as to

execute in a reasonable time; extremely large datasets are prohibitive. NIST’s strategy therefore was to

supplement direct calculations with modeling and analysis.

We may use the power-law to analyze “scalability”, i.e., the effect of an increase in gallery size. Since the

power-law is not exact, the results may be of limited accuracy.

The effect on an increase in gallery is readily computed from eq. (A-1). Assuming that the gallery is increase by

a factor of k, we substitute kN for N in eq. (A-1) to obtain

 P(L) = (L/kN)α = k-α *(L/N)α … (A-6)

So the probability is decreased by a factor of k
-α

. The net decrease in hit rate will be

 Delta_P(L) = (k-α - 1)*(L/N)α … (A-7)

For the present case, representative values are: L=1 if only first-place hits are counted; L = 50 if all hits on the

candidate list are counted; N = 50K fingers (i.e., 5000 subjects) for the smaller gallery; and N = 100K fingers

(i.e., 10,000 subjects) for the larger gallery.

The value of α is obtained empirically by fitting eq. (A-1) to the Phase II test results, and differs for each

SDK. The computed values also depend somewhat on the value of L selected (e.g., L=1 or L=50), as well as

the value of N (50K or 100K). We compensate for this small variation by averaging over these cases (this

is roughly equivalent to a least-squares solution).

The mean value over the SDKs so obtained is α = .0172. (SDKs L1 and R1 are not included in this average due to

their curious performance on 1000 ppi latents).

If we now assume L =1, N = 50K, and use the above value of α, we can compute P(1) = 0.826 , or 82.6%.

This is the correct value for aggregate of first place hits for the six best SDKs.

Suppose now we would like to estimate the effect of doubling the repository. Using the same parameters of

before, but doubling N to 100K, we compute P(1) = 0.816, or 81.6%. This suggests that approximately 1% of

hits can be expected to be lost from first position.

A.2.3 Elementary Error Analysis

As we have seen, the actual decrease in performance due to doubling the gallery is quite small. Unfortunately

this has an adverse effect on the statistics.

For example, assume that the number of searches having mates is 813. We then expect approximately 672 hit

in first place; doubling the gallery will lose about 8 hits from top position (more precisely, 8.4 on the average).

67

A simple calculation then shows the standard error of the number of hits lost is about 2.9, or about 35% of the

hits lost from top position. The conclusion is that the extrapolation uncertainty is quite large.

A.2.4 Test Results

The following table shows the values of α computed for the eight SDKs (L1 and R1 are included). In the table, α

is referred to as “alpha_bar” as it represents the average of several values.

SDK alpha_bar

K1 0.020806

L1 0.136254

M1 0.002054

N1 0.031001

O1 0.018518

P1 0.013088

Q1 0.017759

R1 0.135665
Table A- 1: Computed (estimated) values of alpha (α) for the eight SDKs

The graph below (Figure A- 1) provides a comparison between the observed and predicted decrease in

performance due to doubling the size of the gallery. The values shown represent P(1;50K) – P(1;100K), and are

given as a percentage. The bars labeled “observed” are the actual test results, while “computed” are based on

calculations using the method outline above. As mentioned, in interpreting these results it should be kept in

mind that the statistical fluctuations (i.e., uncertainty) are quite large.

Figure A- 1: Observed and computed scaling results

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

2.00%

D
el

ta
 M

1
M

et
ric

K1 M1 N1 O1 P1 Q1

SDK

Observed and Computed Decrease in
Performance due to Doubling Background

observed

computed

68

Note that in general the agreement is good, except for Q1; even for Q1 the predicted result is of the right

order of magnitude.

In the previous analysis we looked at the effect of increasing in the gallery by a factor of two. This modest

increase in the ELFT Phase II testing was dictated by software execution time limitations. For a convenient

“rule of thumb” it is better to use a factor of ten when testing for the effect of scaling gallery size. A computed

estimate of this parameter is shown in the following table in the column labeled “delta_10”. (once again, SDKs

L1 and R1 are excluded.) The table also shows the computed α, as well as a derived Figure of Merit (FOM).

Larger FOMs indicate better performance.

 alpha_bar delta_10 FOM2
K1 0.02081 4.68% 3.87
M1 0.00205 0.47% 6.19
N1 0.03100 6.89% 3.47
O1 0.01852 4.17% 3.99
P1 0.01309 2.97% 4.34
Q1 0.01776 4.01% 4.03
Average 0.01720 3.86% 4.32

Table A- 2: Predicted decrease in performance due to factor of ten Increase in gallery size

Based on the above table, Figure A- 2shows the projected performance for large databases. Rather than

showing a separate graph for each SDK, we present the performance for a hypothetical “averaged” matcher

(whose performance is the “aggregate” or mean of the six). Note that the size of the gallery is given in

subjects, rather than fingers. With a background of 1 million subjects, the predicted performance is 75.04%;

with 5 million subjects, the predicted performance is 72.94%; and with 10 million subjects, the predicted

performance is 72.04%.

Figure A- 2: Predicted performance of hypothetical “average” matcher as a

function of gallery size

1E+05

Size of Background ~ Subjects

Projected Performance ~ averaged

70.00%

72.00%

74.00%

76.00%

78.00%

80.00%

82.00%

84.00%

1 10 100 1000 10000 1E+06 1E+07

P
er

ce
nt

 o
f S

ea
rc

he
s

in
 F

irs
t P

la
ce

P(1)

69

Key Observations:

• The power law appears to be a reasonable “order of magnitude” predictor of the change in

performance due to scaling the gallery.

• Based on calculations, current SDK may perform well even if the gallery is increased by several orders

of magnitude.

• The reader is strongly encouraged to not put too much weight in these results. In this case a

very simplistic model was used based on the average performance of the eight SDKs in Phase

II. The ability of the model to predict the change in performance between the 5K and 10K

gallery is promising, but there is no evidence that the model’s estimates should be trusted

further out. More work in this area is warranted

70

Appendix B– ELFT Phase II Protocol Description

ELFT is a technology evaluation, similar to [5] and [6], which uses a software-only approach that attempts to

minimize the “entry cost” for potential participants regarding implementation of their algorithms. ELFT

employs a PC-based approach in which participants may submit either Windows or Linux executable libraries

for use with off-the-shelf PC hardware. This approach itself however places limitations on the testing

environment (e.g. processor speed, I/O speed, and memory), which may not otherwise exist in operational

systems. In response, the ELFT testing protocol seeks to manage these limitations within the goals of the

evaluation.

B.1 API

The use of a common testing API promotes efficient and uniform testing and minimizes testing errors.

The ELFT Phase II API specification is included in Appendix C, and it defines a set of requirements that all

SDKs submitted for ELFT testing must follow. The Phase II API consists of both optional and mandatory

elements, and includes:

• Test image format (latent and ten-print)

• Procedural interfaces (function prototypes & data structures)

• SDK library binary format & platform requirements

• Execution speed requirements (in the form of time limits for enrollment and search)

The API used for Phase II was an evolution of the ELFT Phase I API, with the following modifications:

• Revised method for specifying estimated latent print orientation

• Revised error handling and reporting

• Revised specification of image size ranges

• Revised specification of file pathname syntax

• Restriction to non-adaptive matching

• Additional threading support and documentation requirements

• Revised mean execution time limits for enrolling latent and gallery images

B.2 Computer Hardware Platform

Only NIST hardware was used for ELFT testing, and only NIST had access to this hardware. A total of forty-eight

Dell 1855 Blades were used for execution of submitted SDKs. The hardware configuration of these machines is

as follows:

o Processor:

§ Dual 2.8 GHz/1MB Cache, Xeon (dual-core)

§ 800 MHz Front Side Bus for PE 1855

o Memory:

§ 2GB DDR2 400 MHz (2x1GB) single ranked DIMMS

o Secondary storage:

§ DUAL 73GB 10K RPM, Ultra 320 80 pin SCSI Hard drives (hot plug)

SDKs were submitted in encrypted form. Submitters could specify whether they wished to execute in a

Window or Linux environment. Six of the tested SDKs were executable on Windows, and two on Linux.

Windows executables were tested on blades running Windows 2003 Server (service pack SR2). Linux

executables were tested on blades running Red Hat Enterprise Linux ES Release 4 (Nahant).

71

Each SDK had access to all of the machine’s resources (less an allowance for normal operating system

overhead), and at no time during execution did more than one SDK run on the same physical machine.

Additionally, all I/O performed to retrieve test images and write output data was performed using locally

attached non-shared storage.

Note that the above hardware may not be representative of operational systems. Therefore, all timing

requirements and all timing results may not be directly comparable to operational scenarios, which may

involve different hardware and software.

B.3 Execution Time Limits

Our procedure for establishing test execution time limits was as follows. Prior to Phase I we requested

execution time estimates from all the technology providers. Based on this feedback and observed

processing times from past 1:1 tests conducted at NIST, we set the Phase I execution time limits. Using the

observed Phase I timing results we then adjusted the limits slightly for Phase II. The execution times

chosen are summarized in the following table.

Function Phase I time limit Phase II time limit

Enroll ten-print 150 seconds per ten-print

(10 sec/finger)

150 seconds per ten-print

(10 sec/finger)

Enroll latent image 350 seconds/image 600 seconds/image

Search compare 0.2 seconds per ten-print 0.25 seconds per ten-print

Table B- 1: Phase II SDK execution time limits

Some in the biometrics community have expressed an opinion that the allowable execution time is too

generous. Their principal argument is that the allowable time far exceeds that which would be available in

operational scenarios. NIST’s position is that at this stage of testing we are not attempting to simulate

operational scenarios. Rather, we are trying to establish best possible performance within a “reasonable”

period of time for testing. In due course we will address operational scenarios.

B.4 Test Execution

The Phase II test execution protocol will be briefly discussed in this section. More details are available in the

CONOPS [2].

Executable modules for testing were constructed from two sources: 1) technology provider-supplied

software in the form of a Software Development Kit (SDK), and 2) NIST-supplied software. The submitted

SDKs were executable in either a Windows or Linux environment, based upon the technology provider’s

preference. The core of the executable module is of course derived from the SDK. The part supplied by

NIST is mainly concerned with the image retrieval and manipulation. The executable module itself is

known as the NIST Test Application.

72

Once constructed (linked), the executable modules (one per SDK) are executed in three stages, each being

a distinct operational mode of the NIST Test Application:

1. Gallery enrollment

2. Latent feature extraction

3. Latent search against gallery using extracted features

Stage 3 depends on data output from the successful completion of stages 1 and 2; however stages 1 and 2

are independent and may be executed concurrently on separate processors.

The first stage performs “enrollment” of the gallery fingerprints. This process converts images into

proprietary “feature” representations. The output of this enrollment stage is at the discretion of the

technology provider, except that all extracted data must be written into a single directory specified by the

NIST Test Application. A gallery consists of a series of ten-prints (i.e. a record with ten fingerprints per

subject), with each stored in a file consisting of ten Electronic Fingerprint Transmission Specification

(EFTS) [17] type-14 records. Each type-14 record contains a single WSQ-compressed fingerprint image.

During enrollment, a list of ten-print filenames is input by the NIST Test Application to the SDK. To

promote uniform parsing and decompression of these images, NIST supplied “extraction routines” (with

interfaces specified in the ELFT Phase II API) for retrieving the individual images.

The following diagram summarizes the gallery feature extraction pass. The calls to NIST-provided image
extraction routines are highlighted in blue. All SDKs were executed (in stage 1 processing) so as to enroll

four separate galleries, as shown in Table B- 2.

extract_image_data()
Get the ten rolled
fingerprint images

free_image_data()
De-allocate memory for

fingerprint images

NIST-supplied
Library

 enroll_gallery()
Enrolls the entire set of

gallery images

set_gallery()
Selects gallery to be
searched by latents

enroll_latent()
Enrolls the latent which

is searched against
gallery

image_search()
Searches gallery for
candidate matches

Participant’s SDK

NIST Test Application --
Executable Latent Search

Module

Figure B- 1: Executable software is a combination of technology provider-supplied (SDK)

and NIST-supplied software

73

Figure B- 2: Stage 1 - Logic and data flow for Gallery enrollment

Gallery

Name

Total ten-

print records

Non-mate

ten-print

records

(background)

Mate ten-print

records

(foreground)

G1A 10000 9392 608

G1B 10000 10000 0

G2A 5000 4392 608

G2B 5000 5000 0

Table B- 2: All Phase II test Galleries (enrolled in stage 1)

extract_image_data()

Start

Gallery Images

Gallery

Features
enroll_gallery()

free_image_data()

End

Done all Gallery?

Yes

74

The second stage of execution generates a set of proprietary features for all latent fingerprint images. The

specific features extracted and their formats are at the discretion of the technology provider, and may even

include the original latent fingerprint image itself in its entirety. The latent fingerprint images and Region of

Interest (ROI) masks input to the SDK by the NIST Test Application are in uncompressed “raw” format. The

details of the latent enrollment process also depend on whether a latent ROI mask is specified or not, as

shown by the following figure.

All SDKs were executed in stage 2 so as to extract features from two sets of 835 distinct latent fingerprint

images. The first set, L1, consists of images at 500 ppi resolution. The second, L2, consists of images at

1000 ppi resolution. A third set, labeled L3, consists of the extracted features from the 1000 ppi latent

images accompanied by an ROI mask.

Figure B- 3: Stage 2 - Logic and data flow for latent feature extraction

75

In Stage 3 processing, each latent’s proprietary feature set (created in stage 2) is fetched and searched

against the enrolled gallery data (created in stage 1), and a candidate list is returned. The details of the

searching process are unregulated by the API. In particular, technology providers may invoke multi-stage

algorithms within the top-level search function called by the NIST Test Application. The following

diagram summarizes the logic and data flow during the matching pass.

Figure B- 4: Stage 3 - Logic and data flow for Latent image search of Gallery using extracted features

76

Each SDK was executed (in stage 3) to perform searches using eight distinct combinations (“search

configurations”) of enrolled latent and gallery prints as summarized in the table below.

Latent

resolution

(ppi)

Gallery size

(total ten-

prints)

Total # of

non-mate

ten-prints

(background)

Total # of

mate ten-

prints

(foreground)

Total # of

Latents

Gallery

contains

mates?

ROI

provided?

Search

configuration

name

500 5000 4392 608 835 Yes No L1_vs_G2A

500 5000 5000 0 835 No No L1_vs_G2B

1000 10000 9392 608 835 Yes No L2_vs_G1A

1000 10000 10000 0 835 No No L2_vs_G1B

1000 5000 4392 608 835 Yes No L2_vs_G2A

1000 5000 5000 0 835 No No L2_vs_G2B

1000 5000 4392 608 835 Yes Yes L3_vs_G2A

1000 5000 5000 0 835 No Yes L3_vs_G2B

Table B- 3: Latent vs. Gallery search configurations

B.5 SDK Conformance Testing

Technology providers in Phase II were permitted to submit a single SDK. Once received by NIST, each SDK was

tested for conformance to the ELFT II API by means of a sample “validation set” of latent and gallery ten-print

images. Latent and gallery images were input to the SDKs by NIST with the objective to identically reproduce

the candidate lists submitted by the technology providers. All candidate lists were required to be reproduced

identically to ensure proper installation and expected operation of the technology provider’s software before

the SDKs were accepted by NIST for testing. In several cases, due to problems encountered (non-

conformance, crashes, etc.), several iterations of SDK and candidate lists were solicited from a given

technology provider before SDK acceptance. All technology providers in ELFT Phase II eventually passed

conformance testing of their submitted SDKs.

77

Appendix C– ELFT Phase II API Specification

Introduction

The Latent Fingerprint SDK Test provides a means of determining core search performance of latent-

fingerprint matchers. This document specifies all SDK interfaces and functionality as well as the data formats

used for this test.

There will be minimal human involvement during the actual execution of the test. A small amount of human

assistance will probably be required to prepare the data. All such assistance will be provided indirectly by NIST,

and may include:

a) Crop and orient certain latents.

b) Provide a region-of-interest.

c) Provide latent experts for examining potential consolidations.

Those wishing to submit software for Latent Fingerprint SDK testing shall be required to provide NIST with an

SDK (Software Development Kit) library which complies with the API (Application Programmer Interface)

specified in this document.

C.1 Fingerprint Image Data

C.1.1 Format

The SDK must be capable of processing fingerprint images supplied to the SDK in uncompressed raw 8-bit (one

byte per pixel) grayscale format. The image data shall appear to be the result of a scanning of a conventional

inked impression of a fingerprint. Figure C- 1 illustrates the recording order for the scanned image. The origin

is the upper left corner of the image. The x-coordinate (horizontal) position shall increase positively from the

origin to the right side of the image. The y-coordinate (vertical) position shall increase positively from the

origin to the bottom of the image.

Figure C- 1: Order of scanned lines

Raw 8-bit grayscale images are canonically encoded. The minimum value that will be assigned to a "black"

pixel is zero. The maximum value that will be assigned to a "white" pixel is 255. Intermediate gray levels will

have assigned values of 1- 254. The pixels are stored left to right, top to bottom, with one 8-bit byte per pixel.

The number of bytes in an image is equal to its height multiplied by its width as measured in pixels; there is no

header. The image height and width in pixels will be supplied to the SDK as supplemental information.

78

C.1.2 Resolution, Dimensions and Orientation

The latent fingerprint images will employ either 500 or 1000 ppi resolution (both horizontal and vertical). All

background fingerprint images will employ 500 ppi resolution (both horizontal and vertical). The precise

resolution for each individual image will be specified to the SDK via the API.

All fingerprint images used for the background will vary from 150 to 1000 pixels in both width and height

dimensions. All latent images at 500 ppi will vary from 150 to 1000 pixels in both width and height. All latent

images at 1000 ppi will vary from 150 to 2000 pixels in both width and height. The precise dimensions of each

individual image will be specified to the SDK via the API.

All latent fingerprint images used for Phase II testing may vary in orientation over the full angular range (0 to

359). The estimated orientation and range of uncertainty of individual latent prints may be specified to the

SDK via the API. Otherwise, the orientation is specified as “upright” +-180 degrees. No information will be

specified to the SDK regarding the orientation of background fingerprint images.

No information regarding the distribution of fingerprint image resolution, dimensions, or orientation within

the Phase II dataset is provided in this document.

C.2 Test Interface Description

Participants shall submit an SDK which provides the interfaces defined in section C.2.3. Section C.2.2 defines

the interfaces to functions provided by NIST for use by the SDK. Sections C.2.1 and C.2.4 specify the

declaration of constants, error codes, data-types and functions used by both.

C.2.1 Declarations

The following are declarations of data types and functions used in the Latent Fingerprint SDK testing interface:

/// ///
// Declarations of constants //
/// ///

// Impression type codes
#define IMPTYPE_LP 0 // Live-scan plain
#define IMPTYPE_LR 1 // Live-scan rolled
#define IMPTYPE_NP 2 // Nonlive-scan plain
#define IMPTYPE_NR 3 // Nonlive-scan rolled

// Finger position codes
#define FINGPOS_UK 0 // Unknown finger
#define FINGPOS_RT 1 // Right thumb
#define FINGPOS_RI 2 // Right index finger
#define FINGPOS_RM 3 // Right middle finger
#define FINGPOS_RR 4 // Right ring finger
#define FINGPOS_RL 5 // Right little finger
#define FINGPOS_LT 6 // Left thumb
#define FINGPOS_LI 7 // Left index finger
#define FINGPOS_LM 8 // Left middle finger
#define FINGPOS_LR 9 // Left ring finger
#define FINGPOS_LL 10 // Left little finger

/// /////////////
// Declarations for the NIST provided library funct ions //
/// /////////////

// Structure to hold a single fingerprint record (i mage+metadata)

79

struct finger_record
{

BYTE impression_type;
UINT16 resolution; // Image resolution in pixels/c m
BYTE finger_position;
UINT16 height; // Image height in pixels
UINT16 width; // Image width in pixels
BYTE *image_data; // 8-bit grayscale image data

};
typedef struct finger_record FINGER_REC;

// Extracts 10 fingerprint records from a ten-print (AN2K) file

INT32 extract_image_data(const char *tenprint_filename,

FINGER_REC **finger_recs);

// De-allocates the memory holding 10 fingerprint records

void free_image_data(FINGER_REC *finger_recs);

//

// Declarations for the SDK provided library functions //

//

// Structure to hold zero or more candidates return ed in a search
 struct candidate {
 UINT32 background_index;
 BYTE finger_position;
 DOUBLE similarity_score;
 BYTE probability;

UINT16 num_matching_minutiae;
BYTE candidate_quality;

 }
 typedef struct candidate CANDIDATE;

// Structure to hold list of candidates returned by SDK
struct candidate_list
{

UINT32 num_entries;
UINT16 num_latent_minutiae;
BYTE latent_quality;
CANDIDATE *list;

} ;
typedef struct candidate_list CANDIDATE_LIST;

// Enrolls the entire set of background images

INT32 enroll_background(const INT32 num_recs,

const char **filenames, const char *enrollment_dir,

char *error_msg);

 // Selects the current background for latent image searching

INT32 set_background(const char *enrollment_dir);

// Enrolls the latent image

INT32 enroll_latent(const FINGER_REC *latent_finger,

const BYTE *roi_mask, const UINT16 orientation,

const BYTE offset, BYTE *enrolled_latent,

INT32 *enroll_length);

80

// Searches for the latent image in the background

INT32 image_search(const BYTE *enrolled_latent,

CANDIDATE_LIST *candidates, char *error_msg);

C.2.2 NIST Provided Functions

C.2.2.1 Extract Image Data

INT32
extract_image_data (const char *tenprint_filename,

 FINGER_REC **finger_recs);

Description
This function extracts ten fingerprint image records from a single (AN2K formatted) ten-print record file.

The caller shall pass tenprint_filename as a pointer to the fully qualified pathname of an AN2K

formatted ten-print record file, and finger_recs as the address of a pointer of type FINGER_REC (see

2.1 above).

Upon return finger_recs will contain a pointer to an array of ten FINGER_REC structures ordered by

finger position from 1 (right thumb) to 10 (left little finger). For any fingers that are missing from the

original ten-print record file, the image_data field in the respective FINGER_REC will be a NULL

pointer.

 Example
 // Example of processing a ten-print record

 FINGER_REC *finger_recs;

 INT32 status=extract_image_data(“image00205.an2k”, &finger_recs);

 if (status == 0) {

for (i=0;i<10;i++) {
 if (finger_recs[i].image_data != NULL)

process_valid_finger(finger_recs[i]);
 else

process_missing_finger(finger_recs[i]);
 }

free_image_data(finger_recs); // see 2.2.2 below
 }

Parameters

tenprint_filename (input): A pointer to a ten-print record filename.
finger_recs (output): The address of a FINGER_REC pointer.

Return Value

This function returns zero on success or a documented non-zero error code otherwise.

C.2.2.2 Free Image Data

void
free_image_data(FINGER_REC *finger_recs);

Description
De-allocates all memory used by the array of FINGER_REC structures specified by finger_recs which

was allocated during a call to extract_image_data().

Parameters

finger_recs (input): A pointer to an array of FINGER_REC structures.

81

Return Value

None.

C.2.3 SDK Provided Functions

C.2.3.1 Enroll Background

INT32

enroll_background(const INT32 num_recs,

const char **filenames,

const char *enrollment_dir,

 char *error_msg);

Description

This function performs the conversion of all background ten-print records into a proprietary dataset. No

format is prescribed for this data, but it could be a set of proprietary templates. Pre-computation of

background data avoids reprocessing of the original images upon subsequent calls to

image_search() .

The SDK shall use the function extract_image_data() (see 2.2.1 above) provided by NIST to

extract the raw grayscale image and metadata from each ten-print record file specified in the filenames

array. Note that each call to extract_image_data() allocates memory to hold the extracted

image and metadata, so this memory should be de-allocated using the NIST provided

free_image_data() (see 2.2.2 above) function when no longer needed.

The format of the filenames pointed to by the filenames array will be canonical Unix style pathnames

using forward slash directory separators (e.g. “/mnt1/xyz/foo-22/image00205.an2k”).

All data produced by the SDK shall be stored exclusively to the directory specified by enrollment_dir.

The contents of this directory are at the discretion of the vendor.

Non-fatal error conditions shall be tolerated and shall not result in pre-mature halting (i.e. non-

completion of background enrollment). These error conditions include missing fingers in ten-print

records, and failure-to-enroll (FTE) any portion of a ten-print record. If any of the above non-fatal error

conditions are encountered, the SDK may optionally return a documented non-zero warning code (after

completing background enrollment), though this is not required.

Upon entry the error_msg parameter will point to a pre-allocated and pre-zeroized string buffer of

length 513 bytes (512 + 1 for the NULL terminator) which the SDK may use for outputting detailed

information regarding fatal errors which have occurred (signaled by a non-zero return code). This may

be useful for debugging any problems that might occur after the SDK is received by NIST. For example, if

the enrollment process encounters a fatal or non-fatal error during processing of a specific background

ten-print record file, the SDK could output an error message including the ten-print record filename to

error_msg and return a documented non-zero error or warning code respectively.

Note 1: The order of the ten-print record file names in filenames defines (implicitly) the indexing

scheme that shall be used henceforth for recording the ten-print record indices of all candidates

returned by image_search(). The index of the first ten-print record is 1.

Note 2: During subsequent calls to image_search() the SDK is permitted to access the original

background images. To support this access, the path information supplied by filenames regarding the

original background images should be stored in the proprietary background set in enrollment_dir.

Parameters

num_recs (input): The number of ten-print records to enroll.

82

filenames (input): Array of pointers to all ten-print record filenames.

enrollment_dir (input): The directory used to store enrollment data output.

error_msg (output): Pointer to a detailed error message string.

Return Value

This function returns zero on success or a documented non-zero error code otherwise.

C.2.3.2 Set Background

INT32

set_background(const char *enrollment_dir);

Description

This function selects the background that shall be used by all subsequent calls to image_search() .

The directory specified by enrollment_dir shall contain the enrollment data produced by a prior call to

enroll_background().

Parameters

enrollment_dir (input): The directory to be used by image_search().

Return Value

This function returns zero on success or a documented non-zero error code otherwise.

C.2.3.3 Enroll Latent

INT32

enroll_latent(const FINGER_REC *latent_finger,

 const BYTE *roi_mask,

 const UINT16 orientation,

 const BYTE offset,

 BYTE *enrolled_latent,

 INT32 *enroll_length);

Description
This function enrolls the latent image pointed to by latent_finger, and writes the enrollment data to the
memory location pointed by enrolled_latent. The latent image itself shall be in “raw” uncompressed 8-
bit grayscale format. No format is prescribed for the enrollment data.

The fields latent_finger->width and latent_finger->height specify the width and height of the latent
image in pixels. The field latent_finger->resolution specifies the horizontal and vertical resolution of
the latent image in pixels per centimeter (e.g. 500 pixels per inch is specified as 197 ppcm ; 1000 ppi is
specified as 394 ppcm). The fields latent_finger->impression_type and latent_finger->finger_position
will always be set equal to 0.

The function may be optionally supplied with a “region of interest” in the form of an image mask. In
cases where no “region of interest” information is provided, the input roi_mask parameter shall be a
NULL pointer. Otherwise, roi_mask shall point to a “raw” uncompressed raw 8-bit grayscale image with
the same dimensions as the latent fingerprint image. The region (or regions) of interest in the latent

83

fingerprint image are identified by the corresponding x,y locations in the roi_mask having non-zero
pixels.

The orientation parameter specifies the estimated angle of the fingerprint in degrees (0 to 359). The
offset (0 to 180) specifies the offset (+ or -) in degrees around this angle of allowable variance. Taken
together these values inform the SDK as to fingerprint image’s range of rotational variance which may be
useful to the matching algorithm. The angle is expressed in standard mathematical format, with zero
degrees to the right and angles increasing in the counterclockwise direction. Thus “upright” fingerprint
images are said to have an orientation of 90 degrees. For example, if orientation and offset are specified
as 75 and 5 respectively, the fingerprint image is estimated to have an orientation between 70 and 80
degrees. The offset 180 will only be used in conjunction with an orientation of 90 to convey complete
uncertainty as to the fingerprint’s orientation, and in that case full rotational variance (0 to 359) shall be
assumed.

The memory for enrolled_latent is allocated prior to the call (i.e. by the application linked with the SDK)
as a pre-zeroized 10 megabyte array.

Upon return from this function, enroll_length shall be set by the SDK to the length (in bytes) of the
enrollment data stored in enrolled_latent. The memory for enroll_length is allocated by the caller prior
to calling this function.

Failure-to-enroll a latent shall result in a non-zero return code and upon return from this function the
enrollment data written to enrolled_latent shall contain non-zero length data defined by the SDK as
representing “null enrollment data.” This “null enrollment data” shall be usable in subsequent searches
for the corresponding latent, and result in the output of a candidate list with all entries set to 0.

Note that during the call to this function the directory containing the current background and its contents
are read-only.

Parameters

latent_finger (input): Pointer to a latent fingerprint image record.

roi_mask (input): Pointer to optional image mask identifying ROI(s).

orientation (input): The estimated orientation (in degrees) of the latent fingerprint.

offset (input): The range of variance (in degrees) + or - the orientation.

enrolled_latent (output): Pointer to memory block receiving the enrollment data.

enroll_length (output): Pointer to length of enrolled_latent in bytes.

Return Value

This function returns zero on success or a documented non-zero error code on failure.

C.2.3.4 Image Search

INT32

image_search(const BYTE *enrolled_latent,

 CANDIDATE_LIST *candidates,

 char *error_msg);

84

Description
This function searches the current background (as selected by set_background()) for zero or more

candidates matching the input enrolled_latent parameter. The selection of features on which to

match is entirely at the discretion of the SDK. Note that during the call to this function the directory

containing the current background and its contents are read-only.

When this function is called, the candidates parameter will point to a pre-initialized

CANDIDATE_LIST (see 2.1 above) with candidates->num_entries set equal to M, the number of

background records (N) multiplied by 10 (i.e. M = N x 10), and candidates->list pointing to a pre-

allocated M length array of (pre-zeroized) CANDIDATE structures.

During execution of this function the SDK shall modify the CANDIDATE_LIST structure such that

candidates->num_entries is set equal to the number of candidates found (S), and the first S

members of the array specified by candidates->list contain all candidate information. In other

words, the first S structures of type CANDIDATE (see 2.1 above) pointed to by candidates->list

shall contain the original background record file index, finger position, similarity score, and

probability (range 0 to 100) for each candidate found by the search. For Phase I and II testing, the

number of candidates found, S, shall equal 50 (and M will always be greater than 50). Additionally,

the CANDIDATE structures in candidates->list shall be stored in decreasing order of

similarity_score. Note that before returning from this function the SDK must set candidates-

>num_entries equal to 50, even if less than 50 candidates are actually written to candidates->list.

In the event that less than 50 candidates are actually written to candidates->list, the pre-zeroized

CANDIDATE structures in the array will effectively provide “padding” (with NULL candidates) to

the required length of 50.

The background_index field for each CANDIDATE shall be set equal to the relative offset of the

original ten-print record file processed by enroll_background(). The finger_position for each

CANDIDATE shall be set equal to the finger position information extracted from its associated ten-

print record file. And the similarity_score for each CANDIDATE shall be set to a value greater than

or equal to 0 which represents the similarity of the input latent finger image to the respective

candidate finger image in the background. Note that any background fingerprint images not

represented by an entry in candidates->list shall be implicitly assigned a similarity score equal to

0.

The probability field for each CANDIDATE shall be set equal to the probability (0-100) that the

candidate is a “likely hit.”

Non-fatal error conditions shall be tolerated and shall not result in pre-mature halting (i.e. non-

completion of the search). These error conditions include encountering “gaps” in the background

resulting from prior failure-to-enroll (FTE) events, and searching with an enrolled_latent

containing “null enrollment data.” In the latter case, the candidate list returned shall have all

entries set to 0. If any of the above non-fatal error conditions are encountered, the SDK may

optionally return a documented non-zero warning code (after completing the search), though this

is not required.

Duplicate CANDIDATE entries or entries whose background_index field values are out of range (i.e.

not between 1 and the N inclusive) shall not be accepted.

Upon entry the error_msg parameter will point to a pre-allocated and pre-zeroized string buffer of

length 513 bytes (512 + 1 for the NULL terminator) that the SDK may use for outputting detailed

information regarding fatal errors which have occurred (signaled by a non-zero return code). This

may be useful for debugging any problems that might occur after the SDK is received by NIST.

Optionally, the quality of the latent print, the number of minutiae found in the latent print, the

number of latent minutiae matching each candidate print, and the quality of the each candidate

print may be returned (respectively) via the fields candidates->latent_quality , candidates-

>num_latent_minutiae, candidate->num_matching_minutiae, and candidate-

85

>candidate_quality. If image quality values are supplied for either the latent or candidate print,

the table below indicates the required range of values and their associated meanings:

Image Quality Value Description

20 Poor

40 Fair

60 Good

80 Very Good

100 Excellent

Note 1: Matcher architectures in which “advanced matchers” are selectively invoked (depending

upon initial screening results for the latent) are allowed. The SDK might decide to invoke (call)

computationally intensive matchers only for those comparisons which show initial good results.

However, the SDK must decide if the additional features (if any) used by these “advanced matchers”

will be written to persistent storage during the call to enroll_background().

Note 2: Since it may not be possible to keep all background images in memory, it might be

necessary for the software to repeatedly retrieve the data from disk, and this extra fetch time will

be included in the execution time measurement.

Note 3: The candidate list shall only depend on the inputs to this function and the currently selected

background (not on any previous results from this function). Thus, identical inputs and

background shall produce identical candidate lists independent of all prior calls to this function.

Parameters

enrolled_latent (input): Pointer to the latent image’s enrollment data.

candidates (input/output): A list of candidates matching the latent fingerprint image.

error_msg (output): Pointer to a detailed error message string.

Return Value

This function returns zero on success or a documented non-zero error code on failure.

C.2.4 Error Codes and Handling

The participant shall provide documentation of all (non-zero) error or warning return codes (see section C.3.3,

Documentation).

The application should include error/exception handling so that in the case of a fatal error, the return code is

still provided to the calling application.

All messages which convey errors, warnings or other information shall be suppressed. Information

supplemental to the documented error codes returned by the SDK shall be conveyed via the error_msg

parameter (see 2.3 above) only.

At minimum the following return codes shall be used.

Return

code

Function Explanation

0 All Success
-1 extract_image_data() unable to open file

86

-2 extract_image_data() Incorrect file format
-3 extract_image_data() error parsing ten-print file
-4 extract_image_data() error decompressing image
-5 extract_image_data() insufficient memory error
-6 extract_image_data() unspecified error

100 enroll_background() enrollment directory not found
101 enroll_background() error extracting image(s) from ten print
102 enroll_background() error writing enrollment data
103 enroll_background() insufficient memory error
200 set_background() enrollment directory not found
300 enroll_latent() image size not supported
301 enroll_latent() image resolution not supported
302 enroll_latent() insufficient features found in latent
400 image_search() enrollment directory not set
401 image_search() insufficient memory available for search
402 image_search() unable to access original ten-print record

C.3 Software and Documentation

C.3.1 SDK Library and Platform Requirements

Individual SDKs shall not include multiple “modes” of operation, or algorithm variations which require explicit

activation by the calling application. If participants wish to separately compare the performance of such

features, they must submit separate SDKs. Note that this requirement does not preclude implementation of

internally (i.e. autonomously) selected modes or algorithm variations within a single SDK. Only such features

requiring external selection by the calling application are forbidden.

Participants shall provide NIST with binary code only (i.e. no source code) − supporting files such as header

(“.h”) files notwithstanding. It is preferred that the SDK be submitted in the form of a single static library file

(i.e. “.LIB” for Windows or “.a” for Linux). However, dynamic/shared library files are permitted.

If dynamic/shared library files are submitted, it is preferred that the API interface specified by this document

be implemented in a single “core” library file with the base filename ‘liblatent’ (for example, ‘liblatent.dll’ for

Windows or ‘liblatent.so’ for Linux). Additional dynamic/shared library files may be submitted that support

this “core” library file (i.e. the “core” library file may have dependencies implemented in these other libraries).

Note that dependencies on external dynamic/shared libraries such as compiler-specific development

environment libraries are discouraged. If absolutely necessary, external libraries must be provided to NIST

upon prior approval by the Test Liaison.

The SDK will be tested in non-interactive “batch” mode (i.e. without terminal support). Thus, the library code

provided shall not use any interactive functions such as graphical user interface (GUI) calls, or any other calls

which require terminal interaction (e.g. calls to “standard input” or “standard output”).

The use of multi-threading by the SDK is encouraged as the NIST test platform includes dual-processor support.

The SDK need not be “thread safe” as the NIST test driver itself is single threaded. If multi-threading is utilized

by the SDK is shall be documented.

NIST will link the provided library file(s) to a C language test driver application (developed by NIST) using the

GCC compiler (for Windows platforms Cygwin/GCC version 3.3.1 will be used; for Linux platforms GCC version

2.96 and GNU ld 2.11.90.0.8 will be used. All GCC compilers use Libc 6). For example,

gcc –o latenttest latenttest.c -L. –llatent

87

Participants are required to provide their library in a format that is linkable using GCC with the NIST test driver,

which is compiled with GCC. All compilation and testing will be performed on x86 platforms running either

Windows 2000 Professional SP4 (or higher) or Linux (kernel 2.4.7-10 or higher) dependent upon the operating

system requirements of the SDK. Thus, participants are strongly advised to verify library-level compatibility

with GCC (on an equivalent platform) prior to submitting their software to NIST to avoid linkage problems later

on (e.g. symbol name and calling convention mismatches, incorrect binary file formats, etc.).

C.3.2 Installation and Usage

The SDK must install easily (i.e. one installation step with no participant interaction required) to be tested, and

shall be executable on any number of machines without requiring additional machine-specific license control

procedures or activation.

The SDK’s usage shall be unlimited. No usage controls or limits based on licenses, execution date/time, number

of executions, etc. shall be enforced by the SDK.

It is requested that the SDK be installable using simple file copy methods, and not require the use of a separate

installation program. Contact the Test Liaison for prior approval if an installation program is absolutely

necessary.

C.3.3 Documentation

Complete documentation of the SDK shall be provided, and shall detail any additional functionality or behavior

beyond what is specified in this document. The documentation must define all error and warning codes.

Multi-threading behavior by an SDK shall be documented.

C.3.4 Speed Requirement

All times given assume the use of a 2.8GHz Pentium IV equivalent or faster processor. Time will be measured

as “wall clock” elapsed time.

The average time to enroll a single background ten-print record shall take no more than 150 seconds (15

sec/image).

The average time to enroll a single latent image shall take no more than 600 seconds.

The average time to search a single background ten-print record shall take no more than 0.25 seconds (0.025

sec/image).

88

Appendix D- Complete Set of Accuracy Characteristic s

This appendix presents an exhaustive catalog of the DET characteristics. This consists of sixteen computed

from the SDKs' raw matcher score, and the remainder from the reported probability estimate. All providers'

DET curves are displayed together. There is a separate set of four plots (for ranks 1, 10, 20, and 50) for each of

the four tests.

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

